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Abstract

We exhibit an infinite class of almost perfect nonlinear quadratic binomials from
F2n to F2n (n ≥ 12, n divisible by 3 but not by 9). We prove that these functions
are EA-inequivalent to any power function and that they are CCZ-inequivalent to
any Gold function and to any Kasami function. It means that for n even they are
CCZ-inequivalent to any known APN function, and in particular for n = 12, 24, they
are therefore CCZ-inequivalent to any power function.

It is also proven that, except in particular cases, the Gold mappings are CCZ-
inequivalent to the Kasami and Welch functions.
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1 Introduction

Since the introduction by Biham and Shamir of differential attacks on block ciphers [4] and
by Matsui of linear attacks [28], and since the introduction by Nyberg [29] of the related
notion of almost perfect nonlinear (APN) mappings, and by Chabaud and Vaudenay of the
notion of almost bent (AB) mappings [13], much work has been done on these two notions
[1, 3, 6, 8, 9, 10, 12, 15, 16, 17, 18, 23, 24, 25]. A function F : F

n
2 → F

n
2 is called APN if, for

every a 6= 0 and every b in F
n
2 , the equation F (x)+F (x+a) = b admits at most two (that is,

0 or 2) solutions (it is also called differentially 2-uniform). A function F is called AB if the
minimum Hamming distance between all Boolean functions v · F , v ∈ F

n
2 \{0} (where “·”

denotes the usual inner product in F
n
2 ) and all affine Boolean functions on F

n
2 is maximal
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(this distance is called the nonlinearity of F and this maximum equals 2n−1 − 2
n−1

2 ). A
comprehensive survey on APN and AB functions can be found in [11].

Until recently, all known constructions of APN and AB functions happened to be EA-
equivalent to power functions x → xd (where x ranges over the finite field F2n, identified
as a vector space to F

n
2 ). Recall that two functions F and F ′ are called extended affine

equivalent (EA-equivalent) if F ′ = A1 ◦ F ◦ A2 + A, where the mappings A, A1, A2 are
affine, and where A1, A2 are permutations. Table 1 (resp. Table 2) gives all known values
of exponents d (up to multiplication by a power of 2 modulo 2n − 1, and up to taking the
inverse when a function is a permutation) such that the power function xd is APN (resp.
AB).

Table 1
Known APN power functions xd on F2n .

Functions Exponents d Conditions Proven in

Gold 2i + 1 gcd(i, n) = 1 [22, 29]

Kasami 22i − 2i + 1 gcd(i, n) = 1 [25, 26]

Welch 2t + 3 n = 2t + 1 [17]

Niho 2t + 2
t

2 − 1, t even n = 2t + 1 [16]

2t + 2
3t+1

2 − 1, t odd

Inverse 22t − 1 n = 2t + 1 [3, 29]

Dobbertin 24t + 23t + 22t + 2t − 1 n = 5t [18]

Table 2
Known AB power functions xd on F2n , n odd.

Functions Exponents d Conditions Proven in

Gold 2i + 1 gcd(i, n) = 1 [22, 29]

Kasami 22i − 2i + 1 gcd(i, n) = 1 [26]

Welch 2t + 3 n = 2t + 1 [9, 10]

Niho 2t + 2
t
2 − 1, t even n = 2t + 1 [24]

2t + 2
3t+1

2 − 1, t odd

Every power APN function is a permutation when n is odd [20]. For n even case it is
conjectured by Canteaut, Carlet, Charpin, Dobbertin and Zinoviev that there exists no
APN permutation. Every AB function is APN [13]. The converse is not true in general
since AB functions exist only when n is odd while APN functions exist for n even too.
Besides, in the n odd case, the Dobbertin APN function is not AB as proven in [10]. Also,
in this same case, the inverse APN function is not AB since it has the algebraic degree
n−1 while the algebraic degree of any AB function is not greater than (n+1)/2 (see [12]).
But, if n is odd again, every APN mapping which is quadratic (that is, whose algebraic
degree equals 2) is AB [12].

When n is even, the inverse function x2n−2 is a differentially 4-uniform permutation [29]
and has the best known nonlinearity [27], that is 2n−1 − 2

n
2 (see [10, 15]). This function

has been chosen as the basic S-box, with n = 8, in the Advanced Encryption Standard
(AES), see [14].

2



Several conjectures have been made on APN and AB functions. In particular, it was
widely accepted as plausible that all APN functions are EA-equivalent to power functions
and as a consequence it was conjectured in [12] that all AB functions are EA-equivalent
to permutations, and that all quadratic AB functions are EA-equivalent to Gold functions
(this last conjecture was restated for APN functions in [2]). Using the stability properties
studied in [12] and more recently called CCZ-equivalence (cf. definition at Section 2), new
infinite classes of APN and AB functions have been introduced in [6] (see also [7]) and
solved the first two problems.

The new APN and AB functions introduced in [7] are, by construction, CCZ-equivalent
to Gold functions. Hence, the problem of knowing whether there exist APN functions which
would be CCZ-inequivalent to power functions remained open after their introduction. A
recent paper [21] introduces two quadratic functions from F210 (resp. F212) to itself. The
first one is proved to be CCZ-inequivalent to any power function. The exhibition of this
function also solves the third of the problems recalled above.

These two (quadratic) functions are isolated and this leaves open the question of know-
ing whether a whole infinite class of APN functions being not CCZ-equivalent to power
functions can be exhibited.

In the present paper, we introduce an infinite class of quadratic APN functions on
every number of variables n, divisible by 3, but not by 9. We show that, for n ≥ 12,
these functions are EA-inequivalent to power functions and CCZ-inequivalent to Gold and
Kasami functions. This implies that for n even they are CCZ-inequivalent to all known
APN functions. In particular, for n = 12, 24, they are indeed CCZ-inequivalent to any
power mappings. Furthermore, we consider an open question about CCZ-inequivalence of
two different functions from Table 1 to each other. We prove that, except in particular
cases, the Gold functions are CCZ-inequivalent to the Kasami and Welch functions, and
that two Gold functions are CCZ-equivalent if and only if they are EA-equivalent.

2 Preliminaries

Let F
n
2 be the n-dimensional vector space over the field F2. Any function F from F

n
2 to

itself can be uniquely represented as a polynomial on n variables with coefficients in F
n
2 ,

whose degree with respect to each coordinate is at most 1:

F (x1, ..., xn) =
∑

u∈Fn
2

c(u)
(

n
∏

i=1

xui

i

)

, c(u) ∈ F
n
2 .

This representation is called the algebraic normal form of F and its degree d◦(F ) the
algebraic degree of the function F .
Besides, the field F2n, as any n-dimensional vector space over F2, can be identified with
F

n
2 , as a vector space. Then, viewed as a function from this field to itself, F has a unique
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representation as a univariate polynomial over F2n of degree smaller than 2n:

F (x) =
2n−1
∑

i=0

cix
i, ci ∈ F2n .

For any k, 0 ≤ k ≤ 2n − 1, the number w2(k) of the nonzero coefficients ks ∈ {0, 1} in
the binary expansion

∑n−1
s=0 2sks of k is called the 2-weight of k. The algebraic degree of

F is equal to the maximum 2-weight of the exponents i of the polynomial F (x) such that
ci 6= 0, that is d◦(F ) = max0≤i≤n−1,ci 6=0 w2(i) (see [12]).

A function F : F
n
2 → F

n
2 is linear if and only if F (x) is a linearized polynomial over

F2n , that is,
n−1
∑

i=0

cix
2i

, ci ∈ F2n .

The sum of a linear function and a constant is called an affine function.
Let F be a function from F

n
2 to itself and A1, A2 : F

n
2 → F

n
2 be affine permutations. The

functions F and A1 ◦ F ◦ A2 are then called affine equivalent. Affine equivalent functions
have the same algebraic degree (i.e. the algebraic degree is affine invariant).

As recalled in introduction, we say that the functions F and F ′ are extended affine
equivalent if F ′ = A1 ◦ F ◦ A2 + A for some affine permutations A1, A2 and an affine
function A. If F is not affine, then F and F ′ have again the same algebraic degree.

For a function F : F
n
2 → F

n
2 and any elements a, b ∈ F

n
2 we denote

δF (a, b) = |{x ∈ F
n
2 : F (x + a) + F (x) = b}|

and

∆F = {δF (a, b) : a, b ∈ F
n
2 , a 6= 0}.

F is called a differentially δ-uniform function if maxa∈F
n∗

2
,b∈F

n
2
δF (a, b) ≤ δ, where F

n∗
2 =

F
n
2 \ {0}. For any a, b ∈ F

n
2 , the number δF (a, b) is even since if x0 is a solution of the

equation F (x + a) + F (x) = b then x0 + a is a solution too. Hence, δ ≥ 2. Differentially
2-uniform mappings are called almost perfect nonlinear.

For any function F : F
n
2 → F

n
2 , the distribution of the values

λF (a, b) =
∑

x∈F
n
2

(−1)b·F (x)+a·x, a, b ∈ F
n
2 ,

does not depend on a particular choice of the inner product ” · ” in F
n
2 . If we identify F

n
2

with F2n then we can take x · y = tr(xy), where tr(x) = x + x2 + x4 + ... + x2n−1

is the
trace function from F2n into F2. The set ΛF = {λF (a, b) : a, b ∈ F

n
2 , b 6= 0} is called the

Walsh spectrum of F and the value

NL(F ) = 2n−1 −
1

2
max

a∈F
n
2
,b∈F

n∗

2

|λF (a, b)|
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equals the nonlinearity of the function F . The nonlinearity of any function F satisfies the
inequality

NL(F ) ≤ 2n−1 − 2
n−1

2

([13, 30]) and in case of equality F is called almost bent or maximum nonlinear. For any

AB function F , the Walsh spectrum ΛF equals {0,±2
n+1

2 } as proven in [13].
For EA-equivalent functions F and F ′, we have NL(F ) = NL(F ′), ∆F = ∆F ′ and if

F is a permutation then NL(F ) = NL(F−1), ∆F = ∆F−1 (see [12]).

Two mappings F and G from F2n to itself are called Carlet-Charpin-Zinoviev equivalent
(CCZ-equivalent) if the graphs of F and G, that is, the subsets {(x, F (x)) | x ∈ F2n} and
{(x, G(x)) | x ∈ F2n} of F2n×F2n , are affine equivalent. Hence, F and G are CCZ-equivalent
if and only if there exists an affine automorphism L = (L1, L2) of F2n × F2n such that

y = F (x) ⇔ L2(x, y) = G(L1(x, y)).

Note that the function L1(x, F (x)) has to be a permutation too. Indeed, suppose that there
exists x 6= x′ such that L1(x, F (x)) = L1(x

′, F (x′)), then since L is a permutation, we would
have L2(x, F (x)) 6= L2(x

′, F (x′)), a contradiction since L2(x, F (x)) = G(L1(x, F (x))) and
L2(x

′, F (x′)) = G(L1(x
′, F (x′))). Note also that, conversely, if F and L = (L1, L2) are

respectively a function and an affine automorphism such that the function L1(x, F (x)) is
a permutation, then the relation L2(x, F (x)) = G(L1(x, F (x))) defines a function G which
is CCZ-equivalent to F .

It is shown in [12] that, if F and G are CCZ-equivalent, then F is APN (resp. AB) if
and only if G is APN (resp. AB). As shown in [12] too, EA-equivalence is a particular case
of CCZ-equivalence and any permutation is CCZ-equivalent to its inverse.

3 A new family of APN functions

The following theorem introduces a large class of quadratic binomial APN functions.

Theorem 1 Let s and k be positive integers with gcd(s, 3k) = 1, and t ∈ {1, 2}, i = 3− t.
Furthermore let

d = 2ik + 2tk+s − (2s + 1),

g1 = gcd(23k − 1, d/(2k − 1)),

g2 = gcd(2k − 1, d/(2k − 1)),

and α be a primitive element of F
∗
23k . If g1 6= g2 then the function

F (x) = x2s+1 + α2k−1x2ik+2tk+s

is almost perfect nonlinear on F23k (and is almost bent when k is odd).
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Proof. Let n = 3k. We have to show that for every u, v ∈ F2n , v 6= 0, the equation

F (x) + F (x + v) = u

has at most 2 solutions. We have

F (x) + F (x + v)

= α2k−1
(

x2ik+2tk+s

+ (x + v)2ik+2tk+s
)

+ x2s+1 + (x + v)2s+1

= α2k−1v2ik+2tk+s

(

(x

v

)2ik

+
(x

v

)2tk+s
)

+ v2s+1

(

(x

v

)2s

+
(x

v

)

)

+ α2k−1v2ik+2tk+s

+ v2s+1.

As this is a linear equation in x it is sufficient to study the kernel. Note furthermore that

v2ik+2tk+s−(2s+1) = v(2k−1)(2k+s+2s+1−2k(2s−1)(i−1))

(this can be checked separately for i = 1 and i = 2). To simplify notation we define

a =
(

αv2k+s+2s+1−2k(2s−1)(i−1)
)2k−1

.

After replacing x by vx and dividing by v2s+1, we finally see that the equation F (x) +
F (x + v) = u admits 0 or 2 solutions for every v ∈ F

∗
2n if and only if, denoting

∆a(x) = a
(

x2ik

+ x2tk+s
)

+ x2s

+ x,

the equation ∆a(x) = 0 has at most two zeros or, equivalently, that the only solutions are
x = 0 and x = 1.

From now on we consider the cases i = 1 and i = 2 separately.

Case 1 (t = 1, i = 2) The following step can be seen as a very basic application of the
multivariate method introduced by Dobbertin [19]. If we denote y = x2k

, z = y2k

and
b = a2k

, c = b2k

the equation ∆a(x) = 0 can be rewritten as

a(z + y2s

) + (x2s

+ x) = 0.

By definition, a is always a (2k − 1)-th power and thus abc = 1. Besides, a /∈ F2 (as it
is confirmed further). Considering also the conjugated equations we derive the following
system of equations

f1 = a(z + y2s

) + x2s

+ x = 0

f2 = b(x + z2s

) + y2s

+ y = 0

f3 = 1
ab

(y + x2s

) + z2s

+ z = 0.
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The aim now is eliminating y and z from these equations and finally getting an equation
in x only. First we compute

R1 = b(f1)
2s

+ a2s

f2

= a2s

by22s

+ a2s

y2s

+ a2s

y + bx22s

+ bx2s

+ a2s

bx

and

R2 =
1

a(b + 1)
(bf1 + af2 + abf3)

= y2s

+
a + 1

ab + a
y +

1

a
x2s

+
ab + b

ab + a
x

to eliminate z. To eliminate y22s

we compute

R3 = R1 + a2s

b(R2)
2s

=
a2s

(b + 1)2s

+ (a + 1)2s

b

(b + 1)2s y2s

+ a2s

y +
a2s

b2s+1 + b

b2s + 1
x2s

+ a2s

bx.

Using equations R2 and R3 we can eliminate y2s

by computing

R4 = R3 +
a2s

(b + 1)2s

+ (a + 1)2s

b

(b + 1)2s R2

= P (a)(y + (b + 1)x2s

+ bx),

where

P (a) =
(ab)2s+1 + (ab)2s

+ a2s

b + a2s

+ ab + b

(b + 1)2s+1a
.

Computing

R5 = (R4)
2s

+ P (a)2s

R2 = P (a)2s

× (
a + 1

ab + a
y + (b2s

+ 1)x22s

+
ab2s

+ 1

a
x2s

+
ab + b

ab + a
x)

we finally get our desired equation by

R6 =
a + 1

ab + a
P (a)2s−1R4 + R5

= P (a)2s

(b + 1)
(

x22s

+ x2s
)

.

Obviously if x is a solution of ∆a(x) = 0 then R6(x) = 0. For P (a)2s

(b + 1) 6= 0 this is
equivalent to x = 0, 1. Thus to prove the theorem one possibility is to show that P (a) does
not vanish for elements a fulfilling the equation

a =
(

αv2k+2s+1
)2k−1

(1)
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Note that, if a satisfies (1), then a is not a (2k + 2s + 1)-th power. Indeed, g2 = gcd(2k −
1, 2k + 2s + 1) is always a divisor of g1 = gcd(2n − 1, 2k +2s + 1). And if a fulfilling (1) is a
(2k + 2s + 1)-th power then α2k−1 is a g1-th power and then α is a (g1/g2)-th power. But
as (g1/g2) is a nontrivial divisor of 2n − 1 this contradicts that α is a primitive element.

Consequently we want to show, that if P (a) = 0 then a is a (2k +2s +1)-th power. But
for a /∈ F2 the equation P (a) = 0 is equivalent to

a =

(

a + 1

c + 1

)2s+1

c2s+1

(

b + 1

a + 1

)

a,

as can be easily seen by dividing this equality by a, simplifying it by (a + 1), and then
expanding it, using that c = 1/ab. Note that the right hand side is always a (2k +2s +1)-th
power. This proves the first case.

Case 2 (t = 2, i = 1) In this case the equation ∆a(x) = 0 can be transformed into the
following system of equations

a(y + z2s

) + (x + x2s

) = 0

b(z + x2s

) + (y + y2s

) = 0
1

ab
(x + y2s

) + (z + z2s

) = 0.

Again eliminating y and z similarly as before we get this time

P (a)2s
(

x22s

+ x2s
)

= 0,

with
P (a) = (ab)2s+1 + (ab)2s

+ ab2s

+ ab + a + b2s

.

Using similar arguments as before it suffices in this case to show that if P (a) = 0 then
a is a (2k+s + 2s + 1)-th power. For this, note that for a /∈ F2 the equation P (a) = 0 is
equivalent to

a2s

=

(

a + 1

c + 1

)2s+1

c2s+1

(

b + 1

a + 1

)2s

a2s

and the right hand side is always a (2k+s + 2s + 1)-th power. ✷

Remark: Note that in Theorem 1 instead of a coefficient α2k−1 we can take any element
of order 4k + 2k + 1.

From Theorem 1 we get the following corollary as a special case.

Corollary 1 Let s and k be positive integers such that gcd(k, 3) = gcd(s, 3k) = 1, and
i = sk mod 3, t = 2i mod 3, n = 3k, and α be a primitive element of F

∗
2n. Then the

function

F (x) = x2s+1 + α2k−1x2ik+2tk+s

is APN on F2n (and is AB when n is odd).
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Proof. We only have to verify that in this case the greatest common divisors

g1 = gcd(2n − 1, 2k+s + 2s + 1 − 2k(2s − 1)(i − 1))

g2 = gcd(2k − 1, 2k+s + 2s + 1 − 2k(2s − 1)(i − 1))

are not the same. Obviously g2 is always coprime with 7 and it can be easily checked that
g1 is always divisible by 7. Indeed, for instance, if k mod 3 = s mod 3 = 1 then i = 1
and k = 3k′ + 1, s = 3s′ + 1 for some k′, s′, and we get

g1 = 2k+s + 2s + 1 = 4(23(k′+s′) − 1) + 2(23s′ − 1) + 7.

✷

It should be noted that Theorem 1 covers a larger class of APN functions as can be
seen by checking the conditions on the greatest common divisors for small values of k and
s.

The next proposition shows that the functions from Corollary 1 are permutations if k is
odd. Moreover computer investigations show that most probably, if k is odd their inverses
have the algebraic degree (3k + 1)/2.

Proposition 1 The APN functions of Corollary 1 are bijective if and only if k is odd.

Sketch of proof. If k is even then, since gcd(s, 3k) = 1, s must be odd and therefore
2s + 1 is divisible by 3 as well as 2ik + 2tk+s = 2ik(1 + 2(t−i)k+s). We have F (x) = F (γx)
for every γ ∈ F

∗
4.

To prove that F is bijective when k is odd, we use the same steps as in the proof of
Theorem 1. Assume i = 1 (the proof for the case i = 2 is similar). We have to show that
the equation F (x)+F (x+v) = 0 does not have a non zero solution v for any x. Doing the
same computations as in the proof of Theorem 1 we have this time to look at the following
system of equations

f1 = a(z + y2s

+ 1) + x2s

+ x + 1 = 0

f2 = b(x + z2s

+ 1) + y2s

+ y + 1 = 0

f3 = 1
ab

(y + x2s

+ 1) + z2s

+ z + 1 = 0.

Now, doing the same elimination of y and z as before, we end up with

P (a)2s

(x2s

+ x + 1) = 0,

where P is as in the proof of Theorem 1. By taking the power 2s of x2s

+ x + 1 = 0
and substituting x2s

= x + 1 we get x22s

= x which is equivalent to x ∈ F2j where
j = gcd(2s, 3k). If k is odd then j = 1 and the only possible solutions could be 0 or 1 but
they obviously do not satisfy x2s

+ x + 1 = 0. ✷
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4 On the CCZ-inequivalence between the introduced

APN functions and the Gold and the Kasami func-

tions

We first prove the EA-inequivalence between the APN functions introduced in Corollary 1
and all power functions.

Theorem 2 Let n be a positive integer and let s, j, q be three nonzero elements of Z/nZ

such that q 6= ±s. If one of the following conditions holds

1. j 6= ±s,±q, 2s, s ± q,

2. j 6= ±s,±q,±s − q,−2q,

3. j 6= s,−q, 2s − q, s − 2q, s ± q, 2s,

4. j 6= s,−q, 2s − q, s − 2q,±s − q,−2q,

then the function F (x) = x2s+1 + ax2j(2q+1) with a ∈ F
∗
2n is EA-inequivalent to power

functions on F2n.

Proof. Suppose the function F is EA-equivalent to a power function. Since F is
quadratic and EA-transformation does not change the algebraic degree of a function then
F is EA-equivalent to x2r+1 for some nonzero r ∈ Z/nZ. Therefore, there exist affine
permutations L1, L2 and an affine function L′ such that

L1(x
2s+1) + L1(ax2j(2q+1)) = (L2(x))2r+1 + L′(x).

Expressing L1(x), L2(x) and L′(x) as sums of linearized polynomials and constants and
reducing the resulting exponents modulo 2n − 1 leads to an equation whose degree is at
most 2n−1 + 2n−2 (since the 2-weights of the exponents are at most 2) and which has 2n

solutions. Hence the equation must be an identity.
Since the functions are quadratic, we can assume without loss of generality that L1 and

L2 are linear:

L1(x) =
∑

m∈Z/nZ

bmx2m

,

L2(x) =
∑

p∈Z/nZ

cpx
2p

.

Then we get
∑

m∈Z/nZ

bmx2m(2s+1) +
∑

m∈Z/nZ

bma2m

x2m+j(2q+1)

=
∑

l,p∈Z/nZ

cpc
2r

l x2l+r+2p

+ L′(x). (2)
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On the left hand side of the identity (2) we have only items of the type x2m(2s+1), x2m+j(2q+1),
with some coefficients. Therefore this must be true also for the right hand side of the
identity.

We shall show that under some conditions on s, j, q, the equality above is satisfied only
if bm = 0 for every m ∈ Z/nZ. A contradiction.

If bm 6= 0 for some m, then the coefficients of the items x2m(2s+1) and x2m+j (2q+1) are
not zero on the left hand side of the identity (2) since q 6= ±s. Hence this is also true for
the right hand side of (2), that is,

cmc2r

m+s−r 6= cm+sc
2r

m−r, (3)

cm+jc
2r

m+j+q−r 6= cm+j+qc
2r

m+j−r. (4)

The items of the type x2m+2m+j

are missing in the left hand side of (2) when j 6= ±s,±q.
And we have no item of the kind x2m+j+2m+s

in the left hand side of (2) when j−s 6= ±s,±q,
that is, j 6= 2s, s ± q.

Thus, if these conditions are satisfied, then from the right hand side of (2) we get the
following equalities with cm, c2r

m+s−r, cm+s, c
2r

m−r, cm+j , c
2r

m+j−r:

cmc2r

m+j−r = cm+jc
2r

m−r, (5)

cm+jc
2r

m+s−r = cm+sc
2r

m+j−r. (6)

Assume cm+j−r, cm+s−r 6= 0. If cm−r 6= 0 then we get from (3), (5), (6):

cmc−2r

m−r 6= cm+sc
−2r

m+s−r,

cmc−2r

m−r = cm+jc
−2r

m+j−r,

cm+jc
−2r

m+j−r = cm+sc
−2r

m+s−r,

and we come to a contradiction. If cm−r = 0 then from (5) and since cm+j−r 6= 0 we get
cm = 0. But cm−r = cm = 0 contradicts (3). Therefore, either cm+j−r or cm+s−r equals 0.

Assume first that cm+j−r = 0. Then from (4) we get cm+j 6= 0; then from (5), (6) we
get cm+s−r = cm−r = 0, that is in contradiction with (3). Therefore, cm+j−r 6= 0.

Assume now that cm+s−r = 0. Then from (3) we get cm+s 6= 0; then from (6) we
get cm+j−r = 0. Then from (4) we get cm+j 6= 0 and we arrive to the contradiction
cm+s−r = cm−r = 0 as above.

Therefore, if j 6= ±s,±q, 2s, s ± q then F is EA-inequivalent to quadratic power func-
tions.

Using similar arguments we get below other conditions on s, q, j which are also sufficient.
We have no item of the kind x2m+j+q+2m

in the left hand side of (2) when j+q 6= ±s,±q,
that is, j 6= ±s − q,−2q. Thus, if j 6= ±s,±q,±s − q,−2q then we have the equality (5)
and from (2) we get the following equality

cmc2r

m+j+q−r = cm+j+qc
2r

m−r. (7)
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Let cm+j+q−r, cm+j−r 6= 0. If also cm−1 6= 0 then we get from (4), (5), (7)

cm+jc
−2r

m+j−r 6= cm+j+qc
−2r

m+j+q−r,

cmc−2r

m−r = cm+jc
−2r

m+j−r,

cmc−2r

m−r = cm+j+qc
−2r

m+j+q−r,

and we come to a contradiction. If cm−r = 0 then it follows from (5) that cm = 0. But
cm = cm−r = 0 contradicts (3). Therefore, either cm+j+q−r = 0 or cm+j−r = 0.

If cm+j−r = 0 then cm+j, cm+j+q−r 6= 0 by (4). Since cm+j−r = 0 and cm+j 6= 0 then it
follows from (5) that cm−r = 0. Since cm+j+q−r 6= 0 and cm−r = 0 then cm = 0 by (7). But
cm−r = cm = 0 contradicts (3).

If cm+j+q−r = 0 then from (4) we get cm+j+q, cm+j−r 6= 0. Since cm+j+q−r = 0 and
cm+j+q 6= 0 then cm−r = 0 from (7). We have cm = 0 from (5) since cm+j−r 6= 0 and
cm−r = 0. But cm = cm−r = 0 contradicts (3).

Thus, if j 6= ±s,±q,±s − q,−2q then the function F is EA-inequivalent to power
functions.

The proofs of the third and the fourth claim of the theorem are similar. We have the
following equality if j 6= 2s − q, s,−q, s − 2q

cm+sc
2r

m+j+q−r = cm+j+qc
2r

m+s−r. (8)

The equalities (6) and (8) lead to the condition j 6= 2s − q, s,−q, s − 2q, s ± q, 2s which
is sufficient for F to be EA-inequivalent to power functions. The same is true when we
consider the equalities (7) and (8) with the condition j 6= 2s−q, s,−q, s−2q,±s−q,−2q. ✷

Corollary 2 Let s and k be positive integers such that k ≥ 4, s ≤ 3k − 1, gcd(k, 3) =
gcd(s, 3k) = 1, and i = sk mod 3, t = 2i mod 3, n = 3k. Then the function F (x) =
x2s+1 + ax2ik+2tk+s

with a ∈ F
∗
2n is EA-inequivalent to power functions on F2n.

Proof. The function F coresponds to the first case in the hypotheses of Theorem 2.
Indeed, if i = 1 then

2ik + 2tk+s mod (23k − 1) = 2k + 22k+s mod (23k − 1)

=







2k(2k+s + 1) if s < k
2s−k(22k−s + 1) if k < s < 2k
2k(2s−2k + 1) if s > 2k

.

If 0 < s < k then in terms of Theorem 2 we have j = k, q = k + s and the condition
j 6= ±s,±q, s ± q, 2s is equivalent to k 6= s, 3k − s, k + s, 2k − s, k + 2s, 2k, 2s which is
satisfied since k ≥ 4 and gcd(k, 3) = gcd(s, 3k) = 1.
If k < s < 2k then j = s − k, q = 2k − s and s − k 6= s, 3k − s, 2k − s, k + s, 2k, 2s −
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2k, 2s, 2s − 3k.
If s > 2k then j = k, q = s − 2k and k 6= s, 3k − s, s − 2k, 5k − s, 2s − 2k, 2k, 2s − 3k.

Obviously, in all cases the condition q 6= ±s is satisfied. Hence, the function F is
EA-inequivalent to power functions by Theorem 2.

For the case i = 2 the proof is similar. ✷

Corollary 3 Let s and k be positive integers such that k ≥ 4, s ≤ 3k − 1, gcd(k, 3) =
gcd(s, 3k) = 1, and i = sk mod 3, t = 2i mod 3, n = 3k. If a ∈ F2n has the order
22k + 2k + 1 then the function

F (x) = x2s+1 + ax2ik+2tk+s

is AB on F2n when n is odd and APN when n is even and it is EA-inequivalent to power
mappings.

The next theorems show that in general the new APN functions introduced in the
present paper are not CCZ-equivalent to the Gold functions nor to the Kasami functions.

Without loss of generality a Gold function F (x) = x2s+1 and a Kasami function K(x) =
x4r−2r+1 can be considered under conditions 1 ≤ s < n

2
, 2 ≤ r < n

2
, since this exhausts all

different cases (under EA-equivalence).

Theorem 3 Let n be a positive integer, let r, s, q be three nonzero elements of Z/nZ and
j an element of Z/nZ. Let a be a nonzero element of F2n. Assume that s 6= ±q and one
of the following two conditions is satisfied
1) j 6= s − r, j 6= −r, j + q 6= s − r, j + q 6= −r;
2) j 6= s + r, j 6= r, j + q 6= s + r, j + q 6= r.
If F (x) = x2s+1 + ax2j(2q+1) is an APN function which is CCZ-equivalent to the function
G(x) = x2r+1 then F and G are EA-equivalent.

Proof. Suppose that F (x) and G(x) are CCZ-equivalent, that is, there exists an affine
automorphism L = (L1, L2) of F2n × F2n such that y = F (x) ⇔ L2(x, y) = G(L1(x, y)).
This implies then L1(x, F (x)) is a permutation and L2(x, F (x)) = G(L1(x, F (x))). Writing
L1(x, y) = L(x) + L′(y) and L2(x, y) = L′′(x) + L′′′(y) gives

L′′(x) + L′′′(F (x)) = G[L(x) + L′(F (x))].

We can write

L(x) = b +
∑

m∈Z/nZ

bmx2m

,

L′(x) = b′ +
∑

m∈Z/nZ

b′mx2m

,

L′′(x) = b′′ +
∑

m∈Z/nZ

b′′mx2m

,
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L′′′(x) = b′′′ +
∑

m∈Z/nZ

b′′′mx2m

,

b + b′ = c.

We have

G[L(x) + L′(F (x))]

=
(

L(x) + L′(x2s+1 + ax2j (2q+1))
)

×
(

L(x) + L′(x2s+1 + ax2j (2q+1))
)2r

= (c +
∑

m∈Z/nZ

bmx2m

+
∑

m∈Z/nZ

b′mx2m(2s+1)

+
∑

m∈Z/nZ

amb′mx2j+m(2q+1))

× (c2r

+
∑

m∈Z/nZ

b2r

mx2m+r

+
∑

m∈Z/nZ

b′2
r

m x2m+r(2s+1)

+
∑

m∈Z/nZ

a2r+m

b′2
r

m x2r+j+m(2q+1))

= Q(x) + [
∑

m,k∈Z/nZ

bkb
′2r

m x2m+r(2s+1)+2k

+
∑

m,k∈Z/nZ

a2r+m

bkb
′2r

m x2r+j+m(2q+1)+2k

+
∑

m,k∈Z/nZ

b′kb
2r

mx2m+r+2k(2s+1)

+
∑

m,k∈Z/nZ

a2k

b′kb
2r

mx2m+r+2j+k(2q+1)]

+ [
∑

m,k∈Z/nZ

b′kb
′2r

m x2m+r(2s+1)+2k(2s+1)

+
∑

m,k∈Z/nZ

a2r+m

b′kb
′2r

m x2r+j+m(2q+1)+2k(2s+1)

+
∑

m,k∈Z/nZ

a2k

b′kb
′2r

m x2m+r(2s+1)+2j+k(2q+1)

+
∑

m,k∈Z/nZ

a2r+m+2k

b′kb
′2r

m x2r+j+m(2q+1)+2j+k(2q+1)],

where Q(x) is a quadratic polynomial. Obviously, all terms in the expression above whose
exponents have 2-weight strictly greater than 2 must cancel.
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If L′ is a constant then F and G are EA-equivalent and it proves the statement of the
theorem. If the function L′ is not a constant then there exists m ∈ Z/nZ such that b′m 6= 0.
If j 6= s−r, j 6= −r, j+q 6= s−r and j+q 6= −r then 2r+j+m(2q+1)+2m(2s+1) has 2-weight
4 and the items with this exponent have to vanish. We get a2m+r

b′2
r+1

m +a2m+r

b′m+rb
′2r

m−r = 0
and since a, b′m 6= 0 then b′m+r, b

′
m−r 6= 0 and b′mb′−2r

m−r = b′m+rb
′−2r

m .
If j 6= s + r, j 6= r, j + q 6= s + r and j + q 6= r then 2m+j(2q + 1) + 2m+r(2s + 1) has
2-weight 4 and we again get b′mb′−2r

m−r = b′m+rb
′−2r

m .

Since gcd(r, n) = 1 for APN functions x2r+1 then applying this observation for m + r,
m + 2r,..., instead of m we get b′t 6= 0 and

b′mb′−2r

m−r = b′t+rb
′−2r

t (9)

for all t ∈ Z/nZ.

Let us consider the sum

∑

m,k∈Z/nZ

b′kb
′2r

m x2m+r(2s+1)+2k(2s+1)

from the last bracket. For any k, m ∈ Z/nZ, k 6= m + r, the items b′kb
′2r

m x2m+r(2s+1)+2k(2s+1)

and b′m+rb
′2r

k−rx
2k(2s+1)+2m+r(2s+1) differ and cancel pairwise because of (9). In the case

k = m + r the sum gives items with the exponents of 2-weight not greater than 2.
Considering the sum

∑

m,k∈Z/nZ

a2r+m+2k

b′kb
′2r

m x2r+j+m(2q+1)+2j+k(2q+1)

we get that for any k, m ∈ Z/nZ, k 6= m+r, the items a2r+m+2k

b′kb
′2r

m x2r+j+m(2q+1)+2j+k(2q+1)

and a2r+m+2k

b′r+mb′2
r

k−rx
2j+k(2q+1)+2r+j+m(2q+1) differ and cancel pairwise because of (9) and

in the case k = m + r the sum gives items with the exponents of 2-weight not greater
than 2.
Now we consider the sums

∑

m,k∈Z/nZ

a2r+m

b′kb
′2r

m x2r+j+m(2q+1)+2k(2s+1)

and
∑

m,k∈Z/nZ

a2k

b′kb
′2r

m x2m+r(2s+1)+2j+k(2q+1).

For any k, m ∈ Z/nZ the item a2r+m

b′kb
′2r

m x2r+j+m(2q+1)+2k(2s+1) from the first sum cancels
with the item a2r+m

b′m+rb
′2r

k−rx
2k(2s+1)+2r+j+m(2q+1) from the second sum and vice versa.
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Thus the expression in the last bracket is quadratic and

G[L(x) + L′(F (x))]

= Q′(x) + [
∑

m,k∈Z/nZ

bkb
′2r

m x2m+r(2s+1)+2k

+
∑

m,k∈Z/nZ

a2r+m

bkb
′2r

m x2r+j+m(2q+1)+2k

+
∑

m,k∈Z/nZ

b′kb
2r

mx2m+r+2k(2s+1)

+
∑

m,k∈Z/nZ

a2k

b′kb
2r

mx2m+r+2j+k(2q+1)],

where Q′(x) is a quadratic function.
Because of (9) we can deduce, by denoting b′rb

′−2r

0 = λ, that b′t+r = λb′2
r

t for all t.
Then, introducing µ such that λ = µ2r−1, we deduce that µb′t+r = (µb′t)

2r

for all t and then

that µb′t+1 = (µb′t)
2 (using that gcd(r, n) = 1) and then µb′t = (µb′0)

2t

. This means that
µL′(x) = µb′ + tr(µb′0x). Then obviously L′ is not a permutation and since L1(x, F (x)) is
a permutation then L is not a constant. Thus bt 6= 0 for some t ∈ Z/nZ.
We have s 6= ±q and if also r 6= ±q, r + s 6= ±q then we have the items with the exponent
2m+r+s + 2m+r + 2m only in the first and the third sums in the bracket (if the condition
r 6= ±q, r+s 6= ±q is wrong then the claim is true for the exponent 2m+r+s +2m+r +2m−1).
We get bmb′2

r

m + b′m+rb
2r

m−r = 0. Since bm, b′m 6= 0 then bm−r 6= 0 and bmb−2r

m−r = b′m+rb
′−2r

m .
Repeating these steps for bm−r, bm−2r, ..., because of (9) we get bt 6= 0 for all t ∈ Z/nZ and

λ = b′mb′−2r

m−r = btb
−2r

t−r .

Therefore, µL(x) = µb+ tr(µb0x) and µ[L(x)+L′(F (x))] = µb′ +µb+ tr(µb0x+µb′0F (x)).
Obviously the function L(x) + L′(F (x)) is not a permutation and that is a contradiction.
Therefore, L′ is constant and F and G are EA-equivalent. ✷

Corollary 4 The functions from Corollary 3 are CCZ-inequivalent to the Gold mappings.

Proof. Assume that the Gold function x2r+1, gcd(r, n) = 1, is CCZ-equivalent to F .
Then by Corollary 3 and by Theorem 3 one of the conditions s 6= ±q, j 6= s − r, j 6= −r,
j + q 6= s − r, j + q 6= −r, is not satisfied.

Let consider the case i = 1. Then in terms of Theorem 3 we have q = k + s, j = k. If
s = ±q then we get a contradiction with k 6= 0 or gcd(s, k) = 1. If r = −j or r = s−(j+q)
then gcd(r, k) 6= 1, a contradiction. If r = s − j or r = −(j + q) then r is divisible by 3.
Indeed, since sk = 1 mod 3 then s mod 3 = k mod 3 and ±(s − k) = 0 mod 3. On the
other hand, r = s− j = s− k or r = −(j + q) = n− (2k + s) = 3k − (2k + s) = k − s. But
gcd(r, 3k) = 1, a contradiction.
The proof for the case i = 2 is similar. ✷
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Theorem 4 Let n be a positive integer, let r, s, q, j be nonzero elements of Z/nZ such that
gcd(r, n) = 1, n > 4, s 6= ±q, s 6= ±3q, q 6= ±3s, s 6= ±j, q 6= ±j, 3q + j 6= 0, j + q 6= ±s,
j 6= s + q, 2q 6= ±j, 2q 6= s − j, 2s 6= j, 2s 6= j + q. Then for a ∈ F

∗
2n the functions

F (x) = x2s+1 + ax2j(2q+1) and K(x) = x4r−2r+1 are CCZ-inequivalent.

Proof. Let G(x) = x2r+1, G′(x) = x23r+1. Suppose that F (x) and K(x) are CCZ-
equivalent. Then, there exists an affine automorphism L = (L1, L2) of F2n ×F2n such that
L2(x, F (x)) = K(L1(x, F (x))), which implies, by composition by G

G(L2(x, F (x))) = G′(L1(x, F (x))),

that is, writing again L1(x, y) = L(x) + L′(y) and L2(x, y) = L′′(x) + L′′′(y):

0 = G′[L(x) + L′(F (x))] + G[L′′(x) + L′′′(F (x))]

= Q(x) + [
∑

m,k∈Z/nZ

bkb
′23r

m x2m+3r(2s+1)+2k

+
∑

m,k∈Z/nZ

a23r+m

bkb
′23r

m x23r+j+m(2q+1)+2k

+
∑

m,k∈Z/nZ

b′kb
23r

m x2m+3r+2k(2s+1)

+
∑

m,k∈Z/nZ

a2k

b′kb
23r

m x2m+3r+2j+k(2q+1)

+
∑

m,k∈Z/nZ

b′′kb
′′′2r

m x2m+r(2s+1)+2k

+
∑

m,k∈Z/nZ

a2r+m

b′′kb
′′′2r

m x2r+j+m(2q+1)+2k

+
∑

m,k∈Z/nZ

b′′′k b′′2
r

m x2m+r+2k(2s+1)

+
∑

m,k∈Z/nZ

a2k

b′′′k b′′2
r

m x2m+r+2j+k(2q+1)]

+ [
∑

m,k∈Z/nZ

b′kb
′23r

m x2m+3r(2s+1)+2k(2s+1)

+
∑

m,k∈Z/nZ

a23r+m

b′kb
′23r

m x23r+j+m(2q+1)+2k(2s+1)

+
∑

m,k∈Z/nZ

a2k

b′kb
′23r

m x2m+3r(2s+1)+2j+k(2q+1)

+
∑

m,k∈Z/nZ

a23r+m+2k

b′kb
′23r

m x23r+j+m(2q+1)+2j+k(2q+1)

+
∑

m,k∈Z/nZ

b′′′k b′′′2
r

m x2m+r(2s+1)+2k(2s+1)
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+
∑

m,k∈Z/nZ

a2r+m

b′′′k b′′′2
r

m x2r+j+m(2q+1)+2k(2s+1)

+
∑

m,k∈Z/nZ

a2k

b′′′k b′′′2
r

m x2m+r(2s+1)+2j+k(2q+1)

+
∑

m,k∈Z/nZ

a2r+m+2k

b′′′k b′′′2
r

m x2r+j+m(2q+1)+2j+k(2q+1)],

where Q is quadratic.
Let s 6= ±q, s 6= ±3q, q 6= ±3s. The exponents of the type 23r+j+m+q+23r+j+m+2k+s+2k

have 2-weight 4 if k /∈ {3r+j+m, 3r+j+m+q, 3r+j+m+q−s, 3r+j+m−s} and these
exponents cannot be equal to any exponent of the type (2s +1)(2l +2l′) or (2q +1)(2l +2l′).
Since all terms with exponents of 2-weight 4 should vanish we obtain

b′kb
′23r

m + b′m+3rb
′23r

k−3r = b′′′k b′′′2
r

m+2r + b′′′m+3rb
′′′2r

k−r (10)

for m, k ∈ Z/nZ, k /∈ {3r + j + m, 3r + j + m + q, 3r + j + m + q − s, 3r + j + m − s}.
The equality (10) is also true for the cases k ∈ {3r + j + m, 3r + j + m + q, 3r + j +

m + q − s, 3r + j + m − s} if s 6= ±j, q 6= ±j, 3q + j 6= 0, j + q 6= ±s, j 6= s + q,
2q 6= ±j, 2q 6= s − j, 2s 6= j, 2s 6= j + q. Indeed, consider the items with the exponents
23r+j+m(2q + 1) + 2j+k(2q + 1) for k ∈ {3r + j + m, 3r + j + m + q}. With the above
written conditions these exponents have 2-weight 4 and they differ from exponents of the
type (2s +1)(2l +2l′) and 2l(2q +1)+2l′(2s +1). For k ∈ {3r+j+m+q−s, 3r+j +m−s}
we can consider 2m+3r(2s + 1) + 2k(2s + 1).

Without loss of generality we can assume that L, L′, L′′, L′′′ are linear (since changing
the constant terms in these affine mappings results only in a change of the polynomial
Q(x) above) and let L′ 6= 0. The equalities (10) imply

(L′′′(x))2r+1 + (L′(x))23r+1 = C(x) (11)

for some linear function C(x). Besides, it must hold that

ker(L′′′) ∩ ker(L′) = {0} (12)

since otherwise the system of equations

L(x) + L′(y) = 0

L′′(x) + L′′′(y) = 0

has solutions different from (0, 0) which is not allowed for CCZ-equivalence.
For any a, derivating equality (11) we get

L′′′(a)2r

L′′′(x) + L′′′(a)L′′′(x)2r

+L′(a)23r

L′(x) + L′(a)L′(x)23r

= 0 (13)
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We want to show first that L′ and L′′′ have to be bijective. Assume on the contrary
that L′ is not bijective. Then there exists an element a0 6= 0 such that L′(a0) = 0, and due
to equality (12) L′′′(a0) 6= 0. We get for all x that

L′′′(a0)
2r

L′′′(x) + L′′′(a0)L
′′′(x)2r

= 0.

And it follows that
L′′′(x) = 0 or L′′′(x) = L′′′(a0),

where we used that gcd(2r − 1, 2n − 1) = 1. Thus there exists an element d such that

L′′′(x) = L′′′(a0) tr(dx).

If we plug this into equality (13) we get

L′(a)23r

L′(x) + L′(a)L′(x)23r

= 0

for all x and any a. This implies that L′(x) = 0 or

L′(x)23r−1 = L′(a)23r−1

which, as gcd(3r, n) = 3, means that

L′(x) = L′(a)γ

where γ ∈ F23 . In particular we have

dim(im(L′)) ≤ 3

and therefore we have dim(ker(L′) ≥ n − 3. As dim(ker(L′′′)) = n − 1 for n > 4 the two
kernel intersect, a contradiction.

Now assume that L′′′ is not bijective. Then there exists a1 such that L′′′(a1) = 0 and
L′(a1) 6= 0. We get, again

L′(a1)
23r

L′(x) + L′(a1)L
′(x)23r

= 0

which, using the same arguments as above, contradicts the condition that L′ is bijective.
We conclude that L′′′ is bijective.

Now we denote A = L′′′ ◦L′−1, which is again a bijective linear mapping. By replacing
x by L′−1(x) in (13), we obtain

A(a)2r

A(x) + A(a)A(x)2r

+ a23r

x + ax23r

= 0

and for a ∈ F
∗
23 we see that for all x ∈ F23 we get

A(a)2r

A(x) + A(a)A(x)2r

= 0

which is equivalent to A(x) = 0 or A(x) = A(a) which is impossible since A is a bijection.
Thus, this contradiction shows that the functions F and K are CCZ-inequivalent. ✷
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Corollary 5 The functions from Corollary 3 are CCZ-inequivalent to the Kasami map-
pings.

Proof. It can be easily checked that the function F from Corollary 3 satisfies all condi-
tions of Theorem 4. ✷

Conjecture 1 The function from Corollary 3 is CCZ-inequivalent to any power function.

5 CCZ-inequivalence of the Gold mappings with other

known APN power functions

It is an open question whether Gold, Kasami, Welch and Niho functions are pairwise CCZ-
inequivalent. Below we solve this problem for some cases. We prove that two Gold functions
are CCZ-equivalent if and only if they are EA-equivalent, and that the Gold functions are
CCZ-inequivalent to any Kasami and to the Welch functions (except in particular cases).
Note that the inverse and Dobbertin APN functions are CCZ-inequivalent to all known
APN mappings. It is obvious because of their unique nonlinearities [10, 27].

Proposition 2 (CCZ-ineq. of two Gold functions) Let F (x) = x2s+1, G(x) = x2r+1

and s 6= r, 1 ≤ s, r < n
2
, gcd(s, n) = gcd(r, n) = 1. Then F and G are CCZ-inequivalent

on F2n.

Proof. Suppose that F (x) and G(x) are CCZ-equivalent, then there exists an affine
automorphism L = (L1, L2) of F2n ×F2n such that L2(x, F (x)) = G(L1(x, F (x))). Writing
L1(x, y) = L(x) + L′(y) and L2(x, y) = L′′(x) + L′′′(y) gives

L′′(x) + L′′′(F (x)) = G[L(x) + L′(F (x))].

We can write L(x) = b +
∑

m∈Z/nZ
bmx2m

, L′(x) = b′ +
∑

m∈Z/nZ
b′mx2m

, L′′(x) = b′′ +
∑

m∈Z/nZ
b′′mx2m

and L′′′(x) = b′′′ +
∑

m∈Z/nZ
b′′′mx2m

, b + b′ = c.
We have

G[L(x) + L′(F (x))]

=
(

L(x) + L′(x2s+1)
) (

L(x) + L′(x2s+1)
)2r

=



c +
∑

m∈Z/nZ

bmx2m

+
∑

m∈Z/nZ

b′mx2m(2s+1)





×



c2r

+
∑

m∈Z/nZ

b2r

mx2m+r

+
∑

m∈Z/nZ

b′2
r

m x2m+r(2s+1)





= Q(x) +
∑

m,k∈Z/nZ

bkb
′2r

m x2m+r(2s+1)+2k
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+
∑

m,k∈Z/nZ

b′kb
2r

mx2m+r+2k(2s+1)

+
∑

m,k∈Z/nZ

b′kb
′2r

m x2m+r(2s+1)+2k(2s+1),

where Q(x) is a quadratic polynomial. Obviously, all terms in the expression above whose
exponents have 2-weight strictly greater than 2 must cancel.

Suppose L′ 6= const then there exists m ∈ Z/nZ such that b′m 6= 0. Considering s and
r as elements of Z/nZ we have s 6= ±r and s, r 6= 0. Then 2r+m(2s + 1) + 2m(2s + 1) has
2-weight 4 and the items with this exponent have to vanish. We get b′2

r+1
m + b′m+rb

′2r

m−r = 0
and since b′m 6= 0 then b′m+r, b

′
m−r 6= 0 and b′mb′−2r

m−r = b′m+rb
′−2r

m . Since gcd(r, n) = 1 then
applying this observation for m + r, m + 2r,..., instead of m we get b′t 6= 0 and there exists
a nonzero constant λ such that

b′t+rb
′−2r

t = λ (14)

for all t ∈ Z/nZ.
Let us consider the sum

∑

m,k∈Z/nZ

b′kb
′2r

m x2m+r(2s+1)+2k(2s+1).

For any k, m ∈ Z/nZ, k 6= m+r, the items b′kb
′2r

m x2m+r(2s+1)+2k(2s+1) and b′m+rb
′2r

k−rx
2k(2s+1)+2m+r(2s+1)

do not coincide and cancel pairwise because of (14). In the case k = m + r the sum gives
items with the exponents of 2-weight not greater than 2.

Because of (14) we can deduce b′t+r = λb′2
r

t for all t. Then, introducing µ such that
λ = µ2r−1, we deduce that µb′t+r = (µb′t)

2r

for all t and then that µb′t+1 = (µb′t)
2 (using that

gcd(r, n) = 1) and then µb′t = (µb′0)
2t

. This means that µL′(x) = µb′ + tr(µb′0x). Then
obviously L′ is not a permutation and since L1(x, F (x)) is a permutation then L is not a
constant. Thus bm 6= 0 for some m ∈ Z/nZ.
Since s 6= ±r then considering the items with the exponent 2m+r+s + 2m+r + 2m we get
bmb′2

r

m + b′m+rb
2r

m−r = 0 if r 6= −2s (for r = −2s there are more than 2 items with this
exponent because the difference between m and m+r+s is the same like between m+r+s
and m + r). Since bm, b′m 6= 0 then bm−r 6= 0 and bmb−2r

m−r = b′m+rb
′−2r

m . Repeating these
steps for bm−r, bm−2r, ..., because of (14) we get bt 6= 0 for all t ∈ Z/nZ and

btb
−2r

t−r = λ. (15)

For the case r = −2s consider the items with the exponent 2m+r + 2m+s + 2m and get
b′mb2r

m + bm+rb
′2r

m−r = 0 which again leads to (15).
The equality (15) implies, µL(x) = µb + tr(µb0x) and µ[L(x) + L′(F (x))] = µb′ + µb +

tr(µb0x + µb′0F (x)). Obviously the function L(x) + L′(F (x)) cannot be a permutation.
Therefore, L′ = const and then L 6= const. For some m ∈ Z/nZ we have bm 6= 0 and
since s 6= ±r it is not difficult to note that b2r+1

m + bm+rb
2r

m−r = 0. Thus bm+r, bm−r 6= 0
and because of gcd(r, n) = 1 we derive bt 6= 0 and λ′ = bmb−2r

m−r = btb
−2r

t−r for all t ∈ Z/nZ.
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This leads to the equality µ′L(x) = µ′b + tr(µ′b0x) with λ′ = µ′2r−1. Then L is not a
permutation. This contradiction proves CCZ-inequivalence of F and G. ✷

Theorem 5 (CCZ-ineq. of Gold and Kasami functions) Let F (x) = x2s+1, K(x) =
x4r−2r+1 and gcd(s, n) = gcd(r, n) = 1, 1 ≤ s < n

2
, 2 ≤ r < n

2
. If 3r 6= ±1 mod n then F

and K are CCZ-inequivalent on F2n.

Proof. Let G′(x) = x23r+1, G(x) = x2r+1 and let the functions K and F be CCZ-
equivalent on F2n. Then, there exists an affine automorphism L = (L1, L2) of F2n×F2n such
that L2(x, K(x)) = F (L1(x, K(x))), which implies L2(G(x), G′(x)) = F (L1(G(x), G′(x))),
that is, writing again L1(x, y) = L(x) + L′(y) and L2(x, y) = L′′(x) + L′′′(y):

L′′(G(x)) + L′′′(G′(x)) + F [L(G(x)) + L′(G′(x))] = 0.

With the same notation as in the proof of Proposition 2, we have:

L′′(G(x)) + L′′′(G′(x)) + F [L(G(x)) + L′(G′(x))]

= Q(x) + [c +
∑

m∈Z/nZ

bmx2m(2r+1)

+
∑

m∈Z/nZ

b′mx2m(23r+1)][c2s

+
∑

m∈Z/nZ

b2s

mx2m+s(2r+1)

+
∑

m∈Z/nZ

b′2
s

m x2m+s(23r+1)]

= Q′(x) +
∑

m,k∈Z/nZ

bmb2s

k x2m(2r+1)+2k+s(2r+1)

+
∑

m,k∈Z/nZ

bmb′2
s

k x2m(2r+1)+2k+s(23r+1)

+
∑

m,k∈Z/nZ

b′mb2s

k x2m(23r+1)+2k+s(2r+1)

+
∑

m,k∈Z/nZ

b′mb′2
s

k x2m(23r+1)+2k+s(23r+1),

where Q and Q′ are quadratic.
Suppose that L and L′ are not constant. Then bm, b′k 6= 0 for some m, k ∈ Z/nZ.
We consider the items in the sum with the exponent 2m(2r + 1) + 2k+s(23r + 1), which

has the 2-weight at least 3 if 3r 6= ±1 mod n, and get the equality bmb′2
s

k + b′k+sb
2s

m−s = 0.
Since bm, b′k 6= 0 then b′k+s, bm−s 6= 0 and

bmb−2s

m−s = b′k+sb
′−2s

k .

Repeating this step for k + s, k + 2s,..., instead of k and for m − s, m − 2s,..., instead of
m, because of gcd(s, n) = 1 we get

λ = bmb−2s

m−s = b′k+sb
′−2s

k (16)
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for all m, k ∈ Z/nZ.
Like in the proof of Proposition 2 from the equality (16) we get µ[L(x) + L′(K(x))] =

µb′ + µb + tr(µb0x + µb′0K(x)), where λ = µ2s−1. Thus L1(x, K(x)) is not a permutation,
a contradiction. Therefore, L or L′ is constant and F is then EA-equivalent to K or to the
inverse of K. We know that F and K are not EA-equivalent because of algebraic degree
of K is r + 1 while F is quadratic. Let consider the case L = const and L′ 6= const. We
have b′m 6= 0 for some m and 2m(23r + 1) + 2m+s(23r + 1) has 2-weight at least 3 except the
cases when s = 1 and 3r = ±1 mod n. With the same arguments as above we get that
L1(x, K(x)) is not a permutation. ✷

If n is odd and s = 1, 3r = ±1 mod n then the inverse of the function K may be
EA-equivalent to F in some cases. For instance, K−1 = F 4 for s = 1, r = 2, n = 5.

Theorem 6 (CCZ-ineq. of Gold and Welch mappings) Let F (x) = x2s+1 and G(x) =
x2t+3 with gcd(s, n) = 1, 1 ≤ s ≤ n−1

2
, t = n−1

2
≥ 4. Then F and G are CCZ-inequivalent

on F2n.

Sketch of proof. If F and G are CCZ-equivalent then for some affine functions L, L′, L′′, L′′′

we have
L′′(x) + L′′′(G(x)) = F [L(x) + L′(G(x))],

where L(x) + L′(G(x)) is a permutation. With the same notation as in the proof of
Proposition 2, we have:

L′′(x) + L′′′(G(x)) + F [L(x) + L′(G(x))]

= Q(x) +



c +
∑

m∈Z/nZ

bmx2m

+
∑

m∈Z/nZ

b′mx2m(2t+3)





×



c2s

+
∑

m∈Z/nZ

b2s

mx2m+s

+
∑

m∈Z/nZ

b′2
s

m x2m+s(2t+3)





= Q′(x) +
∑

m,k∈Z/nZ

bmb′2
s

k x2m+2k+s(2t+3)

+
∑

m,k∈Z/nZ

b′mb2s

k x2m(2t+3)+2k+s

+
∑

m,k∈Z/nZ

b′mb′2
s

k x2m(2t+3)+2k+s(2t+3), (17)

where Q and Q′ are cubic.
Since the algebraic degree of G is 3 for n > 3 then F and G are EA-inequivalent. Therefore,
L′ 6= const and b′m 6= 0 for some m.

Since t ≥ 4 then 2m(2t + 3) + 2m+s(2t + 3) has 2-weight at least 5 when s 6= 1, t. If
either s = 1 or s = t then 2m(2t + 3) + 2m+s(2t + 3) has 2-weight at least 4 and it differs
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from the exponents of the items in the first and second sums in (17). The equality (17)
implies b′2

s+1
m = b′m+sb

′2s

m−s and b′m+s, b
′
m−s 6= 0. Since gcd(n, s) = 1 then we get b′m 6= 0 and

λ = b′m+sb
′−2s

m = b′mb′−2s

m−s (18)

for any m.
For m 6= k + s the items b′mb′2

s

k x2m(2t+3)+2k+s(2t+3) and b′k+sb
′2s

m−sx
2m(2t+3)+2k+s(2t+3) differ

and cancel pairwise because of (18). In the case m = k + s the sum gives items with the
exponents of 2-weight not greater than 3.

Because of (18) we get µL′(x) = µb′ + tr(µb′0x), where λ = µ2s−1. Therefore, L′ is
not a permutation and then L 6= const. We have bm 6= 0 for some m and considering the
items with the exponent 2m + 2m+s(2t + 3) of 2-weight 4 we get bmb′2

s

m = b′m+sb
2s

m−s and
bm−s 6= 0. This leads to the equality bmb−2s

m−s = b′m+sb
′−2s

m = λ for any m. Finally we get
µ[L(x) + L′(G(x))] = µb′ + µb + tr(µb0x + µb′0G(x)) which means that L(x) + L′(G(x)) is
not a permutation. Thus F and G are CCZ-inequivalent.

It was checked with a computer that if 1 < t < 4 then F is EA-equivalent to G−1 only
in case n = 5, s = 2. ✷

6 Conclusion

We have introduced an infinite class of APN (and AB if n is odd) quadratic functions
which we conjecture CCZ-inequivalent to power functions, and therefore, new, up to CCZ-
equivalence. We showed that they are CCZ-inequivalent to Gold and Kasami functions.
This implies that, for n even they are CCZ-inequivalent to any known APN function, and
for n = 12, 24, they are indeed CCZ-inequivalent to power functions. We leave two open
problems:
- proving that the functions introduced in the present paper are CCZ-inequivalent to power
functions for every n ≥ 12;
- finding classes of non-quadratic APN functions which would be CCZ-inequivalent to all
known APN functions (or even, CCZ-inequivalent to power functions).
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