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1 Introduction

Public-key encryption primitives (PKEP) are used in numerous cryptographic protocols. Two frequently used
definitions of security for PKEP in the cryptographic literature are semantic and chosen ciphertext attack
security. Semantic security (SS) was introduced by Goldwasser and Micali [18] and guarantees that encrypted
messages sent over a network are confidential to passive adversaries that are limited to eavesdropping. Unfor-
tunately, in practice most adversaries are not limited to passive eavesdropping, and they can actively control
and manipulate network traffic. This is especially true on the modern Internet, where it is particularly easy
and cheap to manipulate traffic. Therefore, a strengthened security definition was needed. Naor and Yung
[29] introduced Chosen Ciphertext Attack (CCA#1) security, in which it is assumed that the adversary tem-
porarily has access to a decryption oracle in order to simulate the adversary’s ability to manipulate traffic.
In particular, the adversary has access to the oracle until a time where it wishes to attempt to decrypt a
message of interest to it. While this definition is substantially stronger than that of semantic security, it is still
not strong enough for many network purposes. Therefore, an even stronger definition of CCA security was
introduced by Rackoff and Simon [31] that gives the adversary continuous access to a deprecated decryption
oracle that is restricted only in that it will not decrypt ciphertexts of direct interest to the adversary. This
security is called CCA#2 (or adaptive chosen ciphertext attack) security, and is the security standard that
most PKEP need to meet in many of today’s cryptographic protocols. The first CCA#2 secure PKEP was
given by Dolev, Dwork, and Naor [10], followed by a large body of research on developing such protocols and
understanding the security notion (c.f. [36, 9, 25, 6, 11]).

There are many known constructions of SS PKEPs based on general cryptographic assumptions such
as trapdoor predicates[18], trapdoor functions[17, 18], and trapdoor permutations[8]. In addition, these
constructions are black-box and are relatively efficient. In contrast, all known constructions of CCA#1
[29] and CCA#2 [10, 25, 36] secure PKEPs from general cryptographic assumptions are based on only the
existence of enhanced trapdoor permutations and are both non-black-box and inefficient due to their use of
ZK or WI proofs.

In this paper we address the question of whether the weaker security requirement (semantic security) for
public-key encryption, is in fact equivalent to the stronger requirement (chosen ciphertext attack security).
That is, can any SS PKEP be used (without any further assumptions) to construct a CCA PKEP?

This is a natural question which is one of major open problems in cryptography in the last several years.
To the best of our knowledge, the first explicit published posing of this as a problem is by Bellare et al. [4],
while the most recent one is by Pass, shelat, and Vaikuntanathan [30]. In fact, the latter work addresses a
similar problem, and establishes a reduction from any SS PKEP to non-malleable SS PKEP, without any
further assumptions (and in a non-black box way). Non-malleable PKEP is a somewhat weaker security
requirement than that of CCA#1 (in particular, it is equivalent [7] to a single CCA#1 query). As the
authors of [30] discuss, their result does not generalize to a construction for general CCA security, which
remains an interesting open question.

In sum, the current state of knowledge regarding the question we study, is that there is a construction
of CCA PKEP from SS PKEP with additional assumptions , as well as a (non-black-box) construction of
(the weaker) NM PKEP from SS PKEP without any further assumptions. It is not known whether there is
an equivalence (whether through a black-box or a non-black-box construction) between SS PKEP and CCA
PKEP.

As will be explained below, we show a black-box separation between semantic and CCA#1 security for a
large interesting class of constructions. This can be interpreted as evidence toward a negative answer to our
question, or as guidance toward a positive answer (a reduction).

1.1 Black-Box Reductions and Separations

The existence of most modern cryptographic primitives implies P 6= NP , and thus is currently too difficult
to prove unconditionally. Instead, cryptographers put a great deal of effort into constructing more complex
primitives from simpler ones that are assumed to exist. In such constructions (reductions), if we assume
primitives of type P exist and wish to show that a primitive of type Q exists, then we provide a construction
C such that C(MP ) is an implementation of Q whenever MP is an implementation of P . This is proved by
showing that any supposed adversary AQ breaking C(MP ) as an implementation of Q, can be used for an
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adversary algorithm AP breaking MP as an implementation of P .
However, almost all constructions in modern cryptography are black-box (for example, the equivalence of

one-way functions, weak one-way functions, PRNG’s, PRFG’s, PRPG’s and digital signatures [16, 19, 24, 26,
34].) This means, intuitively,1 that the construction C of Q uses the implementation MP of P as a black box
(or oracle), without using the algorithmic description (actual code) of the construction. Moreover, the proof
constructs the adversary AP which uses the adversary AQ in a black-box manner (again, using it just as an
oracle, without looking at its actual code).

While it is not clear how to prove a negative result, namely that there exist no reduction of primitive Q to
primitive P , Impagliazzo and Rudich [20] initiated a methodology for proving that no black-box reductions
exist. Specifically, their methodology involved proving that no relativizing reduction exists (since black box
reductions must relativize). This is done by exhibiting an oracle relative to which an implementation of P
exists, while an implementation of Q does not.2 Using this methodology, [20] proved a black-box separation
between key agreement and one-way functions. A line of subsequent works used this methodology or new
variants to show black-box separations among various other cryptographic primitives (c.f. [35, 27, 37, 21, 14,
15]), and to show that black-box constructions suffer from inherent efficiency limitations [23, 12, 13].

Non-Black-Box Constructions. We note that while the vast majority of constructions in cryptog-
raphy are black-box, there are several results that are non-black-box (importantly, all known constructions of
CCA secure PKEP from generic assumption are non-black-box). Many of these constructions are based on
using Zero-Knowledge (ZK) or Witness Indistinguishable (WI) proofs (both interactive and non-interactive)
in the construction.3 These proofs are often used to prove some property about the circuit description of
a cryptographic primitive, and thus require the primitive to have a circuit description, and thus are not
black-box. Examples of such constructions include the development of PKEP that are secure against chosen
ciphertext attacks [29, 36], assuming (enhanced) trapdoor permutations exist4. Unfortunately, the protocols
that perform such proofs are invariably far too inefficient for practical deployment of the resulting cryp-
tographic primitive (although, they are still polynomial time, they are of a degree that is too large to be
practical), thus further justifying the quest for black-box constructions.

The Meaning of Black-Box Separations in Cryptography and Our Scenario In general,
a black-box separation can be interpreted as evidence that a reduction of Q to P is unlikely using current
techniques, or at least that it is unlikely to be efficient (as black-box reductions seem to be much more
efficient than non-black-box ones). Such results may also be viewed as guiding which approaches to take
when trying to actually prove a reduction exists. We refer the reader to the previous literature on black-
box separations, e.g. [20, 32], for a more in-depth discussion of the meaning and importance of black-box
separations in cryptography.

In the particular scenario of the black-box constructions of CCA secure PKEP from SS secure ones, we
can view a separation as pointing to several possibilities:

• the need to develop some form of appropriate ZK or WI proofs based on semantic security (and such a
direction is attempted in [30]), but such constructions are still likely to be inefficient.

1There are actually several subtleties and different types of black-box reductions of varying strengths, c.f. [32]. However, this
intuitive description suffices for our presentation purposes here.

2Even here it’s not immediately clear how to make this approach work, since the construction and its proof of security could
always ignore the presence of the oracle and independently realize the primitive Q. To address this problem, Impagliazzo and
Rudich [20] give a model in which one can prove separations modulo some major results in complexity theory. In their model they
begin by assuming that P = NP , and adding an oracle O relative to which P exists and Q does not, implying that a black-box
reduction would yield a proof that P 6= NP . Subsequent work, starting with Simon [37], used a stronger approach that embeds a
PSPACE complete portion into the oracle O before proving that relative to O P exists but Q does not. This yields an unconditional
proof that no relativizing (and thus no black-box) reductions exist. Other subsequent work (e.g. [15]) relaxed this approach to
obtain a weaker black-box separation methodology.

3Perhaps the only exception is the works of Barak [2, 3] who has shown the existence of some protocols that are non-black-box,
and that do not make use of ZK techniques.

4Both of these results actually only need the requirement that certain types of non-interactive zero-knowledge proofs exist, and
these proofs are known to exist relative to enhanced trapdoor permutations
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• the need to develop more non-black-box techniques that are more efficient and applicable to the scenario
of public-key encryption.

• In the failure of the latter two points, any construction of a CCA secure primitive derived solely from the
hardness of a SS secure PKEP will be inefficient, or need to take into account specifics of the assumption
that are not generic. For instance, any CCA cryptosystem based on SS PKEP proposed by Ajtai and
Dwork [1], that results from the assumed hardness of a lattice problem, will either be too inefficient to
be practically useful due to the need to use inefficient non-black-box techniques, or will require a unique
construction whose proof of security relies on specific properties of the lattice assumption.

1.2 Our Contributions

We prove the following:
Theorem (informal statement): There exists no black box reduction that from a given SS PKEP (g, e, d)
constructs a CCA#1 secure scheme (Gg,e,d, Eg,e,d, Dg,d)

Consequently, the only possible constructions of a CCA#1 (and thus also of CCA#2) secure PKEP from
a SS PKEP must either be non-black-box, or have its decryption algorithm use the encryption algorithm of
the underlying scheme in an essential way.

Our Model and Proof Technique. The proof follows the IR [20] methodology, showing (the stronger
condition) that there is no relativizing reduction. This is done by introducing an oracle O relative to which
there exists a SS PKEP O = (g, e,d), but no CCA secure PKEP (GO,EO,Dg,d) exists relative to O. Our
oracle O in fact includes (g, e,d) as random functions. If there were no other parts to the oracle, the proof of
semantic security would be immediate, but then O would in fact be CCA secure as well. Thus, we add more
“weakening” components to O, which make the proof of semantic security a little harder but still relatively
simple, but make O and any other candidate scheme (GO,EO,Dg,d) vulnerable to CCA#1 attacks. The
latter is the technical heart of the proof, which is quite complex. We chose to expand on the intuition and
main ideas of the proof in the body of the paper, including the full proof with all technical detail in the
appendix.

For clarity of presentation, we start by thinking of all participants as being computationally unlimited,
but restricted to making a polynomial number of polynomial sized oracle queries to the oracle O. This
already gives an interesting result, and encompasses all the main issues in the proof. Because the constructed
adversary in the proof only uses more than a polynomial amount of time (i.e. its computationally unlimited
powers) to search for and randomly choose efficiently verifiable strings, it is therefore possible to remove
the requirement of computationally unlimited parties and replace it with the ability of randomly choosing
NP witnesses. The proof can then be extended to support computationally bounded parties, by adding a
PSPACE complete component to the oracle (or assuming P = NP), achieving the standard separation model
of [20] and most subsequent work.

One may argue that if a construction of a CCA secure scheme (G,E,D) from any SS scheme (g, e,d)
exists, it seems unnatural for D to call e. After all, e is intended to be used by any party and does not require
the knowledge of any secret keys, and using it in an essential way for a decryption algorithm seems counter
intuitive.

However, we show that relative to our oracle O, there is in fact a CCA#2 secure scheme, where D uses e
(while our results show that without D using e, no scheme can achieve even CCA#1 security). The basic idea
behind this scheme (which is presented in detail in Appendix H.1) is the following. To encrypt a message bit
b with a random string r, first encrypt b using e with a public-key pk (and the randomness provided by the
string r), and then encrypt all the individual bits of r as well using the same public-key, using new random
strings derived deterministically from r (for example using r + 1, r + 2, . . . as the random strings to encrypt
the individual bits of r).

This CCA#2 secure (relative to our oracle) primitive implies that the limitation on the decryption algo-
rithm in our theorem is inherent for our oracle (and not just a gap in our proof analysis).

On the other hand, note that this scheme is artificial, and makes heavy use of the fact that e is a
random function, by using new random strings deterministically derived from r (this technique is legitimate
when the encryption function is truly random, but does not work in general). In fact, based on standard
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hardness assumptions, it is easy to show that there exist semantically secure PKEP relative to which the
above construction does not achieve CCA#2 security.

This leaves open the possibility of using the weaker form of black-box separation of [15] to separate CCA#1
security from semantic security without any restrictions. (The separation model of [15] does not prove that
no relativizing reductions exist, but rather shows that for any candidate construction of Q from P , there
exists an oracle relative to which the implementation of P remains secure, but the proposed construction fails
to implement Q.)5

We feel that closing this gap and answering whether a black box reduction where the CCA decryption
algorithm does invoke the SS encryption algorithm exists, is a very interesting and non-trivial problem for
future research. While our work does not completely answer the question of whether CCA secure PKEP can
be constructed from SS ones without any further assumptions, we do make significant progress toward that
direction.

Organization. In the next section we formally define the notion of PKEP and the definitions of semantic,
CCA#1 and CCA#2 security. This is followed by a description of the random process used to generates the
oracles O used in our separation, and a proof sketch that relative to such oracles it is both highly likely that
there is a provably semantically secure PKEP that does not achieve CCA#1 security. This is followed by
a section that formalizes the exact class of black-box constructions of PKEP to which our separation result
applies, followed by a sketch of the proof of the separation theorem. Finally, we briefly discuss why our result
transfers from the computationally unlimited adversarial model to the more tradition model that assumes
P = NP or that includes a PSPACE oracle.

2 Preliminaries and Definitions

2.1 Notation

Given a set S we use the notation x ∈R S to denote the process of choosing x uniformly at random from
S. Given a function f : N → R, we say it is negligible if for all sufficiently large n ∈ N and for all c ∈ N:
f(n) ≤ n−c.

2.2 Definitions of PKEPs

Below we give the formal definitions of PKEPs and the notions of semantic, CCA#1 and CCA#2 security.

Definition 1 (PKEP). A public-key encryption primitive is a triple of (G,E,D) of algorithms: G and E
are probabilistic while D is deterministic. Let p1 and p2 be polynomials specified by the PKEP.

• for every n, for every r ∈R {0, 1}n G(r) outputs a pair of keys (sk , pk).

• for every m ∈ {0, 1}p1(n), each string r′ ∈ {0, 1}p2(n) of coin tosses of E and pair (sk , pk) output by G
on some input r ∈ {0, 1}n, it holds that D(sk , E(pk ,m, r′)) = b.

Next, we give the definitions of semantic, CCA#1 and CCA#2 security. The definitions are presented
concurrently.

Definition 2. Let EP = (G,E,D) be a PKEP. Let A = (A1, A2) be a probabilistic adversary that is described
in two parts, each of which has access to an oracle.

5In fact, using this weaker separation model (that was introduced in [15]), we can show that there are no black-box reductions of
CCA#1 to semantic security for another non-trivial class of constructions, which includes the artificial example mentioned above.
Specifically, this is the class where D does invoke e in a certain way, where for every successful decryption query d(sk , c) ∈ {0, 1}
there is a corresponding invocation of e(g(sk), ∗, ∗) = c (or very roughly, when D invokes e“in every possible opportunity”). The
difficult case for which we do not know how to prove a separation, is the intermediate case where D (roughly) must invoke e in an
essential way sometimes, but not other times.
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The PKEP EP is atk-secure, where atk ∈ {SS,CCA#1,CCA#2}, if there exists a negligible function µ
such that for every adversary A = (A1, A2) and for all sufficiently large n ∈ N:

Pr
s∈R{0,1}

n,(pk ,sk)←G(s)

(x0,x1,σ)←A
O1
1 (pk)

b∈R{0,1};r∈R{0,1}
p5(n)c←E(pk ,xb,r)

[AO2
2 (σ, c) = b] ≤

1

2
+ µ(n),

where σ represents state information communicated between the parts of the adversary, c represents a chal-
lenge ciphertext and :

• if atk=SS then O1 and O2 are the null oracle: the oracles give the empty response, ⊥, to all queries;

• if atk=CCA#1 then O1(·) = D(sk , ·), and O2 is the null oracle;

• if atk=CCA#2 then O1(·) = D(sk , ·), and O2(·) = D(sk , ·) but modified on the encryption challenge so
that O2(c) = ⊥.

In the case of SS and CCA#1 security it is known that there are black-box reductions in both directions
between PKEP that encrypt 1-bit messages and PKEP that encrypt n-bit messages (for the direction going
from encrypting 1 to n bits, it is easy to see that the concatenation of independent encryptions works as a
construction). We make use of this fact in our result, and focus on primitives that encrypt the message space
of only one bit. Clearly the above definitions simplify slightly in this case (i.e. x0 = 0 and x1 = 1).

3 The Oracle

We define an experiment that produces an oracle that effectively implements a PKEP that is semantically
secure but not CCA#1 secure. We think of the oracle as consisting of 5 sub-oracles (g, e,d,w,u), but this can
easily be unified into one oracle by appropriate coding. This security of the oracle if achieved by effectively
defining g, e to be appropriate random length increasing functions, and defining d appropriately, so that it
can appropriately decrypt these function. This easily gives a secure PKEP, unfortunately it is too secure
(CCA#2). Therefore, in order to weaken its security a fourth component of the oracle w is added which
given a public-key pk for (g, e, d) will output an encrypted version of the secret-key. This is of no use to the
adversary in the SS definition of security, but makes it trivial for a CCA adversary to break the primitive’s
security. Finally, a fifth sub-oracle u is added that gives the adversary the ability to determine the legitimacy
of public-keys and ciphertexts (i.e., those that could legitimately be output by g and e); this sub-oracle is
not necessary for the result, but substantially simplifies an already technical proof.

Definition 3 (Oracle Distribution). Let O = (g, e,d,w,u)← Υ denote an oracle that is chosen randomly
according to the distribution described below. For each n ∈ N let:

g: {0, 1}n → {0, 1}3n be a random one-to-one function. (g as generates public-keys given secret-keys.)

e: {0, 1}3n×{0, 1} × {0, 1}n → {0, 1}3n where for every pk , the function e(pk , ·, ·) is a uniformly at random
selected one-to-one function. (e takes a public-key, a message bit and a random string, and outputs a
ciphertext.)

d: {0, 1}n × {0, 1}3n → {0, 1,⊥} where for every sk , c and b set d(sk , c) = b if there exists an r such that
e(g(sk ), b, r) = c; and otherwise set d(sk , c) = ⊥. (d takes a secret-key and ciphertext and outputs the
corresponding decryption.)

w: {0, 1}3n × {0, 1}n → {0, 1}3n×n where for each pk and j set w(pk , j) = ⊥ if g−1(pk ) is undefined;

otherwise, if g−1(pk ) = sk
defn
= (sk1, ..., skn), set w(pk , j) = e(pk , sk1, rpk ,1,j), . . . , e(pk , skn, rpk ,n,j),

where for 1 ≤ k ≤ n let rpk ,k,j ∈R {0, 1}n. (w takes a public-key and an index as input, and outputs a
bit-by-bit encryption of the public-key’s corresponding secret-key.)

u: {0, 1}3n × {0, 1}3n → {⊤,⊥} where for each pk and c set u(pk , c) = ⊤ if there exists an sk , b and r such
that g(sk) = pk and e(pk , b, r) = c; otherwise, set u(pk , c) = ⊥.
(u takes a public-key and a string, and determines if the string corresponds to an encryption relative to
the public-key.)
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Notation: In order to ease discussions of queries to an oracleO, we briefly introduce some notation. Given
an oracle O we often say that O = (O, R) where O = (g, e,d) denotes the sub-oracles corresponding to the
encryption primitive, and R = (u,w) corresponds to the security weakening sub-oracle w and the helper
oracle u. We denote by (o, q) the query q to the sub-oracle o ∈ {g, e,d,w,u} in O. For example, we denote
by (g, sk) the query g(sk). Similarly, we denote by the pair (< o, q >, r) the response r to the query q made
to the sub-oracle o. We call such a pair a query/response, and say a query/response (< o, q >, r) is consistent
with o if o(q) = r. In cases where a query q = (v1, .., vi) is represented by several semantically different strings
v1, .., vi we denote by (< o, v1, .., vj−1, ∗, vj+1, ..vi >, r) the fact that there exists a vj such that the oracle
query o(v1, v2, ..., vi) was made and the response was r. For example (< e, (pk , ∗, r) >, c) represents the
notion that there exists a bit b ∈ {0, 1} such that (< e, (pk , b, r) >, c) represents a query/response consistent
with the sub-oracle e.

The following theorem states that this oracle provides semantic security for the PKEP (g, e,d).

Theorem 4. For every oracle adversary A limited to a polynomial number of oracle queries, there exists a
negligible function µ such that for all sufficiently large n:

Pr
O←Υ

[
Pr[AO(pk , c) = b] ≤ 1/2 + µ(n)

]
≥ 1− 1/2n/2

where the interior probability is over the choice of sk ∈R {0, 1}n, b ∈R {0, 1}, r ∈R {0, 1}n and any coin flips
performed by A. Further, pk = g(sk) and c = e(pk , b, r) and µ is a negligible function.

Proof Sketch:If O consisted of only the sub-oracles g, e and d, then security would follow directly from
their probabilistic construction (in a way which is by now standard, c.f. [20, 14]). To ensure that w and u
do not destroy this security, it is shown that the adversary can effectively simulate the responses of these
oracles. An adversary can simulate the response to a query u(pk , c) by outputting b if there has been a
previous query/response (< e, pk , b, ∗ >, c), and otherwise outputting ⊥. When b is output the simulation
is clearly correct, and when outputting ⊥ the simulation is correct with high probability, as the ability of
the adversary to find a value c such that e(pk , ∗, ∗)−1(c) 6= ∅ is negligible (in n) due to the random selection
of e (again, following a standard argument). Similarly, w(pk , i) can be simulated if there has previously
been a query/response of the form (< g, sk >, pk) by outputting a random encryption of sk , and otherwise
outputting ⊥.

Next, we briefly sketch why (g, e,d) is not secure against CCA#1.

Theorem 5. There exists an adversary A = (A1, A2) limited to a polynomial number of oracle queries such
that for all sufficiently large n:

Pr
O=(O,R)←Υ

[
Pr[AO2 (σ, c) = b] = 1

]
= 1,

where the interior probability is over the following experiment: sk ∈R {0, 1}n; pk ← g(sk); (0, 1, σ) ←

A
d(sk ,·),O
1 (pk ); b ∈R {0, 1}; r ∈R {0, 1}n; c ← e(pk , b, r). Therefore, the PKEP defined by (g, e,d) in the

oracle is not CCA#1 secure

Proof Sketch:The adversary A1 takes the input pk , queries w(pk , 0) and decrypts the response using the
decryption oracle to retrieve sk = g−1(pk ). sk is then passed to A2, which uses it to evaluate and output
d(sk , c).

4 The Separation

4.1 A Large Class of Constructions

In order to state a proper theorem that provably restricts the class of black-box constructions capable of
being CCA#1 secure, this class needs to be formally defined. Let O = (g, e,d) be a semantically secure
PKEP. We will consider constructions (GO,EO,DO) of PKEPs that are purportedly CCA#1 secure. We
require that there exist constants ρ0, ρ1, ρ2 and ρ3 such that for all sufficiently large n ∈ N we have:

• GO : {0, 1}n → {0, 1}n
ρ0
× {0, 1}n

ρ1
. (GO(S) = (SK ,PK ))
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• EO : {0, 1}n
ρ1
× {0, 1} × {0, 1}n

ρ2
→ {0, 1}n

ρ3
(EO(PK ,M,R) = C)

• DO : {0, 1}n
ρ0
× {0, 1}n

ρ3
→ {0, 1} ∪ {⊥}. (DO(SK , C) = M)

In the above definition we consider n the security parameter for the PKEP. We make several assumptions
without loss of generality: each of the algorithms on inputs corresponding to security parameter n make
exactly nq queries to O of size at most ns, that no duplicate queries are made that G never queries d (it can
predict the responses itself), and that the triple satisfies the PKEP correctness property so long as O does
(i.e., all ciphertexts decrypt properly).

The important assumption is that we assume D does not query e. This assumption does result in loss of
generality and is what is responsible for the restriction in our separation of CCA#1 and Semantic Security.
This assumption is required in order for latter hybridization experiments to go through. Further, using the
oracle given in this paper, it is possible to construct a CCA#2 secure PKEP if we ignore this assumption,
therefore in some sense it is necessary. We point out that this CCA#2 secure construction does not permit
a proof of security when replaced with a computationally secure PKEP (as opposed to the PKEP given by
the random selected oracle). This construction is was sketched in Section 1.2 and is discussed in full detail
in the Appendix H.1.

4.2 Separation Theorem

From this point on, fix an arbitrary PKEP construction (G,E,D) that satisfies all of the assumptions of
Section 4.1.

Theorem 6. There exists a CCA#1 adversary A = (A1, A2) for which it’s the case that for all sufficiently
large n:

Pr
O=(O,R)←Υ

S∈R{0,1},M∈R{0,1},R∈R{0,1}
nρ2(n)

(PK ,SK )←GO(S),C←EO(PK ,M,R)

[
A

DO(SK ,·),O
1 (PK )→ σ;AO2 (σ,C) = M

]
≥ 1− 1/n.

A simple averaging argument then shows that for almost every selection of O, the adversary breaks the
CCA#1 security of the PKEP. Combining this with a simple counting argument shows that there exists a
specific oracle relative to which O = (g, e,d) is semantically secure, but where (GO,EO,DO) is not.

The main idea behind our oracle separation is as follows. If a PKEP is to be CCA#1 insecure, but
semantically secure, then queries that the adversary makes to the decryption oracle must leak information
about a secret-key SK corresponding to the public-key PK given to the adversary. Such queries cannot be
used to learn about the challenge ciphertext, because in this (CCA#1) security definition the adversary only
has access to the decryption oracle before it receives the ciphertext. Failure to make use of the decryption
oracle implies the adversary will make no progress, as it is the only distinction between the definitions of
security. Therefore, the goal of our adversary will be to reconstruct a secret-key SK ′, corresponding to its
public-key. In our black-box model, where parties are computationally unlimited but limited in the number
of oracle queries they can make, all security of the constructed primitive (G,E,D) must stem from the oracle
PKEP (g, e,d). Therefore, it seems intuitive that the only secret and usable information that an execution
of GO(S) → (PK ,SK ) embeds in SK are the strings sk for which the corresponding strings pk = g(sk)
have been embedded in PK (It is known by the work of Impagliazzo and Rudich [20] that the construction
needs to use the ’trapdoorness’ of the oracle if it hopes to be secure, as a random-oracle —such as that
provided simply by using only the sub-oracles g and e— is insufficient to achieve even semantic security).
Therefore, our adversary’s goal will be to retrieve such sk strings by using the decryption oracle. Clearly,
the adversary will additionally have to make use of the sub-oracle w, for without the presence of this oracle,
the scheme (g, e,d) is CCA#1 secure. Once such embedded sk are retrieved, the adversary must learn how
to use them to actually decrypt the challenge ciphertext. In order to do this, the adversary reassembles
them into a usable, alternate secret-key SK ′ that functions with the algorithm D. Unfortunately, most of
these steps are non-trivial, and the adversary is not able to generate a key SK ′ that can decrypt every
ciphertext. Instead, we focus on the ability of finding an SK ′ that can be used to decrypt the average
ciphertext generated by an execution of EO(PK ,M,R) for randomly chosen M and R, as this is exactly
the distribution from which the adversary’s challenge ciphertext will come. Below we give a very high-level
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description of the steps an adversary must perform to decrypt a challenge ciphertext for the given PKEP.
The large probabilistic experiment that the adversary will perform is broken into three parts to help with
presentation. The experiment is then described for a specific PKEP construction example that demonstrates
several different cases in the proof. The Appendix contains the full technical description of the experiment
discussed here, and its proof of correctness.

A Caveat Before the explanation of the experiment is given, we point out that this high-level experiment
assumes that certain highly unlikely probabilistic events never occur. Examples of such events are the
adversary making queries of the form d(sk , c) 6= ⊥ when there has never previously been a query of the
form g(sk ) = pk or a query e(pk , ∗, ∗) = c; or that estimations of specific values retrieved through sampling
deviate substantially from the actual value they estimate. In the Appendix, these bad events are specified,
and their possibility of occurring is taken into account in the analysis. To simplify presentation here, it is
simply assumed they do not occur.

4.2.1 The Environment & the First Part of the Experiment: Learning about PK

Define the environment that the adversary is operating in to consist of the oracle O = (O, R) that was chosen
by Υ in the probabilistic statement of the theorem, as well as the seed S selected to generate the public- and
secret-key pair (PK ,SK ) = GO(S), where PK is given to the adversary, and access to the decryption oracle
DO(SK , ·) is initially given to the adversary. These are fixed for the remainder of the description of all three
parts of the adversary’s experiment.

The first part of the experiment learns some basic facts about the semantically secure PKEP O, and it
learns which pk ∈ g({0, 1}∗) are ’embedded’ in the public-key PK . The determination of these pk is done
by sampling a large number of executions of EO(PK ,M,R) for randomly chosen M and R and looking for
queries of the form (e, pk , ∗, ∗). If such queries are made, then it is reasonable to assume that pk might be
embedded into PK . Note there are two issues that immediately arise here: firstly, there might be values of
pk retrieved that have been arrived at during the execution of E by the response to some query g(sk ) (rather
than being embedded in PK). However, such values can easily by filtered out by monitoring queries to g. The
other issue is that there might very well be pk embedded in PK that are never retrieved by this sampling
process, but we can safely ignore them, as the fact that they do not show up in this sampling suggests that
they are not used during most encryptions of EO(PK ,M,R) for randomly chosen M and R. Let KS be the
set of public-keys pk retrieved in the first part of the experiment.

The final thing done in this part of the experiment is that a set E of specific encryptions output by e
during the executions E is created. This is done because some specific encryption c output by e may be
consistently embedded into encryptions C produced by E (i.e, this information is encoded into PK ). Later,
the decryption algorithm D(SK , ·) may check for the presence of the embedding of c in C, and refuse to
decrypt C if c is missing. Knowledge of such c ∈ E will be necessary in the second and third parts of the
experiment.

To summarize, at the end of the first stage the adversary has a list KS of public keys pk and a list E
of ciphertexts c (with respect to the system O = (g, e, d)), that were encountered during a large number of
random executions of the encryption protocol EO(PK , ∗, ∗). Intuitively, KS corresponds to the public keys
pk embedded into PK .

4.2.2 The Second Part of the Experiment: retrieving sk embedded in SK

In the second part of the experiment the adversary attempts to retrieve a subset of g−1(KS ) to be used to
later construct the alternate secret-key SK ′. Again, the intuition is that the values in g−1(KS) that are
embedded in SK must be responsible for the purported security of the primitive (G,E,D).

In order to retrieve the secret keys in g−1(KS ) we use the following idea (presented in a over simplified
form). Imagine that during the execution of a random encryption of the message M made by EO(PK ,M,R)
there is a query made to e(pk, b, r) in order to encrypt a bit b for a pk ∈ KS , but which has the property that
when one replaces the query’s response with a random encryption e(pk , 1− b, ∗) of the bit 1− b, the resulting
ciphertext C′ output by E will decrypt to something other than M (we say that it decrypts improperly
since M is not output); but when one replace the query’s response with a random encryption e(pk , b, ∗)
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the resulting ciphertext C′′ decrypts to M (respectively, we say it decrypts properly). Call such a query
e(pk , b, r) decisive with respect to pk . If we can find such decisive queries, then the adversary can use the
decryption oracle in conjunction with the sub-oracle w of O to retrieve sk = g−1(pk ). This is done by
querying w(pk , 0) = (e1, ..., en), where (e1, ..., en) represent the bit-wise encryption of sk . The adversary
can now re-execute E(PK ,M,R) n times, where in the ith iteration it replaces the response to the query
e(pk , b, r) with ei. In the ith case call the output of E Ci. If Ci decrypts to M (as discovered with the
adversary’s decryption oracle), then the adversary knows that the ith bit of sk is b and otherwise it is 1− b.
Therefore, it can retrieve sk = g−1(pk ).

The question is how does the adversary find such decisive queries. There are actually two issues here,
how does the adversary know which pk have decisive queries, and assuming it knows that a pk has decisive
queries, which query e(pk, ∗, ∗) made during a random encryption EO(PK ,M,R) is decisive. Assume for the
moment that we know that with high probability over the choice of M and R that there is (on average) a
decisive query with respect to pk made during an execution of EO(PK ,M,R). The adversary can perform
nq (the largest number of queries made by E) hybridization experiments, where in the ith experiment a large
number of encryptions E(PK ,M ′, R′) are performed (for randomly chosen M ′ and R′) but in each of these
the first i responses to queries of the form e(pk , b, ∗) are replaced with random semantically secure encryptions
of random bits e(pk , b′, r′) (b′ and r′ randomly chosen), and the responses to the remainder of the queries
e(pk , ∗, ∗) are left unaltered. Since we have assumed that such a decisive query must exist, then there will
be an i < nq such that there is a significant increase in the fraction of improper decryptions in the ith and
the (i+ 1)th experiments. In this case, we can think of the ith query of the form e(pk , ∗, ∗) as being decisive
in an execution of EO(PK ,M,R). Of course this is only true on average, so we cannot deduce the value of
any bit of g−1(pk ) with a single call to the decryption oracle using the decisive encryption. However, for
each bit of sk , we can perform a sampling experiment to retrieve it. Without loss of generality, assume we’re
retrieving the first bit of sk , sk1. We perform random encryptions EO(PK ,M,R) replacing the first i − 1
queries e(pk , ∗, ∗) with random encryptions, the ith query with an encryption of sk1 (where the encryption is
provided by the sub-oracle w) and the remaining queries are left unaltered. The ciphertexts output by these
modified executions of E can then be sent through the decryption oracle, and based on how frequently the
ciphertexts decrypt properly, we can determine with high probability the value of the bit of sk . This process
is then iterated to retrieve the remaining bits of sk .

The above explanation assumes that the adversary already knows that a particular pk ∈ KS will have
(on average) a decisive query during a random execution of EO(PK ,M,R). We consider two sets of keys:
a bad key set BKS and a good key set GKS . BKS contains pk that are embedded in PK , but for which
g−1(pk ) is unknown. Initially, this is set to be the set KS . GKS contains those pk that were initially in
BKS , but for which sk = g−1(pk ) has been previously retrieved by the adversary (using the above method
by determining that decisive queries were made with respect to pk ). Initially, GKS = ∅. Given BKS we
perform the following hybridization experiments over keys in BKS to find a decisive key pk , and then using
the above methodology retrieve sk = g−1(pk ) we can then remove pk from BKS and insert it in GKS . The
hybridization experiment over BKS is then repeated until enough secret-keys corresponding to decisive pk
embedded into PK have been retrieved.

Suppose BKS = {pk1, ..., pk ℓ}, then l hybridization experiments are performed where in the ith experiment
we sample the percentage of times a modified execution of EO(PK ,M,R) produces a ciphertext that decrypts
properly, when all queries of the form e(pkk, b, r) for (k ≤ i) are replaced with queries of random encryptions
e(pkk, b

′, r′) for randomly chosen b′ and r′. Clearly in the zeroth experiment, by the correctness property of
the PKEP, all encryptions will properly decrypt, and we expect that as we go through the experiments there
will be some experiment i, where the percentage of encryptions that decrypt properly drops substantially.
This is because we expect that some bits that E is using to encode M are encoded in encryption e(pk , ∗, ∗)
for pk ∈ BKS . If there is no such substantial drop in the percentage of proper decryptions by the final
hybridization experiment, then this intuitively corresponds to the case where all the sk that are embedded
in SK have been retrieved that are sufficient to construct an alternate decryption key SK ′. Note that this
does not mean that all of the embedded sk have been retrieved, only that those that have will suffice in to
construct an SK ′.

Finally, we note that the hybridization experiments described above must take into account the lists
obtained in the first stage. In that stage the adversary constructed a set of semantically secure encryptions E
that had the property that they might be embedded into encryptions E(PK ,M ′, R′) (for random M ′ and R′),
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and the decryption algorithm D(SK , ·) checked for the presence of these embeddings. Because of this, when
performing the hybridization experiments that were previously described, it is essential that the response to
a query e(pk, b, r) is replace only if e(pk , b, r) 6∈ E .

To summarize, at the end of the second stage the adversary has a list GKS of public keys (which is a
subset of the list KS from the first stage), together with a corresponding sk = g−1(pk ) for each pk in GKS .
Intuitively, these g−1(GKS ) are the ’essential’ secret keys sk (with respect to the system O = (g, e, d)) which
are embedded into the secret key corresponding to PK and are used for proper decryption (in the system
(GO,EO,DO)).

4.2.3 The Third Part of the Experiment: Constructing SK ′

Next, we specify how to use the secret-keys in g−1(GKS ) in order to construct a secret-key SK ′. Given
a specific example of a PKEP, this can often be a trivial task, but we require a uniform procedure that
is guaranteed to work for all possible constructions that are considered by the statement of the theorem.
Further, there is no guarantee that GKS = KS , so there may very well be a secret-key sk embedded into
SK , for which g(sk) 6∈ GKS . From the second part of the experiment we know that g−1(GKS ) contains
enough secret-keys embedded into SK to decrypt properly, but not necessarily those that are necessary to
reconstruct SK . For an example of the difficulty of constructing a uniform protocol for constructing SK ′,
consider two PKEP that completely ignore the oracle O, and therefore fall into the theorem’s specification
of acceptable constructions: an RSA based and a Quadratic Residuosity based PKEP. In both cases there
would be no sk embedded in the secret-keys of either PKEP and so this should in theory be an easy case, but
based on the public-keys of each respective PKEP the adversary must generate corresponding secret-keys.
To solve this problem, in order to find corresponding secret-keys a massive search is used.

We make use of the unlimited computational power of the adversary and have it enumerate all possible
pairs of oracles O∗ generated by Υ and seeds S∗ that are consistent with our knowledge of O and SK and
create a set of Valid Environments. Note that this step does not actually require the adversary to query the
oracle O, for it is simply enumerating all possible environments and checking to see which are consistent. An
oracle O∗ and seed S∗ are consistent if GO∗(S∗) = (PK ,SK ∗) for some SK ∗, this execution of G queries
g∗(sk ′) = pk for each pk ∈ KS and sk ′ = g−1(pk) for each pk ∈ GKS . Further, O∗ is consistent with any
queries and responses that have been made to O by the adversary, and that DO

∗

(SK ′, ·) is consistent with
any queries that have been made to the decryption oracle DO(SK , ·).

Because of the random process Υ by whichO was selected and the random selection of S, each pair (O∗, S∗)
in the set of Valid Environment is equally likely to be the environment (O, S) that the adversary is actually
in. Therefore, the adversary uniformly at random selects one such pair, and lets SK ∗ be the reconstructed
secret-key where GO

∗

(S∗) = (PK ,SK ∗). At this point SK ∗ contains the secret-keys in g−1(GKS ), but while
O and O′ agree on all of the queries that have previously been made by the adversary, they probably agree
on little else. Therefore, we consolidate the oracles O∗ and O into a new oracle Ô. This is done so that O
and Ô agree on nearly all queries (and in particular any queries that are likely to be made during calls to

C = EO(PK ,M,R) and DO(SK , C)), but relative to which it is still the case that G
bO(S∗) = (SK ′,PK ).

This is achieved by taking O and modifying so that it is consistent with any queries that would have been
made during the execution of GO∗

(S∗) = (SK ′,PK ) and DO∗

(SK ′, C) for every decryption C made by the
adversary so far to the decryption oracle DO(SK , ·).

Since O and Ô agree on nearly all queries, with high probability EO(PK ,M,R) = E
bO(PK ,M,R) = C

and therefore M = D
bO(SK ′, C) = DO(SK , C). Therefore, if the adversary could execute D

bO(SK ′, ·) we’d
be done, and the adversary could break the CCA#1 security of the PKEP with high probability, by simply
decrypting the challenge ciphertext. Unfortunately, the adversary cannot construct the oracle Ô with a
polynomial number of queries to O. It will instead simulate access to Ô using O and µ. The largest problem

in simulating Ô during an execution of D
bO(SK ′, C) is in simulating queries d̂(sk , c) for ĝ(sk) = pk ∈ BKS ,

because e(pk , b, r) = ê(pk , b, r) = c for most b and r, but most likely sk 6= g−1(pk ), and therefore d̂(sk , c) = b
but d(sk , c) = ⊥. However, it is exactly such queries whose responses were found not to be necessary for

the decryption algorithm, because pk ∈ BKS . Therefore, on such queries d̂(sk , c) the adversary simply flips

a coin and outputs the result as the response to the query. Using this simulation, D
bO(SK , C) is likely to

decrypt properly for an encryption EO(PK ,M,R) for randomly chosen M and R, and thus the adversary
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can decrypt its challenge ciphertext.

4.3 An Example

We consider an example of a simple (and artificial) PKEP construction to help ground and clarify the different
parts of the experiment. Fix n ∈ N. Define:

• GO(S): let S = (S0, ..., ..., S8), where each Si ∈ {0, 1}n. Query g(Si) = pk i for each i, 0 ≤ i ≤ 6.
Compute k1 = e(pk6, 0, S8), and outputs PK = (pk0, .., pk5, pk6, S8) and SK = (sk0 = S0, ..., sk5 =
S5, sk6 = S6, k1).

• EO(PK ,M,R): let PK be as noted, M ∈ {0, 1} and R = (R0, ..., R6) where each Ri ∈ {0, 1}n.
Compute ci = e(pk i,M,Ri) for each 1 ≤ i ≤ 5. Compute k1 = e(pk6, 0, S8). If R6 is the bit-string of
all zeros, then query e(pk0,M,R0) = c0 and output C = (0, k1, 0

3n, 03n, 03n, 03n, c0); otherwise, output
C = (1, k1, c1, c2, . . . , c5).

• DO(SK , C): Let C = (b, k′1, c1, c2, . . . , c5) where b ∈ {0, 1}, k′1 ∈ {0, 1}
n and each ci ∈ {0, 1}

n. Let SK
be as noted. If k′1 6= k1 output ⊥. Otherwise, if d(sk6, k

′
1) 6= 0 output ⊥. Otherwise, If b = 0, then

output d(sk0, c0). Otherwise, let Mi = d(sk i, ci) for each i ≤ 5, and output Majority(M1, ...,M5),

Now consider a (PK,SK) generated by GO(S) as described above, and a CCA adversary attempting break
the security of the scheme (G,E,D) as prescribed by our experiments.

In the first part of our experiment the adversary will perform a large number of encryptions EO(PK,M,R)
for randomly chosen M and R, and will observe queries of the form e(pk i, ∗, ∗) made during such executions
for 1 ≤ i ≤ 6, but it is unlikely that queries e(pk0, ∗, ∗) are observed. Thus it is unlikely the adversary will
need pk0 to decrypt the challenge ciphertext and it can be ignored. The adversary also will observe the query
e(pk6, 0, S8) with response k1, and note that it will have to ensure the key it later constructs is consistent
with this query/response.

In the second part of the experiment the adversary will attempt to determine sk i for 1 ≤ i ≤ 6. This will
be done by encrypting random messages by executing EO(PK ,M,R), but replacing responses of queries of
the form e(pk i, b, r) with responses to e(pk i, b

′, r′) where b′ and r′ are chosen randomly in a hybridization
experiment. In this case the hybridization is over the pk i. In such an experiment, the resulting ciphertexts
C′ will either decrypt to the appropriate message M that was originally encrypted or it will not (note the
adversary uses the decryption oracle to check this).

In our toy example, randomizing only the responses to all queries epki
, i ∈ {1, 2}, will result in proper

decryptions, as the Majority function in D acts as a form of error-correcting code. However, when responses
to all queries of the form epki

, i ∈ {1, 2, 3}, are randomized, the result is occasional improper decryptions.
The occasional improper decryption allows the adversary to determine sk3. This is because the oracle w will
provide a number of random encryptions of sk3 that can injected into modified executions of EO(PK ,M,R)
as in the hybrid experiment. By determining if the ciphertexts produced by these executions of E decrypt
properly the bits of sk3 can be retrieved. By the end of the second part of the experiment the adversary
will have retrieved sk i for 3 ≤ i ≤ 6. Note that sk i, 0 ≤ i ≤ 2 will not be retrieved because of the error-
correcting properties of the Majority function in D. Still, this is sufficient to decrypt on average and thus all
the adversary will ask.

In the third part of the experiment the adversary must reconstruct the secret-key. Since it does not know
sk0, ..., sk2 it cannot reconstruct SK , but it can construct an SK ′ that is satisfactory to decrypt the challenge
ciphertext. From observation it is clear that a secret-key of the form SK ′ = (sk ′0, sk

′
1, sk

′
2, sk3, ..., sk6, k1)

will decrypt the challenge ciphertext with high probability, only possibly failing in the unlikely event that
the first bit of the challenge ciphertext is 0. The issue is automating the above construction. In order to do
so the adversary essentially searches through all oracle/seed pairs (Ô, Ŝ) in which the oracles are consistent
with everything the adversary knows about O (i.e. g(sk i) = pk i for 3 ≤ i ≤ 6 and e(pk6, 0, S8) = k1) and

that G
bO(Ŝ) = (ŜK,PK ). Such a ŜK is then used by the adversary to decrypt its challenge ciphertext.

4.4 The Complexity Theoretic Statements

A quick review of the experiment the adversary performs shows that the only situation in which the adversary
uses more than a polynomial amount of computation is when it must select uniformly at random an oracle
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and seed pair (O′, S′) from the set of Valid Environments. It selects such oracles and seeds based on them
satisfying a polynomial number of local consistency constraints that are efficiently verifiable. Further, once
this is done almost all of the oracle O′ is thrown out when the adversary consolidates O with O′. Therefore,
the process of randomly selecting an oracle and seed could alternately be thought of as selecting an oracle
’stub’ with corresponding seeds, where the oracle stub only specifies the oracle’s values on those queries that
are necessary to satisfy the constraints mentioned. Once such a stub had been selected, the oracle can be
randomly extended to a full oracle if needed without changing the distribution. However, choosing such stubs
can be thought of as uniformly at random selecting an NP witness. Bellare, Goldreich and Petrank [5] show
that if P = NP then one can efficiently and uniformly at random select NP-Witnesses. Therefore, we can
consider this result in the more traditional model of Impagliazzo and Rudich[20], and state the theorem in the
traditional computational model, based on the assumption that P = NP . Alternatively, following the lead
of Simon [37], we can further embed a PSPACE oracle into our final oracle O. Since PPSPACE = NPPSPACE

we get a non-relativizing result in the standard computational model.
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A Appendix

A Note to the Reader This appendix really just constitutes the last chapter of the PhD dissertation of
the third author. It is provided, as it contains the full proofs of all of the theorems in the paper. Additionally,
it includes more background and uses the example of Section 4.3 as a running example demonstrating how
the adversary would break this particular proposed construction that concurrently exemplifies many of the
problems encountered in the proof. We point this out, so that the numerous reference to the ’current chapter’
do not confuse the reader, nor do the one or two references to previous chapters, which are unimportant in
the current context. Nonetheless, if the reader would prefer the entire copy of the dissertation itis available
electronically at http://www.informatics.indiana.edu/samyers/phdDis.pdf.

Beginning of the Chapter In this chapter we will consider different types of public-key encryption
primitives (PKEP). These primitives permit two parties that have never met to exchange secret messages.
The primitives consist of three algorithms, denoted (G,E,D). A user Alice will use the algorithm G to
randomly generate a secret-/public-key pair (sk , pk ). Alice will publish pk so that everyone is aware that
her public-key is pk . Any other user, say Bob, can use the probabilistic encryption algorithm E along with
pk to send an encryption c of a secret message m to Alice. Alice can then use the secret-key along with the
decryption algorithm to recover the secret message m from its encryption c.

In the cryptographic community there are several notions of security for PKEPs. The three most common
are semantic, chosen-ciphertext attack #1 (CCA#1), and chosen-ciphertext attack #2 (CCA #2) security.
We briefly describe these three notions6:

Semantic security guarantees that an adversary that is permitted to view random encryptions of messages
of its choice will not learn anything when presented with a random encryption of a message randomly
selected from a list of messages provided by the adversary.

CCA#1 security strengthens the adversary by permitting it to temporarily request and receive the de-
cryptions of as many ciphertexts as it chooses: in essence the adversary has access to an oracle that
decrypts ciphertexts. The ability of the adversary to request decryptions is then revoked. A PKEP is
considered CCA#1 secure if, after having had temporary access to a decryption oracle, an adversary
is unable to learn anything when presented with a random encryption of a message randomly selected
from a list of messages provided by the adversary.

CCA#2 security further strengthens the CCA#1 adversary by allowing it almost complete access to the
decryption oracle. Specifically, a PKEP is considered CCA#2 secure if, after having had access to a

6The formal definitions will be provided later in the chapter
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decryption oracle, an adversary is unable to learn anything when presented with a random encryption, c,
of a message randomly selected from a list of messages provided by the adversary. However, in this case
the adversary is permitted to continue accessing the decryption oracle, so long as it does not attempt
to decrypt the challenge encryption c.

There are many known constructions of semantically secure PKEPs based on general cryptographic as-
sumptions such as trapdoor predicates[18], trapdoor functions[17, 18], and trapdoor permutations[8]. In
addition, these constructions are black-box and are relatively efficient. In contrast, all known constructions
of CCA#1 [29] and CCA#2 [10, 25, 36] secure PKEPs from general cryptographic assumptions are based on
only the existence of trapdoor permutations and are both non-black-box and inefficient due to their use of
ZK or WI proofs.

The lack of efficient, black-box constructions of CCA#1 and CCA#2 secure PKEPs is frustrating, as most
cryptographic protocols that make use of PKEPs require them to have security properties that are strictly
stronger than those given by CCA#1 security, although often security weaker than CCA#2 security suffices.
Therefore, limitations on the efficiency of the constructions of such PKEPs place limitations on the efficiency
of many cryptographic protocols.

B The Main Result

The question that we consider in this chapter is whether or not there are black-box constructions of CCA#1
PKEPs from semantically secure PKEP. This question was first posed by Bellare et al. [4]. While we are
unable to completely answer the question, we are able to make significant progress and bridge the gap in
understanding the requirements for constructing a CCA#1 PKEP from a semantically secure PKEP.

We consider a model where all parties are computationally-unlimited Turing machines with oracle access.
Further, these machines are restricted so that they may make at most a polynomial number of polynomial
sized oracle queries (where the polynomial is with respect to the size of the input of the machine). We show
that in such a model there exists an oracle that provides a semantically secure PKEP, but relative to which
there is a large natural class of black-box PKEP constructions that are not CCA#1 secure.

We will construct an oracle O that has five distinctive types of queries. It will be useful to think of
the oracle as being comprised of five sub-oracles (g, e,d,w,u). The sub-oracles O = (g, e,d) will naturally
implement a CCA#2 secure PKEP7. Therefore, we will introduce the sub-oracle w to weaken the security of
O. Relative to w the PKEP given by O is semantically but not CCA#1 secure. Intuitively, the sub-oracle
w will provide encryptions of the secret-key of interest to an adversary, and therefore a CCA#1 or CCA#2
adversary that has access to a decryption oracle will be able to use it in conjunction with w to retrieve the
secret-key. In contrast, a semantically secure adversary that does not have access to the decryption oracle
finds access to w useless. The sub-oracle u provides a method for distinguishing valid encryptions from
arbitrary strings, and thus provides a functionality that is both useful in our proof and is equivalent to a
property that appears in several real PKEPs (i.e. the systems presented in [10, 25, 29, 36])

We will show that relative to O no scheme (GO, EO, Dg,d) can be CCA#1 secure. That is, if a proposed
CCA#1 PKEP has a decryption algorithm that does not query the encryption sub-oracle e, then there is
no black-box proof that the scheme is CCA#1 secure. This is an interesting class of PKEPs, as the notion
of having a CCA#1 secure PKEP’s decryption algorithm calling the semantically secure PKEP’s encryption
algorithm is arguably neither a natural nor an obvious requirement.

We will also give a construction relative to our sub-oracle O that is CCA#2 secure relative to O, and
therefore relative to our oracle it is not possible to remove the limitation on the class of constructions that
do not permit black-box proofs of CCA#1 security in our proof. Unfortunately, it is easy to see that our
CCA#2 construction is very artificial and makes use of artificially strong security properties of the oracle
O. In fact, based on standard hardness assumptions, it is easy to show that there exist semantically secure
PKEP relative to which our construction does not achieve CCA#2 security. We observe that these results
leave open the possibility of using the weaker form of black-box separation of Gertner et al. [15] to separate

7We will think of the sub-oracle g as implementing the key-pair generation algorithm, the sub-oracle e as implementing the
encryption algorithm and the sub-oracle d as implementing the decryption algorithm.
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CCA#1 security from semantic security without any restrictions on the types of black-box constructions that
are considered.

The main result in this chapter is based on joint work with Yael Gertner and Tal Malkin, who had
preliminary discussions with Bill Aiello.

C Preliminaries & Notation

Notation 7. Let S be a finite set, and let x ∈R S denote the act of choosing an element x uniformly at
random from S.

Notation 8. Let ≺ denote a lexicographic ordering over {0, 1}∗, and let S = {s1, .., sm} ⊂ {0, 1}
∗ be an

arbitrary finite set where it is the case that for 1 < i ≤ m that si−1 ≺ si. For 1 ≤ i ≤ m we define Index (i, S)
to be si.

Definition 9. We say that function µ : N → R is negligible if for all sufficiently large n ∈ N and all
constants c > 0, it is the case that µ(n) ≤ 1/nc.

A well known tail-bound on the sum of identically distributed Bernoulli random-variables is the Chernoff-
Hoeffding bound. This bound will be used many times in this chapter, and is presented below. Refer to [28],
[22] or any other standard book on probabilistic computation for a proof of this theorem.

Theorem 10 (Chernoff-Hoeffding Bound). Let x1, x2, x3, . . . be identical, independently distributed ran-

dom variables over 0 and 1 with probability p and 1 − p, respectively. Let Xnt = 1
nt

∑nt

i=1 xi. For any
n, k, t > 0:

Pr

[
|Xnt − p| ≥

1

nk

]
≤ 2−2nt−2k

.

D Standard Definitions

Below we give the formal definitions of PKEPs and Semantic, CCA#1 and CCA#2 security.

Definition 11 (Public-Key Encryption primitive (PKEP)). A public-key encryption primitive is a
triple (G,E,D) of algorithms. Algorithms G and E are probabilistic while D is deterministic. Let p1, p2, p3, p4

and p5 be polynomials that will specify the asymptotic lengths of the inputs and outputs for the algorithms.

G (Key Generation Algorithm): for every n ∈ N this algorithm takes as input a random n-bit string,
where n defines the security parameter of the system. It generates two strings, sk and pk which are
respectively called the the secret and public keys, and where |sk | = p1(n) and |pk | = p2(n).

E (Encryption Algorithm): for every n ∈ N this algorithm takes as input a public-key pk of length p2(n),
a message m ∈ {0, 1}p4(n) that is referred to as the plain-text and a random string of bits of length
p5(n). The output is a string of p3(n) bits, and is referred to as the ciphertext.

D (Decryption Algorithm): for every n ∈ N this algorithm takes as input a key sk of length p1(n) and
a supposed ciphertext c of length p3(n). It outputs a string of length p4(n) (the decryption of c) or the
symbol ⊥ indicating that c is not a valid ciphertext.

Correctness Requirement: For every n; for every pair (sk , pk) that is generated by G(s) for s ∈ {0, 1}n;
and for every m ∈ {0, 1}p4(n): D(sk , E(pk ,m)) = m.

Next, we give the definitions of semantic, CCA#1 and CCA#2 security. The definitions are presented
concurrently to prevent redundancy and to make it easier for the reader to observe the similarities and
differences in the different versions of the definitions.

Definition 12. Let EP = (G,E,D) be an encryption primitive with associated polynomials p1, ..., p5 as
previously described in Defn. 11.

Let A = (A1, A2) be a probabilistic adversary that is described in two parts, each of which has access to an
oracle which will either represent a decryption oracle, or a null oracle. Each part of the adversary is restricted
to making at most a polynomial number of queries to these oracles, where the polynomial is specified in terms
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of the length of the input of the respective part adversary. The first part of the adversary, A1, will be given
access to a randomly chosen public-key of length p2(n), and will output two messages x0, x1 ∈ {0, 1}p4(n),
as well as any pertinent state information σ it would like to pass along to the second part of the adversary
A2. The second part of the adversary, A2, will be given an encrypted message c ∈ {0, 1}p3(n), some state
information σ and outputs a bit.

The PKEP EP is atk-secure, where atk ∈ {semantic,CCA#1,CCA#2}, if there exists a negligible function
µ such that for every adversary A = (A1, A2) and for all sufficiently large n ∈ N:

Pr
s∈R{0,1}

n,(pk ,sk)←G(s)

(x0,x1,σ)←A
O1
1 (pk)

b∈R{0,1};r∈R{0,1}
p5(n)c←E(pk ,xb,r)

[AO2
2 (σ, c) = b] ≤

1

2
+ µ(n),

where σ represents state information and :

• if atk=semantic then O1 and O2 are the empty oracle: the oracles give the empty response, ⊥, to all
queries;

• if atk=CCA#1 then O1(·) = D(sk , ·), and O2 is the empty oracle;

• if atk=CCA#2 then O1(·) = D(sk , ·), and O2(·) = D(sk , ·) but modified on the encryption challenge so
that O2(c) = ⊥.

We note that in Defn. 12, in the case that the message space for PKEP is {0, 1} (i.e. p4 is the constant
function valued at 1), then given the adversary A = (A1, A2), the only values that make sense for A1 to
output are 0 and 1, and therefore in the case of CCA#1 security, we can assume that these are the outputs of
A1, and so there is no need for them to be output. In the case of CCA#2 security, A1 can be removed from
the definition with no loss to the adversary’s power, as A2 can simulate any queries A1 would have made, so
long as PK is included in the state information σ. We point these modifications out, as they will be assumed
for the remainder of the chapter.

From Defn. 12 it is fairly easy to see that the following theorem holds, and it and its proof can found in
numerous sources in the literature, for example [4]

Theorem 13. CCA#2 security implies CCA#1 security and CCA#1 security implies semantic security.

E Organization of the Chapter

We provide a brief sketch of the layout of this chapter. We will begin by describing a random process for
constructing oracles that we will use to prove many of the results in this chapter. The oracles constructed by
this process contain a natural sub-oracle that effectively implements a PKEP. We will argue that the PKEP
that is defined by an oracle, chosen by the described random process, is semantically secure with probability
close to 1. Next, we will formalize the exact class of PKEP constructions that we will show are insufficient for
proving CCA#1 security follows from black-box use of a semantically secure PKEP. The pertinent restriction
on this class of constructions will be that the decryption algorithm will not be permitted to make use of the
semantically secure PKEP’s encryption algorithm. We will show that this restriction is necessary relative
to the oracles our random process creates, by demonstrating a PKEP construction that achieves CCA#2
security from the semantically secure PKEP given by the oracle; but this construction has the property that
the proposed decryption algorithm calls the encryption algorithm of the semantically secure PKEP.

Finally, we will begin the task of describing how, given a PKEP construction that belongs in the class
described, to construct a CCA#1 adversary that will be able to break the proposed PKEP’s CCA#1 security.
In order to simplify the description of this adversary, we break it down into three experiments that it must
run consecutively. We then describe these three experiments, and show why they’re successful at breaking
the CCA#1 security of the proposed PKEP. The details of the three parts of this experiment, as well as other
aspects of the constructed adversary, will be given in more detail later when the reader has been made aware
of more context. We conclude with a discussion of the implications of this adversary, and the strengths and
weaknesses of the results presented in this chapter.
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F The Distribution for the Oracle O

We describe a large probabilistic experiment that generates a distribution on oracles that we will be interested
in. We will use the probabilistic method to show that there exists an oracle in this distribution that has the
security properties that we are interested in. The experiment that generates the distribution on oracles is
described below:

Definition 14 (Oracle Distribution). We define an experiment that produces an oracle that effectively
implements a 1-bit semantically secure public-key encryption primitive.

Let O = (g, e,d,w,u) ← Υ denote an oracle that is chosen randomly according to the distribution
described below.

g For each n ∈ N let g : {0, 1}n → {0, 1}3n be a random one-to-one function.
(Think of g as generating public-keys from secret-keys)

e For each n ∈ N let e : {0, 1}3n×{0, 1} × {0, 1}n → {0, 1}3n be a function such that for every pk ∈ {0, 1}3n

we let e(pk , ·, ·) be a random one-to-one function.
(Think of e as taking a public-key, a bit to be encrypted and a random string, and outputting a cipher-
text.)

d For each n ∈ N let d : {0, 1}n×{0, 1}3n→ {0, 1,⊥} be defined such that for every sk ∈ {0, 1}n, c ∈ {0, 1}3n

and b ∈ {0, 1} we define d(sk , c) = b if there exists an r ∈ {0, 1}n such that e(g(sk ), b, r) = c; and
otherwise we define d(sk , c) = ⊥.
(Think of d as taking a secret-key and ciphertext and outputting the corresponding decryption.)

w For each n ∈ N let w : {0, 1}3n×{0, 1}n→ {0, 1}3n×n be defined as follows. For each pk ∈ {0, 1}3n and j ∈
{0, 1}n we set w(pk , j) = ⊥ if g−1(pk ) is undefined; otherwise, let g−1(pk ) = sk, which we will represent
using a bitwise notation as (sk1, ..., skn), and we set w(pk , j) = e(pk , sk1, rpk ,1,j), . . . , e(pk , skn, rpk ,n,j),
where for 1 ≤ k ≤ n we randomly chose rpk ,k,j ∈ {0, 1}n.
(Think of w as taking a public-key and an index, and outputting an encrypted version of the public-key’s
corresponding secret-key. The encryptions are under the given public-key, and done bit-by-bit.)

u Garbage Oracle: For each n ∈ N let u : {0, 1}3n × {0, 1}3n → {⊤,⊥} be defined as follows. For each
pk ∈ {0, 1}3n and c ∈ {0, 1}3n we define u(pk , c) = ⊤ if there exists an sk ∈ {0, 1}n, b ∈ {0, 1} and
r ∈ {0, 1}n such that g(sk) = pk and e(pk , b, r) = c; otherwise, we define u(pk , c) = ⊥.
(Think of u as taking a public-key and a string, and deciding whether or not the string corresponds to
an encryption relative to the given public-key.)

For purposes of presentation, we will often refer to an oracle O as a pair of sub-oracles (O, R) where
O = (g, e,d) and R = (w,u). As was mentioned previously, the intuition for the oracle O = (O, R) is
as follows: the sub-oracle O = (g, e,d) defines a traditional public-key encryption primitive that is CCA#2
secure; therefore, we cannot hope to prove the separations that we’re interested in. Thus, we include the oracle
w and it weakens the security properties of O. The weakening is accomplished by having w provide random
encryptions under e of a secret-key, sk = g−1(pk), that correspond to the public-key, pk , that is given to w
as input. This makes the PKEP defined by O easily attackable by CCA#1 and CCA#2 adversaries: given a
public-key pk the adversaries use w in conjunction with their decryption oracles to retrieve a corresponding
secret-key sk . We will show that, not surprisingly, with this weakening the semantic security of primitive
defined by O is preserved. Finally, we provide a sub-oracle u that discerns valid encryptions (i.e. those with a
corresponding decryption relative to an appropriate key-pair) from arbitrary strings that are not encryptions.

We introduce some notation that is valuable for discussing queries and replies to an oracle O.

Notation 15. Given an oracle O, we denote by (o, q) the query q to the sub-oracle o ∈ {g, e,d,w,u} in O.
For example, we denote by (g, sk) the query g(sk). Similarly, we denote by the pair (< o, q >, r) the response
r to the query q made to the sub-oracle o. We call such a pair a query/response, and say a query/response
(< o, q >, r) is consistent with o if o(q) = r.

Definition 16. We say that the size of a query (o, q) to the sub-oracle o ∈ {g, e,d,w,u} in O is |q|. Thus,
we will ignore the number of bits that would actually be necessary to encode the sub-oracle in the query.
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We also introduce the following slight abuse of notation that permits us to easily discuss broad classes of
queries and responses from oracles.

Notation 17. In cases where a query q = (v1, .., vi) is represented by several semantically different strings
v1, .., vi we denote by (< o, v1, .., vj−1, ∗, vj+1, ..vi >, r) the fact that there exists a vj such that the oracle query
o(v1, v2, ..., vi) was made and the response was r. For example (< e, (pk , ∗, r) >, c) represents the notion that
there exists a bit b ∈ {0, 1} such that (< e, (pk , b, r) >, c) represents a query/response consistent with the
sub-oracle e.

G The Semantically Secure PKEP Embedded in the Oracle O

We formalize the sense in which a random oracle O provides a semantically secure PKEP. We first point out
how we syntactically get a PKEP from an oracle O = (O, R) produced by the random process Υ that was
described in Section F. As alluded to earlier, we note that the oracle O = (g, e,d) syntactically represents a
PKEP. This can be seen by noting that for every n ∈ N we can generate a set of public- and secret-keys by
randomly selecting a secret-key sk ∈R {0, 1}n and outputting (sk , pk = g(sk )); given a public key pk of size
3n, generated by querying g, we can encrypt a bit b ∈ {0, 1} by querying e(pk , b, r) = c and generating the
ciphertext c, where r ∈R {0, 1}n; and finally given a secret-key sk of size n we can decrypt a ciphertext c of
size 3n by querying d(sk , c) = b, and outputting the result b. What needs to be approached more carefully
is the semantic security of such a system.

Theorem 18. For every oracle adversary A limited to a polynomial number of oracle queries, there exists a
negligible function µ such that for all sufficiently large n:

Pr
O=(O,R)←Υ




Pr
sk∈R{0,1}

n

b∈R{0,1}
r∈R{0,1}

n

[AO(pk , c) = b] ≤ 1/2 + µ(n)



≥ 1− 1/2n/2

where pk = g(sk) and c = e(pk , b, r) and µ is a negligible function.

Sketch. If the oracle O was comprised solely of O then for each n ∈ N the probability that the PKEP would
be secure would follow in a straight-forward manner from the probabilistic construction of O. To observe
that u does not effect the security of O, we note that with very high probability the adversary could simulate
the response to a query u(pk , c) as follows: if there has previously been a query/response (< e, pk , b, ∗ >, c)
then respond with b, otherwise respond with ⊥. This simulation succeeds because for sufficiently large n it
is only with exponentially small probability that an adversary is able to find a c ∈ {0, 1}3n such that there
exists a pk ∈ {0, 1}3n, b ∈ {0, 1} and r ∈ {0, 1}n where e(pk , b, r) = c, without actually making the query
e(pk , b, r), due to the random construction of O.

Similarly, with very high probability the adversary could simulate the response to a query w(pk , i) as
follows: if there had previously been a query/response (< g, sk >, pk), then it can respond with a random
encryption of each bit of sk (i.e. we output ci = e(pk , ski, ri) for the random encryption of the ith bit of sk ,
which we denote by ski and were ri is a random string). Alternatively, if there has never been a query of the
form g(sk) = pk then it can respond with ⊥, because due to the random selection of g it is exponentially
unlikely that there will exist a string sk such that g(sk ) = pk .

We know briefly sketch why the system provided by the oracle is not secure against chosen-ciphertext
attacks. The following theorem describes a CCA#1 adversary that completely breaks the system, independent
of the choice of O.

Theorem 19. There exists an adversary A = (A1, A2) limited to a polynomial number of oracle queries such
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that for all sufficiently large n:

Pr
O=(O,R)←Υ




Pr
sk∈R{0,1}

n,pk←g(sk)

(0,1,σ)←A
d(sk,·),O
1 (pk)

b∈R{0,1};r∈R{0,1}
nc←E(pk,b,r)

[AO2 (σ, c) = b] = 1




= 1,

and therefore the PKEP defined by (g, e,d) in the oracle is not CCA#1 secure

sketch. Fix the oracle O. The adversary A1 takes input pk and makes the query w(pk , 0)→ (c1, ..., cn), where
0 represents a string of n zeros and each ci ∈ {0, 1}

3n. For each i, ciphertext ci represents an encryption
of the ith bit of sk . Therefore, for each i the adversary A1 retrieves the ith bit of sk by making the query
ci to the decryption oracle. Once, sk has been decoded by A1, it passes it to A2 as the state information
represented by σ = sk in the statement of the experiment. The adversary takes its inputs sk and c and
outputs d(sk , c), which will always equal b.

H A Large Class of Black-Box Constructions

We wish to show that there is no black-box proof that semantically secure PKEPs imply CCA#1 secure
PKEPs for a large class of black-box constructions of PKEP. In this section we formalize exactly which
constructions we will consider. We will consider constructions (GO,EO,DO) of PKEPs that are purportedly
CCA#1 secure. We require that there exist constants ρ0, ρ1, ρ2 and ρ3 such that for each n ∈ N we have:

GO computes a function of the form GO : {0, 1}n → {0, 1}n
ρ0
× {0, 1}n

ρ1
. If GO(S) = (SK ,PK ) then we

interpret S as a seed, SK as a secret-key and PK as a public-key.

EO computes a function of the form EO : {0, 1}n
ρ1
× {0, 1} × {0, 1}n

ρ2
→ {0, 1}n

ρ3
. If EO(PK ,M,R) = C,

we interpret PK as the public-key, M as the message to be encrypted, R as a sequence of random bits
and C as the resulting ciphertext.

DO computes a function of the form DO : {0, 1}n
ρ0
×{0, 1}n

ρ3
→ {0, 1} ∪ {⊥}. If DO(SK , C) = M then we

interpret SK as a secret-key, C as a ciphertext, and M as the decrypted message

We note that in the above description we think of n as a security parameter, and thus given a PKEP
(G,E,D) as described, then any inputs to G, E or D that have a size consistent with the above definition
for a fixed value n, are said to be inputs consistent with the security parameter n.

We point out that we have implicitly assumed that the message M to be encrypted by E is a single bit.
We note that there are trivial black-box transformations that take CCA#1 secure PKEP from a single-bit
encryption primitive to a many-bit encryption primitive8, and therefore the assumption is without loss of
generality.

Assumption 20. Without loss of generality we assume that there exist constants s and q such that on all
inputs that on all inputs of correspond to security parameter n, each execution of each of GO,EO and DO

makes exactly nq queries to O, and each is of size no larger than ns. We further assume, without loss of
generality, that G,E, and D never make duplicate queries to O.

Assumption 21. We assume that GO never queries the sub-oracle d. This assumption is only made to
simplify presentation and the results presented in this chapter can be proven without such an assumption. To
observe that this is not a severe restriction we note that given a randomly chosen O = (O, R) that GO could
effectively predict the result of any query d(sk , c): in the case that it had previously queried (< e,g(sk), b, r >
, c) it can respond with b, and if no such query has been made, then with high probability the result is ⊥.

8In the case of CCA#1 security, one can produce a many-bit encryption system by concatenating together the independent
bitwise encryptions of a CCA#1 secure single-bit encryption system
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Assumption 22. We assume that EO is constructed such that for any strings sk and c prior to making the
query d(sk , c) it makes the query g(sk), and then checks to see if it has previously made a query/response
(< e,g(sk), b, ∗ >, c), and if so it responds to its own query d(sk , c) with b. Otherwise it performs the query
d(sk , c).

Assumption 23. We assume that for every oracle O ← Υ, and every construction (GO,EO,DO) it
is the case that if there exits an S such that GO(S) = (PK ,SK ) and there exists R and M such that
EO(PK ,M,R) = C then DO(SK , C) = M . That is we assume that our construction meets the correctness
criteria of a PKEP.

Any PKEP construction could easily be modified to satisfy the above assumptions. We might hope to
show that relative to a randomly chosen O ← Υ that any PKEP black-box construction GO,EO,DO is not
CCA#1 secure. Unfortunately, this is not the case. In the following subsection we show a counter-example,
and it demonstrates the necessity of our final restriction on constructions. This final restriction is then
presented in Section H.2.

H.1 A CCA#2 Secure Scheme Relative To O

We are faced with the issue that relative to a randomly chosen (O, R) = O ← Υ there are black-box
constructions (GO,EO,DO) that are CCA#2 secure. Below we provide a brief and informal description of
such a construction. For each n ∈ N:

GO(S) outputs (SK = S,PK = g(S)) where S ∈ {0, 1}n.

EO(PK ,M,R) outputs C = (e(PK ,M,R), e(pk , r1, R+ 1), . . . , e(pk , rn, R+n)), where PK ∈ {0, 1}3n,M ∈
{0, 1} and R ∈ {0, 1}n. Further, we represent the ith bit of R by ri. We calculate R + i by using a
standard method of converting back and forth between bit-strings and integers.

DO(SK , C = (c0, ..., cn)) computes d(SK , ci) = ri for each i ≤ n; where SK ∈ {0, 1}n, C ∈ {0, 1}3n
2+3n and

for each i we have |ci| = 3n. Next, D sets R′ = (r1, ..., rn), and if it’s the case that for every i ≤ n that
e(g(SK ), ri, R+ i) = ui then D outputs r0, otherwise D outputs ⊥.

We now provide a high-level argument that the scheme that was just presented is CCA#2 secure.

Theorem 24. For every CCA#2 adversary A, there exist negligible functions µ and µ′ such that for all
sufficiently large n:

Pr
O←Υ




Pr
S∈R{0,1}

n,(PK ,SK )←GO(S)
M∈R{0,1},R∈R{0,1}

n

C←EO(PK ,M,R)

[A
eDO

C (SK ,·),O(PK , C) = b] ≤ 1/2 + µ(n)



≥ 1− µ′(n),

where for all queries C′ 6= C it holds that D̃O
C (SK , C′) = DO(SK , ·), and on the query C′ = C we have

D̃O
C (SK , C′) = ⊥.

Sketch. In order to prove the CCA#2 security of the proposed PKEP, we show how an adversary can
effectively simulate the decryption oracle, D̃O(SK , ·). Therefore, we can convert adversaries that make use
of decryption oracles into adversaries that don’t. From there it suffices to argue that all adversaries with no
access to a decryption oracle are ineffective at breaking the security of the scheme. This is done by relying on
the semantic security of the PKEP defined by O (as was shown in Theorem 18). We outline the decryption
oracle simulator and its proof of correctness. The remaining details follow from standard techniques.

Let C = (c0, c1, ..., cn)← E(PK , B,R) be the challenge ciphertext that the adversary A is given, where for
each i we have |ci| = 3n. We modify the adversary so that every time it makes a query C′ = (c′0, ..., c

′
n) to the

decryption oracle D̃O(SK , ·) it checks to see if there exists an n-bit string R′ = (r′1, ..., r
′
n), and a bit r′0 with

the property that the adversary has previously made the set of query/responses Q = {(< e,PK , r′i, R
′ + i >

, c′i)|i ≤ n}. In such a case the adversary uses r′0 as the simulated reply of the decryption oracle, and otherwise
it simulates the reply of ⊥. Clearly, if the simulator’s output is r′0, then it has simulated the same response
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as that given by D̃O(SK , C′). Alternatively, if the simulator’s output is ⊥ then the simulated response is
correct with probability that is exponentially close to 1, as is shown by the following cases.

If it’s the case that for each c′i that makes up C′ that the adversary has previously made a query/response
(< e,PK , ∗, ∗ >, c′i), but the set of such query/responses does not equal Q then it is necessarily the case
that ⊥ is the correct output, as e(pk , ·, ·) is a one-to-one function. Alternatively, consider the smallest i ≤ n
for which the adversary has not previously made a query/response (< e, PK, ∗, ∗ >, c′i), in this case we will
consider three possible sub-cases.

1. The first case is that the adversary has made a previous query w(PK , ∗) = (c̄1, ..., c̄n) where c′i = c̄j
for some j. In this case the probability that there will exist an R such that c′i = e(PK , ∗, R + i) and
c′i+1 = e(PK , ∗, R+ i+ 1) is exponentially small as the random bits used to generate the encryption c′i
by the oracle w were chosen uniformly at random.

2. The second case is that there is a j ≤ n for which c′i = cj . We consider two sub-cases:

(a) If {c′ℓ|ℓ ≤ n} ⊆ {cℓ|ℓ ≤ n} then the simulated response of ⊥ is correct, as there is definitely an error
if C 6= C′ because there will necessarily be a value k such that c′k 6= e(pk , ∗, R+ k). Otherwise, if
C = C′ then the correct response is ⊥ as this is an invalid query.

(b) If {c′ℓ|ℓ ≤ n} 6⊆ {cℓ|ℓ ≤ n}, then let k be the value for which c′k /∈ {cℓ|ℓ ≤ n}. We assume that
j < k (note the case where j > k follows a similar argument), and note that the probability that
the adversary can find a c′k such that c′k = e(PK , ∗, R+k− j) is negligible, since the adversary has
no knowledge of the randomly selected string R that was used in the creation of C.

3. If neither sub-case above applies, then there is no reason to expect that for any of the c′i in C′ that
there exist any values b and r such that e(PK , b, r) = c′i. This is because the probability of such an
event is exponentially small, as e(PK , ∗, ∗) is a random one-to-one, length-tripling function, and so the
probability of finding a value c in the range of e(PK , ∗, ∗) without directly querying e or w, or making
use of the ciphertexts that constitute C is negligible.

H.2 A Significant Restriction on Constructions

The odd characteristic of the CCA#2 construction in Section H.1 is that DO queries e. That is the decryption
algorithm of the PKEP that is CCA#2 secure must call the encryption oracle, e, of the semantically secure
PKEP. This is a rather unnatural property and it is not an obvious requirement to achieve CCA#1 security.

Our final assumption on the type of constructions we consider is that our constructions will not perform
these types of queries, and this is the first assumption that places a significant restriction on the class of
constructions we consider. This is formalized below.

Assumption 25. We will assume that all of the purportedly CCA#1 secure PKEPs, (GO,EO,DO), that
we consider in this chapter have the property that D does not make queries to the sub-oracle e. In other
words, we can think of our PKEPs as (GO,EO,Dg,d)

I A CCA#1 Adversary to Break our Class of PKEPs

In the remaining sections of this chapter we fix an arbitrary PKEP construction EP = (G,E,D) that satisfies
all of the assumptions in Section H. We will demonstrate how to construct an adversary that will break the
CCA#1 security of EP given a random oracle O ← Υ. More specifically, most of the work in this section —
in fact most of the work in this chapter — goes towards proving the following theorem.

Theorem 26. There exists a CCA#1 adversary A = (A1, A2) for which it’s the case that for all sufficiently
large n:

Pr
O=(O,R)←Υ

S∈R{0,1},M∈R{0,1},R∈R{0,1}
nρ2(n)

(PK ,SK )←GO(S),C←EO(PK ,M,R)

[
A

DO(SK ,·),O
1 (PK )→ σ;AO(σ,C) = M

]
≥ 1− 1/n.

A simple averaging argument gives the following corollary.
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Corollary 27. There exists an adversary A = (A1, A2) for which it’s the case that for all sufficiently large
n:

Pr
O=(O,R)←Υ




Pr
S∈R{0,1},M∈R{0,1}

R∈R{0,1}
nρ2(n)

(PK ,SK )←GO(S)

C←EO(PK ,M,R)

[
A

DO(SK ,·),O
1 (PK )→ σ;AO2 (σ,C) = M

]
≥ 3/4




≥ 1− 4/n.

In the remainder of this chapter we will describe how to construct an adversary A = (A1, A2) that will
satisfy Theorem 26. The first part of the adversary, A1, will have to perform a rather large probabilistic
experiment. In order to aid in the presentation and understanding of this experiment we will break it up
and present it in three separate parts, named Exp1,Exp2 and Exp3. The primary output of the sequence of
experiments is a new secret-key SK ′ and set of queries and responses. These, in conjunction with a modified
decryption algorithm D̂, will allow , with high probability, the second part of the adversary, A2, to decrypt
the challenge ciphertext, C ← EO(PK ,M,R).

We note that at points in the description of Exp1,Exp2 and Exp3 we make use of knowledge of SK , and
this may appear troubling, as we intend for A1 to execute these experiments, and yet it has no access to SK .
This is not a problem because SK is only used in the experiments to calculate DO(SK , ·) and A1 can easily
compute such values by using its decryption oracle.

In the following three sections of this chapter, we will go over the three parts of the experiment in depth,
but we will first give a brief overview of the overall goals of the combined experiments and then explain the
individual aims of the of the three parts of the experiment.

One of the strongest intuitions behind the notion of CCA#1 security, is that the decryption oracle provided
to the first part of the adversary should not leak any information about the secret-key SK that corresponds
to the adversaries public-key PK , for if the decryption oracle leaks such information, then it may be passed
along to the second part of the adversary and used to help decrypt the challenge ciphertext C. Since A1

does not have access to the challenge ciphertext, it cannot use the decryption oracle to learn any information
specifically about it. The main idea behind the proof of Theorem 26, is that a decryption oracle for a proposed
construction of a CCA#1 PKEP, (G,E,D) that satisfies the restrictions of Section H, and which builds its
security from a black-box semantically secure PKEP will have no choice but to possibly leak information about
the secret-key. We remind the reader that in our model the adversary is a computationally unlimited machine,
whose only complexity bound is on the number of queries it makes to the oracle O and the decryption oracle.
Therefore, any security in the purported CCA#1 secure PKEP (G,E,D) must come from the (black-box)
semantically secure PKEP that is given.

To describe our intuition about why information about SK is leaked by the decryption oracle, we consider
a proposed construction (G,E,D) that makes use of the semantically secure PKEP O = (g, e,d) that is
a sub-oracle in a randomly chosen O. Given that the security must be built from O, it seems likely, if
not necessary, that E will need to query e and embed its responses into the ciphertext that E will output.
Similarly, D will likely need to query d to decrypt the response to the queries that e made and embedded in
the ciphertext. Now in order for all of these queries to e and d to be secure and provide some sort of secrecy
for E and D, the algorithm G we will need to provide E and D with matching public-/secret-key pairs (pk , sk)
that are generated by g and which are embedded into a public-/secret-key pair (PK ,SK ). Therefore, it is the
secret-keys from g that are embedded into the secret-keys SK by G that all of the security is boot-strapped
from. Our experiment will show how to use the decryption oracle to retrieve many of the secret-keys from g
that have been embedded into SK , by the use of the decryption oracle. Once we have retrieved these values,
we can reconstruct a new secret-key SK ′, and pass it to the second part of the adversary, A2, and it can use
this new secret-key to decrypt the challenge ciphertext.

We can now concentrate on providing intuition for how we retrieve a value sk , that was generated in the
pair (pk , sk) by g, that is embedded into a secret-key SK , that was generated in the pair (PK ,SK ) by G.
In order to do this, we will first need to find the value pk , which is most likely embedded into PK . In fact
this is the main goal of Exp1: to determine those values pk that are embedded into PK , which might have
corresponding values sk embedded into SK . We find such pk by encrypting many random messages under E
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by executing EO(PK ,M,R) for randomly chosen M and R, and looking at the queries to e that are made
during these executions, we can find those values of pk that are likely to be embedded into PK .

The goal of Exp2 is to take those values pk that were retrieved in Exp1 and flagged as being embedded
in PK , and find their corresponding secret-keys sk = g−1(pk ). In order to do this we make use of the oracle
w and the main restriction on our class of constructions. The idea is that if pk is embedded in PK and
sk is embedded in SK , then it is likely that for some values b and r an encryption c = e(pk , b, r) will get
embedded into a ciphertext C ← EO(PK ,M,R) for some values M and R. Further, the same value c will
likely be decrypted by a query d(sk , c) = b when we execute DO(SK , C). Further, presumably the value b
should have some effect on the outputted result of D(SK , C).

Now, ignoring for the moment how we might do such a thing, we note that if during the execution of
EO(PK ,M,R) we were to respond to the query e(pk , b, r) with the value c′ = e(pk , b, r′), then we would
likely end-up with a new ciphertext C′ where c′ is embedded in C′. Further, it is likely to have the property
that DO(SK , C) = DO(SK , C′), as there is no way for the D to confirm if e(pk , b, r) is equal to c or c′, due to
the fact that D cannot query e because of the restriction specified in Section H.2, and d(sk , c′) = d(sk , c) = b.
Now suppose during the execution of EO(PK ,M,R) that we were to respond to the query e(pk , b, r) with the
response c′′ = e(pk , 1−b, r′), then we would likely end up with a new ciphertext C′′, where c′′ is embedded in

C′′. However, now it is not clear that DO(SK , C) ?
= DO(SK , C′′), as we know the value returned by d(sk , c′)

is 1− b, and this may have an effect on the outcome of the decryption of C′′. The important observation is
that if it is likely that DO(SK , C) 6= DO(SK , C′′), then this gives us a method for simulating d(sk , ·). This
is done as follows: if we wish to compute d(sk , c̃) then we execute EO(PK ,M,R) and respond to the query
e(pk , b, r) with the value c̃; at the end of the execution we retrieve its output C̃, and use the decryption oracle
to compute DO(SK , C̃); if the result is M then we believe the response to d(sk , c̃) to be b, and otherwise we
believe it to be 1 − b. If we combine this effective method of simulating d(sk , ·) with the decryption oracle
DO(SK , ·), with the encrypted value of sk that can be gotten through a query to w, then we see that sk is
retrievable by the adversary.

The goal of Exp2 is to retrieve the values of as many secret-keys sk that are embedded into SK , as is
possible. This is done by using techniques based on the ideas just presented. Unfortunately, the intuitive
description just presented skipped over many possible subtleties and these have to be handled, so the resulting
experiment is more complicated than the above intuitive explanation might suggest.

Finally, once we have retrieved the different secret-keys sk that are embedded into SK , then we will
reconstruct a new secret-key SK ′ that can be used by the adversary to decrypt the challenge ciphertext. This
is not a simple task, for although we may have many of the secret-keys sk that are embedded into SK , we
have no idea how to take them and reconstruct a new secret-key SK ′, that embeds the sk values. Intuitively,
the algorithm G may be quite complicated, and so it is not at all clear how one can combine the secret-keys
retrieved together into a new secret-key SK ′. In order to do this use a brute-force search to find an oracle
Ô = (Ô, R̂) that could have been produced by the random process Υ, such that on the vast majority of queries

O and Ô have the same responses; and for which there exists an S such that (PK ,SK ′)← G
bO(S). Because

of the strong correlation between O and Ô it will be the case that on most inputs DO(SK , ·) = D
bO(SK ′, ·),

and this will permit the adversary to decrypt the challenge ciphertext. The goal of Exp3 is to find SK ′ and
the oracle Ô.

We stress that the intuitive description just given hides many subtleties, and thus the experiments de-
scribed are more complicated than it might appear they need to be.

Now that the intuitive descriptions have been given, we can begin with the proof of Theorem 26. We will
begin with some necessary preliminaries.

I.1 The Adversary’s Environment

In performing the experiment described in Theorem 26 the first part of the adversary, A1, is initially given
access to a randomly selected oracle, O = (O, R), a decryption oracle DO(SK , ·) and a randomly generated
public-key, PK . We consider these the environment that the first part of the adversary has to work in. To
facilitate the exposition of the experiments, we will need a way to efficiently describe the experiment that
generates the random environment of the adversary, as well as a simple method for describing the environment.
Therefore, we use the following experiment to describe the random generation of an environment:
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Env(n)
(1) O = (O, R)← Υ
(2) S∗ ∈R {0, 1}

n

(3) (PK ,SK )← GO(S∗)
(4) Output Envn = (O,PK ,SK , S∗)

We note that the selection of the challenge ciphertext is not included in this environment, as it is not
needed until we describe the second part of the adversary, which will be much later in the chapter.

I.2 Some Necessary Constants

Throughout the description of Exp1,Exp2 and Exp3, we will need to introduce several constants that depend
on the PKEP construction (G,E,D) but nothing else. We label these constants α0, · · · , α6, and intuitively
we think of them as having the property that αi << αi+1 for 0 ≤ i < 6, and α6 > s > q: remembering that
nq is the number of queries that any of the algorithms G,E or D will make when given an input consistent
with security parameter n; and ns is an upper-bound on the size of the largest query that the algorithms
G,E or D will make when given an input consistent with security parameter n.

Formally, it is sufficient that the following inequalities hold for all sufficiently large n:

• For each i where 0 ≤ i ≤ 6:αi ≥ 20Π(i+1≤j≤6)αj · (qs)

• s ≥ 20 · q

It should be noted that these inequalities ensure that all of the inequalities stated in this chapter hold for
sufficiently large n, but they are not tight. Since this result is a negative one, there is not much to be gained
by looking for tight bounds to these inequalities, even though, as will be made clear throughout the chapter,
they have a large effect on the running time of the constructed adversary. Further, we note that given q, it
is easy to choose s and each of the αis so that they satisfy these inequalities.

I.3 Small and Large Queries and Surprising Responses

We need to cover several more useful definitions before describing Exp1,Exp2 and Exp3. In this section we
introduce the notion of small, large and possibly surprising queries and the notion of surprising responses.

Let us intuitively describe the notion of small and large queries, and surprising responses before we
formalize them. Due to the definition of the random process Υ, it is intuitively unlikely that given a random
oracle O ← Υ that one can find a pair of values sk and c such that response to the query d(sk, c) is in {0, 1},
when there has been no previous queries to g, e or w to suggest that c has a valid decryption. This is true
so long as the sizes of sk and c are large enough, but one could find such a c with a reasonable probability if
their sizes were small enough. Alternatively, if we were able to find such pair sk and c where d(sk , c) ∈ {0, 1},
without querying g, e or w and sk and c were relatively large, then the response to the query d(sk , c) is
surprising, as we would have expected it to be ⊥.

We will need to formalize the above notions because, while we would expect the algorithms G,E and D
to make queries to their oracles that have a size roughly proportional to the algorithms inputs (i.e. if the
input to G is of size n, we would expect all of its queries to O to be of size Θ(n)), there is no such formal
requirement. And, while it is hard to see how making small queries could be of benefit in making G,E and
D secure, it possibly might.

Therefore, in order to retain our intuition about the likelihood of the algorithms G,E and D making
queries that have surprising responses, we will formalize the notion of small and large queries. In order to do
this, we use the first constant we defined α0. We remind the reader that the definition of α0 was dependent
on the definition of G,E and D (namely q and s, where nq represents the number of queries made by each
algorithm, and ns represents the size of the largest query made), and now give the formal definitions for the
concepts we have described.
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Definition 28. Given an environment Envn = (O,PK ,SK , S∗)← Env(n) we define a set of small queries:
We say that a query (o, q) to an oracle O ← Υ is small if |q| ≤ ⌈vo · α0 logn⌉ where vg = 1, ve = 5, vd = 4,
vu = 6 and vw = 4. A query that is not small is called large.

We note that the vo values are chosen so that they correspond to calls to g, e,d,w and u with respect to
the same sized string sk where |sk | ≤ α0 logn, or its corresponding string pk = g(sk ).

Definition 29 (Possibly Surprising Queries & Surprising Responses to d). For a specified random
experiment (resp. process or algorithm), for each n and each sk ∈ {0, 1}n, we say a query (d, sk , c) made
during the experiment (resp. process or algorithm) is possibly surprising, if it is large and if when the
query d(sk , c) was made none of the following query/response cases enumerated below had previously been
made in the experiment (resp. process or algorithm) specified:

1. (< e,g(sk), b, ∗ >, c) together with (< g, sk >,g(sk))

2. (< w,g(sk ), ∗ >, c1, ..., cn) where c = ci for some i.

3. (< d, sk , c >, ∗).

4. (< u,g(sk), c >, ∗).

We say that the query/response (< d, sk , c >, b) for b ∈ {0, 1} is surprising if the query (d, sk , c) was
possibly surprising.

Next we define a similar notion of possibly surprising queries to u. We will be interested in queries to
u(pk , c) where there has already been a query e(pk , b, r) that has been made. The purpose of the query to
u(pk , c) is therefore to determine if g−1(pk ) is well defined. Therefore, we would consider a query to u(pk , c)
to be surprising if there had not been a previous query g(∗) = pk. This is formalized below.

Definition 30 (Possibly Surprising Queries & Surprising Responses to u). ] Given a specified random
experiment (resp. process or algorithm), for each n and each pk ∈ {0, 1}3n, we say a query (u, pk , c) made
during the experiment is possibly surprising, if when the query u(pk , c) is made neither of the following
query/responses has previously been made in the experiment, process or algorithm specified:

1. (< g, ∗ >, pk).

2. (< u, pk , c >, ∗).

We say that the query/response (< u, pk , c >, b) is surprising if the query (u, pk , c) was possibly
surprising and b = ⊤.

J Exp1: Finding Likely Queries and Embedded Public-keys

Given a random variable Envn ← Env(n) that denotes the adversary’s initial environment, we can now
describe the first part of the experiment the adversary will perform. The first part of the experiment takes
the random variable Envn as an input. The experiment’s goal is to retrieve three useful sets. The first set,
SQ , contains all of the small queries to O. The second set, KS , contains (w.h.p) many of the pk generated by
g that are likely to have been embedded into PK given to us by the environment. By this we mean that an
execution of EO(PK ,M,R), for randomly chosen M and R, is likely to make queries of the form e(pk , ∗, ∗).
Finally, the third set, E , contains (w.h.p.) all of the queries that are “likely” to be made to e during an
execution of EO(PK ,M,R) for a randomly chosen M and R.

We are interested in these sets because they intuitively capture all of the information about the oracle
O that is effectively embedded into PK (or in the case of small queries, information about O that is easily
guessed). In particular, in the third part of the experiment, when we go to find an oracle O′ that is a close
approximation to O we would like it to be the case that it is likely that EO′

(PK ,M,R) = EO(PK ,M,R)
for a randomly chosen M and R, and this is much less likely if O′ is not consistent with these sets.

Additionally, we want to find the public-keys in KS , so that we might find their corresponding secret-keys
in the second part of the experiment, as previously outlined.

We remind the reader that nq specifies the number of queries performed by G, E and D on inputs
consistent with a security parameter of n.
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We briefly describe the experiment. First, the experiment retrieves every small query/response pair of
the sub-oracle O, by making every such query. Next, it samples a large number of random encryptions
with EO(PK , ·, ·) and monitors the oracle calls to e and g that are made during these encryptions. On
query/responses (< e, pk , ∗, ∗ >, c) the experiment decides that it is likely that pk was embedded into PK
by determining if there were no previous queries to g(∗) = pk and ensuring that g−1(pk ) is well defined by
ensuring that u(pk , c) = ⊤. If the experiment finds more than nq public-keys that it thinks were embedded
into PK , then it halts, as G(S∗) queried g at most nq times, and so there are at most nq public-keys from g
embedded into PK .

Exp1(Envn = (O,PK ,SK , S∗))
(1) Make every small query in O and let SQ be the set of resulting query/response pairs.
(2) for i = 1 to n2α1

(3) Mi ∈R {0, 1}
(4) Ri ∈R {0, 1}

nρ2

(5) Ci ← EO(PK ,Mi, Ri)
(6) Let E = {(< e, pk ,m, r >, c)|(< e, pk ,m, r >, c) queried in the for loop }.
(7) Compute KS = {pk |The query (< e, pk ,m, r >, c) is large, made in the for loop, there

is no query (< g, ∗ >, pk) made in the for loop prior to it and u(pk , c) = ⊤ }
(8) Let IQ ← E ∪ SQ
(9) If |KS | > nq HALT
(10) Output (Envn,KS ,IQ, E ,SQ).

J.1 A Running Example

In order to attempt to make the different portions of Exp1,Exp2 and Exp3 more concrete, we are going to
introduce a PKEP (G,E,D) and show the types of results we would expect the experiment to output when
given such a PKEP.

To begin with we will present the PKEP which we will use in our running example. We note it is designed
to highlight the need for some of the different parts of Exp1,Exp2 and Exp3, which may not be immediately
obvious, and this makes the example slightly convoluted.

Definition 31. For each n ∈ N we define:

• GO(S): We let S = (S0, ..., ..., S9), where each Si ∈ {0, 1}n. The algorithm queries g(Si) = pk i for
each i, 0 ≤ i ≤ 6. It then computes k1 = e(pk6, 0, S8) and k2 = e(pk6, 0, S9), and outputs PK =
(pk0, .., pk5, pk6, S8, S9) and SK = (sk0 = S0, ..., sk5 = S5, sk6 = S6, k1, k2).

• EO(PK ,M,R): We let PK = (pk0, ..., pk5, pk6, S8, S9), M ∈ {0, 1} and R = (R0, ..., R6) where each
Ri ∈ {0, 1}

n. Compute ci = e(pk i,M,Ri) for each 1 ≤ i ≤ 5. Compute k1 = e(pk6, 0, S8) and
k2 = e(pk6, 0, S9). If R6 is the bit-string of all zeros, then we query e(pk0,M,R0) = c0 and output
C = (0, k1, k2, 0 . . . 0︸ ︷︷ ︸

3n

, 0 . . . 0︸ ︷︷ ︸
3n

, 0 . . . 0︸ ︷︷ ︸
3n

, 0 . . . 0︸ ︷︷ ︸
3n

, c0),

Otherwise, output C = (1, k1, k2, c1, c2, . . . , c5).

• DO(SK , C): We let C = (b, k′1, k
′
2, c1, c2, . . . , c5) where b ∈ {0, 1}, k′1, k

′
2 ∈ {0, 1}

n and each ci ∈ {0, 1}n.
We let SK = (sk0, ..., sk5, sk6, k1, k2) where each sk i ∈ {0, 1}n.

If k′1 6= k1 or k′2 6= k2 output ⊥.
Otherwise, if d(sk6, k

′
1) 6= 0 or d(sk6, k

′
2) 6= 0 output ⊥.

Otherwise, If b = 0, then output d(sk0, c0). Otherwise, let Mi = d(sk i, ci) for each i ≤ 5, and output
Majority(M1, ...,M5),

Running Example 1. We now imagine an execution of Envn ← Env(n) and E1 ← Exp1(Envn) when the
PKEP that is being used in the experiments is (G,E,D) as defined in Defn. 31. To begin with, let’s consider
the execution Env(n) that generates a random oracle O = (O, R) and a seed S∗ for which (PK ,SK ) ←
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G

O(S∗), where PK = (pk0, ..., pk6, S8, S9) and SK = (sk0, ..., sk6, k1, k2). This sets up and defines all of the
information that the adversary A1 will have access to in Theorem 26, namely the string PK and the oracles
O and DO(SK , ·).

Next, the adversary will execute Exp1(Envn), which will compute the sets KS, IQ, E and SQ. We
note that KS is most likely equal to {pk1, ..., pk6}. This is because we are guaranteed that there will be
queries e(pk i, ∗, ∗) for 1 ≤ i ≤ 6 during an execution of EO(PK ,M,R), but it is highly unlikely that a query
e(pk0, ∗, ∗) will ever be made, as such a query is only made if R6 is the string of all zeros, where R =
(R1, ..., R6). Therefore, for the remainder of the running example we will assume that KS = {pk1, ..., pk6}.

Next, we note that while E will contain a large number of query/responses that are made during each
execution of EO(PK ,M,R), for randomly chosen M and R, it will necessarily contain the query/responses
(< e, pk6, 0, S8 >, k1) and (< e, pk6, 0, S9 >, k2). This is because in every execution of EO(PK , ∗, ∗) it is the
case that the corresponding queries are made.

We note that through this execution we have retrieved many of the public-keys generated by g that have
been embedded into PK . Further, we have retrieved the information S8 and S9 that has been embedded into
PK . The goal of the second part of the experiment will be to find important information that is embedded
into SK : many of the secret-keys that correspond to the public-keys in the set KS.

J.2 Bounding the Probability of Bad Events in Exp1

The next lemma demonstrates that the set KS constructed in Exp1 is a subset of the public-keys that were
discovered through calls to g during the execution of GO(S∗), unless a surprising query/response to u is
made. We will later show that, unsurprisingly, such surprising query/response events are rare.

Lemma 32. If after a random experiment Envn ← Env(n), Exp1(Envn) it’s the case KS 6⊆ KS ∗ then a
surprising query/response to u occurred during the experiment, where

KS∗
defn
= {pk |GO(S∗) makes the query (< g, ∗ >, pk)}.

Proof. The reasoning for this proof follows almost immediately from the definition of KS ,KS∗ and surprising
query/response of u. Clearly, in order for KS 6⊆ KS∗ to hold, there must be an element pk that is in KS
and not in KS∗. Let’s consider the addition of such an element pk into KS . Before Exp1(Envn) placed
the element pk in KS it performed a query/response e(pk , b, r) = c for some b and r, and a query/response
u(pk , c) = ⊤. Finally, it ensured there were no prior query/responses during Exp1(Envn) of the form
g(∗) = pk . Since pk /∈ KS∗ there were also no query/responses g(∗) = pk performed during GO(S∗) in
Env(n), which also implies no such queries were made during Env(n). Therefore, the query u(pk , c) made
by Exp1 was necessarily surprising.

The previous lemma implies that a surprising query is necessary for Exp1 to halt on line 9 of its description
(on page 27).

Corollary 33. If after a random experiment Envn ← Env(n), Exp1(Envn) there have been no surprising
query/response to u, then |KS | ≤ nq.

Proof. Follows immediately from the previous lemma and the fact that G makes no more than nq queries
when given a seed S∗ ∈ {0, 1}n as input, and therefore |KS∗| ≤ nq.

We now bound the probability that there were any surprising query/responses that have been made in the
experiment so far. Because it will be useful later, we not only bound the probability that there were surprising
queries to u, but also the probability that there were surprising query/responses to d. We obviously consider
it a bad event if such surprising query/responses occur, and we label it thus.

Lemma 34. For all sufficiently large n:

Pr
Envn←Env(n)

Exp1(Envn)

[BAD1] ≤
1

nα0

where we denote by BAD1 the event that there is a surprising query/response to d or u in the probabilistic
experiment specified.
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Proof. Since, by Assumption 21, G does not query d, we know there are no surprising query/responses
performed in Env(n). By observation of Env(n) and Exp1, there are only two places that a large surprising
query can occur:

1. During queries to d made during the varying executions of EO(PK ,Mi, Ri) in the for loop of Exp1(Envn)
(lines 2–5).

2. During the queries to u made during the computation of the set KS in Exp1(Envn).

First, we bound the probability of surprising query/response corresponding to the first case. There are
n2α1 executions of EO(PK ,Mi, Ri) in the for loop of Exp1. We bound the probability of the ith such
execution. We consider the probability that the response to a possibly surprising query d(sk , c) made during
the execution of E is actually surprising. In Env(n) the execution of GO(S∗) makes at most nq queries of
the form e(g(sk), ∗, ∗) and no queries to d(sk , ∗). In the previous i − 1 executions of E there were at most
(i − 1)nq queries of the form e(pk , ∗, ∗) and at most (i − 1)nq queries of the form d(sk , ∗); therefore, we
can bound the probability that the query d(sk , c) is surprising to be less than nα0−i·nq

n3·α0−2i·nq which is less than
1

n2α0−1 for sufficiently large n. There are at most nq possibly surprising queries to d that are made during the

EO(PK ,Mi, Ri), and therefore we can bound the probability that a large surprising query/response is made
to be less than nq

n2α0−1 . Finally, there are n2α1 executions of E in the for loop of Exp1, so the probability of

a surprising query occurring during the for loop is less than n2α1+q

n2α0−1 .
Next, we perform a similar counting argument to show the probability of a surprising query/response to u

occurring during the the computation of the set KS is small. In order to construct the set KS , Exp1(Envn)
needs to query u(pk, c) for each query/response (< pk , ∗, ∗ >, c) that was performed in the for loop. There
are at most nq+2α1 such queries to u. Consider the ith such query (u, pk , c) that is possibly surprising. The

probability that the reply is surprising is at most nα0−nq−n2α1+q−i
n3α0−nq−n2α1+q−i

, which is less than 1
n2α0−1 for sufficiently

large n. This can be explained as follows: we can be overly generous and assume that each large query that
is made in Env(n) or Expn(Envn) reveals the image of a different element in the range of for the function
g : {0, 1}|pk|/3 → {0, 1}|pk|. There have been at most nq queries made during Env(n), and at most n2α1+q

queries in the for loop, and at most i previous queries to u in the determination of KS , and noting that g is
a random one-to-one function subject to only these constraints, we get the bound specified above. Therefore,

the probability that there is a surprising query/response during the construction of KS is at most: n2α1+q

n2α0−1 ,
as there are at most nq+2α1 queries to u.

Finally, we can bound the probability that there is a surprising query to d or u to be less than 2n2α1+q

n2α0−1 ≤
1
nα0

for sufficiently large n.

Finally, we wanted the set E to contain all of the queries that were likely to occur during an execu-
tion of EO(PK ,M,R) for randomly chosen M and R. This was done in Exp1 by sampling. It executes
EO(PK ,M,R) many times and observes what queries are made. Below we formalize the event that we do
not find all of the likely queries. If we do not find them, then our adversary will not likely be able to find
an alternate secret-key SK ′, and therefore we denote it as a bad event. We also show that it is extremely
unlikely that we do not find all of the likely queries.

Lemma 35. For all sufficiently large n and all Envn ← Env(n):

Pr
Exp1(Envn)

[CQ 6⊆ E ] ≤ 1/2n,

where
CQ = {(e, pk , b, r)| Pr

M∈{0,1}

R∈{0,1}nρ2

[EO(PK ,M,R) makes the query (e, pk , b, r)] ≥ 1/nα1−2}

CQ denotes the set of queries to e that are likely to made during an execution of EO(PK ,M,R), for randomly
chosen M and R.

Proof. Follows easily from the Chernoff-Hoeffding bound.
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Lemma 36. For all sufficiently large n and all Envn ← Env(n):

Pr
Exp1(Envn)

[{pk |(e, pk , ∗, ∗) ∈ KS} 6⊆ CK}] ≤ 1/2n,

where
CK = {pk | Pr

M∈{0,1}

R∈{0,1}nρ2

[EO(PK ,M,R) makes any query (e, pk , ∗, ∗)] ≥ 1/nα1−2}.

CK denotes the set of public-keys which are likely to be used in queries to e during an execution of EO(PK ,M,R),
for randomly chosen M and R.

Proof. Follows easily from the Chernoff-Hoeffding bound.

Definition 37. We will denote by BAD2 the event during an experiment Envn ← Env(n), Exp1(Envn)
that CQ 6⊆ E or {pk |(e, pk , ∗, ∗) ∈ KS} 6⊆ CK, where the sets are defined as in Lemmas 35 and 36. Based on
these same lemmas, it is easy to see that the probability of the event is less than 2/2n.

K Exp2: Retrieving Embedded Secret-Keys with the Decryption
Oracle

We give a high-level, informal and intuitive description of the second part of the adversary’s experiment, and
in later sections we will formalize all of the introduced concepts.

The goal of this part of the experiment is to retrieve a large set of secret-keys for the PKEP defined
by O that are embedded into the adversary’s secret-key SK . Specifically, we are interested in those secret-
keys that have their corresponding public-keys in the set KS that was retrieved in Exp1 (i.e. those sk
for which g(sk ) ∈ KS ). The public-keys in KS are the ones that are used frequently during executions
of EO(PK ,M,R), for random M and R, and so it stands to reason that their corresponding secret-keys
might be necessary for decrypting the ciphertexts generated by calls to EO(PK ,M,R), for random M and

R. We retrieve these secret-keys by using an alternate encryption algorithm, Ê, that allows us to construct
ciphertexts that are slightly perturbed versions of those produced by E. The way in which Ê perturbes the
ciphertexts generated by E is roughly as follows: Ê executes E, but on oracle queries (e, pk , ∗, ∗) for some
pk ∈ KS , it may change the response of the oracle, and thereby produce a slightly different ciphertext. By
looking at how such perturbed ciphertexts decrypt, in conjunction with the use of results from queries to the
sub-oracle w, we are able to learn g−1(pk).

We remind the reader that our overarching goal is to have A1, the first part of the CCA#1 adversary, run
this experiment, and so our goal must be to retrieve the secret-keys embedded in SK exclusively through the
use of the decryption oracle (i.e. the ability to compute DO(SK , ·)), and thus we must design our experiment
so that is never makes direct use of SK or S∗.

K.1 Altering the Encryption Algorithm E

We will retrieve secret-keys corresponding to the public-keys in the set KS by using w to generate a series
of ciphertexts (for the PKEP defined by the oracle O) that are an encrypted encodings of said secret-keys.
We will then embed these ciphertexts into perturbed ciphertexts of the PKEP EP = (G,E,D) by the use of

a modified encryption algorithm Ê. These embeddings will be done in such a way that when the decryption
oracle is fed with these perturbed ciphertexts, its output will be correlated with the decrypted value of the
ciphertexts generated by w. Once we learn this correlation, then we can predict the value of g−1(pk ) by
decrypting perturbed ciphertexts with the decryption oracle.

We will introduce two modified versions of the encryption algorithm E in this section, the algorithms E
and Ê. The algorithm Ê is essentially a syntactic modification of E that is useful in specifying exactly how
we would like to perturb the ciphertexts.

We want to construct the algorithm E so that it constructs perturbed ciphertexts that the decryption
oracle will not always decrypt to ⊥. In order to do this we will make clear use of our restriction on D in
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Assumption 25 (page 22) that requires that D not query the sub-oracle e. We observe that if this restriction
is upheld, then D does not have the ability to distinguish between different random encryptions of the same
bit under the same public-key, even when D is given the random bits r used to construct the encryptions.
More specifically, for randomly chosen b, r and r′, given the encryptions c = e(pk , b, r), c′ = e(pk , b, r′) and
the strings b, r and r′ an algorithm with access to SK , such as the algorithm D, cannot determine if c or c′

corresponds to the response to e(pk , b, r) with probability substantially better than 1/2. This is because O
has been chosen randomly, and due to the random selection of r and r′ it is highly unlikely that information
about c or c′ has been embedded into SK , and this would be the only way in which the algorithm could learn
such information.

To see how the above observation relates to creating perturbed ciphertexts, let us consider an execution
EO(PK ,M,R)→ C that performs the query/response (< e, pk , b, r >, c). Now consider the same execution
EO(PK ,M,R) except that on the query (e, pk , b, r) we replace the oracle’s response with e(pk , b, r′) = c′.
Let the output of the modified execution of E be C′. We should intuitively expect that DO(SK , C′) = M ,
as D cannot distinguish between the two different executions of E. Of course things aren’t so simple! There
is an exception to this intuition: if during the execution of E we replace e’s response to the query (e, pk , b, r)
with e(pk , b, r′), but the query (e, pk , b, r) was made during the execution of GO(S∗) and the values pk , b, r
and e(pk , b, r) were embedded into SK then D might easily distinguish between the two cases, and in the
case of such an embedding there is no reason to expect D to output M . Fortunately, we can handle this
special case by only modifying responses to queries (e, pk , b, r) that are unlikely.

The algorithm E is a simple modification of E. The algorithm E will simulate the execution of E, and thus
must take all of E’s inputs as its own. In addition E will take two additional inputs, both of which are sets.
The first set, KS , describes those public-keys for which it is possible for E to modify the results of encryption
queries performed by E (we are interested in those public-keys pk that are likely to be embedded into PK ,
and so we have in mind using the set KS retrieved in Exp1 as the input). The second set, IQ, describes
oracle query/responses that are immutable. That is, if a query in IQ is made during the simulation of E
then the result of the query will not be modified (we have in mind providing the set IQ computed in Exp1

as this input). During the execution of E, if there is a query (e, pk , b, r) where pk ∈ KS and (e, pk , b, r) /∈ IQ
then the query is modified and the result of e(pk , b, r′), for a random r′, is returned instead of the anticipated
e(pk , b, r).

This new algorithm is formally described below. In its description a sequence MQ (Modified Queries)
is constructed, but has no effect on the algorithm. The purpose of this sequence is to help prove certain
properties of this algorithm in a later lemma.

For each n ∈ N our algorithm takes as input strings PK ∈ {0, 1}n
ρ1

, M ∈ {0, 1}, R′ = (R1, R2) ∈
{0, 1}n

ρ2+nqs

and a set of public-keys KS and a set of query/responses IQ. Let |R1| = nρ1 and |R2| = nqs.

E
O

(PK ,M,R′ = (R1, R2),KS ,IQ)
(1) Let MQ = λ (An empty sequence)
(2) Simulate the execution of EO(PK ,M,R1)
(3) On oracle query (g, sk ) reply with g(sk ).
(4) On oracle query (d, sk , c) reply with d(sk , c).
(5) On oracle query (e, pk , b, r)
(6) If pk /∈ KS or (e, pk , b, r) ∈ IQ reply with e(pk , b, r).
(7) otherwise
(8) say (e, pk , b, r) is marked for interchange
(9) reply with replacement response e(pk , b, r′) for r′ ∈R {0, 1}

|pk |/3 (from R2).
(10) MQ←MQ, < e(pk, b, r), (e, pk , b, r), e(pk , b, r′), (e, pk , b, r′) >
(11) Output the result of simulation

We note that R1 is used to provide random bits for the simulation of the execution of EO and R2 is used
to provide the random bits for replacement queries to e that are made during the simulation (line 9 of E).
Since EO will make at most nq queries of size at most ns, we are guaranteed that R2 contains a sufficient
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number of bits9. We now prove that with properly specified sets IQ and KS , a ciphertext C′ that results

from E
O

(PK ,M,R′,KS , IQ), for random M and R′, is likely to to decrypt properly (i.e. DO(SK , C′) = M).

Running Example 2. We continue the running example. We would like to ground our algorithm E by

considering an execution of E
O

(PK ,M,R′ = (R1, R2),KS , IQ), for the public-key PK and sub-oracle O in
Envn, and KS and IQ in E1

n found in Running Example 1. We remind the reader, that based on Running
Example 1 we have KS = {pk1, ..., pk6} and that (< e, pk6, 0, S8 >, k1), (< e, pk6, 0, S9 >, k2) ∈ IQ.

Now suppose the execution of EO(PK ,M,R) outputs a ciphertext C = (1, k1, k2, c1, ..., c5), then an execu-

tion of E
O

(PK ,M,R′ = (R,R),KS , IQ) will output C′ = (1, k1, k2, c
′
1, ..., c

′
5), which is explained as follows:

for each value of i where 1 ≤ i ≤ 5, the query (e, pk i,M,Ri), with corresponding response ci, computed in
E

O(PK ,M,R) is marked for interchange in the execution of E and replied to with a replacement response
e(pk i,M, r′i) = c′i where r′i is now a random string derived from R instead of R. We note that k1 and k2 are
not modified since (< e, pk6, 0, S8 >, k1), (< e, pk6, 0, S9 >, k2) ∈ IQ.

We note that it should not be surprising that DO(SK , C′) = M , as we have simply replaced random
encryptions e(pk i,M,Ri) = ci with alternative encryptions e(pk i,M, r′i) = c′i. We point out that had we
designed E so that it modified the response to the query e(pk6, 0, S8) = k1 or e(pk6, 0, S9) = k2, then had the
resulting ciphertext been given to the decryption oracle, the response would almost surely have been ⊥.

The next lemma demonstrates that in our experiment the ciphertexts produced by E are likely to decrypt
to the intuitively correct value.

Lemma 38. For every Envn ← Env(n) and every Exp1(Envn) where BAD1 ∧BAD2 holds:

Pr
M∈{0,1},R′=(R1,R2)∈{0,1}nρ2+qs

E
O

(PK ,M,R′,KS ,IQ)→C′

[DO(SK , C′) 6= M ] ≤ n2q/nα1−2 + n2q/nα0 ,

where PK is defined by Envn and KS and IQ are defined in Exp1.

Proof. We construct a sub-oracle O′ = (g, e′,d) that is nearly identical to O. The difference between O

and O′ are such that they guarantee that O′
defn
= (g, e′,d,w,u) could have been produced by the random

process Υ. Our goal is to show that GO′

(S∗) = (PK ,SK ) and that EO′

(PK ,M,R1) → C′. If these
conditions hold, then by Assumption 23 it’s necessarily the case that DO′

(SK , C′) = M . However, since
DO′

(SK , C′) = Dg,d(SK , C′), by our restriction on queries to e by D and the fact that O′ and O differ only
between e and e′, we have that DO(SK , C′) = M , proving the lemma.

Let (< c1, γ1, c
′
1, γ
′
1 >, ..., < ci, γi, c

′
i, γ
′
i >) =MQ be the sequence of queries marked for interchanged and

replacement responses that were generated during the execution of E
O

(PK ,M,R′,KS , IQ). To construct O′

we begin with O′
defn
= O. Next, for each j from 1 to i we modify O′ by setting O′(γj)← c′j and O′(γ′j)← cj

in sequence. By the construction of O′ it’s the case that EO′

(PK ,M,R1)→ C′, and therefore, it suffices to
show that with high probability GO′

(S∗) = (PK ,SK ). It is sufficient to show that with high probability O
and O′ are consistent on the set that contains all of the queries made during the execution of GO(S∗) during
Env(n). Call this set G. We show that for every (c, γ, c′, γ′) in the sequenceMQ that with high probability
neither the query γ that is marked for interchange, nor the replacement query γ′ is in G, and since none of
the queries that are modified between O and O′ are in G, it must be the case that GO′

(S∗) = (PK ,SK ).
Since BAD2 holds, any query that is made with probability at least 1/nα1−2 is contained in E ⊆ IQ.

Therefore, for any fixed query φ ∈ G, the probability that the execution of E
O

(PK ,M,R′,KS , IQ) will
mark φ for interchange is upper-bounded by nq/nα1−2, as queries in IQ will not be interchanged and E will
perform at most nq queries. There are at most nq queries in G, so the probability that there is a marked
query in G is upper-bounded by n2q/nα1−2.

There are at most nq replacement queries made during the execution E
O

(PK ,M,R′,KS , IQ), and the
probability that a replacement query is in G is less than |G|/nα0 , as the query being replaced is not in SQ ,
as SQ ⊆ IQ and is therefore no larger than α0 · logn. As BAD1 holds, there are at most nq replacement
queries made, and therefore the probability that a replacement query is made that is in G is upper-bounded
by n2q/nα0

9We remind the reader that these restrictions are defined in Assumption 20
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K.1.1 A Generalized Version of the E Algorithm

Now that we’ve shown that E
O

(PK ,M,R′,KS , IQ), for random M ∈ {0, 1} and R′ ∈ {0, 1}n
ρ2+nqs

, is likely
to produce a perturbed ciphertext C for which DO(SK , C) = M , we consider a variant of the algorithm,

D̂, that will allow us to specify how to perturb the ciphertexts produced by E in a precise manner. This
specificity will facilitate the exposition of Exp2.

Given a set KS , where |KS | = m, for each i ≤ m let pk i = Index (i,KS)10. Let:

ÊO(PK ,M,R,KS , IQ, c
pk1,0
1 , ..., c

pk1,0
nq , c

pk1,1
1 , ..., c

pk1,1
nq , · · · , c

pkm,0
1 , ..., c

pkm,0
nq , c

pkm,1
1 , ..., c

pkm,1
nq )

be a modified version of the algorithm E: on the ith query (e, pk j , b, r) where (e, pk j , b, r) /∈ IQ the algorithm

will respond with the value c
pkj ,b

i specified in the input. This is formally defined below.

ÊO(PK ,M,R,KS ,IQ, c
pk1,0
1

, ..., c
pk 1,0
nq , c

pk 1,1
1

, ..., c
pk 1,1
nq , · · · , c

pkm,0
1

, ..., c
pkm,0
nq , c

pkm,1
1

, ..., c
pkm,1
nq )

∀ pk ′ ∈ KS , b′ ∈ {0, 1} set δpk ′,b′ ← 0

Simulate Execution EO(PK ,M,R)
On query (g, sk ) reply with g(sk ).
On query (d, sk , c) reply with d(sk , c).
On query (e, pk , b, r)

If pk /∈ KS or (e, pk , b, r) ∈ IQ reply with e(pk , b, r).
otherwise
δpk ,b ← δpk ,b + 1

reply with cpk ,bδpk ,b
Output result of simulation

As was stated previously, it is easy to use Ê to simulate E, and this is formalized in the following
observation.

Observation 39. For every n, Envn = (O,PK ,SK , S∗) ← Env(n) and E1 = (Envn,KS , IQ, E ,SQ) ←
Exp1(Envn), KS = {pk1, . . . , pkm}, IQ, M ∈ {0, 1} and R1 ∈ {0, 1}n

ρ
2 the following experiments result in

the same distribution of outputs:

E
O

(PK ,M, (R1, R2),KS , IQ) for randomly chosen R2 ∈ {0, 1}n
qs

ÊO(PK ,M,R1,KS , IQ, c
pk1,0
1 , ..., c

pkm,1
nq ) where cpk ,bi ← e(pk , b, r(pk ,b,i)) for each pk ∈ KS, b ∈ {0, 1},

1 ≤ i ≤ nq and for randomly chosen r(pk ,b,i) ∈R {0, 1}
|pk|/3.

The reason for introducing Ê is to permit it to simulate executions of E in addition to performing
experiments in which each input cpk ,bi to Ê is not necessarily assigned a value e(pk , b, r(pk ,b,i))) for a randomly
chosen r(pk ,b,i). Specifically, we will perform a number of hybridization experiments, where we vary the

different inputs c∗,∗,∗∗ to Ê, so that we can see how the changes effect the decryption oracle’s ability to
decrypt the perturbed ciphertexts it produces. To facilitate the discussion of these hybrid experiments, we
introduce a function ζ that is used to index the different values cpk ,bi that are input into Ê. We also define
some terms that will help to describe these hybridization experiments.

Definition 40. Let ζ : Z+ × {0, 1} × [nq] → Z+, be defined so that ζ(a, b, c) = (2(a− 1) + b) · nq + c. Note
that ζ is one-to-one and onto and therefore its inverse is well defined.

The definition of ζ permits us to discuss executions of ÊO(PK ,M,R1,KS , IQ, c1, . . . , cζ(|KS|,1,nq)) in-

stead of ÊO(PK ,M,R1,KS , IQ, c
pk1,0
1 , ..., c

pkm,1
nq ), which will make it easier to discuss certain hybridization

experiments. To facilitate discussion about the inputs to Ê we introduce the following terms.

10We remind the reader that the definition of Index is given in Notn. 8
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Definition 41. Given an execution of ÊO(PK ,M,R1,KS , IQ, c1, . . . , cζ(|KS|,1,nq)) we will refer to c1 through

cζ(|KS |,1,nq) as the ciphertext inputs of Ê, and ci as the ith ciphertext input of Ê. Similarly, if i = ζ(j, b,m)
and the ith ciphertext input is of the form ci = e(pkj , b, ∗) then we say the ith ciphertext input is an encryption
of the correct bit; if ci = e(pk j , 1 − b, ∗) then we say the ith ciphertext input is an encryption of the
wrong bit; and finally if ci = e(pk j , b

′, ∗) for a randomly chosen b′, then we say the ith ciphertext input is
an encryption of a random bit.

This definition makes it easier to discuss hybrid experiments involving Ê. Another term that is useful for
exposition with regard to the algorithms E and Ê is the notion of proper decryptions.

Definition 42. For any n, any Envn ← Env(n), M ∈ {0, 1}, and C ← E
O

(PK,M, ∗, ∗, ∗) we say that C de-

crypts properly if DO(SK , C) = M . Similarly, we say C decrypts properly if C ← ÊO(PK,M, ∗, ..., ∗)
and DO(SK , C) = M.

K.2 Finding the Useful Secret-keys That are Embedded into SK

We will now give a high-level description of the second part of A1’s experiment (we remind the reader that A1

is the first part of the CCA#1 adversary). The description is both intuitive and informal; the intuition will
be properly formalized later. The goal of Exp2, the second part of the experiment, is to retrieve a large set of
secret-keys for the PKEP defined by O that are embedded into the secret-key SK defined by the adversary’s
environment. As the adversary does not have access to SK , the experiment must be designed to learn what
it can about these embedded secret-keys through access to the adversary’s decryption oracle.

The second part of the experiment retrieves many of the secret-keys (of the PKEP O) whose corresponding
public-keys are contained in the set KS that was retrieved in Exp1. These public-keys are the ones that are
used frequently during executions of EO(PK ,M,R), for random M and R, and so it stands to reason that
knowledge of the corresponding secret-keys may be necessary to decrypt the ciphertexts generated by the
random executions of E. The adversary retrieves these keys by using the algorithm Ê, the oracle w and its
ability to compute DO(SK , ·) through queries to its decryption oracle

The second part of the adversary’s experiment begins by defining the set BKS
defn
= KS as the set of bad

public-keys retrieved in Exp1 whose corresponding secret-keys are not known (BKS is short for Bad Key
Set). As Exp2 progresses and such secret-keys are found, the contents of the set BKS will be updated. The
experiment Exp2 will perform a series of w = ζ(|BKS |, 1, nq) sub-experiments. These sub-experiments set-up
a traditional cryptographic hybridization experiment, where the hybridization is occurring over the ciphertext
inputs to Ê. At the beginning of the hybridization, in the first sub-experiment, all of the ciphertext inputs
to Ê come from the same distribution as they would during a random execution of E. In other words, each
ciphertext input to Ê corresponds to a random encryption of a correct bit (Defn. 41); as the experiment
progresses through the hybridization, each sub-experiment replaces more and more of the ciphertext inputs
to Ê with encryptions of randomly chosen bits (Defn. 41). At the end of the hybridization, in the last sub-

experiment, each ciphertext input to Ê is an encryption of a randomly chosen bit. In each sub-experiment,
we will be interested in the probability that the constructed perturbed ciphertexts decrypt properly. By
Lemma 38 and Observation 39 , the ciphertexts produced by Ê in the first hybridization sub-experiment
will decrypt properly with high probability, as the decryption algorithm essentially cannot tell the difference
between ciphertexts produced by E and E, and Ê’s output is equivalent to E’s in this sub-experiment. In
contrast, we expect that the ciphertexts produced at the end of the hybridization, in the last sub-experiment,
will not decrypt properly, as the ciphertext inputs to Ê in this sub-experiment are not in any way correlated
to the correct bits. As is standard with hybridization experiments, we will make use of the first large gap
between successive sub-experiments of the probability that perturbed ciphertexts decrypt properly. We will
perform w = ζ(|BKS |, 1, nq) such sub-experiments: one for each ciphertext input to Ê.

Let us describe the sub-experiments in more detail. The ith sub-experiment estimates the probability, pi,
that DO(SK , C) = M when C is generated by an execution

C = ÊO(PK ,M,R,BKS , IQ, c1, ..., cw),

where M and R are chosen randomly; IQ is the set constructed during Exp1; c1, ..., ci correspond to random
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encryptions under e of random bits; and ci+1, ..., cw correspond to ciphertext encryptions of correct bits 11.
Once the different values p1, ..., pw have been calculated, the experiment finds the smallest value ℓ for which
|pℓ − pℓ−1| is large. This value ℓ is interesting and useful, as there is a big difference between the probability
that the ciphertexts generated in sub-experiment ℓ − 1 decrypt properly as opposed to those generated in
sub-experiment ℓ.

The experiment makes use of the large gap in order to help recover the secret-key sk∗ℓ = g−1(pk ℓ). In
order to simplify the discussion of how sk∗ℓ is retrieved, we will assume that |sk∗ℓ | = n, and thus |pk ℓ| = 3n;
and further, we let the bit-wise representation of sk∗ℓ be (sk∗ℓ,1, ..., sk

∗
ℓ,n). The experiment will retrieve each

bit of sk∗ℓ individually. We will describe how the experiment retrieves sk∗ℓ,1, and note that the experiment
uses a similar process to retrieve the remaining bits of sk∗ℓ .

In order to retrieve sk∗ℓ,1, the experiment generates an estimate π of the probability that the ciphertexts
generated in the following experiment decrypt properly.

The experiment generates
C = ÊO(PK ,M,R,BKS , IQ, c1, ..., cw),

whereM and R are chosen randomly, IQ is the set constructed during Exp1. The ciphertext inputs c1, ..., ci−1

are encryptions of random bits. The input ciphertexts ci+1, ..., cw are encryptions of correct bits. Finally, the
ith ciphertext input is an encryption, e(pk ℓ, sk ℓ,1, r), that is retrieved by using the response from an oracle
query w(pk ℓ, ·).

The key observation about the estimate π is the following: if sk∗ℓ,1 = bℓ then the probability that the
ciphertexts generated in the described experiment will decrypt properly is exactly pℓ−1, as the experiment
generates the same distribution on ciphertexts as that generated in sub-experiment ℓ − 1. In contrast, if
sk∗ℓ,1 = 1 − bℓ then the probability that the ciphertexts generated in the described experiment will decrypt
properly is closer to pℓ. Therefore, because of the large gap between pℓ and pℓ−1 the experiment is able to
confidently predict the value of sk∗ℓ,1.

Once we have retrieved sk∗ℓ , we remove pk ℓ from BKS and we begin the whole process of generating hybrid
sub-experiments to calculate the different values pi over again, but note that the set BKS is now smaller,
and so this process cannot continue ad infinitum. Therefore, this process continues until either BKS is the
empty set, and thus we have retrieved all of the secret-keys that we were interested in; or until for a fixed
set BKS there does not exit an ℓ where the gap between pℓ and pℓ−1 is large. This latter case intuitively
corresponds to the situation where it is not essential to retrieve the remaining secret-keys corresponding to
the remaining public-keys in BKS in order to properly decrypt the ciphertext generated by E. For an example
of this latter case, consider an public-key pk = g(sk ) that is embedded into PK , and for which an execution
of EO(PK ,M,R) = C is likely to embed a value c = e(pk , b, r) into C; and finally during DO(SK , C) the
query d(sk , c) is made, but the returned value is ignored, clearly in such a situation it is not necessary, nor
even possible using the techniques presented here, to retrieve sk .

K.3 The Formal Description of the Second Part of the Experiment

We now give the formal definition of the second part of the experiment. As described in Section K.2, there
are many situations in which the experiment needs to perform sampling to approximate the probability that
certain ciphertexts generated by Ê decrypt properly. Further, in all of these samplings we perform many
different executions Ê with inputs that come from nearly identical distributions. Therefore, in order to allow
us to succinctly describe the sampling in this part of the experiment we introduce two helper routines: Ê-Err
and ApproxErrorRate.

K.3.1 The subroutine Ê-Err

The subroutine Ê-Err both generates the different encryptions needed in the different hybridization sub-
experiments and determines if the generated ciphertexts decrypt properly. The protocol takes as inputs the
set of bad public-keys, BKS ; a set of immutable queries, IQ; a public/secret-key pair (PK ,SK ); an index

value t between 1 and w = ζ(|BKS|, 1, nq); and a value c∗ representing the tth ciphertext input to be used

11More specifically, for each t ≤ w let (jt, bt, ∗)← ζ−1(t) and pk t ← Index(jt,BKS); then for each t ≤ i we have ct ← e(pk t, b
′
t, rt)

for randomly chosen b′t and rt; and he for each t > i, we have ct ← e(pk t, bt, rt) for randomly chosen rt.
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as an input for Ê. The subroutine returns 1 or 0 depending on whether or not DO(SK , C) = M for a

ciphertext C generated as follows: the subroutine computes C = ÊO(PK ,M,R,BKS , IQ, c1, ..., cw), where
the ciphertext input ck correspond to a random encryption under e of random bits for k < t; ct is set to the
input c∗; and, for k ≥ t+1, the input ck is a random encryption under e of the bit bk, where (∗, bk, ∗) = ζ−1(k).
The algorithm’s pseudo-code is given below:

Ê-Err(t,BKS ,IQ, (PK ,SK ), c∗)
(1) Choose M ∈R {0, 1}
(2) Choose R ∈R {0, 1}

nρ2

(3) Let w ← ζ(|BKS |, 1, nq)
(4) for k = 1 to w
(5) Let (ℓk, bk, ∗)← ζ−1(k) and let pkk ← Index (ℓk,BKS ).
(6) IF k < t THEN c̄k ← e(pk k, b̄, r) WHERE r ∈R {0, 1}

|pkk |/3 AND b̄ ∈R {0, 1}
(7) ELSE IF k = t THEN c̄k ← c∗

(8) ELSE ck ← e(pk k, bk, r) WHERE r ∈R {0, 1}
|pkk |/3

(9) C ← ÊO(PK ,M,R,BKS ,IQ, c̄1, ..., c̄t, ct+1, ..., cw)
(10) M ← DO(SK , C)
(11) IF M 6= M output 1 ELSE output 0

K.3.2 The Subroutine ApproxErrorRate

The subroutine ApproxErrorRate approximates the probability that certain distributions of ciphertexts do
not decrypt properly. The algorithm ApproxErrorRate does this by randomly executing Ê-Err a polynomial
number of times and then averaging the returned results.

We wish to use ApproxErrorRate to approximate the error rate for the different hybridization sub-
experiments, and therefore we need to ensure that we can specify those different distributions by appropriately
setting the inputs to ApproxErrorRate. In order to be able to execute Ê-Err , ApproxErrorRate takes as input
a set of immutable queries IQ, a set of bad public-keys BKS , an index value t and a public-/secret-key pair
(PK ,SK ) and a set of ciphertext inputs D. Given these values, ApproxErrorRate performs n2α4 independent

and random executions of Ê-Err(t,BKS , IQ, (PK ,SK ), c∗). Observe that all of the inputs to Ê-Err have
been specified except for the inputs c∗, and these values are specified by the set D in two possible ways: if
D = ∅ then c∗ is chosen to be a random encryption of a random bit; alternatively, if c∗ is not empty, then the
value c∗ is specified by D. The experiment will execute ApproxErrorRate with D = ∅ when it is estimating
probabilities in the hybrid sub-experiments. In contrast, the experiment will execute ApproxErrorRate with
D containing results returned from queries to w, when it is attempting to retrieve the secret-keys embedded
in SK .

The formal specification of the algorithm is given below 12.

12In the definition of the subroutine ApproxErrorRate and the definition of Exp2 we use the Index function. We remind the
reader that this is defined in Notn. 8.
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ApproxErrorRate (t,D, (PK ,SK ),IQ,BKS )
(1) error ← 0
(2) for z = 1 to n2α4

(3) IF D 6= ∅ let c∗ ← Index (z,D)
(4) ELSE
(5) Let (ℓt, ∗, ∗) ← ζ−1(t) and let pk t ← Index (ℓt,BKS ).
(6) c∗ ← e(pk t, b, r) WHERE r ∈R {0, 1}

|pkk |/3 AND b̄ ∈R {0, 1}
(7) error ← error + Ê-Err(t,BKS ,IQ, (PK ,SK ), c∗).
(8) OUTPUT error/nα4 .

K.3.3 Exp2: The Second Part of the Experiment

We finally give the formal description of the second part of the experiment. Because Exp2 is properly viewed
as a continuation of Exp1, it takes as input a valueE1

n = (Envn,KS , IQ, E ,SQ)← Exp1(Envn) that includes
all of the values and sets calculated in Exp1(Envn) and all of the elements contained in Envn ← Env(n).

Exp2(E
1
n = (Envn = (O,PK ,SK , S∗),KS ,IQ, E ,SQ))

(1) Let BKS 0 ← KS
(2) Let GKS 0 ← ∅
(3) for τ = 1 to |KS |
(4) w ← ζ(|BKS |, 1, nq)
(5) for t = 0 to w
(6) Let pt = ApproxErrorRate (t, ∅, (PK ,SK ),IQ,BKS τ−1)
(7) ∆← {j| 1 ≤ j ≤ w and |pj − pj−1| >

1

nα6
}

(8) If ∆ = ∅ then
(9) τ∗ ← τ
(10) BKS ∗ ← BKS τ−1 and GKS ∗ ← GKS τ−1

(11) Output (τ∗,BKS ∗,GKS ∗, E1
n)

(12) FINISH EXPERIMENT
(13) ℓ← min ∆
(14) (i, b, ∗)← ζ−1(ℓ)
(15) Let pk ← Index (i,BKS τ−1) and say it is CHOSEN by ℓ
(16) ψ ← |pk|/3
(17) For each k (1 ≤ k ≤ ψ) set Dk ← ∅
(18) for z = 1 to n2α4

(19) (d1, ..., dψ)← w(pk , z) (we consider z a binary string)
(20) For each k (1 ≤ k ≤ ψ) set Dk ← Dk ∪ {dk}
(21) for k = 1 to ψ
(22) πk ← ApproxErrorRate (ℓ,Dk, (PK ,SK ),IQ,BKS τ−1)
(23) If |πk − pℓ−1| ≥ 1/nα5 then skk ← 1− b otherwise skk ← b
(24) Let sk = (sk 1, ..., skψ)
(25) If g(sk) 6= pk HALT
(26) For each k ≤ ψ and each d ∈ Dk query d(sk , d)
(27) GKS τ ← GKS τ−1 ∪ {(pk , sk)}
(28) BKS τ ← BKS τ−1 \ {pk}

We briefly map how the intuitive description Exp2 that was presented in Section K.2 corresponds to the
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formal description of Exp2 presented above. The experiment is iteratively attempting to retrieve secret-keys
that correspond to the public-keys in KS . In each iteration of the for loop between lines 3 and 28, the
algorithm attempts to retrieve one such secret-key. We consider one such iteration.

In lines 5 and 6 the experiment iteratively performs the different hybrid sub-experiments that find esti-
mates, pt, of the probability that ciphertexts decrypt properly when they are generated by executions of the
form:

ÊO(PK ,M,R,BKS τ−1, IQ, c1, ..., cw),

where c1, .., ct correspond to ciphertext inputs of encryptions of random bits, and ct+1, ..., cw correspond to
ciphertext inputs of encryptions of correct bits. In lines 7 and 12 the experiment looks for the smallest value
t where there is a big gap between pt and pt+1, and the experiment is terminated if there is no such gap. In
lines 18 to 20 the experiment queries w in order to get ciphertexts that represent an encrypted version of the
secret-key sk = g−1(pk ), where pk = Index (t,BKS τ−1).

In lines 22 to 25 the experiment attempts to decrypt the encrypted versions of sk = g−1(pk) that were
retrieved from w. This is done by taking the ciphertexts returned by w and separating them into sets that
represent different encryptions of each bit of sk . The experiment then separates the different encryptions of
each bit of sk into different sets on line 20. Once these sets have been established, the experiment uses them
as inputs to ApproxErrorRate. For every such set, the experiment calls ApproxErrorRate and estimates the
probability that a certain distribution of ciphertexts generated by Ê will properly decrypt. This probability
will either be close to pt or pt+1, and this will indicate if the bit of sk is likely a 1 or 0. The experiment is
halted on line 25 if sk is retrieved incorrectly, as this will cause problems with future analysis. However, we
show that such a case is unlikely.

We want to show that with high probability the second part of the experiment will finish on line 12 and
not on line 25. If the experiment finishes on line 12, it implies that all of the secret-keys sk = g−1(pk)
that are in some sense necessary to properly perform decryptions with the algorithm DO(SK , ·) have been
retrieved. Showing this will be the main focus of later sections of the chapter. For now, we will settle on
the more immediate goal of showing that with high probability the experiment will halt on line 12 of Exp2

and thus retrieve all of the secret-keys of interest. However before we do this, we will continue our running
example, in an attempt to ground the reader’s understanding of Exp2.

K.4 The Running Example for Exp2

Running Example 3. We remind the reader that in Running Example 1 it was decided that KS =
{pk1, ..., pk6}. It is the goal of Exp2 to retrieve as many values in the set {sk1 = g−1(pk1), ..., sk6 =
g−1(pk6)} as is possible. In order to do so, Exp2 will begin by performing the hybridization sub-experiments,
described in lines 5 through 6, in order to calculate the estimates, pt, of the probability that ciphertexts decrypt
properly when they are generated by executions of the form:

Ê

O
(PK ,M,R,BKS τ−1, IQ, c1, ..., cw),

where c1, .., ct correspond to ciphertext inputs of encryptions of random bits, and ct+1, ..., cw correspond to
ciphertext inputs of encryptions of correct bits.

For the sake of exposition, we will assume that pk i ≺ pk i+1. This assumption implies that in the execution
of Exp2, it is likely that the first large gap that appears in the respective estimates is between p4q and p4q+1.
The reason for this is that the replacement of ciphertext inputs corresponding to correct bits (Defn. 41)
with ciphertext inputs corresponding to random bits, will have no effect in the first 4q hybridization sub-
experiments; to see why, we recall the definition of D, presenting it below, and then observe the difference in
its behaviour between the the two sub-experiments.

• DO(SK , C): Let C = (b, k′1, k
′
2, c1, c2, . . . , c5) where b ∈ {0, 1}, k′1, k

′
2 ∈ {0, 1}

n and each ci ∈ {0, 1}n.
Let SK = (sk0, ..., sk5, sk6, k1, k2) where each sk i ∈ {0, 1}

n.

If k′1 6= k1 or k′2 6= k2 output ⊥.
Otherwise, if d(sk6, k

′
1) 6= 0 or d(sk6, k

′
2) 6= 0 output ⊥.

Otherwise, If b = 0, then output d(sk0, c0).
Otherwise, let Mi = d(sk i, ci) for each i ≤ 5, and output Majority(M1, ...,M5),
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We observe the difference in behaviour between the 4q and 4q + 1st sub-experiment

• In the first 4q hybridization sub-experiments, it will be the case that a ciphertext C = (b, k′1, k
′
2, c1, c2, . . . , c5)

generated by a call to Ê
O

(PK ,M,R,BKS0, IQ, c1, ..., cw) in ApproxErrorRate will have the property
that neither d(sk1, c1) = M1 nor d(sk2, c2) = M2 will necessarily equal M . However, due to the fact
that D outputs Majority(M1, ...,M5) and M3 through M5 will necessarily equal m, this will will not
effect the probability of a correct decryption in an execution of DO(SK , C), and therefore p4q ≈ p0

• In the 4q + 1st hybridization sub-experiment, approximately half the ciphertexts generated by a call to

Ê

O
(PK ,M,R,BKS0, IQ, c1, ..., cw) in ApproxErrorRate will have M = 0. Consider such a case where

C∗ = (b, k′1, k
′
2, c
∗
1, c
∗
2, . . . , c

∗
5) = Ê

O
(PK , 0, R,BKS0, IQ, c1, ..., cw)

in ApproxErrorRate. In this case c∗1 = c1, c
∗
2 = c2q+1 and c∗3 = c4q+1, and therefore we have the property

that M1 = d(sk1, c
∗
1) = M2 = d(sk1, c

∗
2) = M3 = d(sk3, c

∗
3) = 1 with a constant probability of 1/8. Now,

due to the fact that D outputs Majority(M1, ...,M5), this will will imply that with constant probability
D

O(SK , C∗) would output 1 as opposed to 0, and therefore there will be an improper decryption. This
implies that there should be a large gap of approximately 1/16 between the estimates p4q and p4q+1.

Based on the above analysis, we expect ℓ to be assigned the value 4q+ 1 on line 13 of Exp2, and thus pk3

is chosen by ℓ on line 15. This implies that Exp2 will attempt to retrieve sk3 in the first iteration of the for
loop that falls between lines 3 and 28.

In order to retrieve sk3, Exp2 queries w(pk3, ∗) a number of times, in order to retrieve a number of
different bit-wise encryptions of sk3. This is done on line 19 of Exp2. Next, Exp2 separates these bit-wise
encryptions into a number of sets D1, . . . ,Dn, where Di contains all of the bit encryptions of the ith bit of
sk3. This is done in lines 18 through 20 of Exp2.

Given each set Di, Exp2 will attempt to retrieve the ith bit of sk3. The same process is used to retrieve
each bit, so we only consider the process used to retrieve the first bit. We consider two cases:

The first bit of sk3 is 0 , and this implies that all of the ciphertext encryptions in D0 represent random
encryptions of the bit 0. Therefore, the execution of ApproxErrorRate(4q+1,D0, (PK ,SK ), IQ, BKS0))
will calculate an estimate, π0, of the probability of a decryption error for ciphertexts generated randomly
by an execution of

Ê

O
(PK ,M,R,BKS τ−1, IQ, c1, ..., cw),

where c1, .., c4q correspond to ciphertext inputs of encryptions of random bits and c4q+1, ..., cw correspond
to ciphertext inputs of correct bits. Thus π0 is an estimate of exactly the same value as is p4q.Therefore,
if π0 ≈ p4q then Exp2 assumes the first bit of sk is a 0.

The first bit of sk3 is 1 and this implies that all of the ciphertext encryptions in D0 represent random
encryptions of the bit 1. Therefore, the execution of ApproxErrorRate(4q+1,D0, (PK ,SK ), IQ, BKS0))
will calculate an estimate, π0, of the probability of a decryption error for ciphertexts generated randomly
by an execution of

Ê

O
(PK ,M,R,BKS τ−1, IQ, c1, ..., cw),

where c1, .., c4q correspond to ciphertext inputs of encryptions of random bits; c4q+1 corresponds to a
ciphertext input of an encryption of an incorrect bit; and c4q+2, ..., cw correspond to ciphertext inputs
of correct bits. We stress that the ciphertext c4q+1 will always represent an encryption of 1, whereas if it
represented a correct bit, it would be an encryption of 0. In this case π0 is not an estimate of p4q or p4q+1.
However, π0 is not going to be close to p4q. During ApproxErrorRate, in the half of the cases where a ci-

phertext is constructed as follows: C = (b, k′1, k
′
2, c1, c2, . . . , c5) = Ê

O
(PK ,M,R,BKS τ−1, IQ, c1, ..., cw)

and M = 0, then with probability 1/4 C will not decrypt properly. It will be the case that M1 =
d(sk1, c

∗
1) = M2 = d(sk1, c

∗
2) = 1 with probability 1/4 and since in this case it is always the case that

M3 = d(sk3, c
∗
3) = 1, Majority(M1, ...,M5) = 1 with probability 1/4, and therefore the ciphertext de-

crypts improperly with same probability. Therefore, |p4q − π0| ≈
1
2 ·

1
8 and so Exp2 assumes that the

first bit of sk is a 1.
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The above process is repeated to retrieve each bit of sk3, until the experiment has a hypothesized version
of the key sk. Next, Exp2 verifies that it retrieved the correct secret-key, by querying g(sk) and ensuring
it responds with pk3. In the unlikely event that correct secret-key was not retrieved the experiment halts.
Otherwise, the key pair (pk3, sk3) is added to GKS (the Good Key Set), pk3 is removed from BKS (the bad
key set), and the entire process is repeated in an attempt to find more of the secret-keys that correspond to
the public-keys remaining in BKS.

We point out that in our running example, we expect that Exp2 will finish with GKS = {(pk3, sk3), ..., (pk6, sk6)}.
We note that sk1 and sk2 will not be retrieved, as they are effectively unessential for decryption, given that
we know sk3 through sk6.

K.5 Bounding the Probability that Exp2 Halts

The next definition formalizes the different probabilities that we are trying to estimate in line 6 of Exp2 with
the calculation of pt and πk.

Definition 43. Given any n, Envn ← Env(n), E1
n ← Exp1(Envn) where BAD1 holds, for every BKS ⊆

KS, w = ζ(|BKS |, 1, nq) and t such that 1 ≤ t ≤ w, we define the values:

Pt,BKS ,E1
n

= Pr[Ê-Err(t,BKS , IQ, (PK ,SK ), e(pk , b, r)) = 1] and

P̂t,BKS ,E1
n

= Pr[Ê-Err(t,BKS , IQ, (PK ,SK ), e(pk , 1− b, r)) = 1],

where (ℓ, b, ∗) = ζ−1(t) and pk = Index (ℓ,BKS ). In both cases the probability is over the random choices

made by Ê-Err and the random choice of r ∈R {0, 1}|pk|/3. When the random variable E1
n is clear from

context we denote Pt,BKS ,E1
n

as Pt,BKS , and, similarly, we denote P̂t,BKS ,E1
n

as P̂t,BKS .

We note that if we fix any n, for every Envn ← Env(n) and E1
n ← Exp1(Envn) where BAD1 holds,

then for every BKS ⊆ KS and every ℓ > 1 there is a natural relation between Pℓ,BKS and P̂ℓ,BKS :

Pℓ,BKS = 1/2(Pℓ−1,BKS + P̂ℓ,BKS ). (1)

This is observed by noting that the only difference between the definitions of Pℓ−1,BKS and P̂ℓ,BKS is the

input c∗ to Ê-Err , which is set to be e(pk , b, r) or e(pk , 1−b, r) in the respective definitions. However, Pℓ,BKS

can be viewed as the probability that a random encryption produced by Ê will properly decrypt when its first
ℓ ciphertext inputs are encryptions of random bits, and the remaining ciphertext inputs are encryptions of
“correct” bits. Similarly, Pℓ,BKS can be viewed as the probability that a random encryption produced by Ê
will decrypt properly when its first ℓ− 1 ciphertext inputs are encryptions of random bits, the ℓth ciphertext
input is an encryption of the incorrect bit, and the remaining ciphertext inputs are encryptions of correct
bits. When viewed this way, it is clear that Pℓ,BKS is simply the expectation over the outcomes of Pℓ−1,BKS

or P̂ℓ,BKS where each event is equally likely.
We present two lemmas and a corollary that demonstrate that ApproxErrorRate can be used to approxi-

mate the values Pℓ,BKS and P̂ℓ,BKS .

Lemma 44. For all sufficiently large n, for every Envn ← Env(n) and E1
n ← Exp1(Envn) where BAD1

holds, for every BKS ⊆ KS, for w = ζ(|BKS |, 1, nq) and every t such that 1 ≤ t ≤ w:

Pr[|ApproxErrorRate(t, ∅, (PK ,SK ), IQ,BKS)− Pt,BKS | > 1/16nα5] ≤ 1/2n,

where the probability is over the random choices made during the execution of ApproxErrorRate.

Proof. This follows directly from the Chernoff-Hoeffding bound, as long as n2α4 ≥ 6 · 162 · n2α5+1.

Corollary 45. For all sufficiently large n, for every Envn ← Env(n) and E1
n ← Exp1(Envn) where BAD1

holds, for every BKS ⊆ KS, for w = ζ(|BKS |, 1, nq) and every t such that 1 ≤ t ≤ w:

Pr[|ApproxErrorRate(t,D, (PK ,SK ), IQ,BKS )− Pt−1,BKS | > 1/16nα5] ≤ 1/2n,
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where the probability is over the random choices made during the execution of ApproxErrorRate and the
random construction of the set

D = {c1, ..., cn2α4 }.

The set D is randomly generated as follows: let ζ−1(t) = (i, b, ∗) and pk = Index (BKS , i), then for all j
(1 ≤ j ≤ n2α4) we let cj ← e(pk , b, rj) for a random rj ∈R {0, 1}|pk|/3.

Proof. By the distribution on D, the random variable ApproxErrorRate(t,D, (PK ,SK ), IQ,BKS) has the
same distribution as ApproxErrorRate(t−1, ∅, (PK ,SK ), IQ,BKS ), and therefore by Lemma 44 the corollary
holds. (Note: Same relations on α4 and α5 hold as in the lemma)

Lemma 46. For all sufficiently large n, for every Envn ← Env(n) and E1
n ← Exp1(Envn) where BAD1

holds, for every BKS ⊆ KS, for w = ζ(|BKS |, 1, nq) and every t such that 1 ≤ t ≤ w:

Pr[|ApproxErrorRate(t,D, (PK ,SK ), IQ,BKS )− P̂t,BKS )| > 1/16nα5] ≤ 1/2n,

where the probability is over the random choices made during the execution of ApproxErrorRate and the
randomized set

D = {c1, ..., cn2α4 }.

The set D is randomly generated as follows: let ζ−1(t) = (i, b, ∗) and pk = Index (BKS , i), then for all j
(1 ≤ j ≤ n2α4) we let cj ← e(pk , 1− b, rj) for a random rj ∈R {0, 1}|pk|/3.

Proof. Essentially the same proof as a combination of the proofs of the Lemma 44 and Corollary 45.

Next, we have a lemma that shows that with high probability Exp2(E
1
n) doesn’t halt on line 25 (page

37) during any iteration of the for loop (lines 3 to 28). In other words, Exp2 never erroneously retrieves a
secret-key that does not correspond to a public-key in KS .

Lemma 47. For all sufficiently large n:

Pr
Envn←Env(n)

E1
n←Exp1(Envn)

Exp2(E
1
n)

[Exp2(E
1
n) HALTS on line 25 of Exp2|BAD1] ≤

5 · nq+s

2n
.

We denote the event that Exp2(E
1
n) halts in such an experiment as BAD3.

Proof. As BAD1 holds, we know that |KS | ≤ nq. Therefore, in Exp2(E
1
n) the variable τ can only take on nq

different values, and therefore at most nq different secret-keys can be retrieved. Therefore, we can inductively
apply the following claim nq times, and the result follows by an application of the union-bound.

Claim 48. Consider an experiment that is the same as that described in Lemma 47, and that has the
property that during the first i iterations of the for loop (lines 3 to 28) of Exp2(E

1
n) (where 0 ≤ i < |KS |)

the experiment has not HALTED (line 25). In this experiment, if during the i+ 1st iteration of the for loop
(where τ = i + 1) the value ℓ ← min ∆ was selected and the public-key pk was chosen on lines 13 and 15
respectively of Exp2(E

1
n), then the probability that g(sk ) 6= pk is less than 5ns

2n . Here, sk is the value retrieved
on line 24 of Exp2, and the probability is over the random choices made in choosing the sub-oracle w(pk , ·)
and the random choices made in Exp2(E

1
n) in the i+ 1st execution of the for loop.

Proof. As in Exp2, let ψ = |pk |/3 and (i, b, ∗) = ζ−1(ℓ). By the statement of the claim, τ = i+ 1. Because
pk ∈ BKS τ−1 ⊆ KS , and because by KS ’s construction for every pk ′ ∈ KS g−1(pk ′) is well defined,
exists an sk = (sk1, .., skψ) such that sk = g−1(pk). We will show that with high probability an arbitrary
skγ ∈ {sk1, .., skψ} is retrieved correctly by Exp2. The union bound can then be used to argue that the value
sk , assembled on line 24 of Exp2, is equal to sk .
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Exp2 retrieves n2α4 random bit-wise encryptions of skγ lines by using the sub-oracle w (lines 18 through
20 ) 13 . They are then stored in Dγ . The encryptions generated by queries to w are random due to the
random process that constructed w and the fact that no queries of the form (w, pk , ∗) have previously been
made in the experiment (this can be seen by observation of Exp1 and Exp2). Next, the experiment calculates
πγ = ApproxErrorRate(ℓ,Dγ , (PK ,SK ), IQ,BKS τ−1). At this point we’ll consider the two possible cases
skγ = b and skγ = 1− b.

Case skγ = b: by Corollary 45, with high probability the value
ApproxErrorRate(ℓ,Dγ , (PK ,SK ), IQ,BKS τ−1) = πγ is an accurate approximation of Pℓ−1,BKSτ−1 .
Namely, with probability at least 1− 1/2n we know |πγ − Pℓ−1,BKSτ−1 | < 1/16nα5. Since it’s also the
case, by Lemma 44, that with probability at least 1 − 1/2n that |pℓ−1 − Pℓ−1,BKSτ−1 | ≤ 1/16nα5 we
know that |πγ − pℓ−1| ≤ 1/8nα5 ≤ 1/nα5 with probability at least 1− 2/2n. and therefore, by line 23
of Exp2, the experiment will set skγ ← b.

Case skγ = 1− b: πγ is an approximation to P̂ℓ,BKSτ−1 by Lemma 46. Specifically, with probability at

least 1 − 1/2n it’s the case that |πγ − P̂ℓ,BKSτ−1 | ≤ 1/16nα5. Similarly, by Lemma 44, pℓ−1 is a good
approximation of Pℓ−1,BKSτ−1 . Combining these approximation with Eqn. 1 (Pℓ,BKS = 1/2(Pℓ−1,BKS +

P̂ℓ,BKS ) we get that |πγ−pℓ−1| is an of approximation of |(2Pℓ,BKSτ−1 −Pℓ−1,BKSτ−1)−Pℓ−1,BKSτ−1 | =
2|Pℓ,BKSτ−1 − Pℓ−1,BKSτ−1 |. More specifically, with probability at least 1 − 2/2n it’s the case that∣∣|πγ − pℓ−1| − 2

∣∣Pℓ,BKSτ−1 − Pℓ−1,BKSτ−1

∣∣∣∣ < 1/8nα5. By the construction of ∆ in Exp2 (line 7) and
since ℓ ← min ∆ (line 13), it’s the case that |pℓ − pℓ−1| > 1/nα6. Further, with probability at least
1 − 1/2n we have that

∣∣|pℓ − pℓ−1| − |Pℓ,BKSτ−1 − Pℓ−1,BKSτ−1 |
∣∣ ≤ 1/8nα5 . Combining the fact that

|pℓ − pℓ−1| > 1/nα6 with the approximation of |pℓ − pℓ−1| ≈ |Pℓ,BKSτ−1 − Pℓ−1,BKSτ−1 | and with the
approximation |πγ − pℓ−1| ≈ 2

∣∣Pℓ,BKSτ−1 − Pℓ−1,BKSτ−1

∣∣ we get that with probability at least 1− 4/2n

we have |πγ − pℓ−1| ≥ 2/nα6 − 1/2nα5 which is greater than 1/nα5 for all sufficiently large n, and
therefore, by line 23 of Exp2, skγ ← 1− b.

Obviously, in order for sk = sk in line 24 it must be the case skγ = skγ for each γ ≤ ψ. A simple

application of the union bound shows that sk = sk with a probability of at least 1− 5ψ
2n . By Assumption 20,

we know that ψ ≤ ns, proving the lemma.

Lemma 47 demonstrates that Exp2(E
1
n) is not likely to halt due to the fact that it improperly retrieved

an embedded secret-key. However, we would like assurance that if Exp2 finished on line 12 (page 37) all of
the embedded keys that are likely to be retrieved, were in fact retrieved. In order for this to be the case,
it is sufficient that for every iteration of the for loop in Exp2 (lines 3 through 28), every approximation of
Pt,BKSτ−1 that was actually calculated on line 6 was actually a good approximation. If this is the case, then
it, along with Lemma 47, implies that with high likelihood Exp2(E

1
n) retrieved all of the secret-keys that

are in some sense necessary to simulate DO(SK , ·). Therefore, we will bound the probability that any of the
approximations of Pt,BKSτ−1 are poor.

We define BAD4 to be the event that for at least one pair of values, (t, τ) that the approximations pt,
calculated in the τth iteration of the for loop in Exp2(E

1
n) (lines 3 through 28), is not a close approximation

to the value Pt,BKSτ−1 . We then show that the probability of the event is low.

Definition 49. Given any n, Envn ← Env(n) and E ← Exp1(Envn) where BAD1 held, define BAD4 to be
the event that in experiment Exp2(E

1
n), there exist values τ and t such that the value pt = ApproxErrorRate(t, ∅, (PK ,SK ), IQ,BKS

computed on line 6 of Exp2 has the property that |pt − Pt,BKSτ−1 | > 1/16nα5.

Claim 50. For all sufficiently large n, Envn ← Env(n) and E1
n ← Exp1(Envn) where BAD1 held:

Pr
Exp2(E1

n)
[BAD4] ≤ n

2q/2n

13It is always possible to make n2α4 different queries of the form (w, pk , z), where 1 ≤ z ≤ n2α4 and z is represented as a binary
string. This is because |pk | > 3 · α0 · log n. This implies that |ψ| > α0 · log n, and, therefore since z is viewed as being in {0, 1}ψ/3,

there are at least 2
α0·log n

3 ≥ n2α4 different queries of the form (w, pk , z); the inequality holds since for all sufficiently large n:
nα0 >> n2α4 .
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Proof. By Lemma 44, for any particular pair of values τ and t the probability that |pt−Pt,BKSτ−1 | > 1/16nα5

is less than 1/2n, for the value pt computed on line 6 of Exp2 . We then note that there are at most n2q

executions of line 6 in Exp2 because |KS| ≤ nq due to the fact that BAD1 holds. The claim follows from
an application of the union-bound.

K.6 What has Exp2 Achieved?

Assuming no BAD events occurred, what has been achieved after Exp1 and Exp2? We have retrieved
a number of public-/secret-key pairs for g, (pk , sk), that are embedded into the public-/secret-key pair
(PK ,SK ) that the adversary is interested in. A natural question to ask is if all such embedded keys have
necessarily been retrieved, and the answer is no. There are several reasons why this might be the case. First,
consider the case where there is a public-key pk that is embedded into PK , but which is only “used” to embed
an encryption e(pk , b, r) with a very small probability during an execution of EO(PK ,M,R) for randomly
chosen M and R. In this case there is only a small chance that the key pk will turn up in Exp1 and an
even smaller chance that its corresponding secret-key sk will be retrieved in Exp2. However, we point out
that if pk is “used” very infrequently during an execution of EO(PK ,M,R), then it is very unlikely that a
value e(pk , b, r) has been embedded into the challenge ciphertext that the CCA#1 adversary is interested
in. Another reason that a secret-key sk corresponding to such a public-key may not be retrieved in Exp2

is that the results of queries to d(sk , ·) made during an execution of Dg,d(SK , ·) may not greatly effect the
probability that D performs a valid decryption. In such a case, the hybridization experiment in Exp2 would
never detect a large probability gap in the probability that valid decryptions are made when the responses
to queries of the form e(pk , b, r) are replaced with a random response e(pk , b′, r′) for randomly chosen b′ and
r′. Since there is no large gap, Exp2 will never retrieve pk ’s corresponding secret-key sk = g−1(pk ).

Still assuming no BAD events occurred, at the end of Exp2 the adversary has retrieved all of the secret-
keys that are necessary to properly decrypt (with high probability) a ciphertext generated by an execution
of EO(PK ,M,R) (for randomly chosen M and R) when all of the responses to oracle queries e(pk , b, r) for
pk ∈ BKS are replaced with responses e(pk , b′, r′) for randomly chosen b′ and r′. Looking forward slightly,
this suggests knowing the correct responses to queries of the form d(g−1(pk ), ·) for pk ∈ BKS are in some
sense unessential in properly decrypting ciphertexts generated by executions of EO(PK ,M,R).

K.7 A Useful Subroutine: RandCipher

Given a successful completion of the first two parts of the experiment where no BAD events occurred, the
adversary A1 is should be able to use its decryption oracle to properly decrypt the perturbed ciphertexts that
are generated from the same distribution as those perturbed ciphertexts generated in the final hybridization
sub-experiment that took place in Exp2. In this distribute, responses to queries to e(pk , b, r) for pk ∈ BKS
are replaced with e(pk , b′, r′) for randomly chosen b′ and r′. Going forward there will be many instances where
we will need to generate ciphertexts from this same distribution, so we introduce the subroutine RandCipher
that generates ciphertexts from exactly this distribution.

Definition 51. Given an oracle O − (O, R) ← Υ, PK ∈ {0, 1}n
ρ1

, M ∈ {0, 1}, R ∈ {0, 1}n
ρ2

, a set IQ of
immutable queries in O and a set BKS of public-keys in g we define the RandCipherO(PK ,M,R,BKS , IQ)
subroutine as follows :
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RandCipherO(PK ,M,R,BKS ,IQ)
(1) w ← ζ(|BKS |, nq, 1)
(2) For each i ≤ w
(3) (ℓi, ∗, ∗)← ζ−1(i)
(4) pk i ← Index (ℓi,BKS )
(5) bi ∈R {0, 1}
(6) ri ∈R {0, 1}

|pk i|/3

(7) ci ← e(pk i, bi, ri)
(8) C ← ÊO(PK ,M,R,BKS ,IQ, c1, .., cw)
(9) Output C

We call the queries made on line 7 of RandCipher replacement queries, and their responses replace-
ment responses. We call the query/response pair a replacement query/response.

K.8 Decrypting the Output of RandCipher

Now, as stated in the previous section, at the end of Exp2 the adversary expects to be able to properly
decrypt ciphertexts that are generated from the distribution constructed by RandCipher . We now show that
ciphertexts that are constructed by a random execution of RandCipher are likely to decrypt properly.

Lemma 52. For all sufficiently large n, for every Envn ← Env(n), E1
n ← Exp1(Envn) and E2

n =
(τ∗,BKS ∗,GKS ∗, E1

n)← Exp2(E
1
n) where ∧4

i=1BADi hold:

Pr
M∈R{0,1},R∈R{0,1}

nρ2

C←RandCipherO(PK ,M,BKS∗,IQ)

[D(g,d)(SK , C) = M ] ≥ 1−
3n2q

n6
.

Proof. We observe that by the description of RandCipher , proving this lemma is equivalent to lower-bounding
the value 1 − Pw,BKS∗ , where w = ζ(|BKS ∗|, nq, 1). To this end, we know that in the iteration of the for
loop of Exp2(E

1
n) where τ = τ∗, we computed an approximation pw of Pw,BKS∗ . Because BAD3 holds, we

know that |p0−pw| ≤
w
nα6

for the values p0 and pw calculated in the same iteration of the for loop. Further,

because BAD4 holds, it’s the case that |pi − Pi,BKS∗| ≤
1

16nα5
for each i. Additionally, by Lemma 38 and

Observation 39 it is the case that P0,BKS∗ ≤ n2q/nα1−2 + n2q/nα0 . Combining all of these bounds we get

that for all sufficiently large n: Pw,BKS∗ ≤ n2q

nα1−2 + n2q

nα0
+ 2

16nα5
+ w

nα6
. Since BAD1 holds we know that

|KS | ≤ nq, and therefore w ≤ 2n2q. Therefore, for all sufficiently large n: Pw,BKS∗ ≤ 3n2q

n6 , and the result
follows.

K.9 Surprising Query/Responses in Exp2

As was the case with Exp1, we are concerned with the possibility of possibly surprising queries in Exp2

yielding surprising responses. Going forward the analysis of our experiment will often need to assume that
none of these surprising responses have occurred, and therefore we need to bound the probability of such a bad
event. The next lemma introduces and bounds the probability of the event BAD5, where BAD5 represents
a surprising query/response occurring in Exp2. Once we have established this bound we can proceed to the
third part of the experiment.

Lemma 53. For all sufficiently large n:

Pr
Envn←Env(n)

E1
n←Exp1(Envn)

Exp2(E1
n)

[
BAD5|BAD1

]
≤

1

nα0
,

where BAD5 is the event that there is a large surprising query/response in the probabilistic experiment.
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Proof. Because of the conditioning on BAD1, there are no surprising queries that occur during Envn ←
Env(n) orE1

n ← Exp1(Envn). Therefore, the only place a surprising query can occur is during the experiment
Exp2(E

1
n). Since there are no queries to u in Exp2, the only way there can be a surprising query/response

is if a possibly surprising query d(sk , c) is performed. By observation of Exp2, the only place a surprising

query can occur is in the sub-routine Ê-Err , called by the sub-routine ApproxErrorRate. In this subroutine
only the executions of ÊO and DO can cause surprising query/responses.

Consider an arbitrary ith query, (d, sk , c), performed in Ê-Err during Exp2 that is possibly surprising.
Let pk = g(sk) We bound the probability that the query’s response is surprising. We bound the information
that can be known about the randomly chosen function e(pk , ·, ·) and the decryption function it specifies
d(sk , ·). We will grossly over-estimate the upper-bound by supposing that every query to sub-oracles g, e,d
and u reveals the value of e(pk , ·, ·) on a different element in the domain of e(pk , ·, ·). Similarly, we will assume
that each query to w(pk , ·) reveals the value of e(pk , ·, ·) for |sk | different elements in its range. Observation
shows that Env(n) performed at most nq queries to g or e; next, Exp1 performed at most 2n2α1+q queries
to g, e,d and u; and finally, Exp2 performers at most 2n4q+2α4 + 4ns+2α4+2q + ns+2α4+q ≤ nα2 queries to
all of the sub-oracles g, e,d,u and w, where the inequality holds for all sufficiently large n.

Therefore, remembering that e(pk , ·, ·) is a randomly selected function from {0, 1}×{0, 1}|sk| to {0, 1}3|sk|

for which at most nq+2n2α1+q−|sk |nα2 input/output pairing are known, the probability that the ith query in

Exp2 has a surprising response is upper-bounded by n|sk|−nq−2n2α1+q−|sk |nα2

n3|sk|−nq−2n2α1+q−|sk |nα2
. Because the query is possibly

surprising it is necessarily large, and this implies that |sk | ≥ α0; therefore, our bound is necessarily smaller

than nα0−nq−2n2α1+q−|sk |nα2

n3α0−nq−2n2α1+q−|sk |nα2
. This bound is smaller than nα0

n3α0−n3α1
for all sufficiently large n, by our

restrictions on the values of α0, α1, α2, s and q.
Finally, since there are at most nα2 queries in Exp2(E

1
n), we can use the union-bound to bound the

probability of surprising query/response occurring during Exp2(E
1
n) to be less than nα0+α2

n3α0−n3α1
, which is less

than 1
nα0

for all sufficiently large n.

K.10 Bounding the Probability of Bad Events in Exp1 and Exp2

Before going on to Exp3, we present several book-keeping lemmas that bound the probability that different
configurations of BAD events occur in Exp1 and Exp2. Rather then presenting on lemma that bound the
probability of any bad events, we break the lemma up into distinct lemmas. The first bounds the probability
of the event BAD1 ∧BAD3 ∧BAD5, and the second bounds the probability of BAD2 ∧BAD4 given that
BAD1 ∧BAD3 ∧ BAD5 hold in the experiment. This split is useful going foreword, as we shall see when
Exp3 is described.

Lemma 54. For all sufficiently large n:

Pr
Envn←Env(n)

E1
n←Exp1,r1 (Envn)

E2
n←Exp2,r2 (E1

n)


 ∧

i∈{1,3,5}

BADi


 ≥ 1−

3

nα0
.

Proof. This is just an application of Lemmas 32, 47 and 53.

Lemma 55. For all sufficiently large n:

Pr
Envn←Env(n)

E1
n←Exp1,r1 (Envn)

E2
n←Exp2,r2 (E1

n)


 ∧

i∈{2,4}

BADi

∣∣∣∣∣∣
∧

i∈{1,3,5}

BADi


 ≥ 1−

3n2q

2n
,

Proof. We independently upper-bound the probability that BAD2, and BAD4 hold, and use the union
bound to derive a lower bound on the probability that BAD2 ∧BAD4 holds.
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First, we bound BAD2 by noting:

Pr[BAD2| ∧i∈{1,3,5} BADi] =
Pr

[
BAD2 ∧

(
∧i∈{1,3,5}BADi

)]

Pr[∧i∈{1,3,5}BADi]

≤
Pr[BAD2]

Pr[∧i∈{1,3,5}BADi]

≤
2/2n

1− 3
nα0

≤
4

2n
,

where the last two inequalities hold for all sufficiently large n, and follow from Lemmas 54 and 37.
Second, we bound BAD4 by noting:

Pr[BAD4| ∧i∈{1,3,5} BADi] =
Pr

[
BAD4 ∧

(
∧i∈{1,3,4,5}BADi

)]

Pr[∧i∈{1,3,5}BADi]

≤
Pr[BAD4|BAD1]

Pr[∧i∈{3,5}BADi|BAD1]

≤
n2q

2n

1− 5·nq+s

2n − 1
nα0

≤
2n2q

2n
,

where the second last inequality follows from Lemmas 50, 47 and 53, and holds for all sufficiently large n;

and the last inequality stems from the fact that 1− 5·nq+s

2n − 1
nα0
≥ 1/2 for all sufficiently large n.

L Exp3: Finding a New Secret-Key and a New Oracle

Now that the adversary has retrieved all of the secret-keys sk that are embedded into SK that are in some
sense necessary to perform decryptions with D, it must use them to recreate a new secret-key SK ′ that it can
use to decrypt its challenge ciphertext. While for many PKEPs, it may seem obvious how this should be done,
it is by no means obvious how this should be done in general. For example, consider traditional PKEPs based
on different assumptions such as the system by Goldwasser-Micali [18] based on the Quadratic-Residuosity
assumption and one based on the RSA trapdoor permutation assumption [33] 14, the adversary’s approach to
coming up with a secret-key SK ′ will have to work for both these systems, even though it should be an easy
case as there clearly no values sk that need to be embedded into SK ′, as neither of these systems will query
O. Therefore, in order to construct a key SK ′ the adversary will perform a brute-force search by looking
at all possible seeds, and finding one for which G generates a key-pair (SK ′,PK ). However, in addition to
a brute-force search through all possible seeds, the adversary needs to look at the queries that the different
executions of G will make to O during the search, and ensure that the responses are consistent with both its
knowledge of the oracle O and the adversary’s observations of SK through the use of the decryption oracle.
Finally, since the adversary knows that all of the keys pairs (pk , sk) ∈ GKS that were retrieved in Exp2 were
embedded into (PK ,SK ), then for each (pk , sk) ∈ GKS the query/response (< g, sk >, pk) should be made
during the execution of G for the retrieved key. The reader may be worried that we did not retrieve all of the
secret-keys sk that might possibly be embedded into SK during Exp2, and therefore the adversary cannot
ensure that all such keys are embedded into the retrieved key SK ′. For the moment, it may be easier for
the reader suspend their disbelief and to assume that all such embedded keys were retrieved to help focus on

14Neither of these systems will make any queries to the oracle, and so will satisfy all of our required assumptions given on page
20
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understanding how the adversary reconstructs the key SK ′. Later, we will compensate for the fact that the
adversary has not retrieved all the embedded keys, by having the adversary execute a modified decryption
algorithm. However, for now we focus on constructing a key SK ′, and this is the main goal of Exp3.

In the third part of the experiment the adversary will generate all pairs of oracles and seeds that are
consistent with the public-key PK given to the adversary and its observations of the oracle O and the
decryption oracle Dg,d(SK , ·). It will then uniformly at random choose one such pair (O′,SK ′), as there
is no reason one of these pairs should be more likely than another. Because of the random method by
which oracle O′ and the seed S′ are chosen, with high probability over the choice it will be the case
that with high probability Dg′,d′

(SK ′, C) = M , for a ciphertext randomly generated by an execution of

RandCipherO′

(PK ,M,R,BKS ∗, IQ) for randomly chosen M and R. Remembering that if we are temporar-
ily pretending that all of the secret-keys sk that are embedded into SK were retrieved in Exp2, then BKS ∗ = ∅
and therefore the output of RandCipher corresponds to the output of EO′

(PK ,M,R) for randomly chosen M
and R. Therefore, the adversary has found a way to reassemble the secret-keys sk that were embedded into
SK so that they form a new functioning secret-key SK ′, but decryption with SK ′ works for encryptions made
relative to the oracle O′, and while O′ and O will agree on all of the query/responses the adversary has seen
prior to Exp3, there are probably very few other queries whose responses are equal. For instance, for a pair
(pk , sk) ∈ GKS it will be the case that g(sk) = g′(sk) = pk , as the oracle O′ that is selected is chosen to be
consistent with known information aboutO, but it is highly unlikely that e(pk , b, r) = e′(pk , b, r) for randomly
chosen b and r. Because of this, it is highly unlikely that EO(PK ,M,R) = EO′

(PK ,M,R) for a randomly
chosen M and R, and therefore we need to do some work to show how to use SK ′ to decrypt encryptions
constructued from executions of EO(PK ,M,R). In order to do this, after showing that the adversary can
find O′ and SK ′, we show that the adversary can actually choose O′ so that it is nearly identical to O. Thus,
for a randomly chosen M and R it’s highly likely that if EO(PK ,M,R) = C then EO′

(PK ,M,R) = C. This
has strong implications, as the adversary could then use the decryption algorithm to execute Dg′,d′

(SK ′, ·),
and thus it could use this ability to decrypt the challenge ciphertext from the CCA#1 security definition.
Unfortunately, things are not so simple. In order to generate an oracle that is nearly identical to O, the
adversary would have to have a complete description of it, whereas it is only allowed to query O a polynomial
number of times. Therefore, the adversary will need to simulate access to O′ by using its ability to query O
and u. However, the adversary’s simulation will not be perfect: it will be unable to simulate several types
of queries. From the vantage point of the adversary, the most crucial queries whose responses cannot be
simulated are for queries to d′(sk ′, ·) for those values sk ′ where g′(sk ) ∈ BKS ∗. That is we cannot properly
simulate queries d′(sk ′, ·) for values of sk ′ that were not properly retrieved in Exp2. The reason this is
problematic is that it is quite likely that such queries will be made during an execution of Dg′,d′

(SK ′, ·),
and this is the computation that the adversary interested is interested in. To compensate for this problem
an alternate decryption algorithm is constructed that is unlikely to make such queries. We briefly give some
intuition for why we can construct such an alternate decryption algorithm. If, after the end of Exp2, the
adversary were to randomly generate a ciphertext C ← RandCipherO(PK ,M,R,BKS∗, IQ) then it would be
highly likely that Dg,d(SK , C) = M , as has been shown. However, the execution of RandCipher effectively
simulates an execution of EO(PK ,M,R) which responds to every query (e, pk , b, r) where pk ∈ BKS ∗ with
c̃ = e(pk , b̃, r̃) for randomly chosen b̃ and r̃. Therefore, if during the execution of Dg,d(SK , C) there is a
query d(g−1(pk), c̃), and we were to respond with a random coin-flip as opposed to the appropriate response
from the oracle, then presumably we could still expect this modified execution of Dg,d(SK , C) to output M .
Because of the similarity between O and O′, the same holds true if we replace the oracle O with O′ and SK
with SK ′.

Thus, once we have shown how Exp3 retrieves O′ and SK ′, we will show that the construction of an
alternate probabilistic decryption algorithm D̂O′

that does not need to make queries to d′(sk , ·) for g′(sk) ∈
BKS . It is this algorithm that the adversary will use to decrypt the challenge ciphertext from the CCA#1
security definition, proving the main theorem.

L.1 The Formal Description of Exp3

We now turn our attention to the issue of retrieving an oracleO′ that is consistent with all of the query/responses
in GKS ∗ and IQ, and relative to which there exists seed S′ such that GO′

(S∗) = (PK ,SK ′). We remind
the reader that although we are describing this experiment in three parts, we really have in mind considering
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it one large experiment. Thus, it is permissible for the experiment to refer to queries that were made in the
previous two experiments, even if they are not officially represented by an input to the experiment. This is
done to prevent unnecessary notation.

We also note that in this section of the experiment we consider every possible oracle O′ that can be
generated by the random process Υ that is consistent with the responses to a number of previously made
queries that the adversary has performed. Because each oracle O′ is infinitely large, this may seem impossible
even for our computationally unlimited adversary. However, we remind the reader that by Assumption 20,
we know that no queries larger than ns have been made in our experiments. Therefore, given any oracle
O′, we are only interested in its definition for queries of sizes less than or equal to ns. Therefore, in the
third experiment when the adversary is to enumerate over all oracles, it need only enumerate over the finite
prefixes of these oracles that contain all queries of sizes ns or less. Finally, we note that the expectation of
the adversary during Exp3 is that the likely event ∧i∈{1,3,5}BADi held in Exp1 and Exp2. The reason that

it is not assumed that ∧i∈{2,4}BADi held, is that we actually want these events to hold relative to the oracle
selected in Exp3, and this will be described in greater detail later.

Exp3(E
2
n = (τ∗,BKS ∗,GKS ∗, E1

n))
(1) Let E1

n = (Envn,KS ,IQ, E ,SQ))
(2) Let Envn = (O,PK ,SK , S∗)
(3) Let KnownQueries be the set of every query/response that has been made toO during the

calculation of E ← Exp1(Envn), and then add all query/responses made in Exp2(E
1
n)

unless that query/response was made only during an execution of DO(SK , ∗).
(4) Let KnownDecryptions = {(C, b)| There was an execution of DO(SK , C)

that resulted in b ∈ {0, 1,⊥} during Exp2(E
1
n)}.

(5) Let ValidEnvironments be the set of every pair (O′, S′), for every oracle O′ = (O′, R′)←
Ψ and seed S′ ∈ {0, 1}n where:

(6) Each O′ is consistent with every query/response in KnownQueries ;
(7) GO′

(S′) = (PK ,SK ′);
(8) GO′

(S′) makes no surprising query/responses;
(9) GO′

(S′) makes a query/respns. (< g′, sk >, pk) for each (sk , pk ) ∈ GKS ∗;
(10) GO′

(S′) make a query/response (< g′, ∗ >, pk) for for each pk ∈ BKS ∗;
(11) For every (C, b) ∈ KnownDecryptions , DO′

(SK , C) = b;
(12) For every (C, b) ∈ KnownDecryptions , DO′

(SK , C) makes no surprising
query/responses.

(14) Choose (O′, S′) ∈R ValidEnvironments .
(15) Let (PK ,SK ′)← GO′

(S′).
(16) Let G to be the set of query/responses made during GO′

(S′).
(17) Let D to be the set of all query/responses made during calls to DO′

(SK ′, C) for each
(C, b) ∈ KnownDecryptions .

(18) Let Env′
n be the environment defined by (O′,PK ,SK ′, S′).

(19) Output (Env′
n,G,D, E

2
n)

L.2 A Clarification on Query/Response Notation

In Notn. 15, we formalized the notation for queries and responses to the sub-oracles g, e,d,u or w of an
oracle O. However, there will now be many instances where we need to discuss queries to different oracle, as
in Exp3 above, and this leads to some ambiguity. Thus we attempt to clarify the differences between these
queries and responses.
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Notation 56. Given two oracles O = (g, e,d,w,u) and O′ = (g′, e′,d′,w′,u′) then the for any o ∈
{g, e,d,w,u} it’s the case for every value q and r, (o, q) and (o′, q) are considered the same query and
(< o, q >, r) and (< o′, q >, r) are considered the same query/response. For example, if we had a set
S = {(e, pk , b, r)}, then it is the case that (e′, pk , b, r) ∈ S.

L.3 The Running Example for Exp3

We again return the running example which uses the PKEP (G,E,D) that was introduced on Page 27.

Running Example 4. We remind the reader that in our running example, we have a public-/secret-key
pair (PK ,SK ) where PK = (pk0, ..., pk6, S8, S9) and SK = (sk0, ..., sk6, k1, k2) where k1 = e(pk6, 0, S8) and
k2 = e(pk6, 0, S9). Further, at the end of Running Example 3 we assumed that after Exp2 it would be the
case that GKS ∗ = {(pk i, sk i)|3 ≤ i ≤ 6}, and therefore BKS ∗ = {pk0, pk1, pk2}.

In running Exp3 we hope to find a new oracle O′ that is consistent with all of the queries that have been

made in Exp1 and Exp2, and relative to which there exists a seed S′ such that (SK ′,PK )← G

O′

(S′). Let’s
consider an execution of Exp3. On line 14 of Exp3 an oracle O′ and seed S′ are randomly selected so that
they are consistent with all query/responses to O that were known to the adversary from Exp1 and Exp2,
and which are consistent with all observations that the adversary has made that are potentially dependent on
the responses to queries to O. More specifically, we know that the oracle O′ that is selected will have the
property that e′(pk6, 0, S8) = k1 and e′(pk6, 0, S9) = k2, as these queries were made in Exp1. Similarly,
g′(ski) = pk i for 3 ≤ i ≤ 6 the queries g(sk i) = pk i for 3 ≤ i ≤ 6 were made in Exp2 (this is guaranteed
by the presence of the corresponding key-pairs in the set GKS∗). It is also the case that there exists strings
sk ′0, sk

′
1 and sk ′2 relative to which g′(sk ′i) = pk i for i ≤ 3; this is because there must exist a string S′ for which

G

O′

(S′) = (SK ′,PK = (pk0, ..., pk6, S8, S9)), and if such a PK is output, such sk ′i must exist. Let S′ be
the seed that was chosen by Exp3, and let SK ′ = (sk ′0, sk

′
1, sk

′
2, sk

′
3, .., sk

′
6, k
′
1, k
′
2). We do point out that it is

highly unlikely that sk0 = sk ′0, sk1 = sk ′1 or sk ′2 = sk2, but that the rest of the secret-key SK ′ will necessarily
be identical to SK, as per the previous discussion.

Now let’s consider how the key SK ′ would perform in several different decryption tasks. By Assump-

tion 23 (page 21), it will necessarily be the case that DO′

(SK ′,EO′

(PK ,M,R)) = M for any M and R

of the appropriate length. It is not hard to see that it will necessarily be the case that if DO′

(SK ′, C′ =

RandCipherO′

(PK ,M,R,BKS ∗, IQ)) = M , for the same reason that its always the case that DO(SK ′, C =
RandCipherO(PK ,M,R,BKS∗, IQ)) = M : suppose C′ = (1, k1, k2, c

′
1, . . . , c

′
5), then it will necessarily be the

case that d′(ski, c
′
i) = M for 3 ≤ i ≤ 5, and therefore when D calculates Majority(d′(sk ′1, c

′
1), . . . ,d

′(sk ′5, c
′
5)),

the result will necessarily be M . It is also not hard to see that it is unlikely that DO′

(SK ′,EO(PK ,M,R)) =
M for most M and R. To see this, suppose that C = (1, k1, k2, c1, ..., c5) = E

O(PK ,M,R) and note that

D

O′

(SK ′, C) will output Majority(d′(sk ′1, c1), . . . ,d
′(sk ′5, c5)). Remembering that ci = e(pk i,M, r) and not

ci = e′(pk i,M, r) and that e′ is effectively a length-tripling random one-to-one function, the probability
that ci is in the image of e′(pk i, ·, ·) is negligible, and so, by its definition, the output of d′(sk ′i, ci) = ⊥,

and therefore DO′

(SK ′, C) is likely to output ⊥. Finally, consider DO(SK ′,EO(PK ,M,R)): we note that
we expect the output in this situation to be M . This might seem surprising as the key SK ′ was gener-
ated relative to O′, but is being used to decrypt relative to O. The important observation to make is that
SK ′ = (sk ′0, ..., sk

′
6, k
′
1, k
′
2) and SK = (sk0, .., sk6, k1, k2) disagree only in that sk0 6= sk ′0, sk1 6= sk ′1 and

sk2 6= sk ′2. Therefore, if EO(PK ,M,R) = C = (1, k1, k2, c1, ..., c6), then when D computes Mi = d(sk ′i, ci)
for 1 ≤ ileq5 it will be the case that Mi = M for 3 ≤ i ≤ 5 since sk ′i = sk i and pk ′i = pk i in those cases and
thus Majority(M1, ...,M5) = M independent of the values of M1 and M2. It should be notes that M1 and M2

are likely to be ⊥ because it is very unlikely that g(sk′1) = pk ′1 or g(sk ′2) = pk ′2.
Therefore, we see in our case that we cannot use SK ′ to decrypt our challenge ciphertext relative to O′,

as this is unlikely to succeed. However, we can use SK ′ to decrypt our challenge ciphertext relative to O,
even though SK ′ was constructed relative to O′. We point this out, only so later we can justify why finding
O′ at the end of Exp3 is not sufficient, and that we need a further step.
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L.4 Decrypting with O′ and SK ′

We will demonstrate that it is likely that given the newly selected oracle O′ and secret-key SK ′ , the
execution of DO′

(SK ′, ·) is likely to properly decrypt ciphertexts generated by a random execution of

RandCipherO′

(PK ,M,R,BKS ∗, IQ), for randomly chosen M and R. This is done by showing that, as-
suming that very likely event

∧
i∈{1,3,5}BADi occurred in the first two parts of the experiment, from the

perspective of the adversary it is equally likely that it is interacting with the environment Env′ as Env,
and thus if DO(SK , ·) is likely to properly decrypt ciphertexts of RandCipherO(PK ,M,R,BKS ∗, IQ) then

it is likely that that DO′

(SK ′, ·) properly decrypts ciphertexts of RandCipherO′

(PK ,M,R,BKS∗, IQ). The
reason for this is that Env′n is uniformly chosen from the set of all possible environments that are consistent
with the adversary’s observations, and from the adversary’s perspective each environment in such a set is
equally likely to be the one it has been interacting with.

Notation 57. In order to be able to specify the random choices that are being made in a given experiment
Expi (resp. probabilistic algorithm Alg), we denote by Expi,r (resp. Algr) an execution of Expi (resp. Alg)
where the string r specifies the random bits that are used in the experiment (resp. algorithm).

In all of the experiments and algorithms where this notation is used the mapping from the random bits in
the specified string to random choices in the experiments can be accomplished with standard procedures, and
so we do not detail how this is done.

Lemma 58. For all sufficiently large n:

Pr
Envn←Env(n)

r1,r2∈R{0,1}
∗

E1
n←Exp1,r1(Envn)

E2
n←Exp2,r2 (E1

n)

E3
n←Exp3(E

2
n)


 Event


 ∧

1≤i≤5

BAD′i


 occurs in

{
E′1

n←Exp1,r1(Env′
n)

E′2
n←Exp2,r2 (E′1

n )

}∣∣∣∣∣∣
∧

i∈{1,3,5}

BADi


 ≥ 1−

3n2q

2n
,

where the {BAD′i}1≤i≤5 events are the natural analogs of the events {BADi}1≤i≤5 except they occur in
Exp1,r1(Env′n) and Exp2,r2(E

′1
n ), as opposed to Exp1,r1(Env′n) and Exp2,r2(E

′1
n ).

Proof. Observe that O′ and S′ are chosen randomly in Exp3 so that they are consistent with all of the
observations of the oracle O and the seed S that the adversary is able to observe or deduce during Exp1 or
Exp2 because of its direct interaction with the oracle O, the decryption oracle DO(SK , ·), and its knowledge
of the public-key PK . They are also chosen assuming that no surprising queries were made by the decryption
oracle in Exp2, which is satisfied in this lemma by our conditioning on BAD5.

It is easily observed that BAD′1,BAD′3 and BAD′5 necessarily hold. This is because these events are
witnessed by query/responses to O and the decryption oracle that the adversary makes. Therefore, if all
of the queries and responses that occur in Exp1,r1(Envn) and Exp2,r2(E

1
n). occur in Exp1,r1(Env′n) and

Exp2,r2(E
′1
n ), then the corresponding events are guaranteed to hold. This is not quite true for event BAD′5,

as the adversary does not have the queries and responses to O that were made by the decryption oracle,
however the experiment assumes the likely case that no surprising responses were made during Exp2.

• BAD′1 and BAD′5 denote the event that a surprising query/response occurred in Exp1,r1(Env′n)

or Exp2,r2(E
′1
n ) respectively. BAD1

′
and BAD′5 hold because there are no surprising queries in

Exp2,r2(E
′1
n ) or Exp1,r1(Env′n) by the selection of O′ and S′ in Exp3(E

2
n). In order to observe this, we

note that the response each query to O that is made in either Exp1,r1(Envn) or Exp2,r2(E
1
n) by the ad-

versary, but not during an execution of DO(SK , ·) will have an identical response as the corresponding
query to O′ that is made during Exp1,r1(Env′n) or Exp2,r2(E

′1
n ) because of the design of Exp3 on lines

3 and 6. Further, for (C, b) ∈ KnownDecryptions it is the case that DO(SK , C) = DO′

(SK ′, C) by line
11, and therefore the executions of Exp1,r1(Env′n) and Exp2,r2(E

′1
n ) will mirror those of Exp1,r1(Envn)

and Exp2,r2(E
1
n), with the possible exception of queries to O that are made during the execution of

DO′

(SK ′, ·) Because BAD5 also holds, we have line 12 of Exp3 to ensure DO′

(SK ′, C) does not make
any surprising query/responses for any (C, b) ∈ KnownDecryptions .
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Because BAD1 and BAD5 hold, there were no surprising responses in the Exp1,r1(Envn) or Exp2,r2(E
1
n).

Since the same responses were chosen to identical queries in Exp1,r1(Env′n) and Exp2,r2(E
′1
n ) it is nec-

essarily the case that BAD′1 and BAD′5 also hold.

• BAD′3 denotes the event that Exp2,r2(E
′1
n ) improperly retrieves a secret-key sk and halts on line 25

of Exp2. BAD′3 holds for similar reasons to BAD′1 and BAD′5. Because in Exp3 we have that O′

and SK ′ are chosen to be consistent with KnownQueries and DO′

(SK ′, C) = DO(SK , C) for each
(C, b) ∈ KnownDecryptions and the fact that BAD3 holds, Exp2,r2(E

′2
n ) will finish without halting on

line 25.

It remains to show that with high probability BAD′2, and BAD′4 hold. These events are not witnesses
by previous query/responses and are not ensured by the design of Exp3, and therefore it is not the case that
they immediately hold based on the results of Exp1,r1(Envn) and Exp2,r2(E

1
n). However, it is easy to see

that they hold with the same probabilities as BAD2 and BAD4.
To observe that the stated probability bounds on BAD′2 and BAD′4 hold, note that during Exp1,r1(Envn)

and Exp2,r2(E
1
n) the adversary learns very little information about O or SK . In fact, it learns only what is

revealed to it through queries to O and the results of queries to the decryption oracle DO(SK , C). By its
construction, the set ValidEnvironments represents the set of all possible environments that are consistent
with the adversary’s information about Envn at the end of Exp1,r1(Envn) and Exp2,r2(E

1
n). Because

S∗ was chosen uniformly at random from {0, 1}n and O was constructed by the random process Υ, from
the adversary’s perspective the probability that it has been interacting with any particular environment
from ValidEnvironments is equally likely. Therefore, from the adversary’s perspective, it has conducted
the experiments Exp2,r2 and Exp1,r1 relative to a randomly chosen element Envn ∈ ValidEnvironments .
However, this is exactly what Env′n represents, a randomly chosen element in ValidEnvironments . Therefore,
the bounds on the probability of the events on BAD2 and BAD4 relative to O must hold relative for BAD′2
and BAD′4 relative to O′. Therefore, the bound in Lemma 55 proves the lemma.

Because we will be interested in cases where ∧1≤i≤5BAD′i hold relative to the oracles output by Exp3,
independently of whether or not ∧1≤i≤5BADi hold relative to the original experiments Exp1 and Exp2 we
define the event BAD6 to denote it.

Definition 59. For any n, given any experiment:

r1, r2 ∈R {0, 1}
∗

Envn ← Env(n)

E1
n ← Exp1,r1(Envn)

E2
n ← Exp2,r2(E

1
n)

E3
n = (Env′n,G,D,Exp2(Exp1(Envn)))← Exp3(E

2
n),

where
∧
i∈{1,3,5}BADi holds, define the event BAD6 to be that

∧
1≤i≤5 BAD′i occurs in in the execution

of

E′1n ← Exp1,r1(Env′n)

E′2n ← Exp2,r2(E
′1
n )

where the events {BAD′i}1≤i≤5 are the natural analogs of the events {BADi}1≤i≤5 except they occur in
the execution of Exp1,r1(Env′n) and Exp2,r2(E

′1
n ), as opposed to Exp1,r1(Envn) and Exp2,r2(E

1
n).
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Corollary 60 (of Lemma 58). For all sufficiently large n:

Pr
Envn←Env(n)

r1,r2∈R{0,1}
∗

E1
n←Exp1,r1 (Envn)

E2
n←Exp2,r2(E1

n)

E3
n←Exp3(E2

n)


BAD6

∣∣∣∣∣∣
∧

i∈{1,3,5}

BADi


 ≤ 3n2q

2n

Assuming BAD6 holds at the end of Exp3, then it’s likely that if ciphertexts are generated by RandCipher
relative to the oracleO′ produced, then it’s the case that they will decrypt properly when given to the function
DO′

(SK ′, ·). The corollary below formalizes this.

Corollary 61 (of Lemma 52 and Defn. 59 ). For all sufficiently large n and all

Envn ← Env(n), E1
n ← Exp1(Envn), E

2
n ← Exp2(E

1
n),

E3
n = (Env′n = (O′,PK ,SK ′, S′),G,D, E2

n)← Exp3(E
2
n),

where
∧
i∈{1,3,5,6}BADi holds,

Pr
M∈{0,1},R∈{0,1}nρ2

C←RandCipherO
′
(PK ,M,R,BKS∗,IQ)

[
DO′

(SK ′, C) = M
]
≥ 1−

3n2q

nα6
.

We have now shown how the adversary can generate a secret-key SK ′ and oracle O′ that it can use to exe-

cute DO′

(SK ′, ·) in order to properly decrypt ciphertexts that are generated by calls to RandCipherO′

(PK ,M,R,BKS , IQ).
However, the goal of the adversary is to decrypt a challenge ciphertext generated by an execution of
EO(PK ,M,R). In order to do this, we must construct a third oracle Ô that has the property that most
of its responses to queries are identical to the equivalent query to O. Further, we need to still ensure that

relative to Ô it is the case that G
bO(S′) = (SK ′,PK ). We will show that this can be done, and the result is

that it will be likely that EO(PK ,M,R) = E
bO(PK ,M,R), for randomly chosen M and R.

In order to choose an oracle Ô we do the following: we choose O′ and S′ as stated in Exp3, and we
extract from it all of the query/responses that are made during the execution of GO′

(S′) → (SK ′,PK ).
We then “paste” these query responses into our original oracle O, by forcing O to be consistent with these
query/responses. Such changes can invalidate other parts of the oracle, for example by changing the one-to-
one properties of g and e or the assurance that d will properly decrypt any of the encryptions made by e.
Such problems are corrected, and the resulting oracle is called Ô.

Based on the above it would seem that all that would remain for the adversary would be to execute

D
bO(SK , C) for the challenge ciphertext C it is given. However, as previously alluded to, the adversary will

have to simulate the responses of the queries to Ô, and this will not be able to be done perfectly, so it will
necessitate a new decryption algorithm. This is because as it is not necessarily the case BKS ∗ = ∅ and
therefore there are secret-keys, sk , corresponding to public-keys in BKS ∗ that were never retrieved in Exp2.
However, for each pk ∈ BKS∗, there must exist a value sk ′ for which ĝ(sk ′) = pk , as the selection criteria for

S′ forced the execution of GO′

(S′) to perform a query g′(∗) with the response pk ; it is queries to d̂(sk ′, ·)
that are difficult to properly simulate.

In the next section we will show how to choose an oracle Ô, and then we will show that it is in fact

likely that EO(PK ,M,R) = E
bO(PK ,M,R). We will then spend the remainder of the chapter showing how

the second part of the adversary, A2, can decrypt C with a new decryption algorithm while simulating Ô,
proving Theorem 26.

L.5 How the Adversary Selects an Oracle Ô in Êxp3

We would like the adversary to select an oracle Ô in a way that makes it is as similar to O as possible, but
in a manner that ensures that it is randomly selected from the same distribution as O′ is selected in Exp3.
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We show how this can be done and then show that in this case it is highly probable that EO(PK ,M,R) =

E
bO(PK ,M,R).

We will modify Exp3 to construct Êxp3, it will be Êxp3 that the adversary actually runs as the third

part of the experiment. To construct Êxp3, Exp3 is modified so that after it selects an environment Env′n =
(O′,PK ,SK ′, S′) on line 18 (Page 48), rather than outputting it the experiment will select a new environment

Ênvn = (Ô,PK ,SK ′, S′) where Ô is uniformly chosen from the set of all oracles

{Õ|Õ ← Υ and Õ is consistent with all of the query/responses in KnownQueries , G and D}.

The distributions on the outputs of Êxp3(E
2
n) and Exp3(E

2
n) are identical. This is observed by noting

that the only information specified about O′ in Exp3 is that it is consistent with the query/responses in
KnownQueries , G and D. Therefore, since O′ was chosen uniformly at random from the set of all oracles that
were consistent with these choices, each is equally likely to be the oracle selected in Exp3. We are simply
randomly choosing a new oracle from this distribution.

The reason we select a new oracle Ô, is that we will choose Ô in a manner that makes it mostly consistent
with O (i.e. most responses are equivalent for equivalent queries). This may seem contradictory, but remember
that O itself was chosen randomly, and we do not need pairwise independence between the random selection
of O and Ô; therefore, we can use the “unused” randomness from the selection of O in Env(n) and use it to

help select Ô. However, we need to also ensure that Ô is consistent enough with O′ that it’s still the case

that G
bO(S′) = (SK ′,PK ), and so the adversary has a secret-key corresponding to PK relative to this new

oracle.
In the next section we introduce the random process ConsolidateOrac that describes how Êxp3 ran-

domly chooses an oracle Ô from the set described above, but with the property that it is as consistent as
possible with the oracle O in Envn, while maintaining the necessary consistency with O′. As its name sug-
gests, ConsolidateOrac effectively consolidates the two oracles into one. ConsolidateOrac is constructed
assuming that

∧
i∈{1,3,5}BADi held in Exp2 and Exp1 before Exp3 was called, but this scenario is the likely

one and the only one in which we will be interested.

L.6 ConsolidateOrac: Choosing the Oracle Ô in Êxp3

We describe the random-process ConsolidateOrac that generates an oracle Ô that is highly consistent with
the oracle O in Envn. It takes as input the oracle O and the sets KnownQueries ,G and D that are generated
in Exp3 during the experiment an experiment Envn ← Env(n), E1

n ← Exp1(Envn), E
2
n ← Exp2(E

1
n), and

Exp3(E
2
n), conditioned on

∧
i∈{1,3,5}BADi holding.

We call the process ConsolidateOrac to denote that it is consolidating the oracles O along with the
oracle query/response pairs in G and D that were found by making queries to O′ in Exp3(E

2
n). The intuition

behind ConsolidateOrac is now described. ConsolidateOrac starts by making the oracle Ô consistent
with all of the query/responses in KnownQueries, G and D. This ensures that it is consistent with the

observed properties of O from Exp1 and Exp2, and that G
bO(S′) = (SK ′,PK ). Once this has been done, it

attempts to make as many of the remaining responses in Ô consistent with those in O, but this won’t always
be possible due to the forced consistency with query/responses in KnownQueries, G and D. In such cases,
the remaining queries’ responses are set randomly, but in a method that ensures the randomly set responses
are consistent with the responses previously set in the construction of Ô.

We note we will not describe how to generate the sub-oracle ŵ, as it will be unnecessary.
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ConsolidateOrac(O,KnownQueries ,G,D)
(1) For each m ∈ N we perform the following experiment to generate Ô.

(2) ĝ: Let Dom = {0, 1}m and Rng = {0, 1}3m.
(3) For each sk ∈ Dom where for which there is a query/response (< g, sk >, pk) in

G ∪ D ∪ KnownQueries : set ĝ(sk) ← pk , remove pk from Rng , and remove sk from
Dom.

(4) For each sk ∈ Dom for which g(sk ) ∈ Rng , set ĝ(sk) ← g(sk ), remove sk from Dom
and remove pk from Rng .

(5) Choose a random one-to-one function h : Dom → Rng , and for each sk ∈ Dom set
ĝ(sk)← h(sk ).

(6) ê: For each pk ∈ {0, 1}3m:
(7) Let Dom = {0, 1} × {0, 1}m and Rng = {0, 1}3m.
(8) For each query/response (< e, pk , b, r >, c) in G ∪ KnownQueries set ê(pk , b, r) ← c

and remove (b, r) from Dom and c from Rng .
(9) For each query/response (< w, pk , ∗ >, (c1, c2, ..., cm)) made in Exp2:
(10) For each ci in the response that is also in the set Rng , if there exists a (b, r) ∈ Dom

such that e(pk , b, r) = ci, then set ê(pk , b, r)← ci.
(11) For every remaining ci in the response:
(12) Let bi = d(ĝ−1(pk), ci) and select uniformly at random ri ∈ {r|(bi, r) ∈ Dom}.
(13) Set ê(pk , bi, ri)← ci and remove (bi, ri) from Dom and ci from Rng .
(14)
(15) For each remaining (b, r) ∈ Dom if e(pk , b, r) ∈ Rng then set ê(pk , b, r)← e(pk , b, r),

and remove (b, r) from Dom and e(pk , b, r) from Rng .
(16) Remove c from Rng if there was a query/response (< d, ĝ−1(pk), c >,⊥) ∈

KnownQueries ∪ D or a query/response (< u, pk , c >,⊥) ∈ KnownQueries .
(17) Remove c from Rng if there was a query (< d, ĝ−1(pk), c >,⊥) performed in Exp1 or

Exp2 excluding those queries that were made during a call to DO(SK , ∗).
(18) Choose a random one-to-one function h : Dom → Rng , and for each (b, r) ∈ Dom set

ê(pk , b, r)← h(b, r).

(19) d̂: For each sk ∈ {0, 1}m, c ∈ {0, 1}3m and b ∈ {0, 1}
(20) Set d̂(sk , c) ← b if there exists an r ∈ {0, 1}m such that ê(ĝ(sk), b, r) = c; and

otherwise set d̂(sk , c)← ⊥.

(21) û : For each pk ∈ {0, 1}3m and c ∈ {0, 1}3m:
(22) Set û(pk , c)← ⊤ if there exists an sk ∈ {0, 1}m, b ∈ {0, 1} and r ∈ {0, 1}m such that

ĝ(sk) = pk and ê(pk , b, r) = c; otherwise, set û(pk , c)← ⊥.

We have not yet made clear how the adversary will actually simulate access to such an oracle Ô while
only making a polynomial number of queries to O. This will be described in detail later in Section N.1,
but as previously mentioned the adversary will be unable to simulate Ô in all cases. However, it will do a
sufficiently good simulation that it is likely that the adversary will be decrypt its challenge ciphertext with
the aid of an alternate decryption algorithm.
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We now formalize Êxp3, the modified version of Exp3.

Êxp3(E
2
n)

(1) E3
n = (Env′

n,G,D, E
2
n)← Exp3(E

2
n)

(2) Let Env′
n = (O′,PK ,SK ′, S′)

(3) Ô ← ConsolidateOrac(O,KnownQueries ,G,D)

(4) Let Ênvn = (Ô,PK ,SK ′, S′).

(5) Output Ê3
n = (Ênvn,G,D, E

2
n)

We stress the following key observation: the distributions on Ênvn between the following two experiments
is identical.

Observation 62. The distributions on Ê3
n and E3

n that are produced in the following two experiments are
identical when the inclusion of Envn is suppressed 15:

First Experiment

Envn ← Env(n), E1
n ← Exp1(Envn), E2

n ← Exp2(E
1
n), E3

n = (Env′n,G,D, E
2
n)← Exp3(E

2
n),

where
∧
i∈{1,3,5}BADi holds.

Second Experiment

Envn ← Env(n), E1
n ← Exp1(Envn), E2

n ← Exp2(E
1
n), Ê3

n = (Ênvn,G,D, E
2
n)← Êxp3(E

2
n),

where
∧
i∈{1,3,5}BADi holds.

Further, because of this observation, we can meaningfully discuss the event BAD6 relative to the second
experiment above. The observation implies that the bound given in Corollary 60 on the probability of the
event BAD6 in the first experiment also hold for the corresponding events in the second experiment.

For the remainder of the chapter, we will assume that Corollary 60 applies relative to the second experiment
above.

As previously mentioned, the reason for introducing Ô is to show that it is likely that EO(PK ,M,R) =

E
bO(PK ,M,R) for randomly selected M and R, and then show we can use SK ′ to decrypt relative to it.

In the next lemma we show that encryptions relative to O and Ô are likely to be the same. We note that
intuitively this should be the case, as O and Ô will have identical responses to most queries, and, by design, it
is highly probable that they have identical responses on queries that are commonly made during an execution
of EO(PK ,M,R), for randomly chosen M and R, as the oracles will be consistent on the set E which contains
all of the likely query/responses that were made during an execution of EO(PK ,M,R) for randomly chosen
M and R.

Lemma 63.

Pr
Envn←Env(n)

E1
n←Exp1(Envn)

E2
n←Exp2(E1

n)

bE3
n←

d
Exp3(E2

n),M∈{0,1},R∈{0,1}nρ2

[EO(PK ,M,R) = E
bO(PK ,M,R)|

∧

i∈{1,2,3,5}

BADi] ≥ 1−
4n5q+2α4+s

nα1−2

Proof. We bound the probability that there is a query made to O during the execution of EO(PK ,M,R)

whose response differs from that of Ô. We will bound the probability that a given query made by E has

15We note that both bE3

n and E3

n contain E2

n which contains E1

n, which contains Envn, and it is this variable that is excluded
when we discuss the equality of the distributions. Clearly, if Envn is included the distributions are not identical as on average bO
and O in bE3

n will be far more correlated than O′ and O in E3

n
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different responses relative to oracles O and Ô. Next, we apply the union-bound to get a bound on the
probability that any of the nq queries made by E have different responses from oracles O and Ô.

The proof of this lemma is based on two premises: first, that O and Ô have the same responses for queries
that are likely to be made during the execution of EO(PK ,M,R) (because BAD2 holds); second, there are

only a relatively small number of queries whose responses are not equivalent between O and Ô, and these
queries are not likely to be made. Therefore, most of this argument amounts to counting the number of
queries whose responses from the two oracles are different, and showing that such queries are unlikely.

First, let’s consider the number of queries whose responses differ between O and Ô. In order to do so, we
need to look at how Ô was constructed by the call ConsolidateOrac(O,KnownQueries ,G,D) in Êxp3.

We begin by considering queries that have differing responses between g and ĝ. Any query whose cor-
responding query/response is in G or D has the potential for differing responses g and ĝ, as ĝ’s responses
are assigned in line 3 of ConsolidateOrac. We note that assigning responses ĝ(sk ) ← pk that correspond
with query/responses (< g, sk >, pk) ∈ KnownQueries ensures consistent responses between g and ĝ, as all
query/responses in KnownQueries are consistent with O.
|G| = nq by Assumption 20 and inspection of Exp2 shows that |D| is less than:

|KS | · (ζ(|KS |, nq, 1) · n2α4 · nq + ns · n2α4 · nq) ≤ nq(2n3q+2α4 + ns+q+2α4 )

= 2n4q+2α4 + ns+2q+2α4 ,

where the inequality follows from the fact that BAD1 holds, and thus that |KS | ≤ nq. Clearly any query to ĝ
whose response was set on line 4 of ConsolidateOrac will have the same response as the corresponding query
to g. Finally, consider the return values for those queries that are defined on line 5 of ConsolidateOrac.
The responses of ĝ to such queries will almost surely be inconsistent with those of g, and thus we need
to bound the number of such queries. We observe that there can be at most one such query for each
query/response pair in G ∪ D. This is because the only way that the response to ĝ(sk∗) is set on line 5 is if
g(sk∗) = c∗ and there exists a query/response (< g, sk′ >, c∗) for sk ′ 6= sk∗. Therefore, there can be at most
2n4q+2α4 +ns+2q+2α4 +nq queries whose responses differ between g and ĝ due to line 5. Further, none of the
queries is in IQ and therefore, since BAD2 holds, the probability of any such query is less than 1/nα1−2.
Therefore, the probability that there is a query made to g that has response that is different than the same

query made to ĝ is less than 2n4q+2α4+ns+2q+2α4+nq

nα1−2 .
Next, consider queries that have differing responses between e and ê. Any query whose corresponding

query/response is in G has the potential for different responses from the two sub-oracles e and ê, as these
values are assigned in line 8 of ConsolidateOrac. There are at most nq such queries as BAD1 holds. The
only other places in ConsolidateOrac where a query to ê is assigned a return value that differs from e is
on lines 13 and 18. Consider each of these case separately.

In the first case, on line 13 of ConsolidateOrac there can be at most nq queries to ê whose responses
are set to be different than the corresponding response of e. For, if on line 13 the value of ê(pk , bi, ri) is set
to ci, then for the pair (b, r) for which e(pk , b, r) = ci, it is necessarily the case that the response to ê(pk , b, r)
was already assigned a value other than ci on line 8 of ConsolidateOrac.

In the second case, on line 18 there can be at most 2nq queries to ê whose responses are set to be different
than those of e, as any inconsistency in response that is formed on this line is a direct consequence of a
previous inconsistency in response on either lines 8 or 13, and there are at most 2nq such inconsistencies.
Further, none of these queries is in IQ and therefore, since BAD2 holds, the probability of any such query
is made during the execution of EO(PK ,M,R) is less than 1/nα1−2. Therefore, the probability that there is
a query made to e that has response that is different that the same query made to ê is less than 4nq

nα1−2

Finally, consider queries to d̂ that have different responses to the same queries in d. There are two very
different ways that differing responses can occur between d and d̂: because of differences between g and ĝ,
and because of differences between e and ê. We will consider two mutually exclusive sub-cases for a query
(d̂, sk , c) where d̂(sk , c) 6= d(sk , c). The first is when g(sk) = ĝ(sk) and the second is when g(sk ) 6= ĝ(sk).
We bound the probability of each of these case to also be less than 4nq

nα1−2 , and therefore the probability of

the execution of EO(PK ,M,R) making a query to d whose response is different than that of the equivalent

query to d̂ is less than 4nq

nα1−2 .

Before, proving the bound on the probability of different responses for corresponding queries to d and d̂

we note that given these bounds, we can bound the probability that EO(PK ,M,R) 6= E
bO(PK ,M,R). The
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probability that any query being made to O during the execution of EO(PK ,M,R) has differing responses

between O and Ô is less than max
{

2n4q+2α4+ns+2q+2α4+nq

nα1−2 , 4nq

nα1−2

}
, which is equal to 2n4q+2α4+ns+2q+2α4+nq

nα1−2

for all sufficiently large n. There are at most nq queries made during the execution EO(PK ,M,R). Therefore,

for all sufficiently large n we can bound the probability that EO(PK ,M,R) 6= E
bO(PK ,M,R) to be less that

(nq)

(
2n4q+2α4 + ns+2q+2α4 + nq

nα1−2

)
≤

4n5q+2α4+s

nα1−2
.

It remains to show the derivation of the bounds for the two mutually exclusive sub-cases for a query
(d̂, sk , c) where d̂(sk , c) 6= d(sk , c). First, where g(sk) = ĝ(sk) and second where g(sk) 6= ĝ(sk). These
bounds are derived below.

Case g(sk) = ĝ(sk ): Let g(sk) = pk . The fact that d̂(sk , c) 6= d(sk , c) implies that there exists a b∗, r∗ such
that e(pk , b∗, r∗) = c but ê(pk , b∗, r∗) 6= c or vice-versa. Therefore, we can use the upper-bound of 4nq

that was previously established on the number of different responses for equivalent queries to e and ê.
Further, we know that the probability of the query (d, sk , c) was less than 1/nα1−2 as it could not be

in IQ if the responses differ between d and d̂ and because BAD2 holds. Therefore, the probability of
such a query being made is less than 4nq

nα1−2 .

Case g(sk) 6= ĝ(sk ): In this case we cannot simply count on the fact that the probability of such a query

(d, sk , c) is low, and the number of queries where d(sk , ·) 6= d̂(sk , ·) is low, as in all of the previous cases.

This is because the number of queries on which d(sk , ·) and d̂(sk , ·) have differing responses is almost
surely very large (exponential in |sk |). This makes this case significantly more involved than the others.
We will consider two mutually exclusive sub-cases: first when d(sk , c) 6= ⊥ and when d(sk , c) = ⊥.
We show that that the probabilities of these two types of query/responses can be bound by 4nq

nα1−2 and
1

2nα1−2 respectively, so the probability of this case is bound by 4nq

nα1−2 , the maximum of the two bounds
for all sufficiently large n. Below we show the derivation of these two bounds.

Sub-case: d(sk , c) 6= ⊥. Again we will sub-divide the argument into two cases: first, we consider the
possibility that GO(S∗) made a query (< e,g(sk), ∗, ∗ >, c) (remembering that S∗ is the seed
in Envn). The probability of this case is less than nq

nα1−2 . This is because the probability of

EO(PK ,M,R) making any such query d(sk , c) is less than 1/nα1−2, because BAD2 holds and
there are at most nq queries to e that are made during the execution of GO(S∗).
The second case is when there was no query/response (< e,g(sk), ∗, ∗ >, c) made during the
execution of GO(S∗). During the execution of EO(PK ,M,R) there was no query/response (<
e,g(sk), ∗, ∗ >, c) prior to the query d(sk , c); this is because Assumption 22 ensures that E never
queries d(sk , ·) if it already has access to its response due to a previous query to e(g(sk), ·, ·). Thus,
since there was no query (< e,g(sk), ∗, ∗ >, c) made during EO(PK ,M,R) nor during GO(S∗) the
fact that the response to the query d(sk , c) is not ⊥ is very improbable.
The probability of making such a query/response is low because e(g(sk ), ·, ·) is a random one-to-one
function whose range is exponentially larger than its domain ( because of the random selection of
O ← Υ in the Env(n)), and therefore the probability of finding a string c in the co-domain of
e(g(sk ), ·, ·) is very unlikely.
It is easy to observe that if our experiment was simply

Envn←Env(n)

E1
n←Exp1(Envn)

E2
n←Exp2(E1

n)

bE3
n←

d
Exp3(E2

n),M∈{0,1},R∈{0,1}nρ2

the probability that the execution of EO(PK ,M,R) would make such a query/response d(sk , c) 6=

⊥ would no more than nα0+1−2nq

n3α0−2nq : we subtract nq to allow for the information that is revealed

about the function e(g(sk), ·, ·) during GO(S∗) and we subtract another nq for further information
that is revealed during any queries made in EO(PK ,M,R) prior to the query (d, sk , c)). However,
our experiment is conditioned on ∧i∈{1,2,3,5}BADi holding in Exp1 and Exp2, so this effects the
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probability. By dividing by a lower-bound on probability of these event we get an upper-bound on
the probability of the event. This probability is less than

(
nα0+1−nq

n3α0−nq

)

Pr[∧i∈{1,2,3,5}BADi]
≤

2nα0+1 − 2nq

n3α0 − nq
,

where the inequality holds for all sufficiently large n, as for all sufficiently large n its definitely the
case that Pr[∧i∈{1,2,3,5}BADi] ≥ Pr[∧1≤i≤5BADi] ≥

1
2 for all sufficiently large n, where the last

inequality follows from Lemmas 54 and 55.

Sub-case: d(sk , c) = ⊥. This is very much a dual to the previous sub-case. We will consider two
cases: first we consider the case that there is a query/response (< ê, ∗, ∗ >, c) ∈ G ∪ D, and next
we consider the alternative case where no such query/response exists.
In the case that there is a query/response (< ê, ĝ(sk), ∗, ∗ >, c) in the set G, then we know the
probability of the query (d, sk , c) is at most nq

nα1−2 , since the probability of the query (d, sk , c) is
at most nα1−2 because BAD2 holds, and since |G| = nq.
In contrast, consider the case that there is no query/response (< ê, ĝ(sk), ∗, ∗ >, c) ∈ G. In this
case, let b′ and r′ be the strings for which ê(ĝ(sk), b′, r′) = c. There was no query (e, ĝ, b′, r′) in
either Exp1 or during Exp2, as otherwise such a query would be in KnownQueries which would
imply that d(sk , c) = d̂(sk , c) contradicting the current case. Therefore, such a query is unlikely,
as it requires the adversary to choose a string c that is in the range of the one-to-one length
tripling function ê(ĝ, ·, ·). We note that this function was not chosen uniformly at random, as it
is constructed by a call to ConsolidateOrac(O,KnownQueries ,G,D). However, by noting that
there was no query/response (< ê, ĝ(sk), ∗, ∗ >, c) in the set G ∪ KnownQueries we know that
line 8 of ConsolidateOrac did not set the value of ê(pk , b′, r′). Similarly, there could not have
been any queries to w(ĝ(sk), ·) in Exp2, for if there were the fact that 4 holds would imply that
g(sk ) = ĝ(sk), contradicting the conditions for the current case. This implies that line 9 through
13 of ConsolidateOrac did not have an effect on the value of ê(ĝ(sk), b∗, r∗). Therefore, the
value of ê(ĝ(sk), b∗, r∗) was set on either line 15 or line 18. We will consider each possibility
separately. If the value was set on line 15, then the probability of finding the string c is less than
nα1−2−|KnownQueries|
3nα1−2−|KnownQueries|

≤ 1/2nα1−2. We note this, by seeing that the e(ĝ(sk), ·, ·) was randomly

chosen by the random process Υ. However, in the worst-case we can assume that |KnownQueries |
input-output pairings of e(ĝ(sk), ·, ·) have been revealed in the experiment.
Alternatively, if the value was set on line 18, then the probability of finding such a string c is less
than 1/2nα1−2. This can be seen by noting that during the execution of line 18 it will be the case
that |Dom| ≥ 1 and |Rng| ≥ 2nα1−2. Therefore, since both mutually exclusive cases bound the

probability of a query/response d(sk , c) = ⊥ when d̂(sk , c) 6= ⊥, we can bound the probability of
this sub-case to be less than 1/2nα1−2.

Corollary 64.

Pr
Envn←Env(n)

E1
n←Exp1(Envn)

E2
n←Exp2(E1

n)

bE3
n←

d
Exp3(E

2
n),M∈{0,1},R∈{0,1}nρ2

[EO(PK ,M,R) = E
bO(PK ,M,R)|

∧

i∈{1,3,5}

BADi] ≥ 1−
n3α4

nα1−2

Proof. Follows from the bounds in previous lemma (63) and the fact that for all sufficiently large n we can
bound Pr[BAD2|

∧
i∈{1,3,5}BADi] to be at least 1− 3n2q/2n, which follows directly from Lemma 55. Using
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these bounds we note that:

Pr[EO(PK ,M,R) = E
bO(PK ,M,R)|

∧
i∈{1,3,5}BADi]

≥

Pr[EO(PK ,M,R) = E
bO(PK ,M,R)|

∧
i∈{1,2,3,5}BADi] · Pr[BAD2|

∧
i∈{1,3,5}BADi]

≥ (1− 4n5q+2α4+s

nα1−2 )(1 − 3n2q/2n) ≥ 1− n3α4

nα1−2

where the last inequality holds for all sufficiently large n.

M A1: The First Part of the CCA#1 Adversary

The first part of the adversary, A1, can now be properly described. Given the definition of CCA#1 security
for a PKEP, the adversary A1 will be given a random oracle O ← Υ; a public-key PK , corresponding to
the secret-key SK , generated by a call to GO(S∗) for a randomly chosen S∗ ∈R {0, 1}n; and access to the

decryption oracle Dg,d(SK , ·). A1 will then consecutively execute Exp1,Exp2 and Êxp3. It will simulate
Envn, by using the oracle O, the public-key PK and the decryption oracle Dg,d(SK , ·). It will then be the
case that with very high probability that

∧
i∈{1,3,5,6}BADi holds. This will imply that if EO(PK ,M,R) = C

is the challenge ciphertext that will be given to A2, the second part of the adversary A2, it will necessarily

be the case that E
bO(PK ,M,R) = C with high probability. What remains to show is that A2 can somehow

decrypt C, in those cases when E
bO(PK ,M,R) = C. This is the focus of the next section.

N A2: The Second Part of the CCA#1 Adversary

N.1 How the Adversary Simulates Ô

We would like the adversary to be able to execute D
bO(SK ′, ·). Unfortunately, as has been suggested several

times, the perfect simulation of Ô cannot be done without an exponential number of queries to O, which is
not permitted. Therefore, we will have the adversary perform an imperfect simulation of Ô, and show that
the simulation is correct for a large fraction of the possible queries to Ô. Further, this simulation can be done
without the need to make a large number of queries to O. We will isolate those queries to Ô whose responses
are improperly simulated, and then construct an alternate decryption algorithm, D̂, that does a good job
of decrypting relative to the oracle Ô, and that is unlikely to make and of the queries whose responses are
simulated improperly.

Below we describe how A2, the second part of the adversary, simulates the response of an oracle query to
Ô. We stress that it is assumed that A1, the first part of the adversary, has already performed Exp1, Exp2

and Êxp3, and further that
∧
i∈{1,3,5} held during those experiments, and we note that this is the likely case,

as was previously discussed in Section M.
Because the algorithm D̂, which is the only algorithm that A2 will ever execute, only ever queries ĝ, d̂

and û, we will only explain how to simulate these queries. The simulation of the oracle Ô that the adversary
performs is based on the following idea: if the adversary wants to simulate the response to a query to Ô
and the query can be answered with knowledge from query/responses that are stored in G,KnownQueries
and D, then the adversary responds using that knowledge without making any query to O; otherwise, the
adversary assumes that the responses of O and Ô are equivalent, and queries O and uses the response as the
corresponding response to the query to Ô. Specifically, the simulation works as follows:

On the query (ĝ, sk): if there is a query/response (< g, sk >, c) ∈ G ∪KnownQueries ∪D, then the simu-
lation responds with c, otherwise it responds with g(sk).

On the query (d̂, sk , c): if there has been a query/response (< d, sk , c >, b) ∈ G ∪KnownQueries ∪D, then
respond with b. Alternatively, if (< g, sk >, pk) and (< e, pk , b, ∗ >, c) are in G ∪ KnownQueries ∪ D
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then respond with b. Otherwise, respond with d(sk , c).

On the query (û, pk , c): if there has been a pair of query/responses (< g, sk >, pk), (< d, sk , c >, b) ∈
G ∪KnownQueries ∪D, then if b ∈ {0, 1} respond with ⊤ and otherwise ⊥. Alternatively, if (< g, sk >
, pk ) and (< e, pk , b, ∗ >, c) are in G ∪ KnownQueries ∪ D then respond with ⊤. Otherwise, respond
withu(pk , c).

N.2 How the Adversary’s Simulation can go Wrong

As was previously mentioned, this simulation is not perfect; below we list ways in which the simulation can go
wrong. It’s easy to observe from the description of the simulation in the previous section, and the description
of ConsolidateOrac that the list enumerates all of the ways in which the simulation can go wrong.

On a query (ĝ, sk), the simulated response could be incorrect if there is a query sk where the value ĝ(sk)
was randomly defined on line 5 of ConsolidateOrac.

On a query (d̂, sk , c), the simulated response could be incorrect if any of the following hold:

1. there is a query/response (< g, sk >, pk) ∈ G∪D for some pk and (< g, sk >, pk) /∈ KnownQueries
and there is no query/response (< e, pk , ∗, ∗ >, c) in the set KnownQueries ∪ D ∪ G.

2. ĝ(sk ) was defined on line 5 of ConsolidateOrac , and there is no query/response (< e, pk , ∗, ∗ >, c)
in the set KnownQueries ∪ D ∪ G.

3. (< g, sk >, pk) ∈ KnownQueries for some pk , but (< e, pk , ∗, ∗ >, c) was defined on line 18 of
ConsolidateOrac, and there is no query/response (< e, pk , ∗, ∗ >, c) in the set KnownQueries ∪
D ∪ G.

On a query (û, pk , c), the simulated response could be incorrect if:

1. there is a query/response (< g, sk >, pk) ∈ G ∪ D for some pk and there is no query/response (<
g, sk >, pk) in KnownQueries and there is no query/response (< e, pk , ∗, ∗ >, c) or (< u, pk , c >, ∗)
in the set KnownQueries ∪ D ∪ G.

2. ĝ(sk ) = pk was defined on line 5 of ConsolidateOrac and there is no query/response (< e, pk , ∗, ∗ >
, c) or (< u, pk , c >, ∗) in the set KnownQueries ∪D ∪ G.

3. (< g, sk >, pk) ∈ KnownQueries for some sk , but (< e, pk , ∗, ∗ >, c) was defined on line 18 of
ConsolidateOrac, and there is no query/response (< e, pk , ∗, ∗ >, c) or (< u, pk , c >, ∗) in the
set KnownQueries ∪ D ∪ G.

If the adversary could simply run D
bO(SK ′, C) and our simulation was correct with high probability, it

could break the alleged CCA#1 security of (G,E,D). Unfortunately things are not so simple. Later in the

chapter, we will show that it is unlikely that an execution of D
bO(SK ′, C) will make any queries to ĝ where

the simulation could go wrong. This is because all of the queries to ĝ for which the simulated response can
be wrong are extremely unlikely to be made during an execution of D in the first place. Unfortunately, this
is not the case with queries to d̂.

In Section N.2 we demonstrated three ways in which the simulation could go wrong when responding to

queries to d̂. It is unlikely that a query will be made during the execution of D
bO(SK ′, C) that corresponds

to reasons 2 or 3, as such queries are effectively hard to find. The problem is that queries that correspond to
reason 1 are not necessarily unlikely. This is basically the problem that results from the fact that we cannot
guarantee that BKS ∗ = ∅ at the end of the second experiment, and so there are public-keys pk that are
embedded into PK for which the corresponding secret key sk = g−1(pk ) was never retrieved. This means

that the constructed oracle Ô is not consistent with g(sk ) = pk , and therefore there is some value sk′ for
which ĝ(sk ′) = pk , and this value sk ′ may have been embedded into SK ′. This causes problems as this

implies that is might be quite likely that d̂(sk ′, ·) is queried during an execution of D
bO(SK ′, C), but the

simulated response provided by the corresponding query to d(sk ′, ·) is almost surely incorrect.
Fortunately, it is exactly these problematic queries that we have shown are in some sense unessen-

tial. The reason is the following: consider a query (d̂, sk ′, c) that is made during D
bO(SK ′, C), where

C = E
bO(PK ,M,R) for randomly chosen M and R, then you would expect that c was found by making
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a specific query (ê, pk , b, r) during the execution of E, and that D expects to retrieve b. However, during
the hybridization in Exp2 we showed that if we replaced the response to the query (ê, pk , b, r) with the re-
sponse ê(pk , b′, r′) for randomly chosen b′ and r′, then the resulting ciphertext was likely to decrypt properly.

Therefore, the response to the query (d̂, sk ′, c) cannot be that useful to the outcome of D, we may as well
return a random bit.

Based on the above intuition we will demonstrate that there exists an alternative decryption algorithm
that with high probability only makes oracle queries that the adversary is likely to simulate the response to
correctly. In order to do this, the constructed decryption algorithm will never makes queries (d̂, sk , ∗) in those

cases where ĝ(sk) is in the set BKS ∗ retrieved by Exp2. We will call our alternate decryption algorithm D̂.
We remind the reader that each query (ê, pk , b, r) where pk ∈ BKS ∗ and (ê, pk , b, r) /∈ IQ that is

made during an execution of RandCipher
bO(PK , ∗, ∗,BKS∗, IQ) is responded to with a replacement response

ê(pk , b′, r′) for randomly chosen b′ and r′. Thus, if D
bO(SK ′, ·) is able to properly decrypt the ciphertexts gen-

erated by executions of RandCipher
bO(PK , ∗, ∗,BKS∗, IQ), then the values to which any of the replacement

responses generated by RandCipher are decrypted during D
bO(SK ′, ·) should, probabilistically, not effect the

outcome very much, as D could simply simulate decrypting the replacement responses by flipping a coin.
Note that because the replacement responses represent encryptions of random-bits, this should be an effective
simulation. We will show that this is the case, and construct a new algorithm D that simply flips a coin
instead of querying d̂(sk , ·) to find the response to the decryption replacement responses.

In order for the algorithm D to distinguish between a ciphertext produced by an execution of E
bO(PK ,M,R)

versus one produced by an execution of RandCipher
bO(PK ,M,R,BKS∗, IQ), it would need to be able to

distinguish between responses of replacement queries in RandCipher and the actual query responses in E.
Because Ô was chosen mostly randomly and because RandCipher does not replace likely queries (which are
contained in the set IQ), it is the case that there is little chance that D could distinguish these cases. There-

fore, we are able to show that D does well at decrypting ciphertexts generated by E
bO(PK ,M,R). In the

next section we formalize the intuitive argument that was just presented.

N.3 Decrypting With Limited Access to the Sub-oracle d̂

Our goal is to produce a modified version of D named D̂ that has the property that an execution of

D̂bg,bd(SK ′, C) does not need to make any queries of the form form d̂(sk , ∗) in the case where ĝ(sk) ∈ BKS
(i.e. the queries whose responses are reliably simulatable by the adversary)

In this section we introduce an intermediate decryption algorithm D, that decrypts ciphertexts generated
by RandCipher in our experiment. It will takes as an input, in addition to a ciphertext generated by
RandCipher and a secret-key, the set of all replacement query/responses that were made during said execution

of RandCipher . D will then simulate an execution D. If during the simulation of D a query (d̂, sk , c) is made
for which the query/response (< ê, ĝ(sk), ∗, ∗ >, c) is in the set of replacement query/responses, then a
random bit is selected as the response and the oracle is not queries. We show that it is likely that ciphertexts
produced by RandCipher decrypt properly when D is used to decrypt. Next, we show there is a simple
modification to D that produces the final decryption algorithm D̂. We then show that D̂ does a good job
of decrypting ciphertexts produced by RandCipher and it does not need as an input the extra set describing
replacement responses that was required by D. Further, it does not query d(sk , ·) in those cases when

g(sk ) ∈ BKS and thus where the simulation of the oracle is likely to be incorrect. Finally, we show that D̂
not only does a good job of decrypting ciphertexts produced by RandCipher , but it also does well decrypting
ciphertexts produced by E.

We will only show that the intermediate decryption algorithm D does an acceptable job at properly
decrypting ciphertexts produced by RandCipher in the highly probable case that the randomly selected
replacement query/responses that RandCipher produces are not query/responses that have been previously

made during Envn,Exp1, Exp2 or Êxp3 nor do they share the same random bits that were used to make
any query/responses that were made during Envn,Exp1, Exp2 or Êxp3. We define this precisely below.

Definition 65. For any n, given an experiment Envn ← Env(n), E1
n ← Exp1(Envn), E2

n ← Exp2(E
1
n),

Ê3
n ← Êxp3(E

2
n) where

∧
i∈{1,3,5}BADi holds, then given an experiment where M ∈ {0, 1} and R ∈
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{0, 1}n
ρ2

are chosen uniformly at random and C ← RandCipher
bO(PK ,M,R,BKS∗, IQ) is randomly com-

puted we denote by BAD7 the event that during the execution of RandCipher a replacement query/response
(< ê, pk i, bi, ri >, ci) was made such that there is a query (e, pk i, ∗, ri) ∈ KnownQueries ∪ G or a query
(ê, pk i, ∗, ri) has previously been made during the execution of RandCipher .

The point of this definition is the following: consider an execution of RandCipher (PK ,M,R,BKS , IQ)
in which BAD7 holds. Suppose the adversary is given a replacement response c that was generated by the
execution, then given all the prior knowledge that the adversary has about Ô the probability that c represent
an encryption under ê of the bit 1 (or 0) is exactly 1/2.

Claim 66. For all sufficiently large n and every experiment: Envn ← Env(n), E1
n ← Exp1(Envn), E

2
n ←

Exp2(E
1
n), Ê3

n ← Êxp3(E
2
n) where

∧
i∈{1,3,5}BADi holds:

Pr
M∈{0,1},R∈{0,1}nρ2

RandCipher(PK ,M,R,BKS∗,IQ)

[BAD7] ≤
2n3α1

nα0
.

Intuitively, the claim is true because there have not been that many queries made to the sub-oracle e, and
therefore the probability that a randomly chosen replacement query to the sub-oracle will match a previous
query is quite low. The proof formalizes this intuition.

Proof. Because BAD1 holds, |BKS ∗| ≤ nq, and therefore there were at most nq different public-keys,
pk i, that were used in the different replacement queries made during the execution of RandCipher . For
each such pk i in BKS ∗ there are 2nq replacement queries of the form (e, pk i, ∗, ∗) that are made during
RandCipher (PK ,M,R,BKS ∗, IQ), and the random bits used in each of these queries were chosen indepen-
dently of the other such queries. Therefore, we can bound the probability of a single replacement query
satisfying the conditions in the definition of BAD7, and then use the union bound to bound the probability
that RandCipher makes any such replacement queries.

We consider an arbitrary replacement query (e, pk i, bj , rj) that is made during RandCipher . Since pk i ∈
BKS ∗, we know that |pk i| ≥ 3α0 logn (we remember that BKS∗ ⊆ KS , and by the construction of KS in
Exp1 this inequality is guaranteed). Further, by inspection of Exp1 and Exp2 we can bound the number
of queries of the form (e, pk i, ∗, ∗) and (d, sk i, c): there are at most v1 = nq such queries in Envn; at most
v2 = n2α1 · nq such queries in Exp1; at most v3 = nq ·

(
2n2q ·

(
(n2α4 · 2nq) + ns · (n2α4 · 2nq)

))
such queries

in Exp2; and finally at most v4 = 2nq such queries in RandCipher . Let v =
∑4

k=1 vk. The probability that
the randomly chosen rj would match the value r for any of these v queries of the form (e, pk i, ∗, r) is at most
v/nα0 .

By applying the union bound, we conclude that the probability of BAD7 is no more than (2nqv)/nα0 .
Simple algebra and the relations on q, α1, α4 and s (Section I.2), show that (2nqv) ≤ 2n3α1 for all sufficiently
large n.

Lemma 67. For all sufficiently large n, and all experiments

Envn ← Env(n), E1
n ← Exp1(Envn), E

2
n ← Exp2(E

1
n), Ê3

n ← Êxp3(E
2
n),

where
∧
i∈{1,3,5,6}BADi holds:

Pr
M∈{0,1},R∈{0,1}nρ2

C←RandCipher
bO(PK ,M,R,BKS∗,IQ)

[
D

bO(SK ′, C) = M
]
≥ 1−

3n2q

nα6
.

Proof. This follows directly from Observation 62 and Corollary 61.

Corollary 68. For all sufficiently large n, and all experiments

Envn ← Env(n), E1
n ← Exp1(Envn), E

2
n ← Exp2(E

1
n), Ê3

n ← Êxp3(E
2
n),
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where
∧
i∈{1,3,5,6}BADi holds:

Pr
M∈{0,1},R∈{0,1}nρ2

C←RandCipherO
′
(PK ,M,R,BKS∗,IQ)

[
D

bO(SK ′, C) = M
∣∣∣BAD7

]
≥ 1−

4n2q

nα6
.

Proof. A bound of 1− 3n2q

nα6
− 2n3α1

nα0
follows directly from an application of the bounds on BAD7 established in

Claim 66 to the bound on proper decryptions from Lemma 67. For all sufficiently large n, 1− 3n2q

nα6
− 2n3α1

nα0
≥

1− 4n2q

nα6
.

N.4 The Intermediate Decryption Algorithm: D

We now formally define the modified decryption algorithm D.

D
bg,bd

(SK , C,QC)

Simulate the execution of Dbg,bd(SK , C)
On oracle query (ĝ, sk ) reply with ĝ(sk)
On oracle query (d̂, sk , c)

If (< ê, ĝ(sk ), ∗, ∗ >, c) ∈ QC reply with b′c ∈R {0, 1}
otherwise reply with d̂(sk , c)

Output the result of simulation

It takes as input a set QC that is intended to contain the set of replacement query/responses that are
made by the execution of RandCipher that generated the ciphertext C.

We would like to show that the algorithm D does well at properly decrypting ciphertexts generated by
RandCipher . However, this is not sufficient, as the algorithm will be interacting with the oracle Ô, and as
previously mentioned, the adversary simulates responses to this oracle imperfectly. Therefore, we need to
show that it not only does a good job at decrypting, but that its execution can be properly simulated in
those cases.

Lemma 69. For all sufficiently large n:

Pr
Envn←Env(n)

E1
n←Exp1(Envn)

E2
n←Exp2(E

1
n)

bE3
n←

d
Exp3(E

2
n),M∈{0,1},R∈{0,1}nρ2

C←RandCipher
bO(PK ,M,R,BKS,IQ)

[D
bg,bd

(SK ′, C,QC) = M and is properly simulated|
∧

i∈{1,3,5,7}

BADi] ≥ 1−
6n2q

nα6
,

where QC denotes the set of replacement queries/responses made by RandCipher .

Proof. We will first show that it is likely that D
bg,bd

(SK ′, C,QC) = M , and next show that is also likely that

all of the responses to the oracle queries made during the execution of D
bg,bd

(SK ′, C,QC) = M are properly
simulated. Combining these two bounds will prove the claim.

As a thought experiment consider the scenario where before the execution of D
bg,bd

(SK ′, C,QC) for every
(< ê, pk , bc, rc >, c) ∈ QC a bit b′c ∈R {0, 1} is chosen uniformly at random as the intended simulated response

to the query (d̂, sk , c), should such a query be made during the execution of D
bg,bd

(SK ′, C). Clearly, this does
not modify the experiment, as we are simply modifying it so that these random choices are made before the
execution of D as opposed to during the execution. Next, consider an oracle O′ that differs from the oracle

O, contained in Envn, in that the response to each query (ê, p̂k , bc, rc) ∈ QC is swapped with the response
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to (p̂k , 1− bc, rc) in the case that bc 6= b′c. There are further differences in d′, w′ and u′ that are necessary to
make them consistent with such swapping 16, but the changes are the ones that are intuitively necessary to
make the oracle consistent with the proposed changes to ê, and so we will not discuss them further. Because
we have conditioned on BAD7

17, if Env(n) had selected oracle O′ instead of O, then the original experiment
would have resulted in the exact same outcome (modulo the fact that the modified oracle was chosen), as
no oracle responses in the experiment would have different. Also because BAD7 holds, from the adversary’s
point of view it is as likely that O′ was chosen in Env(n) as it is that O was chosen.

The fact that the adversary cannot distinguish between the two scenarios is observed by noting that
in order for the two oracles, O and O′, to have differing responses to a query (e, pk , b, r) it is a necessary

condition that both (e, pk , b, r) and (e, pk , 1 − b, r) were never queried during Exp1,Exp2 and Êxp3 in the
original experiment. Further, since BAD1 ∧ BAD5 holds there are no queries in the experiment that had
surprising responses, and therefore we know that the queries (d,g−1(pk), e(pk , ∗, r)) and (u, pk , e(pk , ∗, r))
have not been made. Also because of the design of the experiment, it’s the case that pk ∈ BKS∗, and for
any string pk ∈ BKS ∗ there have been no queries of the form (w, pk , ∗) made in the experiment.

Because of the indistinguishability previously mentioned, we imagine a slightly modified version of the
originally performed experiment. In this modified version the oracle O′ was chosen during Env(n) instead

of O, and Ô′ is output by Êxp3 instead of Ô. The new experiment defined in our thought experiment is
denoted as follows:

Env′
n←Env(n)

E′1
n←Exp1(Env′

n)

E′2
n←Exp2(E

′1
n )

bE′3
n←

d
Exp3(E

′2
n ),M∈{0,1},R∈{0,1}nρ2

C←E
bO(PK ,M,R) ,

where Env′n is identical to Envn except that it replaces O with O′, and E′1n , E
′2
n and Ê′3n are respectively

identical to E1
n, E

2
n and Ê3

n except that Env′n replaces Envn in each of these variables.

It can now be observed that the random execution of D
bg,bd

(SK ′, C,QC) from the original experiment will

always have an identical output to the execution of Dbg′,bd′

(SK ′, C) in the modified experiment, as they can

be viewed as the same execution18. Therefore, we can bound the probability that D
bg,bd

(SK ′, C,QC) = M by

bounding the probability that Dbg′,bd′

(SK ′, C) = M . This is done by bounding the probability that BAD6

holds in the recast experiment, conditioning on it not occurring, and then using the result of Corollary 68 to

bound the probability that Dbg′,bd′

(SK ′, C) = M .
What is the probability that BAD6 holds in our modified experiment where oracle O′ is selected in

Env(n) instead of O? We note that the bound computed in Corollary 60 for BAD6 applies here because
we can assume that we originally selected the oracle O′ randomly in Env(n). This is observed by imagining
that in the original experiment, for each triple of strings pk , b and r the response to the query (e, pk , b, r)
is not immediately fixed, and could be either e(pk , b, r) or e(pk , 1− b, r). The response is only fixed when a
query that is dependent on the result is made. At that point, a coin is flipped to decide if the response to
the queries (e, pk , b, r) and (e, pk , 1− b, r) should respectively be e(pk , b, r) and e(pk , 1− b, r) or vice-verse.
This would clearly not change the distribution from which the oracle O was drawn, as we are just putting off
a random decision in the oracles selection until it is needed. Since we have conditioned the random choices
made in RandCipher

bO(PK ,M,R,BKS , IQ) on BAD7, this is essentially what we’re doing in D: randomly
“flipping” the responses of the oracles on queries e(pk , b, r) and e(pk , 1 − b, r) for some queries where it is
guaranteed the “flipping” will result in an oracle from an identical distribution as the original was selected

16Formally we denote this change as follows: for each (< be, pk c, bc, rc >, c) ∈ QC if bc 6= b′c we modify e′ to be consistent
with (< e′, pkc, b

′
c, rc >, c) and (< e′, pk c, bc, rc >, c

′) where c′ = e(pkc, b
′
c, rc). Next, we make any modifications to d′ and w′

that are necessary to accommodate the change to e′. These are done in the obvious manner: if bg−1(pk) is well defined, set
d(g−1(bg−1(pk), c) ← b′c and d(g−1(bg−1(pk), c) ← bc; similarly, for any query (w, pk , ∗) with a response (∗, · · · , ∗, c, ∗, · · · , ∗, ∗)
replace the value c with c′, and vice-versa.

17We remind the reader that this conditioning effects the random choices made by RandCipher and not the random choices made
by Env(n),Exp1,Exp2 or dExp3

18The randomly simulated responses in D are replaced with the same responses in the execution of D except the responses now
correspond to correct responses from the oracle bO′.
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from. The upper bound on the probability of event BAD6 in Corollary 60 is (n2q+1)
2n . Therefore, for all

sufficiently large n with probability at least

(1−
n2q+1

2n
)(1−

4n2q

nα6
) ≥ (1 −

n2q+1

2n
−

4n2q

nα6
)

≥ 1−
5n2q

nα6

we have that Dbg′,bd′

(SK ′, C) = M and BAD6 holds.
Bounding the Probability that the Simulation is Correct

Maintaining our condition that BAD6 holds, we turn our attention to bounding the probability that all
of the simulated responses of queries to O′ are correct. This involves a case-by-case analysis that shows that
it is unlikely that any query to d̂ or ĝ is made in which the simulation is incorrect.

We note that the specific execution of D
bg,bd

(SK ′, C,QC) in our experiment and the execution of Dbg′,bd′

(SK ′, C)

make almost exactly the same queries to the sub-oracles. The only exception is when Dbg′,bd′

(SK ′, C) makes
a query (d, sk , c) in which (< g, sk >, pk) ∈ G, pk ∈ BKS ∗, (< g, sk >, pk) /∈ KnownQueries and
(< e, pk , ∗, ∗ >, c) ∈ QC : in this case D responds with a random bit, as opposed to making the query

to the oracle, but it is specifically on these queries where we have modified the responses of d̂′ so that they
correspond to the randomly chosen bits of the execution of D. Therefore, it suffices to bound the probability

that there are any queries are made during the execution of Dbg′,bd′

(SK ′, C) whose responses would be im-
properly simulated by the adversary, with the exception that we can ignore the previously mentioned case.
Our analysis will separately consider queries to ĝ′ and d̂′.
Bounding the Probability that D Makes Queries to ĝ′ that are Improperly Simulated.

If Dbg′,bd′

(SK ′, C) makes a query (ĝ′, sk), then in order for the simulated reply to be incorrect it is necessary
that ĝ′(sk ) 6= g(sk). Fortunately, the probability that the simulated reply is incorrect is small, because there

are very few strings sk ′ for which g(sk ′) 6= ĝ′(sk ′), and it’s quite unlikely that the execution of Dbg′,bd′

(SK ′, C)
can produce such a string, as they are distributed in a random fashion.

This is observed by noting that ĝ′ = ĝ, as no changes were made to ĝ in the modification of the experiment
that was just described; therefore, the question of incorrect simulation comes down to the probability that

Dbg,bd′

(SK ′, C) makes a query (ĝ, sk) where ĝ(sk) 6= g(sk). Such an event would imply the value ĝ(sk) was
assigned on line 5 of ConsolidateOrac19.

In order for such an event to occur, it must be the case that the query/response (< g, sk >,g(sk)) /∈

KnownQueries , yet for some s̃k 6= sk it is the case that (< ĝ, s̃k >,g(sk)) ∈ D ∪ G. In such a case, by

the construction of Ô, we have that ĝ(s̃k) ← g(sk ), and there the value of ĝ(sk) is assigned on line 5 of
ConsolidateOrac. We will call such an event a collision, and say both that sk was involved in a collision
and that s̃k caused a collision. We bound the probability that the execution of D makes any query (d̂, sk , ∗)
where sk is involved in a collision.

By the design of Êxp3 there are at most |D ∪ G| strings that can cause a collision, and therefore at most
that many strings that can be involved in a collision. We know that |G| ≤ nq, and it can easily be shown
that |D| ≤ (2n4q ·n2α4 + ns · n2α4 · n2q). Therefore, for all sufficiently large n there are at most 3n3α4 strings
that can be involved in a collision. We bound the probability of finding any such string on a given query.

If a string sk is involved in a collision in Êxp3 then the only information that is known about it is that
it is in the set S = {0, 1}|sk| \ {sk |(< g, sk >, ∗) /∈ (KnownQueries ∪ D ∪ G)}. This is the case because for
any string sk ′ for which there is a query/response of the form (< g, sk ′ >, pk ′) ∈ KnownQueries ∪ D ∪ G

it’s the case that ĝ(sk′) = g(sk ′) = pk ′, by the design of Êxp3, and at the end of Exp3, no other queries
have been made to g. As g is a randomly chosen one-to-one function, there is no preference that one string
in the set S would be involved in a collision over another. Therefore, the probability of making a query

(ĝ, sk) after Êxp3, where sk is involved in a collision is no more than |D∪G||S| . We wish to derive a bound on

the probability that any of the queries of the form (ĝ, sk) made by D or E (which provides an input to D)
is involved in a collision, and since these algorithms each make no more than nq queries, the probability is

19It was noted in Section N.2 that this is the only possibility for an incorrect simulated response to bg
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less than |D∪G|
|S|−2nq , where the summand 2nq accounts for information that might be learned about g through

queries in D and E. We have a bound on |D ∪ G|, and by counting the number of queries of the form (g, ∗)
in both Exp1 and Exp2, it can be shown that the number of queries to g in KnownQueries is less than
(n2α1 · nq) + (2n4q · n2α4 + ns · n2α4 · n2q) ≤ 2n3α1 , where the last inequality holds for all sufficiently large n.

Therefore, the probability that any query that D or E made finds a value sk that was involved in a
collision as described would be no more than

|D ∪ G|

|S| − 2nq
≤

3n3α4

|{0, 1}|sk|| − |KnownQueries ∪ D ∪ G| − 2nq

≤
3n3α4

nα0 − 3n3α4 − 2n3α1 − 2nq

≤
3n3α4

nα0 − 3n3α1
,

where all the inequalities hold for sufficiently large n. The second inequality follows from remembering that
|sk | ≥ α0 · log n, as there is no possibility of an incorrect simulated response on a small query.

The bound we have computed is true, given every query/response that has been made to the oracle O in

Exp1, Exp2 and Êxp3, but we are running our experiment subject to ∧i∈{1,3,5,6}BADi. Because, we have
made use of all of the known query/responses from the experiment in the argument that derived this bound,
it holds given the condition of ∧i∈{1,3,5}BADi, as these events depend only on the results of query/responses
in the experiment. However, our bound currently does not take into account the effects of conditioning on
BAD6, and therefore we need to compensate for any effect this might have. Making use of the following
basic fact from probability

Pr[A|B ∧ C] =
Pr[A ∧B|C]

Pr[B|C]
≤

Pr[A|C]

Pr[B|C]
,

it suffices to get a bound on the event BAD6 given that ∧i∈{1,3,5}BADi hold, and such a bound is provided

by Corollary 60. This bound implies that for all sufficiently large n: Pr[BAD6| ∧i∈{1,3,5}BADi] ≥
1
2 . Using

this lower bound to take into account the effects of the conditioning on BAD6, we conclude the probability

that D makes a query (d, sk) whose response will be improperly simulated is less than 6n3α4

nα0−3n3α1
.

Bounding the Probability that D Makes Queries to d̂′ that are Improperly Simulated.

We now bound the probability that Dbg′,bd′

(SK ′, C) makes a query (d̂′, sk , c) that has an incorrect simulated
reply. Unlike the bound of such queries to ĝ′, we must consider several different cases that cover the possible
ways in which the simulated oracle responses can go wrong. These cases correspond to the ways that simulated
responses can be incorrect that are listed in Section N.2. We consider these cases below.

Case 1. ĝ(sk) was defined on line 5 of ConsolidateOrac. The probability of this case can be bounded
by using the same argument that is used for bounding the probability of improperly simulating a
response query to ĝ. Observe that in order to make a query d̂′(sk , c) whose response will be improperly
simulated in this this case, a string sk must be found for which ĝ(sk) was defined on line 5. It is this

probability that previously was bound to be less than 6n3α4

nα0−3n3α1
, and therefore, the bound on this case

is also 6n3α4

nα0−3n3α1
.

Case 2. (< g, sk >, ∗) ∈ G, g(sk) 6= ĝ′(sk), (< g, sk >, ∗) /∈ KnownQueries and (< d, sk >, c) /∈
KnownQueries.
There are several reasons why such queries are either unlikely, or unlikely to be simulated incorrectly.
We consider several mutually exclusive sub-cases.

Case 2.1 (< g, sk >, pk) ∈ G, pk ∈ BKS∗, (< g, sk >, pk) /∈ KnownQueries, g(sk) 6= ĝ(sk) and
there is no query/response (< ê, pk , ∗, ∗ >, c) in QC.

Intuitively, the most likely response to the query (d̂′, sk , c) in this case is ⊥, as there is no
query/response (< ê, pk , ∗, ∗ >, c) in QC nor in G; and, as has previously been mentioned, it
is hard to find strings c for which d(sk , c) 6= ⊥ without making such a query. If there is an error

in the simulated response then there are only two possibilities: d(sk , c) 6= ⊥ or d̂(sk , c) 6= ⊥. Both
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cases are unlikely. The analysis of each case is nearly identical, and therefore we will only explicitly
give it for the first.
The probability of finding a string c that is the image under ê′(pk , ·, ·) of a pair of strings b and

r, when the query (ê′, pk , b, r) has not been made in the experiment is less than 2·2n3α1

nα0−2n3α1
: the

value of 2n3α1 in the numerator is an upper-bound on the number of elements in the domain whose
images have been revealed by queries to ê′(pk , ·, ·); and the denominator corresponds to the number
elements in the co-domain of ê′(pk , ·, ·) that might conceivably have pre-images, but for which none
are known. This bound can be derived by noting that ê′(pk , ·, ·) is a one-to-one function of the
form {0, 1}×{0, 1}|sk| → {0, 1}3|sk| that was effectively chosen uniformly at random from the set of
all such functions; the number of elements in the domain of e(pk , ·, ·) for which the corresponding
image is known can be shown to have an upper-bound of less than 2n3α1 . This is shown by counting
the number of queries of the form (e, pk , ∗, ∗) that could possibly be made in Exp1 and Exp2. To
obtain a lower bound on the number of elements in the co-domain that might have a pre-image we
note that initially there were at least a possible nα0 such values (remembering |sk | ≥ α0 · logn, as
otherwise the simulated response would necessarily be correct). Next, we perform an over-estimate

and assume that each query to ê′(pk , ·, ·), d̂′(sk , ·) or û′(pk , ·) reveals a pre-image/image pairing
((b′, r′), ê′(pk , b′, r′)) of the function ê′(pk , ·, ·). It is easy to show there are at most 2n3α1 such

queries in Exp1, Exp2 and Êxp3.
Because our bound takes into account the revealed values of the oracle during Exp1, and Exp2, it
holds even when given our conditioning on ∧i∈{1,3,5}BADi, as these events follow directly from the
specific values of the oracle that were revealed in Exp1 and Exp2. However, we still need to take
into account the fact that our argument conditions on BAD6. Therefore, we bound the probability
of these events to be at least 1/2 using the same argument that is used earlier in the proof of this
lemma, when we obtained a bound on the chance of making a query to ĝ whose simulated response
would be incorrect.

Case 2.2 (< g, sk >, pk ) ∈ G, pk ∈ BKS ∗, (< g, sk >, pk) /∈ KnownQueries and (< e, pk , ∗, ∗ >
, c) ∈ QC.
These are the queries that are excluded from our analysis as D will not actually make these queries,
as previously mentioned. Therefore, the probability of error in this case is 0.

Case 2.3 (< g, sk >, pk) ∈ G \GKS∗ and pk /∈ BKS ∗

The probability of such a query being performed is low. If during Exp1 there was a query/response
(< e, pk , ∗, ∗ >, c′), then this case is not even possible: such a query/response would either require
pk ∈ KS (where KS = (GKS ∗ ∪ BKS ∗)), had the equality u(pk , c′) = ⊤ held on line 7 of Exp1;
and otherwise, if u(pk , c′) = ⊥, then g−1(pk ) is undefined, also implying the case is not possible.

The probability that there is a query (e, pk , ∗, ∗) made during the execution of E
bO′

(PK ,M,R) for a
value pk /∈ {pk ′|(e, pk ′, ∗, ∗) ∈ E} is no more than 1/nα1−2, as our analysis is already conditioning

on BAD6 and this implies that BAD2 holds relative to the oracle Ô′ that was chosen in our
modified experiment. Since there are at most nq possible values for which (< g, ∗ >, pk) ∈ G,
the probability of this case is less than nq/nα1−2. Alternatively, if there was no query/response

(< e, pk , ∗, ∗ >, c) made during the execution of E
bO′

(PK ,M,R), we can bound the probability of
this case using the same argument and analysis that was presented in sub-case 2.1, which is based
on the principle that it is difficult to find a string c for which d̂′(sk , c) 6= ⊥ without making a
query/response of the form (< ê′, pk , ∗, ∗ >, c). The analysis in sub-case 2.1 bounds the probability

of this case to be less than 4n3α1

nα0−3n3α1
. For all sufficiently large n, 4n3α1

nα0−3n3α1
≤ nq

nα1−2 , so nq

nα1−2

bounds the probability of this sub-case.

We can bound the probability of Case 2 by taking the maximum of the bounds for the three mutually

disjoint cases that were presented: max{ nq

nα1−2 , 0,
4n3α1

nα0−2n2α1
} = nq

nα1−2 for all sufficiently large n.

Case 3. (< ĝ′, sk >, pk) ∈ D there is no query/response (< g, sk >, ∗) ∈ (G ∪ KnownQueries),
g(sk ) 6= ĝ′(sk), and (< d, sk >, c) /∈ KnownQueries

Again, we can consider two familiar cases: whether or not there was a query/response (< e, pk , ∗, ∗ >, c)

that was made during the execution of E
bO′

(PK ,M,R). If no such query/response was made, then the
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probability of this case is less than 4n3α1

nα0−3n3α1
, as per sub-case 2.1.

The case in which a query of the form (< ê′, pk , ∗, ∗ >, c) was made during the execution of E
bO′

(PK ,M,R)
is also unlikely. First, note that the probability of making any query of the form (e, pk , ∗, ∗) during the

execution of E
bO′

(PK ,M,R) is less than 1/nα1−2 because of our conditioning on BAD6 and BAD1.
The condition BAD1 implies that there are no surprising queries to d made in Exp1, and since –by
definition of the current case– there is no query (< ĝ′, sk >, pk) in G there can be no queries of the
form (e, pk , ∗, ∗) in the set E computed in Exp1. Therefore, since BAD6 holds, we know that BAD2

effectively holds in our modified experiment, and therefore the the probability that E
bO′

(PK ,M,R)
makes a query/response of the form < ê′, pk , ∗, ∗ >, c) is less than 1

nα1−2 .

The probability of this case is therefore less than max
{

4n3α1

nα0−3n3α1
, 1
nα1−2

}
= 1

nα1−2 .

Case 4. (< g, sk >, pk) ∈ KnownQueries for some pk , but (< e, pk , ∗, ∗ >, c) was defined on line 18
of ConsolidateOrac.
Again, we can consider two familiar cases: whether or not there was a query (< e, pk , ∗, ∗ >, c) that was

made during the execution of E
bO′

(PK ,M,R). If no such query/response was made, then the probability

of this case is less than 4n3α1

nα0−3n3α1
, as per sub-case 2.1.

We bound the probability of the the alternate case in which such a query/response (< e, pk , ∗, ∗ >, c) is
made. We use an argument similar to the one that showed it was improbable that responses of queries
to ĝ′ are improperly simulated. We begin by noting that the values of ê(pk , ∗, ∗) that were defined on
line 18 of ConsolidateOrac are few in number and randomly distributed, making them very unlikely

to be queried during the execution of E
bO′

(PK ,M,R). The probability of an improper response in this

case comes down to the probability that E
bO′

(PK ,M,R) makes a query/response (< ê, pk , b, r >, c)
where the value of ê(ĝ(sk), b, r) was assigned on line 18 of ConsolidateOrac. In order for this to occur
it must be the case that there is no pair of strings, (b, r), such that (< e, pk , b, r >, c) ∈ KnownQueries ,
but that for some (b̃, r̃) 6= (b, r) it is the case that (< ê, pk , b̃, r̃ >, c) ∈ G (remembering that there
are no query/response (< e, ∗, ∗, ∗ >, ∗) ∈ D, as D does not query the decryption sub-oracle). In this
case ê(pk , b, r) is assigned on line 18. This means that (b, r) could be any pair of values in the set
{0, 1} × {0, 1}|sk| \ {(b′, r′)|(< e, pk , b′, r′ >, ∗) ∈ KnownQueries ∪ G ∪ D}.

We now remark to the reader that the remainder of the analysis for this case is similar to the case
where we bounded the probability of an improperly simulated response of a query to ĝ′. Because of
the random process Υ by which O was chosen, the probability of finding such a pair, (b, r), is less than

nq

nα0−2n3α1
. This bound takes into account all previous query/responses to the oracle, and thus holds

when conditioning on ∧i∈{1,3,5}BADi, as these events rely only upon the results of queries made during

Exp1 and Exp2. Our bound does not take into account conditioning on BAD6. By Corollary60, for all
sufficiently large n: Pr[BAD6| ∧i∈{1,3,5} BADi] ≥

1
2 . We multiply our previous bound by 2, thereby

taking into account the effects of the conditioning on BAD6 and arrive at the bound of: 2nq

nα0−2n3α1
for

this case.

The probability of making a query for which the simulation will be incorrect is bound to be less than the

maximum of all of the previously discussed cases:max{ 6n3α4

nα0−3n3α1
, nq

nα1−2 ,
1

nα1−2 ,
2nq

nα0−2n3α1
} = nq

nα1−2 . There

are at most nq queries that are made during the execution of Dbg,bd′

(SK ′, C) and therefore, the probability of

an error is less than n2q

nα1−2 . Therefore, with probability at least 1− n2q

nα1−2 , we have a successful simulation,

given that BAD6 holds.

Combining this bound with the bounds on the likelihood that Dbg′, bd′
(SK ′, C) = M and that BAD6 holds,

we have that we have both a successfully encryption and simulation with probability at least: 1− n2q

nα1−2−
5n2q

nα6
≥

1− 6n2q

nα6
, where the inequality holds for all sufficiently large n.

N.5 The Final Decryption Algorithm: D̂

The problem with the algorithm D is that in order to use it to decrypt ciphertexts generated by the call to
RandCipher it requires as an input the set QC which contains the replacement query/responses that were
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made during the execution of RandCipher . The challenge ciphertext that the adversary is attempting to
decrypt will be generated by an execution of E, in which there is no notion of replacement query/responses
— and, even if such a corresponding notion existed, the adversary would not have access to them — so we
need to develop an algorithm that does not require access to a set QC .

We modify the algorithm D to produce an algorithm D̂ that will, with high probability, also decrypt
ciphertexts generated by RandCipher and be simulatable by the adversary, but it will have the benefit of not
requiring a set of replacement query/responses as an input. The intuition behind the design of the algorithm

D̂ is as follows: in the experiment described in Lemma 69 it is very unlikely that D
bO
(SK ′, C,QC) will make

a decryption query (d̂, sk , c) that has a response in {0, 1} in those cases where the values sk and c have not
been encoded into either SK ′, C or both. Therefore, for any query (d, sk , c) where g(sk) ∈ BKS ∗ if we know

both that there is no query response (< e,g(sk), ∗, ∗ >, c) ∈ IQ and that d̂(sk , c) ∈ {0, 1}, then with high
probability the string c was a replacement response during the execution of RandCipher , and therefore there
would be a corresponding query in QC . In D̂ we assume this to be the case and reply with a random coin
flip. This algorithm is formalized below.

D̂bg,bd,bu(SK , C,BKS ∗,IQ∗)
(1) Simulate the execution of Dg,d(SK , C)
(2) On oracle query (ĝ, sk) reply with ĝ(sk)
(3) On oracle query (d̂, sk , c)
(4) If there exists a b and r such that (< ê, ĝ(sk), b, r >, c) ∈ IQ∗ reply with d̂(sk , c)
(5) If ĝ(sk) /∈ BKS ∗ reply with d̂(sk , c)
(6) If û(ĝ(sk), c) = ⊤ then reply with bc ∈R {0, 1}
(7) Reply with ⊥
(8) Output the result of the simulation

We will execute D̂ with the set BKS ∗ that is constructed by Exp2 in our experiment. The set IQ∗ = IQ∪G

where IQ was generated in Exp2 and the set G generated in Exp3. We will show that D̂bg,bd,bu(SK ′, C,BKS ∗, IQ∗),

will function in an almost equivalent manner to D
bg,bd

(SK ′, C,QC) when used in the experiment conducted
in the experiments we have been discussing (specifically, the experiment stated in Lemma 69). The problem

is that D̂bg,bd,bu(SK ′, C,BKS ∗, IQ∗) could make a decryption query (d̂, sk , c) whose response is not ⊥ and for
which there has never been a corresponding encryption query/response (< ê, ĝ(sk ), ∗, ∗ >, c), and in this case

the execution might not be equivalent to D
bg,bd

(SK ′, C,QC). Fortunately, the probability of such an event is
low. We formally define this notion below and bound the probability of the event.

We first remind the reader of the notation introduced in Notn. 57, which allows us to denote by

D̂bg,bd,bu
r (SK , C,BKS , IQ∪D) (resp. D

bg,bd

r (SK , C,QC)), the execution of where the string r ∈ {0, 1}n
q

specifies

the random bits to be used during the computation of D̂bg,bd,bu(SK , C,BKS , IQ∪D) (resp. D
bg,bd

(SK , C,QC)).

Specifically, we let the ith bit of r represent the response to the ith request for a random bit bc in D̂ (resp.
b′c in D).

Lemma 70. For all sufficiently large n:

Pr[D̂bg,bd,bu
r (SK ′, C,BKS ∗, IQ∗) = M and is properly simulated|

∧

i∈{1,3,5,7}

BADi] ≥ 1−
8n2q

nα6
,

where the experiment is
Envn←Env(n)

E1
n←Exp1(Envn)

E2
n←Exp2(E

1
n)

bE3
n←

d
Exp3(E2

n),M∈{0,1},R∈{0,1}nρ2
,r∈{0,1}nq

C←RandCipher
bO(PK ,M,R,BKS∗,IQ) ,
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and IQ∗ = IQ ∪ G.

Proof. We will prove this result, by comparing the execution of D̂bg,bd,bu
r (SK ′, C,BKS , IQ) in the experiment

with a corresponding execution of D
bg,bd

r (SK ′, C,QC), where QC is the set of replacement query/responses
made by the execution of RandCipher . We remind the reader that, by Lemma 69, the probability that both

D
bg,bd

r (SK ′, C,QC) = M and that the execution is properly simulated by the adversary is at least 1 − 6n2q

nα6
.

We will assume that if either D
bg,bd

r (SK ′, C,QC) 6= M or the execution of D is improperly simulated then

either D̂bg,bd,bu
r (SK ′, C,BKS ∗, IQ) 6= M or the execution of D̂ is improperly simulated.

First, let us look at the probability that the executions of D̂bg,bd,bu
r (SK ′, C,BKS ∗, IQ) and D

bg,bd

r (SK ′, C,QC)

will diverge, and show that it is small. Both algorithms simulate the execution of Dbg,bd(SK ′, C) and modify
the responses to some of the oracle queries. Neither algorithm modifies the responses of queries to ĝ, so
there is no chance the simulated executions can diverge on such a query. The situation is substantially
different with queries to d̂. Let us consider the two simulations’ responses to a query (d̂, sk , c). We first
note that if ĝ(sk ) /∈ BKS ∗ then the two algorithms necessarily provide the same simulated reply to the

query, for if there is no query/response (< ê, ĝ(sk), ∗, ∗ >, c) ∈ QC then D responds with d̂(sk , c). Let
pk = ĝ(sk). By the definitions of RandCipher and the set QC , if pk /∈ BKS ∗ then there cannot be a

query/response (< ê, pk , ∗, ∗ >, c) ∈ QC , and therefore in this case the simulated responses of D and D̂
will always be equivalent. Similarly, if there was a query/response (< ê, pk , ∗, ∗ >, c) ∈ IQ∗, then, because
BAD7 holds, there can be no query/response (< ê, pk , ∗, ∗ >, c) ∈ QC and therefore D would reply to the

query (d̂, sk , c) with the response d̂(sk , c). There are only two remaining possibilities: firstly, that there is no
query (< ê, pk , ∗, ∗ >, c) in the set IQ∗ ∪ QC , and, secondly, that there is a query (< ê, pk , ∗, ∗ >, c) ∈ QC .

In the first case, D will respond with d̂(sk , c) but there are two possibilities for D̂’s response: it will respond
with a random coin-flip in the case that û(pk , c) = ⊤, and otherwise when û(pk , c) = ⊥ it responds with ⊥.

We will show that it is likely that d̂(sk , c) = ⊥, and therefore that û(pk , c) = ⊥. This implies that it is likely

that both D and D̂ simulate a reply of ⊥.
In the second case, in which there is a query (< ê, pk , ∗, ∗ >, c) ∈ QC , both executions respond with a

coin-flip; since both executions share the same random string r — assuming that the two executions have
not diverged, and thus that all previous queries in the executions have had the same simulated responses —
both D and D̂ will provide the same simulated response.

Based on the previous case analysis, it suffices to bound the probability that any query (d̂, sk , c) is made

during the simulation of Dbg,bd(SK ′, C) where d̂(sk , c) 6= ⊥, pk ∈ BKS ∗ and there is no query/response
(< ê, pk , ∗, ∗ >, c) ∈ IQ∗ ∪QC . That such queries should be unlikely is not surprising, as for any string sk it

is very hard to find a string c for which d̂(sk , c) 6= ⊥ without making a query/response (< ê, pk , ∗, ∗ >, c). We

note that the query/response (< ê, pk , ∗, ∗ >, c) was not made during the generation of G
bO(S′)→ (PK ,SK ′)

due to the fact that there is no query/response of the form (< ê, pk , ∗, ∗ >, c) in the set IQ∗ ⊃ G. Further, no

such query/response was made during the execution of RandCipher
bO(PK ,M,R,BKS ∗, IQ)→ C, as BAD7

holds and there is no query/response (< ê, pk , ∗, ∗ >, c) ∈ QC . Since these executions account for generating

the only two inputs to Dbg,bd(SK ′, C), there is only a very small probability that execution of D makes a query

(d̂, sk , c) for which d̂(sk , c) 6= ⊥.

We will call a query (d̂, sk , c) informative if there has been no previous query/response (< ê, pk , ∗, ∗ >, c)

that was made during either the execution of G
bO(S′)→ (PK , SK ′) or

RandCipher
bO(PK ,M,R,BKS∗, IQ) → C, where pk = ĝ(sk), and d̂(sk , c) 6= ⊥ 20. At the end of the

proof of this lemma we present Claim 71, and it bounds the probability that D
bg,bd

r (SK ′, C,QC) makes
an informative query in the experiment to be less than 2

nα0
. Therefore, with probability 1 − 2

nα0
we

have that D
bg,bd

r (SK ′, C,QC) = D̂bg,bd,bu
r (SK ′, C,BKS ∗, IQ∗). Combining this with the fact that, by Lemma

69, with probability at least 1 − 6n2q

nα6
both D

bg,bd

r (SK ′, C,QC) = M and its execution is properly simu-

20We note the notion of an informative query is similar, but not identical to the notion of a surprising response, which was
presented in Defn. 29.

70



lated by the adversary, we conclude that with probability at least 1 − 6n2q

nα6
− 2

nα0
it is the case that

D̂bg,bd,bu
r (SK ′, C,BKS ∗, IQ∗) = M . This bound is greater than 1− 7n2q

nα6
for all sufficiently large n.

Unfortunately, without additional argument, we cannot also conclude that the execution of

D̂bg,bd,bu
r (SK ′, C,BKS ∗, IQ∗) will be properly simulated by the adversary, as there are queries made to û during

the execution of D̂ that may not be properly simulated. Assuming that we are in the case just described

where all of the following hold: D
bg,bd

r (SK ′, C,QC) = M , its execution is properly simulated by the adversary

and all of the simulated query/responses in the two executions correspond, then any query to d̂ or ĝ made

by D̂ will, assuming all queries to û are properly simulated, have necessarily been made by D, and therefore,
the execution of D̂ will be properly simulated. Therefore, we show that with high probability every query
of the form (û, ĝ(sk), c) made in D̂ on line 6 is properly simulated 21. If a query (d̂, sk , c) was made by
D and was properly simulated, where ĝ(sk) = pk , then the query (û, pk , c) will have its response properly

simulated. This can be seen by noting the symmetry in the definitions of û and d̂ in ConsolidateOrac and
the symmetry in the adversary’s simulation of the response to such queries, as is presented in Section N.1.
The symmetry in definitions imply that if the response to the query (d̂, sk , c) is properly simulated, then so
is the response to the query (û, pk , c). Therefore, it suffices to show that the response to the query (û, pk , c)
is simulated properly in the case where there is a query (< ê, pk , ∗, ∗ >, c) ∈ QC , for it is only these queries

to û for which D will not have made a corresponding query (d̂, sk , c), and therefore there is no guarantee
that these responses will be properly simulated.

Given that (< ê, pk , ∗, ∗ >, c) ∈ QC we know that pk ∈ BKS ∗. Let b and r be the values for which (<
ê, pk , b, r >, c) ∈ QC . Because BAD7 holds, there have been no previous query/responses (< ê, pk , b, r >, c)
in KnownQueries ∪ G. Because ê(pk , b, r) = c, it is the case that û(pk , c) = ⊤, and therefore there can only
be an error if the simulated response to the query (û, pk , c) is ⊥; such a simulated response can only occur
if u(pk , c) = ⊥, and this can only be the case if there are no values b′ and r′ for which e(pk , b′, r′) = c. In
particular this implies that e(pk , b, r) 6= ê(pk , b, r) = c. The only way for this to happen is if the value of
ê(pk , b′, r′) was set on line 8 or line 18 of ConsolidateOrac.

If the value of ê(pk , b′, r′) was set on line 8, then the simulated response to û(pk , c) is guaranteed to be
correct by the definition of the simulation. Therefore, it suffices to bound the probability that the value
of ê(pk , b′, r′) was set on line 18. We bound the probability of this case by bounding the probability that
RandCipher make any such query in the experiment, which it must do if such a query is to be in the set QC .

For a given value pk ∈ BKS ∗, the execution of RandCipher makes at most 2nq replacements queries of
the form (< ê, pk , ∗, ∗ >, c), and for each such query (ê, pk , b, r) that is made, the strings b ∈ {0, 1} and
r ∈ {0, 1}|sk| are chosen uniformly at random conditioned on the event BAD7. This condition means that
r is selected so that there is no query (ê, ĝ(sk), ∗, r) in the set KnownQueries ∪ G, nor has such a query
previously been made during the current execution of RandCipher . Observe that for sufficiently large n, the
value n3α1 is a large overestimate on the number of queries that are disallowed due to our conditioning on
BAD7. We also know that the total number of pairs (b, r) for which the value of ê(pk , b, r) is set on line
18 can easily be overestimated by n3α1 . Therefore, the probability that a given replacement query, made by

RandCipher , has a response whose value was assigned on line 18 of ConsolidateOrac is less than 2n3α1

nα0−2n3α1
.

As previously mentioned, there are at most 2nq queries made for a given key pk ∈ BKS ∗, and there are at
most nq such keys in BKS ∗. Therefore, by the union-bound the probability of an incorrect simulation is less

than 4n3(α1+q)

nα0−2n3α1
. Therefore, it is highly likely that that the simulation of the responses of queries to û will

be correct. Combining this bound with the previously derived bound on proper decryptions, we get that

the probability that D̂bg,bd,bu
r (SK ′, C,BKS ∗, IQ∗) = M and that its execution is properly simulated by the

adversary is at least

1−
7n2q

nα6
−

4n3(α1+q)

nα0 − 2n3α1
≥ 1−

8n2q

nα6

.
It remains to prove the claim that bounds the probability that an informative query is made during the

execution of D
bg,bd

r (SK ′, C,QC). We remind the reader that a response to the query (d̂, sk , c) is informative

21Observe that that the query (bg, sk) embedded in the query (bu, bg(sk), c) will always be simulated correctly because the

query/response (< bg, sk >, bg(sk)) ∈ G as bg(sk) ∈ BKS∗ by virtue of line 5 of bD, and all such queries are properly simulated.
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if there has previously been no query/response of the form (< ê, ĝ(sk), ∗, ∗ >, c) that was made during either

the execution of G
bO(S′)→ (PK , SK ′) or RandCipher

bO(PK ,M,R,BKS ∗, IQ)→ C in the experiment.

Claim 71. The probability that in the experiment of Lemma 70 that D
bg,bd

r (SK ′, C,QC) performs an infor-
mative query/response is less than 2

nα0
.

Proof. Intuitively there are only two ways for D to make an informative query: firstly, it might be that sk and
c are encoded into D’s inputs, SK ′ and C; or, secondly, D could attempt to find such values itself. However,
since G does not call d, by Assumption 21, we don’t need to worry about the input SK encoding any strings
that would form informative queries. In order for sk and c to be encoded into C, the execution of RandCipher

needs to make an informative query. We will first bound the probability that RandCipher
bO(PK ,M,R,QC)

makes an informative decryption query to be less than nq

nα0
and will argue there is a similar bound on the

probability that D
bg,bd

r (SK ′, C,QC) makes such a query given that RandCipher did not. We begin with former
bound.

Consider an execution of RandCipher
bO(PK ,M,R,QC) where the ith query that it performs is (d̂, sk , c)

where the string pk = ĝ(sk ) is in BKS ∗, there is no query/response (< e, pk , ∗, ∗ >, c) ∈ IQ∗, and there is no
query/response (< e, pk , ∗, ∗ >, c) that has previously been made during the prior i− 1 queries made during
the execution of RandCipher .

Given that the the function ê(pk , ·, ·) is randomly selected from the set of all possible functions of the form
{0, 1}×{0, 1}|sk| → {0, 1}3|sk|, the probability that there exists strings b and r such that ê(pk , b, r) = c is less

than 2|sk|+1

23|sk|−3n2α1
: we have subtracted 3n2α1 in the denominator to compensate for information about ê(pk , ·, ·)

that may have been learned, via direct queries to the oracle, either in the experiment of Lemma 70 or during
the earlier i−1 queries of RandCipher . Since pk = ĝ(sk ) ∈ BKS ∗ we know that |sk | ≥ α0 ·logn, and therefore

this bound is less than nα0+1

n3α0−3n2α1
for all sufficiently large n. Using the union-bound to account for the fact

that RandCipher could perform nq different queries to d, we see that the probability that any such informative

query is made during the execution of RandCipher
bO(PK ,M,R,QC) is less than nα0+q+1

n3α0−3n2α1
≤ 1

nα0
, where

the inequality holds for all sufficiently large n.

Next, we bound the probability that Dbg,bd,bu(SK ′, C,QC) makes an informative query given that that

C ← RandCipher
bO(PK ,M,R,QC) has made no informative queries. Using an almost identical argument to

that just presented we can bound the probability to being less than 1
nα0

. Given the similarity and redundancy
of the arguments, we will not present it here. Therefore, we can bound the probability of an informative
query to be less than 2

nα0

N.6 Using D̂ to Decrypt the Challenge Ciphertext

The previous lemma shows that the adversary can use D̂ to properly decrypt ciphertexts generated by
RandCipher with high probability. Our final lemma shows that the adversary can also use D̂ to decrypt
ciphertexts generated by E, and thus the adversary will likely be able to decrypt its challenge ciphertext.

The intuition as to why D̂ should do a good job decrypting ciphertexts generated by E is that D̂ cannot
effectively distinguish ciphertexts generated by D̂ and RandCipher , and therefore it cannot do a better job
decrypting ciphertexts generated from one algorithm vs. the other. The distinction between an execution of

E
bO(PK ,M,R) and an execution of RandCipher

bO(PK ,M,R,BKS∗, IQ) is that RandCipher simulates the
execution of E but it replaces the response of the query/responses (< ê, pk , b, r >, c) that are both not in
IQ and for which pk ∈ BKS ∗, with c′ = ê(pk , b′, r′) for randomly chosen b′ and r′. Since neither the query
(ê, pk , b, r) nor (ê, pk , b′, r′) is common (the former because it’s not in IQ and the latter because b′ and r′

are chosen randomly), it’s not likely that either has been made before at any point in any of the experiments.
Assuming this is the case, from the perspective of both the adversary and the decryption algorithm the
response to each query is effectively a random string, and the strings would not be effectively distinguishable
by any party with limited queries to Ô. Therefore, the decryption algorithm cannot decrypt substantially
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better in one scenario versus the other, or it would imply an ability to effectively distinguish the responses
of the oracle on previously unknown queries.

This intuition is formalized in the proof of the following lemma.

Lemma 72. For all sufficiently large n:

Pr
Envn←Env(n)

E1
n←Exp1(Envn)

E2
n←Exp2(E1

n)

bE3
n←

d
Exp3(E

2
n),M∈{0,1}

R∈{0,1}ρ2 ,C←E
bO(PK ,M,R)

[D̂bg,bd,bu(SK ′, C,BKS ∗, IQ∗) = M and is properly simulated]|
∧

i∈{1,3,5}

BADi] ≥ 1−
9n2q

nα6
,

where IQ∗ = IQ ∪ G

Proof. The only difference between the experiments stated in this lemma and that of Lemma 70 is that in

Lemma 70 the ciphertext C is the result of an execution of RandCipher
bO(PK ,M,R,BKS ∗, IQ) conditioned

on the event BAD7, but in this lemma the ciphertext C is the result of an execution of E
bO(PK ,M,R) with

no conditioning.

We show that with high probability we can view the output of E
bO(PK ,M,R) as the output of a random

execution of RandCipher
bO′

(PK ,M,R,BKS∗, IQ) conditioned on BAD7. Here Ô′ is an oracle that is nearly

identical to Ô, but from the perspective of D̂ is indistinguishable from Ô. This will imply that it is likely

that D̂bg,bd,bu(SK ′, C,BKS ∗, IQ∗) = M .

First, we remind the reader of the experiment from Lemma 70 which showed that D̂ did a good job
decrypting ciphertexts generated by RandCipher , which we restate below:

Envn←Env(n)

E1
n←Exp1(Envn)

E2
n←Exp2(E

1
n)

bE3
n←

d
Exp3(E2

n),M∈{0,1},R∈{0,1}nρ2
,r∈{0,1}nq

C←RandCipher
bO(PK ,M,R,BKS∗,IQ) ,

given that
∧
i∈{1,3,5,7}BADi holds. Remember that Lemma 70 shows that it is likely that as a result of

the above experiment that both D̂bg,bd,bu
r (SK ′, C,BKS ∗, IQ∗) = M and that such an execution is properly

simulated.
Consider a modified execution of RandCipher

bO(PK ,M,R,BKS∗, IQ) in the above experiment where for
each pk ∈ BKS ∗ and each replacement query (ê, pk , bi, ri) that is made during its execution we replace the
query’s response with the value ê(pk , b′i, r

′
i) where b′i and r′i are chosen subject to two constraints: first, that

the query (ê, pk , b′i, r
′
i) was not been made in the experiment, and second that the query was not previously

made in the current, modified execution of RandCipher . Let C′ be the ciphertext that results from this

modified execution. The probability that D̂bg,bd,bu
r (SK ′, C′,BKS ∗, IQ∗) = M and that such an execution is

properly simulated is at least 1 − 8n2q

nα6
, as was the case in Lemma 70. This is the case because from the

perspective of D̂ the distribution on ciphertexts is identical. It does not query ê, and therefore it has no
ability to distinguish between the two sequences of responses. Further, the probability of each sequence of
responses is identical. This is because, although we have changed the queries, the responses are effectively
randomized due to the random selection of the oracle. Note that queries to û cannot help the adversary
to distinguish between the two sequences because they only confirm whether or not ciphertexts have valid
decryptions, and so û(pk , ê(pk , bi, ri) = ê(pk , b′i, r

′
i) = ⊤, for each replacement response ê(pk , bi, ri) and its

corresponding response ê(pk , b′i, r
′
i). Further, queries of the form (d̂, sk , c) are not made by D̂ in the case

that ĝ(sk) = pk ∈ BKS ∗ and there is no query/response (< ê, pk , ∗, ∗ >, c) ∈ IQ∗; both of these properties
are satisfied for each replacement query and its modified response.

The latter property is satisfied in the original experiment due to the fact that BAD7 holds, and the
constraints on the modifications to the experiment ensure the property is satisfied in the modified experiment.
Further, since all of the queries whose responses are being modified are both distinct and never previously
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queried in the original experiment, there is an equal likelihood that the oracle selected is one where for each
i the response to the query (ê, pk , bi, ri) is ê(pk , b′i, r

′
i) as opposed to ê(pk , bi, ri). Therefore, the probability

that D̂bg,bd,bu(SK ′, C′,BKS ∗, IQ∗) = M in the modified experiment is the same as in the original experiment,
as any discrepancy would result in a distinguisher between the sub-oracles O and O′; given our discussion
and the fact that each sub-oracle is equally likely, this is not possible. Similarly, the probability that the

simulation of D̂bg,bd,bu(SK ′, C′,BKS ∗, IQ∗) is correct is the same as the probability that the simulation of

D̂bg,bd,bu(SK ′, C,BKS ∗, IQ∗) is correct for similar reasons.
Therefore, in order to prove the lemma it suffices to show that with high probability, for each pk ∈ BKS ∗

it is the case that each of the queries (e, pk , b, r) /∈ IQ∗ that is made during the execution of E
bO(PK ,M,R)

has not previously been queried in the experiment and is distinct. We will consider the probability in two
mutually exclusive cases: when BAD6 holds and when it does not. We remember that BAD6 tells us that IQ

contains all of the queries that are likely to be made during an execution of E
bO(PK ,M,R) with probability

greater than 1
nα1−2 . We will assume that when BAD6 holds there will be some query (e, pk , b′, r′) /∈ IQ∗

that is made during the execution of E
bO(PK ,M,R) that was previously queried in the experiment, and

therefore that D̂bg,bd,bu(SK ′, C′,BKS ∗, IQ∗) 6= M . However, in the case that BAD6 holds, then we know that
the probability that any of the first i queries of the form (ê, pk , b, r) /∈ IQ∗ for which pk ∈ BKS ∗ have the

property that they’re distinct and have not previously occurred in the experiment is at least (1 − n3α4

nα1−2 ),
where n3α4 is a gross overestimate on the number of possible queries that have been made to ê(pk , ·, ·) during

Exp1,Exp2 and Êxp3 and that are also not contained in IQ∗. Therefore, we can bound the probability that

all of the first i queries are distinct and have not previously occurred to be at least (1− n3α4

nα1−2 )i. Since there

are at most nq such queries that are made during the execution of E
bO(PK ,M,R), this probability is at least:

(1−
n3α4

nα1−2
)n

q

≥ 1−
n3α4+q

nα1−2
. (2)

≥ 1−
n4α4

nα1−2
(3)

(4)

Therefore, for all sufficiently large n, the probability that the execution of E
bO(PK ,M,R) satisfies all of the

required conditions is at least

(1−
n4α4

nα1−2
) · Pr[BAD6| ∧i∈{1,3,5} BADi] ≥ 1−

n4α4

nα1−2
−

3n2q

2n
(by Corollary 60 )

≥ 1−
n5α4

nα1−2
(for all sufficiently large n)

Therefore, by the union bound, for all sufficiently large n, with probability at least

1−
n5α4

nα1−2
−

8n2q

nα6
≥ 1−

9n2q

nα6

we have that D̂
bO(SK ′, C, IQ∗) = M and that the adversary properly simulates the computation.

O Putting it all Together

We finally show how to put together the lemmas from this chapter in order to prove our main theorem.

Theorem. 26.
There exists a CCA#1 adversary A = (A1, A2) for which it’s the case that for all sufficiently large n:

Pr
O=(O,R)←Υ

S∈R{0,1},M∈R{0,1},R∈R{0,1}
nρ2(n)

(PK ,SK )←GO(S),C←EO(PK ,M,R)

[
A

DO(SK ,·),O
1 (PK )→ σ;AO(σ,C) = M

]
≥ 1− 1/n.
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Proof. We note that the distribution that O, PK and SK are chosen from is identical to the one generated
by Env(n). Therefore, our adversary A1 will treat O and PK as if they had been output by Env(n) and
perform Exp1. We note that Exp1 makes no use of SK , and therefore the adversary can easily perform the
experiment. Let E1

n = (Envn,KS , IQ, E ,SQ) be the result of Exp1. Next, A1 performs Exp2(E
1
n). Note

that while Exp2 does make use of the value SK , which A1 does not have access to, it only makes use of
the value in computing DO(SK , ·), and the adversary can use the decryption oracle in order to compute
these values. Let E2

n = (τ∗,BKS ∗,GKS ∗, E1
n) be the result of Exp2. If Exp1 or Exp2 were to halt without

completing, which is an unexpected case, then A1 will output a special symbol that directs A2 to output a
bit that is chosen uniformly at random. Assuming that Exp1 and Exp2 terminated in the expected fashion,
A1 performs Êxp3(E

2
n). Let E3

n = (Env′,G,D, E2
n) where Env′n = (O′,PK ,SK ′, S′), and A1 outputs E3

n.

The second part of the adversary, A2, will now compute D̂bg,bd,bu(SK ′, C,BKS ∗, IQ∗) = M ′ and output
the result, where IQ∗ = IQ∪G. We remind the reader that A2 cannot necessarily perform this computation
perfectly because it has to simulate the responses of oracle queries to ĝ, d̂ and û. However, using many of
the lemmas that are proven in this chapter, we show that it’s likely that the simulated responses are correct
and that M ′ = M .

We begin by showing that it is likely that ∧i∈{1,3,5}BADi holds in the experiments that A1 performs. We

will assume the worst case: if any of the events BAD1,BAD3 or BAD5 fails to hold then it is necessarily
the case that the output of A2 is not M . We first note that by Lemma 54 it’s the case that ∧i∈{1,3,5}BADi

holds with probability at least 1 − 1
3nα0

. Next, we would like to show that it is likely that C′ = C ←

EO′

(PK ,M,R). Corollary 64 tells us that given that ∧i∈{1,3,5}BADi holds, this is the case with probability

at least 1 − n3α4

nα1−2 ; and Lemma 72 tells us that, also assuming that ∧i∈{1,3,5}BADi holds, the probability

that both D̂bg,bd,bu(SK ′, C′, IQ∗) = M and that the execution of D̂ is properly simulated is at least 1− 9n2q

nα6
.

Therefore, A2 outputs M with probability at least

1−
1

3nα0
−

n3α4

nα1−2
−

9n2q

nα6
≥ 1−

1

n
,

where the inequality holds for all sufficiently large n.

P Conclusions, Open Questions and Future Work

The main result of this chapter shows that there is no black-box proof of security for any black-box construc-
tion of a CCA#1 secure PKEP from a semantically secure PKEP, if the constructed encryption algorithm
does not query the black-box decryption algorithm. The model used in this chapter permits each party to
use an arbitrary amount of time to perform computation. This includes the adversary, and may seem to be
unrealistic. However, if one looks at the proof used in the experiment, the only point in which the adversary
uses its unlimited computational ability is in the selection of the oracle and seed pair (O′, S′) in lines 5
through 14 of Exp3. However, it is easy to see that the selection of (O′, S′) is really just the random selection
of an NP-witness from the set ValidEnvironments . At first glance, it may seem like this is not the case, as
we’re selecting an infinitely large oracle O′, but of course we only need to select the oracle with queries up
to size ns and thus it is finite. Yet, we’re still left with an exponentially large description. A quick review of
Exp3, Êxp3, D̂ and the simulation of the oracle Ô shows that the only part of O′ that we actually make use
of are those query/responses that are contained in the sets D and G output by Exp3, and they are polynomial
in size. Therefore, if we could efficiently and uniformly at random select an NP -witness from an NP-set,
we could execute the description of our adversary in probabilistic, polynomial time. A result by Bellare,
Goldreich and Petrank [5], shows that with access to an NP-oracle, a probabilistic polynomial time adversary
could perform all of the experiments and algorithms in this chapter. This implies that finding a black-box
proof of CCA#1 security for a construction ruled out in this chapter (i.e. those ruled out in Theorem 26),
would imply a separation of P and NP . This is the same principle that is behind Impagliazzo’ and Rudich’s
results in [20], which showed that any black-box construction of a key-exchange primitive from a one-way
function would imply that P 6= NP .

It is still an open question as to whether or not it can be shown that there is no black-box construction
of a CCA#1 secure PKEP from a semantically secure PKEP, but we feel the restriction presented in this
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chapter is neither obviously necessary and not likely to be made use of in many reasonable constructions,
and therefore the result presents serious evidence there may not be any such constructions.
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