A class of quadratic APN binomials inequivalent to
power functions®

Lilya Budaghyan! Claude Carlet? Gregor Leander®
November 30, 2006

Abstract

We exhibit an infinite class of almost perfect nonlinear quadratic binomials from
Fon to Fan (n > 12, n divisible by 3 but not by 9). We prove that these functions
are EA-inequivalent to any power function and that they are CCZ-inequivalent to
any Gold function and to any Kasami function. It means that for n even they are
CCZ-inequivalent to any known APN function, and in particular for n = 12,24, they
are therefore CCZ-inequivalent to any power function.

It is also proven that, except in particular cases, the Gold mappings are CCZ-
inequivalent to the Kasami and Welch functions.

Keywords. Affine equivalence, Almost bent, Almost perfect nonlinear, CCZ-
equivalence, Differential uniformity, Nonlinearity, S-box, Vectorial Boolean function.

1 Introduction

Since the introduction by Biham and Shamir of differential attacks on block ciphers [4] and
by Matsui of linear attacks [28], and since the introduction by Nyberg [29] of the related
notion of almost perfect nonlinear (APN) mappings, and by Chabaud and Vaudenay of the
notion of almost bent (AB) mappings [13], much work has been done on these two notions
[1,3,6,8,9,10, 12, 15, 16, 17, 18, 23, 24, 25]. A function F' : F§ — F4 is called APN if, for
every a # 0 and every b in F3, the equation F'(z)+F(z+a) = b admits at most two (that is,
0 or 2) solutions (it is also called differentially 2-uniform). A function F' is called AB if the
minimum Hamming distance between all Boolean functions v - F, v € Fy \{0} (where “.”
denotes the usual inner product in F%) and all affine Boolean functions on F} is maximal
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(this distance is called the nonlinearity of F' and this maximum equals 27! — 2727 ). A
comprehensive survey on APN and AB functions can be found in [11].

Until recently, all known constructions of APN and AB functions happened to be EA-
equivalent to power functions x — x¢ (where x ranges over the finite field Fyn, identified
as a vector space to F}). Recall that two functions F' and F’ are called extended affine
equivalent (EA-equivalent) if F/ = A; o F o Ay + A, where the mappings A, Ay, Ay are
affine, and where A;, Ay are permutations. Table 1 (resp. Table 2) gives all known values
of exponents d (up to multiplication by a power of 2 modulo 2" — 1, and up to taking the
inverse when a function is a permutation) such that the power function z¢ is APN (resp.
AB).

Table 1
Known APN power functions % on Fan.
Functions ‘ Exponents d ‘ Conditions | Proven in ‘
Gold 20 +1 ged(i,n) =1 | [22,29]
Kasami 220 — 20 41 ged(i,n) =1 | [25, 26]
Welch 2!+ 3 n=2t+1 [17]
Niho 20 427 — 1, ¢ even n=2+1 [16]
2t +2°57 — 1, ¢ odd
Inverse 22t —1 n=2t+1 (3, 29]
Dobbertin | 2% + 23 + 2% 4 2F — | n = 5t 18]
Table 2
Known AB power functions z¢ on Fan, n odd.
Functions ‘ Exponents d ‘ Conditions ‘ Proven in ‘
Gold 2041 ged(i,n) =1 | [22, 29]
Kasami 22t 21 41 ged(i,n) =1 [26]
Welch 243 n=2t+1 [9, 10]
Niho | 20425 —1,teven | n=2t+1 [24]
2t + 2% — 1, ¢ odd

Every power APN function is a permutation when n is odd [20]. For n even case it is
conjectured by Canteaut, Carlet, Charpin, Dobbertin and Zinoviev that there exists no
APN permutation. Every AB function is APN [13]. The converse is not true in general
since AB functions exist only when n is odd while APN functions exist for n even too.
Besides, in the n odd case, the Dobbertin APN function is not AB as proven in [10]. Also,
in this same case, the inverse APN function is not AB since it has the algebraic degree
n— 1 while the algebraic degree of any AB function is not greater than (n+1)/2 (see [12]).
But, if n is odd again, every APN mapping which is quadratic (that is, whose algebraic
degree equals 2) is AB [12].

When n is even, the inverse function #2" =2 is a differentially 4-uniform permutation [29]
and has the best known nonlinearity [27], that is 2"~ — 2% (see [10, 15]). This function
has been chosen as the basic S-box, with n = 8, in the Advanced Encryption Standard
(AES), see [14].



Several conjectures have been made on APN and AB functions. In particular, it was
widely accepted as plausible that all APN functions are EA-equivalent to power functions
and as a consequence it was conjectured in [12] that all AB functions are EA-equivalent
to permutations, and that all quadratic AB functions are EA-equivalent to Gold functions
(this last conjecture was restated for APN functions in [2]). Using the stability properties
studied in [12] and more recently called CCZ-equivalence (cf. definition at Section 2), new
infinite classes of APN and AB functions have been introduced in [6] (see also [7]) and
solved the first two problems.

The new APN and AB functions introduced in [7] are, by construction, CCZ-equivalent
to Gold functions. Hence, the problem of knowing whether there exist APN functions which
would be CCZ-inequivalent to power functions remained open after their introduction. A
recent paper [21] introduces two quadratic functions from Foio (resp. Foi2) to itself. The
first one is proved to be CCZ-inequivalent to any power function. The exhibition of this
function also solves the third of the problems recalled above.

These two (quadratic) functions are isolated and this leaves open the question of know-
ing whether a whole infinite class of APN functions being not CCZ-equivalent to power
functions can be exhibited.

In the present paper, we introduce an infinite class of quadratic APN functions on
every number of variables n, divisible by 3, but not by 9. We show that, for n > 12,
these functions are EA-inequivalent to power functions and CCZ-inequivalent to Gold and
Kasami functions. This implies that for n even they are CCZ-inequivalent to all known
APN functions. In particular, for n = 12,24, they are indeed CCZ-inequivalent to any
power mappings. Furthermore, we consider an open question about CCZ-inequivalence of
two different functions from Table 1 to each other. We prove that, except in particular
cases, the Gold functions are CCZ-inequivalent to the Kasami and Welch functions, and
that two Gold functions are CCZ-equivalent if and only if they are EA-equivalent.

2 Preliminaries

Let 7 be the n-dimensional vector space over the field Fo. Any function F' from F} to
itself can be uniquely represented as a polynomial on n variables with coefficients in F3,
whose degree with respect to each coordinate is at most 1:

This representation is called the algebraic normal form of F and its degree d°(F') the
algebraic degree of the function F.

Besides, the field Fan, as any n-dimensional vector space over Fy, can be identified with
F?, as a vector space. Then, viewed as a function from this field to itself, F' has a unique
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representation as a univariate polynomial over Fon of degree smaller than 2™:

2" —1

F(z) = Z b, ¢ € Fon.
i=0

For any k, 0 < k < 2™ — 1, the number wy(k) of the nonzero coefficients k, € {0,1} in
the binary expansion Z::_S 2%k, of k is called the 2-weight of k. The algebraic degree of
F' is equal to the maximum 2-weight of the exponents i of the polynomial F'(x) such that
¢; # 0, that is d°(F') = maxo<i<n—1,¢,20 W2(7) (see [12]).

A function F : F} — [} is linear if and only if F(x) is a linearized polynomial over
[Fon, that is,

n—1
Z Cil’?, ¢; € Fon.
i=0
The sum of a linear function and a constant is called an affine function.

Let F' be a function from [} to itself and A, A, : F§ — F3 be affine permutations. The
functions F' and A; o F' o Ay are then called affine equivalent. Affine equivalent functions
have the same algebraic degree (i.e. the algebraic degree is affine invariant).

As recalled in introduction, we say that the functions F' and F’ are extended affine
equivalent if F' = A; o F o Ay + A for some affine permutations A;, A, and an affine
function A. If F' is not affine, then F' and F’ have again the same algebraic degree.

For a function F': F§ — Fj and any elements a, b € F5 we denote

dp(a,b) = {x € Fy : F(x +a) + F(x) = b}|

and
Ap ={op(a,b) :a,b €y a#0}.

F is called a differentially d-uniform function if max,erp~ pery dr(a,b) < 6, where F3* =
F2 \ {0}. For any a,b € F3, the number dp(a,b) is even since if xy is a solution of the
equation F'(z + a) + F(x) = b then xy + a is a solution too. Hence, § > 2. Differentially
2-uniform mappings are called almost perfect nonlinear.

For any function F': F§ — F7, the distribution of the values

Ap(a,b) = Y (—L)PF@Fer g b e Fy,

z€eFY

does not depend on a particular choice of the inner product 7 -7 in 3. If we identify F5
with Fan then we can take z -y = tr(zy), where tr(z) = = + 22 + 2* + ... + 22" is the
trace function from Fan into Fy. The set Ap = {Ap(a,b) : a,b € Fy b # 0} is called the
Walsh spectrum of F' and the value

NL(F)=2""— L max

2 acFy beFy*

Ar(a,b)|

4



equals the nonlinearity of the function F'. The nonlinearity of any function F' satisfies the
inequality
NL(F) <2t —2"
([13, 30]) and in case of equality [ is called almost bent or mazimum nonlinear. For any
AB function F', the Walsh spectrum Ap equals {0, :t2nT+1} as proven in [13].
For EA-equivalent functions F' and F’, we have NL(F) = NL(F'), Ar = Ap and if
F is a permutation then NL(F) = NL(F™), Ap = Ap-1 (see [12]).

Two mappings F' and G from Fan to itself are called Carlet-Charpin-Zinoviev equivalent
(CCZ-equivalent) if the graphs of F' and G, that is, the subsets {(z, F'(z)) | * € Fan} and
{(z,G(x)) | © € Fan} of Fon X Fan, are affine equivalent. Hence, F' and G are CCZ-equivalent
if and only if there exists an affine automorphism £ = (Lj, L) of Fan X Fan such that

Note that the function L, (z, F'(z)) has to be a permutation too. Indeed, suppose that there
exists « # 2’ such that Ly (x, F(x)) = Ly (2', F(z')), then since £ is a permutation, we would
have Lo(z, F'(x)) # Lo(2', F(2')), a contradiction since Lo(x, F'(z)) = G(Li(x, F(z))) and
Ly(2', F(2')) = G(Ly(2', F(2'))). Note also that, conversely, if F' and £ = (Lq, Ly) are
respectively a function and an affine automorphism such that the function L,(z, F(z)) is
a permutation, then the relation Lo(x, F'(z)) = G(Li(z, F(z))) defines a function G which
is CCZ-equivalent to F'.

It is shown in [12] that, if F' and G are CCZ-equivalent, then F'is APN (resp. AB) if
and only if G is APN (resp. AB). As shown in [12] too, EA-equivalence is a particular case
of CCZ-equivalence and any permutation is CCZ-equivalent to its inverse.

3 A new family of APN functions

The following theorem introduces a large class of quadratic binomial APN functions.

Theorem 1 Let s and k be positive integers with ged(s,3k) =1, and t € {1,2}, i =3 —1t.
Furthermore let

d — 2Zk ‘l’ 2tk‘+8 _ (28 ‘l’ 1)’
g = ged(2* —1,d/(2" - 1)),
g = ng(zk - 17 d/(2k - 1))7

and « be a primitive element of Fose. If g1 # go then the function
is almost perfect nonlinear on Fosr (and is almost bent when k is odd).
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Proof. Let n = 3k. We have to show that for every u,v € Fon, v # 0, the equation
Fx)+ Flx+v)=u
has at most 2 solutions. We have

F(z)+ F(x+v)
a2k_1 <$2ik+2tk+s + (x _I_ U)2lk+2tk+s>

A o )

. 2ikr 2tk+s
k_ ik otk+s x X
QL 22 ((_) N <_> )
v v
s T 2¢ xr k_ ik 4 otk+s s
L2 ((_) X <_>) 12ttt e
v v

As this is a linear equation in x it is sufficient to study the kernel. Note furthermore that

P22 =204 (2P -1)(@F e 4204127 (20 - 1) (i-1))

(this can be checked separately for ¢ = 1 and ¢ = 2). To simplify notation we define

2k_1
k+s s _9k(9s_ -
N ( p2 A2 (25-1)(@ 1))

After replacing z by vz and dividing by v?"*!, we finally see that the equation F(z) +

F(z +v) = u admits 0 or 2 solutions for every v € F5, if and only if, denoting
Ay(z)=a <1’2ik + :)32tk+s) + 2% +

the equation A,(z) = 0 has at most two zeros or, equivalently, that the only solutions are
r=0and x = 1.
From now on we consider the cases i = 1 and ¢ = 2 separately.

Case 1 (t = 1,7 =2) The following step can be seen as a very basic application of the
multivariate method introduced by Dobbertin [19]. If we denote y = 2, 2 = yzlc and
b=a?, c=0b2" the equation A,(z) = 0 can be rewritten as

a(z+y*) + (2% + 1) =0.

By definition, a is always a (2¥ — 1)-th power and thus abc = 1. Besides, a ¢ F, (as it
is confirmed further). Considering also the conjugated equations we derive the following
system of equations

fi= az+y")+2¥ +2= 0
fo= blax+2X)+y¥ +y= 0
fr= Zy+a¥)+2X +z2= 0.
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The aim now is eliminating y and z from these equations and finally getting an equation
in z only. First we compute

Ry = b(f1)* +d* fo
= azsbyz% +a¥yr +d¥y+ be®” + b2 + a® bx

and
1
RQ = m(bfl‘l‘afg“‘abfg)
B 2stajtl +1x2s ab+bx
- Y ab—l—ay a ab+a

. . . . 2s
to eliminate z. To eliminate y*> we compute

p a0+ 1) +(a+1)%b
B (b+ 1)

Rg = R1+a28b(R2)

a2Vt 4 b,

1 +a* bz,

+ d”y+

Using equations Ry and R3 we can eliminate 4% by computing
a®(b+1)* +(a+1)*b
(b+1)%

= Pla)(y+ (b+ 1)z + bx),

Ry, = Rs3+ Ry

where . . . .
(ab)**t + (ab)® + a* b+ a* +ab+b

Pla) = b+ 1) +a

Computing

S

Rs = (Ry)* + P(a)* Ry = P(a)*
1 . . ab® +1 .. ab+b
(a_'_ y+(b2 +1)$22 +CL + 2 +a _'_

x x
ab+a a ab+a
we finally get our desired equation by

a+1 s
R = ab+ap(a)2 ‘Rut Ry

— P)?(b+1) (:ﬁ + :c23> .

)

Obviously if z is a solution of A,(z) = 0 then Rg(x) = 0. For P(a)* (b+ 1) # 0 this is
equivalent to x = 0, 1. Thus to prove the theorem one possibility is to show that P(a) does
not vanish for elements a fulfilling the equation

k s 2k_1
0 = <ozv2 +2 +1> (1)
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Note that, if a satisfies (1), then a is not a (2¥ + 2% + 1)-th power. Indeed, go = ged(2F —
1,28 + 2%+ 1) is always a divisor of g; = ged(2" — 1,27+ 2% +1). And if a fulfilling (1) is a
(2% + 2% + 1)-th power then a?" 1 is a g;-th power and then « is a (91/g2)-th power. But
as (g1/gz2) is a nontrivial divisor of 2" — 1 this contradicts that « is a primitive element.

Consequently we want to show, that if P(a) = 0 then a is a (2% 4+ 2° +1)-th power. But
for a ¢ Fy the equation P(a) = 0 is equivalent to

25+1
" a+1 241 b+1 "
c+1 a+1) "

as can be easily seen by dividing this equality by a, simplifying it by (a + 1), and then
expanding it, using that ¢ = 1/ab. Note that the right hand side is always a (2% +2°+1)-th
power. This proves the first case.

Case 2 (t = 2,i = 1) In this case the equation A,(z) = 0 can be transformed into the
following system of equations
aly +2)+ (x+2¥) =
bz +2%) + (y +y*) =

o O

]_ S S
%(I+y2)+(2+z2) = 0.

Again eliminating y and z similarly as before we get this time
P(a)* <51722s + :):2S> =0,

with
P(a) = (ab)* ™ + (ab)*" + ab* + ab+a +b* .
Using similar arguments as before it suffices in this case to show that if P(a) = 0 then
a is a (28 + 2° + 1)-th power. For this, note that for a ¢ Fy the equation P(a) = 0 is

equivalent to
2541 2s
g2 - (et N R W
c+1 a+1

and the right hand side is always a (2¥%¢ 4 2% 4 1)-th power. O

Remark: Note that in Theorem 1 instead of a coefficient a?*~! we can take any element
of order 4% 4+ 2% + 1.

From Theorem 1 we get the following corollary as a special case.

Corollary 1 Let s and k be positive integers such that ged(k,3) = ged(s,3k) = 1, and
it = sk mod 3, t =2 mod 3, n = 3k, and a be a primitive element of F5.. Then the
function

s k__ 1k tk+s
F(ZII’) — ZI}'2 +1 +OK2 12U2 +2

is APN on Fyn (and is AB when n is odd).



Proof. We only have to verify that in this case the greatest common divisors
g1 = ged(2" — 1,28 25 41— 28(2° —1)(i — 1))

gy = ged (2% — 1,2 125 11 —2F(28 — 1)(i — 1))

are not the same. Obviously g is always coprime with 7 and it can be easily checked that
g1 is always divisible by 7. Indeed, for instance, if £ mod 3 = s mod 3 =1 then ¢ =1
and k = 3k’ + 1,5 = 3¢’ + 1 for some k', s’, and we get

g =28 425 4 1 = 4(230 ) 1) 4223 — 1) + 7.

([
It should be noted that Theorem 1 covers a larger class of APN functions as can be
seen by checking the conditions on the greatest common divisors for small values of k£ and
S.
The next proposition shows that the functions from Corollary 1 are permutations if & is
odd. Moreover computer investigations show that most probably, if k is odd their inverses
have the algebraic degree (3k +1)/2.

Proposition 1 The APN functions of Corollary 1 are bijective if and only if k is odd.

Sketch of proof. 1If k is even then, since ged(s,3k) = 1, s must be odd and therefore
2° + 1 is divisible by 3 as well as 2% 4 2tF+s = 2%k(1 4 20=Dk+s)  We have F(z) = F(vyz)
for every v € Fj.

To prove that F' is bijective when k is odd, we use the same steps as in the proof of
Theorem 1. Assume i = 1 (the proof for the case i = 2 is similar). We have to show that
the equation F'(x)+ F(z+v) = 0 does not have a non zero solution v for any z. Doing the
same computations as in the proof of Theorem 1 we have this time to look at the following
system of equations

fi= az+y¥+ 1) +2¥ +2+1= 0
fo= b+ +1)+y¥ +y+1= 0
fi= Zy+a¥ +1) 4+ +24+1= 0.

Now, doing the same elimination of y and z as before, we end up with
P(a)* (2* +2+1) =0,

where P is as in the proof of Theorem 1. By taking the power 2° of 22" + 2 +1 = 0

and substituting z2 = z + 1 we get 22” = 2 which is equivalent to z € Fy where
Jj = ged(2s,3k). If k is odd then j =1 and the only possible solutions could be 0 or 1 but
they obviously do not satisfy 2" +z + 1 = 0. O
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4 On the CCZ-inequivalence between the introduced
APN functions and the Gold and the Kasami func-
tions

We first prove the EA-inequivalence between the APN functions introduced in Corollary 1
and all power functions.

Theorem 2 Let n be a positive integer and let s, j,q be three nonzero elements of Z/nZ
such that ¢ # +s. If one of the following conditions holds

1. j # +s,+q,2s,s £ q,
2. j#:l:S, :l:Q7 :l:S—q,—2q,
3-j%sa—%QS—an—Qaniq’QS,

4' .j#87_q72S_Q7S_2Q7:l:S_q7_2q7

then the function F(z) = 2¥ ' + az? @+ with o € F}. is EA-inequivalent to power
functions on Fon.

Proof. Suppose the function F' is EA-equivalent to a power function. Since F' is
quadratic and EA-transformation does not change the algebraic degree of a function then
F is EA-equivalent to x? ™! for some nonzero r € Z/nZ. Therefore, there exist affine
permutations Ly, L, and an affine function L’ such that

L1 (2% %) + Ly (az® @) = (Ly(2)? ' + L' ().

Expressing Li(z), Lo(x) and L'(z) as sums of linearized polynomials and constants and
reducing the resulting exponents modulo 2" — 1 leads to an equation whose degree is at
most 2"~ 4 2772 (since the 2-weights of the exponents are at most 2) and which has 2"
solutions. Hence the equation must be an identity.

Since the functions are quadratic, we can assume without loss of generality that L, and
Lo are linear:

Li(x) = Z bnz®"

meZ/nZ
Ly(x) = Z cpr?’.
PEZL/nZ
Then we get _
Z bmxzm(2s+1) —I— Z bmazml’2m+J (QQ+1)
meZ/nl meZ/nl
= > o2+ (). (2)
l,pEZ/nZ
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On the left hand side of the identity (2) we have only items of the type z2" (*+1) x2mﬂ(2q+1),

with some coefficients. Therefore this must be true also for the right hand side of the
identity.

We shall show that under some conditions on s, j, g, the equality above is satisfied only
if b,, = 0 for every m € Z/nZ. A contradiction.

If b,, # 0 for some m, then the coefficients of the items x and x are
not zero on the left hand side of the identity (2) since ¢ # +s. Hence this is also true for
the right hand side of (2), that is,

2 (2541) 2m+5 (294-1)

Cmci:-‘rs—r 7& Cm+sci:—r> (3)

Cm—l-jcm—i—]—l—q r % Cm+J+qu+J —r: (4)

The items of the type 22" 2™ are missing in the left hand side of (2) when j # +s, +q.
And we have no item of the kind 22”7 +2™"" in the left hand side of (2) when j—s # +s, +¢,
that is, j # 2s,s + q.

Thus, if these conditions are satisfied, then from the right hand side of (2) we get the

2 2" 2r
following equalities With ¢y, ¢y oy Cmtsy G Cimt s Copj 1

27 27
CmCmtj—r = Cm+jCm—rs (5)

2" _ 2"
CmtjiCrmts—r = Cm+scm+j—r' (6)

Assume ¢4 j_r, Cmys—r # 0. If ¢y 7 0 then we get from (3), (5), (6):

_27“ _or
CmCpy % Cm+scm+s—r7

CmC;fTT Cm+JCT_rL2-:j —r
Cm+j0;5|_j —r Cm‘f‘scf_n%iis r
and we come to a contradiction. If ¢,,_, = 0 then from (5) and since ¢,,4;—, 7# 0 we get
¢ = 0. But ¢,,,—, = ¢, = 0 contradicts (3). Therefore, either ¢,,1j_, or ¢;4s—, equals 0.

Assume first that ¢,,4;—, = 0. Then from (4) we get ¢,,+; # 0; then from (5), (6) we
get Cmis—r = Cm—r = 0, that is in contradiction with (3). Therefore, ¢4, # 0.

Assume now that ¢, 15—, = 0. Then from (3) we get ¢,,+s # 0; then from (6) we
get ¢mij—r = 0. Then from (4) we get ¢p,y; # 0 and we arrive to the contradiction
Cmis—r = Cm—r = 0 as above.

Therefore, if j # +s,+q,2s,s + ¢ then F is EA-inequivalent to quadratic power func-
tions.

Using similar arguments we get below other conditions on s, ¢, j which are also sufficient.

We have no item of the kind 2™ "*+2™ in the left hand side of (2) when j+q # =+s, %q¢,
that is, 7 # s — q,—2q. Thus, if j # +s, £q,+s — ¢, —2¢ then we have the equality (5)
and from (2) we get the following equality

2" 2"
Cmcm—i—]—i—q r = Cm+j+qCm—r- (7)
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Let ¢mtjrgors Cmtj—r 7 0. If also ¢,;,—1 # 0 then we get from (4), (5), (7)

—27 —27
Cm+iCmtj—r 7£ Cm+j+qCmatj+q—r

Cmcr_nz—rr = Cm+jcr_n2—:j—r7
CmC;f—TT’ = Cm+j+qcr_n2-:j+q—7"
and we come to a contradiction. If ¢,,_, = 0 then it follows from (5) that ¢,, = 0. But
Cm = Cm—r = 0 contradicts (3). Therefore, either ¢4 j1q—r = 0 0r ¢y = 0.

If ¢ppj—r = 0 then ¢pij, Gt jrg—r # 0 by (4). Since ¢jppj—p = 0 and ¢4 j # 0 then it
follows from (5) that ¢,,—, = 0. Since ¢pyjrq—r # 0 and ¢,,—, = 0 then ¢,, = 0 by (7). But
Cm—r = Cm = 0 contradicts (3).

If ¢igjrg—r = 0 then from (4) we get ¢ptjtq Cmij—r 7 0. Since ¢ptjrq—r = 0 and
Cmtjtq 7 0 then ¢, = 0 from (7). We have ¢,, = 0 from (5) since ¢;4j— # 0 and
Cm—r = 0. But ¢, = ¢, = 0 contradicts (3).

Thus, if j # +s,4+q,+£s — ¢, —2q then the function F' is EA-inequivalent to power
functions.

The proofs of the third and the fourth claim of the theorem are similar. We have the
following equality if j # 2s — q, s, —q, s — 2q

Cm+SC7277T,+j+q—r = Cm+j+ch7:+s—r‘ (8)
The equalities (6) and (8) lead to the condition j # 2s — ¢, s, —q, s — 2¢, s + q,2s which
is sufficient for F' to be EA-inequivalent to power functions. The same is true when we
consider the equalities (7) and (8) with the condition j # 2s—q, s, —q, s—2q, £s—q, —2q. O

Corollary 2 Let s and k be positive integers such that k > 4, s < 3k — 1, ged(k,3) =
ged(s,3k) = 1, and i = sk mod 3, t = 2i mod 3, n = 3k. Then the function F(x)
22t 4 ax? 2 with o € T, is EA-inequivalent to power functions on Fyn.

Proof. The function F' coresponds to the first case in the hypotheses of Theorem 2.
Indeed, if 7 = 1 then

2ik + 2tk+s mod (23k _ 1) — 2k + 22k+8 mod (23k _ 1)

2k(2k+s 1) ifs<k
257k(2%=s + 1) ifk<s<2k .
k(2572 1 1) if s > 2k

If 0 < s < k then in terms of Theorem 2 we have j = k, ¢ = k + s and the condition
j # *s,+q,s £ q,2s is equivalent to k # s,3k — s,k + 5,2k — s,k + 2s,2k,2s which is
satisfied since k£ > 4 and ged(k, 3) = ged(s, 3k) = 1.

If kK <s<2kthen j=s—k q=2k—sand s—k # 5,3k — 5,2k — s,k + s,2k,2s —
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2k, 2s,2s — 3k.
If s > 2k then j =k, ¢ =s— 2k and k # s,3k — s, s — 2k, bk — s,2s — 2k, 2k, 25 — 3k.
Obviously, in all cases the condition ¢ # +s is satisfied. Hence, the function F' is
EA-inequivalent to power functions by Theorem 2.
For the case i = 2 the proof is similar. O

Corollary 3 Let s and k be positive integers such that k > 4, s < 3k — 1, ged(k,3) =
ged(s,3k) = 1, and i = sk mod 3, t = 20 mod 3, n = 3k. If a € Fon has the order
22k 4+ 9k + 1 then the function

F(z) = 2%+ + a2 2"
is AB on Fon when n is odd and APN when n is even and it is EA-inequivalent to power
mappings.

The next theorems show that in general the new APN functions introduced in the
present paper are not CCZ-equivalent to the Gold functions nor to the Kasami functions.

Without loss of generality a Gold function F(z) = "™ and a Kasami function K(z) =
2 ~¥*1 can be considered under conditions 1 <'s < 2, 2 < r < Z, since this exhausts all
different cases (under EA-equivalence).

Theorem 3 Let n be a positive integer, let r, s, q be three nonzero elements of Z/nZ and
j an element of Z/nZ. Let a be a nonzero element of Fon. Assume that s # +q and one
of the following two conditions is satisfied
Dj#s—r,j#-—r.jta#s—r, j+q#—r;

2)j#s+r, jFr,jraFs+r, jragFr.

If F(z) = 2% 4+ a2 @'Y s an APN function which is CCZ-equivalent to the function
G(x) = 22! then F and G are EA-equivalent.

Proof. Suppose that F(z) and G(x) are CCZ-equivalent, that is, there exists an affine
automorphism £ = (Ly, Ly) of Fan X Fan such that y = F(z) < Lo(z,y) = G(L1(z,y)).
This implies then L;(z, F'(x)) is a permutation and Lo(x, F'(x)) = G(Li(x, F'(x))). Writing
Ly(z,y) = L(z) + L'(y) and La(z,y) = L"(z) + L"(y) gives

L'(z) + L"(F(x)) = G[L(z) + L'(F(z))].
We can write

L(z) = b+ Z b®"

meZ/nk
L) = v+ > b,
meZ/nl
L) = ¥+ > b
meZ/nZ

13



We have

+

LW(SL’) _ b/// + Z b;;;me’
meZ/nk
b+b = c

G[L(z) + L'(F(z))]
(Lo + L@ 4 0 220)
<L(SC) D 4 a? (2q+1))>2r

(c+ Z b + Z b 22" @D

meZ/nl meZ/nl

my 2917 (2941)
E a™b, x )

meZ/nl

(@ + Y i

meZ/nk

r m—+r 2s+1)
b/2 :L,Q (
§ m
meZ/nk
r+m r r+j+m(9g
2 0,2 b;% 1,2 (2 +1))
meZ/nl
27 2m+r' 2s+1 +2k:
Qx) + [ E bpb2 22" @D
m,k€Z/nZ
Z a2r+m bkb/2r'x2r'+j+m(2q+1)+2k:
m
m,kEZ/nZ
7727 omtTok(2541)
E b.b,,
m,k€Z/nZ
k r m—+r Jj+k(ogq
§ CL2 b;fbgn%j +2715(2 +1)]
m,k€Z/nZ
[ Z b;cbmx2M+T(2S+1)+2k(2S+1)
m
m,k€Z/nZ
Z a2t b;b’zr:EQHHW(2q+1)+2k(25+1)
m
m,k€Z/nZ
§ : azkb;fb/zfxwﬂ(2S+1)+2j+k(20+1)
m
m,k€Z/nZ
} : a2T+M+2k b;fb/zrx2r+f+M(2q+1)+2f+k(2q+1)]
m

m,k€Z/nZ

Y

where () is a quadratic polynomial. Obviously, all terms in the expression above whose
exponents have 2-weight strictly greater than 2 must cancel.
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If L' is a constant then F' and G are EA-equivalent and it proves the statement of the
theorem. If the function L' is not a constant then there exists m € Z/nZ such that b/, # 0.
Ifj #s—r,j# —r, j+q# s—rand j+q # —r then 27777m(2941)+2™(25+1) has 2-weight

4 and the items with this exponent have to vanish. We get a®"™" 02"+ +a?"""0/ 02" =0
and since a, b/, # 0 then b, b, . # 0 and b b, % =0t . b2

Ifj#s+r,j#r j+q#s+randj+q#rthen 2727 1) + 27+7(2° + 1) has
2-weight 4 and we again get b, b2, = b . b2

Since ged(r,n) = 1 for APN functions 2" !

m + 2r,..., instead of m we get b, # 0 and

then applying this observation for m + r,

b b, = by, b7 (9)
for all t € Z/nZ.
Let us consider the sum

2 : bzb/zrxw“(2S+1)+2k(28+1)
m
m,k€Z/nZ

from the last bracket. For any k,m € Z/nZ, k # m+r, the items b b2 z2™" 2 +D)+25(2"+1)
and b, b2 2 ZHDH2TTEHD differ and cancel pairwise because of (9). In the case
k = m + r the sum gives items with the exponents of 2-weight not greater than 2.

Considering the sum

Z a2r+m+2k b/ b/2rx2T+j+m(2q+1)+2j+k (2Q+1)
kYm

m,k€Z/nZ

we get that for any k,m € Z/nZ, k # m+r, the items a2 2 2T (20 )+ 2R (204 )
and o "2y B2 ¥ THIEDFTIITRD differ and cancel pairwise because of (9) and
in the case k = m + r the sum gives items with the exponents of 2-weight not greater
than 2.

Now we consider the sums

Qrtmyy gp2r  ortitm(2441)4-2F(2541)
E a” b, T

m,k€Z/nZ

and

a2k b;gb/zr x2M+T(2S+1)+2j+k(2q+1)
E m .

m,k€Z/nZ

For any k,m € Z/nZ the item a® " b b 22 7" @HDF22 4D from the first sum cancels

. . r+m T k(9s r+i+m(9q .
with the item " "B, b2 2% @ +HD+2 (2"+1) from the second sum and vice versa.
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Thus the expression in the last bracket is quadratic and
G[L(z) + L'(F(x))]
— Q/(x) + [ Z bkbﬁrI2m+r(25+1)+2k

m,k€Z/nZ
}: ortmy gyor ortitm(2441)42k
+ a bkbm Xz

m,k€Z/nZ

+ b;b2r'x27rl+r'+2k(2s+1)
: : m
m,k€Z/nZ

ok g or omtryoitk(2a4]
+ ) dhbha @7+,
m,k€Z/nZ

where @'(z) is a quadratic function.

Because of (9) we can deduce, by denoting b.b52 = A, that b, = A for all ¢.
Then, introducing x such that A = u? ~!, we deduce that pbj, = (ub})* for all ¢ and then
that pb),, = (ub,)? (using that ged(r,n) = 1) and then ub, = (uby)*". This means that
ul'(x) = pb' 4+ tr(pb ox). Then obviously L’ is not a permutation and since L;(z, F'(z)) is
a permutation then L is not a constant. Thus b; # 0 for some t € Z/nZ.

We have s # +q and if also r # +q, r + s # £q then we have the items with the exponent
mArts 4 9mtr 9™ only in the first and the third sums in the bracket (if the condition
r # +q, 7+ s # +q is wrong then the claim is true for the exponent, 2mF7F8 4 2m+7 4 9m=1)
We get b, b2 +b,.,.b%_, = 0. Since by, b, # 0 then b,,_, # 0 and by,b,>, = ¥, b2

Repeating these steps for b, byy_2, ..., because of (9) we get b, # 0 for all ¢t € Z/nZ and
A=1b b~ =bb 2.

m-m-—r

Therefore, pL(z) = pub+tr(pbox) and p[L(x)+ L'(F(x))] = pb’ + pb+tr(pboz + pb/ o F(x)).
Obviously the function L(x) + L'(F(z)) is not a permutation and that is a contradiction.
Therefore, L' is constant and F' and G are EA-equivalent. O

Corollary 4 The functions from Corollary 3 are CCZ-inequivalent to the Gold mappings.

Proof. Assume that the Gold function 2% *1, ged(r,n) = 1, is CCZ-equivalent to F.
Then by Corollary 3 and by Theorem 3 one of the conditions s # +q, j # s — 1, j # —7,
j+q#s—r,j+q# —r,is not satisfied.

Let consider the case ¢ = 1. Then in terms of Theorem 3 we have g = k +s,7 = k. If
s = £q then we get a contradiction with k£ # 0 or ged(s, k) = 1. If r = —jorr = s—(j+q)
then ged(r, k) # 1, a contradiction. If r = s — j or r = —(j + ¢) then r is divisible by 3.
Indeed, since sk =1 mod 3 then s mod 3 =% mod 3 and £(s — k) =0 mod 3. On the
other hand, r=s—j=s—korr=—(j+¢q)=n—(2k+s)=3k—(2k+s) =k —s. But
ged(r, 3k) = 1, a contradiction.

The proof for the case i = 2 is similar. O
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Theorem 4 Let n be a positive integer, let 1, s, q, j be nonzero elements of Z/nZ such that
ged(rn)=1,n>4,s#+q, s # +3q, g #1+3s, s #+j, q#+j,3¢+j #0, j+q# +s,
JFs+q 29 F# £j, 29 # s—73, 25 # j, 25 # j+q. Then for a € F5. the functions
F(z) = 22 + ax? Y and K(x) = 27 2+ are COZ-inequivalent.

Proof. Let G(z) = 22+, G'(z) = 22"+, Suppose that F(z) and K(z) are CCZ-
equivalent. Then, there exists an affine automorphism £ = (Lj, L) of Fan X Fan such that
Ly(z, F(x)) = K(Ly(z, F(x))), which implies, by composition by G

G(La(x, F(x))) = G'(Ly(z, F(x))),
that is, writing again Ly (z,y) = L(z) + L'(y) and Ly(z,y) = L"(x) + L" (y):
0 = G'[L(x) + L'(F(x))] + GIL"(x) + L"(F(z))]

= Q)+ Y b e

m,k€Z/nZ

_I_ Z a23r+m bkb,23r x23r+j+m(2q+1)+2k
m

m,kE€Z/nZ

Y e
m
m,k€Z/nZ

+ a2k: b;b2ST'x2m+3r+2j+k(2q+1)
§ m
m,k€Z/nZ
11027 2T (25 41)4-2F
+ E bpb,,” T
m,k€Z/nZ
r+m r r+j+m (9q k
+ § CL2 bgb;;? ZIJ'2 (2941)+2
m,k€Z/nZ
2T 2mtT 4ok (254 1)
+ E b b,
m,k€Z/nZ
k r m-+r Jj+k(oq
+ E CL2 bglbﬁ 1'2 +2775(2 +1)]
m,k€Z/nZ

3r m—+3r(os k(os
+ | Z b;bfn 22 (2541)+2%(254+1)
m,k€Z/nZ
+ Z a2y 2 2T (204 1) 428 (20 4)
k¥m
m,kEZ/nZ
+ Z a2kb;ﬂb/23rx2M+3r(2S+1)+2j+k(2Q+1)
m
m,kEZ/nZ
+ Z a23r+m+2kb/ b/23r$23r+9’+M(2q+1)+2f+k(2‘1+1)
kYm
m,k€Z/nZ
+ Z b2 :L,27’L+"(25+1)+2k(25+1)
k “m
m,k€Z/nZ
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+ Z a2r+m bg/b%2Tx2T+f+M(2Q+1)+2k(2S+1)
m,k€Z/nZ

+ Z a2 b%’b%zrz2m+r(28+l)+2j+k(2q +1)
m,k€Z/nZ

+ Z a27"+7”+2k bglb%2r$2r+j+m(2q +1)+2j+’“(2‘1+1)]

m,k€Z/nZ

Y

where () is quadratic.

Let s # +q, s # £3¢, ¢ # £3s. The exponents of the type 23T/ +m+a 4 93r+i+m 4 ok+s | ok
have 2-weight 4 if k ¢ {3r+j+m,3r+j+m+q,3r+j+m-+q—s,3r+j+m—s} and these
exponents cannot be equal to any exponent of the type (25 +1)(2/ +2) or (27 +1)(2 +2").
Since all terms with exponents of 2-weight 4 should vanish we obtain

/71237 / /237 2T 11 11127
bkbm + bm+3rbk—3r - bk bm+2r + bm+3rbk—r (10>

form,k € Z/nZ, k ¢ {3r+j+m,3r+j+m+q,3r+j+m-+q—s,3r+j+m—s}.

The equality (10) is also true for the cases k € {3r +j+m,3r+j+m+q,3r+j+
m+q—s,3r+j—|—m—s} if s 7& ij? q 7& j:ja 3q+] 7é 07 j+q 7& j:Sa ] 7& s +q,
2q # +j, 29 # s — j, 2s # j, 2s # j + q. Indeed, consider the items with the exponents
23rHItm (24 4 1) + 29tF(29 + 1) for k € {3r +j +m,3r + j + m + q}. With the above
written conditions these exponents have 2-weight 4 and they differ from exponents of the
type (2°+1)(2'4+2") and 2/(29+1)4+2"(2° +1). Fork € {3r+j+m-+q—s,3r+j+m—s}
we can consider 2mF37(25 4+ 1) + 28(2% 4 1).

Without loss of generality we can assume that L, L', L” L are linear (since changing

the constant terms in these affine mappings results only in a change of the polynomial
Q(z) above) and let L’ # 0. The equalities (10) imply

(L ()" 4+ (U (@)*" ! = C(x) (11)
for some linear function C'(x). Besides, it must hold that
ker(L") Nker(L") = {0} (12)
since otherwise the system of equations

L) + I'(y) =
L'(2)+ L"(y) = 0

has solutions different from (0,0) which is not allowed for CCZ-equivalence.
For any a, derivating equality (11) we get

L///(a)2" LW(ZL') + L”’(CL)L”/(ZL’)T

+L(a)?" L' (z) + L'(a)L' (z)*" =0 (13)

18



We want to show first that L' and L” have to be bijective. Assume on the contrary
that L’ is not bijective. Then there exists an element ag # 0 such that L'(ay) = 0, and due
to equality (12) L"(ag) # 0. We get for all = that

LW(CLQ)TL”/(I’) + L”’(CLO)L”/(ZL’)T =0.

And it follows that
L"(z)=0or L"(z) = L"(ayp),

where we used that ged(2" — 1,2" — 1) = 1. Thus there exists an element d such that
L"(x) = L"(ap) tr(dz).
If we plug this into equality (13) we get

937

L'(a)” L'(z) + L'(a) L (2)*" =0
for all x and any a. This implies that L'(x) = 0 or
L@ = Laf
which, as ged(3r,n) = 3, means that
L'(x) = L'(a)y
where v € Fos. In particular we have
dim(im(L")) <3

and therefore we have dim(ker(L’) > n — 3. As dim(ker(L")) = n — 1 for n > 4 the two
kernel intersect, a contradiction.

Now assume that L is not bijective. Then there exists a; such that L"(a;) = 0 and
L'(a1) # 0. We get, again

L'(a)> L'(z) + L'(a) L' (2)* =0

which, using the same arguments as above, contradicts the condition that L’ is bijective.
We conclude that L is bijective.

Now we denote A = L o L'~!, which is again a bijective linear mapping. By replacing
x by L'"}(z) in (13), we obtain

A(a)” A(z) + A()Az)? +a® 2+ az®” =0
and for a € F3; we see that for all x € Fos we get
A(a)* A(x) + A(a)A(z)* =0

which is equivalent to A(z) = 0 or A(xz) = A(a) which is impossible since A is a bijection.
Thus, this contradiction shows that the functions F' and K are CCZ-inequivalent. O
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Corollary 5 The functions from Corollary 3 are CCZ-inequivalent to the Kasami map-
pings.

Proof. It can be easily checked that the function F' from Corollary 3 satisfies all condi-
tions of Theorem 4. O

Conjecture 1 The function from Corollary 3 is CCZ-inequivalent to any power function.

5 CCZ-inequivalence of the Gold mappings with other
known APN power functions

It is an open question whether Gold, Kasami, Welch and Niho functions are pairwise CCZ-
inequivalent. Below we solve this problem for some cases. We prove that two Gold functions
are CCZ-equivalent if and only if they are EA-equivalent, and that the Gold functions are
CCZ-inequivalent to any Kasami and to the Welch functions (except in particular cases).
Note that the inverse and Dobbertin APN functions are CCZ-inequivalent to all known
APN mappings. It is obvious because of their unique nonlinearities [10, 27].

Proposition 2 (CCZ-ineq. of two Gold functions) Let F(x) = 2* 1 G(z) = 2% !
and s #r, 1 < s,7r < %, ged(s,n) = ged(r,n) = 1. Then F and G are CCZ-inequivalent
on an .

Proof. Suppose that F(z) and G(z) are CCZ-equivalent, then there exists an affine
automorphism £ = (Ly, Ly) of Fon X Fan such that Le(z, F(x)) = G(Ly(z, F(x))). Writing
Li(z,y) = L(z) + L'(y) and Ly(z,y) = L"(xz) + L"(y) gives

L'"(x)+ L"(F(z)) = G[L(z) + L'(F(x))].

We can write L(@) = b+ 3,z bnt® L&) = U + ¥z U™ L'@) = V' +

vaef/"f b and L(2) = 0" + 3, cp s blia®" b+ = c.
€ nave

G[L(x) + L'(F(x))] T
= (L(x) + L'(@¥Y) (L(z) + L' (2*+1))

— (c+ S b+ > b

meZ/nZ meZ/nZ

Is m+r T m—+r(o9s
5¢ & 4 }: b2 2 2: bfnxz (2°41)
meZ/nZ meZ/nk
Gt Y b

mkEZ/nZ
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Y ey

m,k€Z/nZ

g 72r  2mtr (95 4 1) 42k (2541

) BT,
m,k€Z/nZ

where () is a quadratic polynomial. Obviously, all terms in the expression above whose
exponents have 2-weight strictly greater than 2 must cancel.

Suppose L' # const then there exists m € Z/nZ such that o/, # 0. Considering s and
r as elements of Z/nZ we have s # +r and s,r # 0. Then 2"7™(2% 4+ 1) 4+ 2™(2° 4+ 1) has
2-weight 4 and the items with this exponent have to vanish. We get b2 1+ . V2" =0

m+r-m—r
and since b/, # 0 then b, ., b, _. # 0 and b0 % =¥, V% Since ged(r,n) = 1 then
applying this observation for m +r, m + 2r,..., instead of m we get b, # 0 and there exists
a nonzero constant A such that

b, b =\ (14)

for all t € Z/nZ.
Let us consider the sum

Z b;gb;irx2m+r(28+1)+2k(28+1).
m,k€Z/nZ
For any k, m € Z/nZ, k # m-+r, the items b,b2 22" F+D+2 4D and §f
do not coincide and cancel pairwise because of (14). In the case k = m + r the sum gives
items with the exponents of 2-weight not greater than 2.

Because of (14) we can deduce b,,, = Ab?" for all . Then, introducing u such that
A= p? 71, we deduce that pb),, = (ub,)?* for all ¢ and then that ub,,, = (ub,)? (using that
ged(r,n) = 1) and then pb), = (ub})?. This means that uL’(z) = ub’ + tr(ub'ox). Then
obviously L’ is not a permutation and since Li(x, F/(z)) is a permutation then L is not a
constant. Thus b, # 0 for some m € Z/nZ.

Since s # =4r then considering the items with the exponent 2m*7s 4 2m+" 4+ 9™ we get
bb2 + b, b2 = 0if r # —2s (for r = —2s there are more than 2 items with this
exponent because the difference between m and m+r—+ s is the same like between m+r-+s
and m + r). Since by, b, # 0 then b,,_, # 0 and b,,b,,%, = b, . b-?". Repeating these

m—+r-m

steps for by, bym_ap, ..., because of (14) we get b, # 0 for all ¢ € Z/nZ and

bgr xzk(2s+1)+2m+r'(2s+1)
-r

bib 2 =\ (15)

For the case r = —2s consider the items with the exponent 2"%" + 2"%5 + 2™ and get
b b2 + by b = 0 which again leads to (15).

The equality (15) implies, uL(x) = ub+ tr(ubyx) and p[L(z) + L'(F(x))] = pb’ + ub +
tr(ubox + ub'oF(z)). Obviously the function L(z) + L'(F(x)) cannot be a permutation.
Therefore, L' = const and then L # const. For some m € Z/nZ we have b,, # 0 and
since s # 4 it is not difficult to note that v ™ + b, 0% . = 0. Thus byyr, by # 0
and because of ged(r,n) = 1 we derive by # 0 and N = b,b, %, = bb; % for all t € Z/nZ.
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This leads to the equality pu/L(z) = u'b + tr(y@'boz) with X = @/ ~'. Then L is not a
permutation. This contradiction proves CCZ-inequivalence of F' and G. a

Theorem 5 (CCZ-ineq. of Gold and Kasami functions) Let F(z) = 2!, K(z) =
27 and ged(s,n) = ged(r,n) =1, 1 <s < 2,2<r < 2. If3r #+1 mod n then F
and K are CCZ-inequivalent on Fon.

Proof. Let G'(z) = 2", G(z) = 2% and let the functions K and F be CCZ-
equivalent on Fyn. Then, there exists an affine automorphism £ = (L1, L) of Fon XFan such
that Ly(x, K(x)) = F(Ly(z, K(z))), which implies Ly(G(z), G'(z)) = F(L1(G(x), G'(x))),
that is, writing again L(z,y) = L(x) + L'(y) and Ls(z,y) = L"(x) + L" (y):

L"(G(x)) + L"(G'(x)) + F[L(G(z)) + L'(G'(x))] = 0.
With the same notation as in the proof of Proposition 2, we have:
L"(G(z)) + L"(G'(2)) + F[L(G(z)) + L'(G'(2))]
= Q)+ [c+ Z by )

meZ/nk

meZ/nk meZ/nZ

S e
meZ/nl

= Q)+ S b @
m,k€Z/nZ

s m(or k+s(o3r
+ }: bmbf 22 (@120 (257 +1)
m,keZ/nZ

s m (93r k+s(or
+ E b;nbi 1’2 (2°74+1)+2 (2"+1)
m,k€Z/nZ
17023 2™ (237 4 1) 42k Fs (23741
S DA A
m,k€Z/nZ

where () and )" are quadratic.

Suppose that L and L’ are not constant. Then by, bj, # 0 for some m, k € Z/nZ.

We consider the items in the sum with the exponent 2™(2" + 1) 4 2¥7(23" 4 1), which
has the 2-weight at least 3 if 3r # £1 mod n, and get the equality b,,b" + b, b2,_, = 0.
Since by, bj, # 0 then b} ., by,—s # 0 and

=25 g/ /—25
bmb,,— s = by b~ .

Repeating this step for k + s, k + 2s,..., instead of k£ and for m — s, m — 2s,..., instead of
m, because of ged(s,n) =1 we get

A= bubyZ, = b B (16)
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for all m, k € Z/nZ.

Like in the proof of Proposition 2 from the equality (16) we get u[L(z) + L'(K(x))] =
pb’ + pb + tr(ubox + pb'o K (z)), where X = p2°~1. Thus Li(z, K(x)) is not a permutation,
a contradiction. Therefore, L or L' is constant and F' is then EA-equivalent to K or to the
inverse of K. We know that ' and K are not EA-equivalent because of algebraic degree
of K is r + 1 while F' is quadratic. Let consider the case L = const and L' # const. We
have b/, # 0 for some m and 2™(2%" + 1) + 2™7(23" 4 1) has 2-weight at least 3 except the
cases when s = 1 and 3r = =1 mod n. With the same arguments as above we get that
Lyi(z, K(x)) is not a permutation. O

If nis odd and s = 1, 3r = £1 mod n then the inverse of the function K may be
EA-equivalent to F' in some cases. For instance, K~' = F*fors=1,r =2, n =>5.

Theorem 6 (CCZ-ineq. of Gold and Welch mappings) Let F(x) = 2+ and G(z) =
22+ with ged(s,n) =1, 1 < s <=Lt =21 >4 Then F and G are CCZ-inequivalent
on Fon.

Sketch of proof. If F and G are CCZ-equivalent then for some affine functions L, L', L”, L"
we have

L'(x) + L"(G(x)) = F[L(x) + L'(G(x))],
where L(z) + L'(G(z)) is a permutation. With the same notation as in the proof of
Proposition 2, we have:

L'(x) + L"(G(x)) + F[L(x) + L'(G(x))

= Q@)+ e+ D bua?+ D) b2

meZ/nZ meZ/nZ

s s m—+s s m—+s (ot

x e S et 3 pEate

meZ/nZ meZ/nZ

s m k+s (ot

= Q)+ Y bpb 2T

m,k€Z/nZ

s m (ot k+s
+ 2 b;nbi 1,2 (2t43)+2
m,k€Z/nZ

YD e, (17)
m,k€Z/nZ

where Q and @' are cubic.
Since the algebraic degree of G is 3 for n > 3 then F' and G are EA-inequivalent. Therefore,
L’ # const and b, # 0 for some m.

Since t > 4 then 2™(2" + 3) 4+ 2™*5(2! 4 3) has 2-weight at least 5 when s # 1,¢. If
either s = 1 or s =t then 2™(2! 4 3) + 2™%(2" + 3) has 2-weight at least 4 and it differs
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from the exponents of the items in the first and second sums in (17). The equality (17)
implies b2 =4/, 6% _and ¥, . V. #0. Since ged(n,s) = 1 then we get b/, # 0 and

m+s’m—s m—+s? “m—s

A=0b  b- =1 b2 (18)

m4+s“m m’m—s

for any m.

For m # k + s the items b/, b 22" ' +3+27°@43) and b 527 22" G H)H2T@HI) iffer
and cancel pairwise because of (18). In the case m = k + s the sum gives items with the
exponents of 2-weight not greater than 3.

Because of (18) we get pul/(z) = pb' + tr(ubox), where A\ = p?~'. Therefore, L’ is
not a permutation and then L # const. We have b, # 0 for some m and considering the
items with the exponent 2™ + 2m%5(2! + 3) of 2-weight 4 we get b,,b2 = bl b2 __ and
bm—s # 0. This leads to the equality by,b, 2, = b, L 0n% = X for any m. Finally we get
wlL(z) + L'(G(x))] = pb’ + pub + tr(pubox + pb'oG(x)) which means that L(x) + L'(G(x)) is
not a permutation. Thus F' and G are CCZ-inequivalent.

It was checked with a computer that if 1 <t < 4 then F is EA-equivalent to G~! only

in case n =5, s = 2. O

6 Conclusion

We have introduced an infinite class of APN (and AB if n is odd) quadratic functions
which we conjecture CCZ-inequivalent to power functions, and therefore, new, up to CCZ-
equivalence. We showed that they are CCZ-inequivalent to Gold and Kasami functions.
This implies that, for n even they are CCZ-inequivalent to any known APN function, and
for n = 12,24, they are indeed CCZ-inequivalent to power functions. We leave two open
problems:

- proving that the functions introduced in the present paper are CCZ-inequivalent to power
functions for every n > 12;

- finding classes of non-quadratic APN functions which would be CCZ-inequivalent to all
known APN functions (or even, CCZ-inequivalent to power functions).
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