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Abstract. Kim et al. [4] and Contini et al. [3] studied on the security of
HMAC and NMAC based on HAVAL, MD4, MD5, SHA-0 and SHA-1.
Especially, they considered the distinguishing attacks. However, they did
not describe generic distinguishing attacks on NMAC and HMAC. In this
paper, we describe the generic distinguishers to distinguish NMAC and
HMAC with the birthday attack complexity and we prove the security
bound when the underlying compression function is the random oracle.

Keywords : NMAC, HMAC, Distinguishing Attack, Birthday Attack.

1 Introduction.

Since MD4-style hash functions were broken, evaluations on the security of
HMAC and NMAC have been required. Kim et al. [4] and Contini et al. [3]
showed the security analyses on them. However, Kim et al.’ distinguishing at-
tack complexity is far from the birthday attack complexity. Contini et al. also
suggested 284 as the distinguishing attack complexity of NMAC and HMAC on
the reduced SHA-1, which is bigger than the birthday attack complexity. In this
paper, we describe the generic distinguishers to distinguish NMAC and HMAC
with the birthday attack complexity and we prove the security bound when the
underlying compression function is the random oracle.

2 NMAC and HMAC

Fig. 1 and 2 show NMAC and HMAC based on a compression function f
from {0, 1}n × {0, 1}b to {0, 1}n. K1 and K2 are n bits. K = K||0b−n where
K is n bits. opad is formed by repeating the byte ‘0x36’ as many times as
needed to get a b-bit block, and ipad is defined similarly using the byte ‘0x5c’.
H : {IV } × ({0, 1}b)∗ → {0, 1}n is the iterated hash function. H is defined
as follows : H(IV, x1||x2|| · · · ||xt) = f(· · · f(f(IV, x1), x2) · · · , xt) where xi is b
bits. Let g be a padding method. g(x) = x||10t||bin64(x) where t is smallest non-
negative integer such that g(x) is a multiple of b and bini(x) is the i-bit binary
representation of x. Then, NMAC and HMAC are defined as follows.



NMACK1,K2(M) = H(K2, g(H(K1, g(M))))

HMACK(M) = H(IV, g(K ⊕ opad||H(IV, g(K ⊕ ipad||M)))).
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Fig. 1. NMAC ( g(M) = M1||M2|| · · · ||Mt)
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Fig. 2. HMAC ( g(K ⊕ ipad||M) = K ⊕ ipad||M1||M2|| · · · ||Mt)

3 General Distinguishing Attack On NMAC and HMAC

Here, we describe three types of distinguishers A1, A2 and A3. In case of A1

and A2, we will prove the lower bound of A1’s advantage. On the other hand,
A3 distinguishes heuristically without proving exact proof of security bound.
Practically, A3 is reasonable. For all distinguishers, queries are same as follows.
Let q is the number of queries such that t is a fixed value (t > 2) in Fig. 1 and 2.
Since g is applied two times in NMAC and HMAC, t > 2 means that the added
information of the first padding is different from that of the secoond padding.



Each block is b bits and c = ⌈log2t⌉. In NMAC, A = K1 and B = K2 in Fig. 3. In
HMAC, A = f(IV, K⊕ ipad) and B = f(IV, K⊕opad) in Fig. 3. For NMAC and
HMAC, i-th query is Xi||064||binc(1)||0b−c|| · · · ||binc(t−2)||0b−c||binc(t−1) where
each Xi is b − 64 bits and Xi 6= Xj for any i 6= j and Xi||064 6= binc(j)||0b−c for
any i and j such that 1 6 j 6 t− 2. These kinds of messages enable us to prove
the security bound in the random oracle model. When we prove the security
bound, we will explain in detail.
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Fig. 3. Attack Strategy. In NMAC, A = K1 and B = K2. In HMAC, A = f(IV, K ⊕
ipad) and B = f(IV,K ⊕ opad).

In Fig. 3, for i-query, we denote the values of h1 ∼ ht+1 by h1,i ∼ ht+1,i. Then
we define Pr[Cm] denotes the probability that there exist hm,i = hm,j such that
1 6 i 6= j 6 q. Note that if Ci occurs, then Cj (i + 1 6 j 6 t + 1) also occurs.
Therefore, Pr[Ct+1] = Pr[C1 ∨ C1 ∨ · · · ∨ Ct+1]. In other words, Pr[¬Ct+1] =
Pr[¬C1 ∧ ¬C1 ∧ · · · ∧ ¬Ct+1]. And Pr[Ct+1] = 1 − Pr[¬C1 ∧ ¬C1 ∧ · · · ∧ ¬Ct+1].

Distinguisher A1

A1 has an access to oracle O which is NMAC (or HMAC) or the random func-
tion from {0, 1}∗ → {0, 1}n. A1 makes q queries as described above. Then A1

outputs ‘1’ if there is a collision among q queries, otherwise outputs ‘0’. We
want to compute the bound of the advantage of A1. For this, we compute the
probability that there is a collision for both NMAC (or HMAC) and the ran-
dom function. In case of the random function, we denote Prr[C] by the prob-
ability that there exist a collsion of the random function. Let N = 2n. Let

xi,j = hi−1||Mi in Fig. 3. Then Pr[¬C1] = N(N−1)···(N−q+1)
Nq because all Xi

(1 6 i 6 q) are different. When C1 does not occur, x1,i 6= x2,j for all i and

j. So, Pr[¬C2|¬C1] = Pr[¬C2] = Pr[¬C1] = N(N−1)···(N−q+1)
Nq . So, Pr[¬C1 ∧

¬C2] = (Pr[¬C1])
2 = (N(N−1)···(N−q+1)

Nq )2. Similarly, we can know Pr[¬C1 ∧



· · · ∧ ¬Ct+1] = (Pr[¬C1])
t+1 = (N(N−1)···(N−q+1)

Nq )t+1. Therefore, Pr[Ct+1] =

1 − (N(N−1)···(N−q+1)
Nq )t+1. On the other hand, in case of the random function,

Prr[C] = 1 − N(N−1)···(N−q+1)
Nq .

AdvA1(q) = |Pr[AHMAC or NMAC
1 = 1] − Pr[ARand

1 = 1]|

= |N(N − 1) · · · (N − q + 1)

N q
− (

N(N − 1) · · · (N − q + 1)

N q
)t+1|

With using 1−x 6 e−x for x 6 1, N(N−1)···(N−q+1)
Nq = (1− 1

N )(1− 2
N ) · · · (1−

q−1
N ) 6 e

1
N

+ 2
N

+···+ q−1
N = e−

q(q−1)
2N . If q 6

√
2N then q(q−1)

2N 6 1. With using

e−x 6 1− (1− e−1)x for x 6 1 [1], we know that e−
q(q−1)

2N 6 1− (1− e−1) q(q−1)
2N .

Since 1 − e−1 > 0.632, e−
q(q−1)

2N < 1 − 0.632 · q(q−1)
2N . And N(N−1)···(N−q+1)

Nq >

1 − q(q−1)
2N by the result of [1]. Therefore, 1 − q(q−1)

2N 6
N(N−1)···(N−q+1)

Nq <

1 − 0.632 · q(q−1)
2N . Finally,

AdvA1(q) > |(1 − q(q − 1)

2N
) − (1 − 0.632 · q(q − 1)

2N
)t+1|

In case of q =
√

N , AdvA1(q) ≈ |12−0.684t+1|. When t = 11, AdvA1(q) ≈ 0.49.

Distinguisher A2

A2 has an access to oracle O which is NMAC (or HMAC) or the random function
from {0, 1}∗ → {0, 1}n.

– A2 makes q queries as described above.

– If there is no collision among outputs of q queries, return 0.

– If there is a collision (M, M ′) among q queries,

• When comparing with NMAC, A2 makes new queries T and T ′ such that
T = M ||10b−c−65||bin64(bt−b+c) and T ′ = M ||10b−c−65||bin64(bt−b+c).

• When comparing with HMAC, A2 makes new queries T and T ′ such that
T = M ||10b−c−65||bin64(bt + c) and T ′ = M ||10b−c−65||bin64(bt + c).

– If O(T ) = O(T ′), then return 1 otherwise 0.

We know that Pr[Ct] = 1−(N(N−1)···(N−q+1)
Nq )t. We want to compute Pr[|{ht,i}i6q| =

|{ht+1,j}j6q| | Ct]. This probability means that there is no collision which do
not collide in ht. Since the size of {ht,i}i6q is q at most and {ht,i||xt+1}i6q ∩
{hj,i||xj+1}i6q,j6t−1 = ∅, Pr[|{ht,i}i6q| = |{ht+1,j}j6q| | Ct] >

N(N−1)···(N−q+1)
Nq .

Therefore, Pr[|{ht,i}i6q| = |{ht+1,j}j6q| ∧ Ct] > (N(N−1)···(N−q+1)
Nq )(1−(N(N−1)···(N−q+1)

Nq )t).



AdvA2(q) = |Pr[AHMAC or NMAC
2 = 1] − Pr[ARand

2 = 1]|
> |Pr[|{ht,i}i6q| = |{ht+1,j}j6q| ∧ Ct] − N−1|

> |N(N − 1) · · · (N − q + 1)

N q
− (

N(N − 1) · · · (N − q + 1)

N q
)t+1 − N−1|

> |(1 − q(q − 1)

2N
) − (1 − 0.632 · q(q − 1)

2N
)t+1 − N−1|

In case of q =
√

N , AdvA2(q) ≈ |12−0.684t+1|. When t = 11, AdvA2(q) ≈ 0.49.

Distinguisher A3

See Fig. 3. We know that there is an internal collision pair in h1 with about the
following probability.

(

2n/2

2

)

· 2−n =
1

2
− 2(2−n)/2

Then automatically the pair becomes also an internal collision pair in from h2

to ht+1 in Fig. 3. Except the pair, we also know that there exist an internal
collision pair which is collided in h2 with above probability. By this logic, we
can get t internal collision pairs in ht. In case of NMAC and HMAC, since the
value in ht is applied to f once more, we can get (t + 1) · (1

2 − 2(2−n)/2) collision
pairs of NMAC and HMAC on average. On the other hand, in case of random
function, we can get about (1

2 − 2(2−n)/2) collision pairs.

NMAC or HMAC Random Function

Average (t + 1) · (1
2 − 2(2−n)/2) ≈ t+1

2 (1
2 − 2(2−n)/2) ≈ 1

2

Standard Deviation ≈
√

2/2 ≈
√

2 · (t + 1)/2

Then, distinguisher A3 says ‘1’ (NMAC or HMAC) if there are t+1
2 −

√

2(t + 1)
collision pairs at least. Otherwise A3 says ‘0’ (random function). So, with high
probability A3 can distinguish NMAC and HMAC from the random function. In
case t = 31, Advantage of A3 is

AdvA3(2
n/2) = |Pr[ANMAC or HMAC

3 = 1] − Pr[ARand
3 = 1]|

≈ |0.977 − 0| = 0.977.

4 Conclusion

In this paper, we described generic distinguishing attacks on NMAC and HMAC
where a compression function f is used iteratively and the size of the internal
state is same as that of the hash output. Therefore, we can know that the security
bound of NMAC and HMAC is the birthday attack complexity in case that the
size of the internal state is same as that of the hash output.
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