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Abstract

Protocols proven secure in universally composable models remain secure under concurrent
and modular composition, and may be easily plugged into more complex protocols without hav-
ing their security re-assessed with each new use. Recently, a universally composable framework
has been proposed for Radio-Frequency Identification (RFID) authentication protocols, that
simultaneously provides for availability, anonymity, and authenticity. In this paper we extend
that framework to support key-compromise and forward-security issues.

We also introduce new, provably secure, and highly practical protocols for anonymous au-
thentication and key-exchange by RFID devices. The new protocols are lightweight, requir-
ing only a pseudo-random bit generator. The new protocols satisfy forward-secure anonymity,
authenticity, and availability requirements in the Universal Composability model. The proof
exploits pseudo-randomness in the standard model.

1 Introduction

While admittedly a new technology, RFIDs have great potential for application in the enterprise
and/or as smart, mass-market, embedded devices. The security implications are considerable, and
moreover important characteristics distinguish RFID authentication models from general-purpose
authentication, as we elaborate on below.

• Lightweight. RFID authentication protocols must be lightweight. Many RFID platforms can
only implement highly optimized symmetric-key cryptographic techniques.

• Anonymity. General-purpose authentication protocols may or not have support for anonymity.
On the other hand, many proposed RFID applications typically require anonymity fundamen-
tally, for instance for devices embedded in human bodies or their clothes, documents, etc. So
anonymity should be considered a core requirement of RFID authentication protocols.

• Availability. When considering RFID authentication protocols, one should examine not only
their vulnerability to attacks on authentication—impersonation, man-in-the-middle, etc—
but also to attacks that force the RFID device to assume a state from which it can no longer
successfully authenticate itself. This is of particular relevance for RFID devices, which are
portable and can be manipulated at a distance by covert readers.
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• Forward Security. As RFID devices can be lost or discarded, forward security is important to
guarantee privacy of past transactions that happened before the long term key or the session
key is exposed.

• Concurrent Security. As authentication and key exchange protocols are typically used as a
component in larger secure protocols, the issue of maintaining security of the overall protocol
in such concurrent environment with strong adversary that can adaptively modify communi-
cations is of importance [26, 28, 19].

Our goals are to design authentication protocols that will be used as subprotocols in ubiqui-
tous applications, or as standalone applications in combination with other applications. Thus we
desire to have our protocols be analyzed only once and then can be applied universally without
having to reanalyze the protocols for each application. Security analysis in the universal compos-
ability framework allow us to achieve this goal. Our security is based on notions of interactive
indistinguishability of real from ideal protocol executions. This approach requires the following
components:

1. A mathematical model of real protocol executions, where honest parties are represented by
probabilistic polynomial-time Turing machines that correctly execute the protocol as specified,
and adversarial parties that can deviate from the protocol in an arbitrary fashion. The
adversarial parties are controlled by a single (PPT) adversary that (1) has full knowledge of
the state of adversarial parties, (2) can arbitrarily schedule the actions of all parties, both
honest and adversarial, and (3) interacts with the environment in arbitrary ways, in particular
can eavesdrop on all communications.

2. An idealized model of protocol executions, where the security properties do not depend on the
correct use of cryptography, but instead on the behavior of an ideal functionality, a trusted
party that all parties may invoke to guarantee correct execution of particular protocol steps.
The ideal-world adversary is controlled by the ideal functionality, to reproduce as faithfully
as possible the behavior of the real adversary.

3. A proof that no environment can distinguish (with better than negligible accuracy) real- from
ideal-world protocol runs by observing the system behavior, including exchanged messages
and outputs computed by the parties (honest and adversarial). The proof works by translating
real-world protocol runs into the ideal world.

An important separation between theory and practice is efficiency. We design our protocols to
minimize security overheads when the system is not under attack. Achieving this goal together
with availability and forward security in a lightweight manner suitable for RFIDs is a nontrivial
task, as witnessed in the literature (see a review of the literature in Section §2).

Our contributions.

• A new UC authentication framework, including anonymity and forward security (Section §4.)

• New protocols that provide for optimistic forward-anonymous authentication and that guar-
antee availability and minimize security overhead in the honest case (Sections §4).
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• Lightweight implementation of the protocols in a wide-variety of RFID architectures by using
only PRGs (Section §6.)

• Featherweight PRG-based protocols that achieve identical security guarantees with a simpler
architecture under the assumption that the adversary has only time-limited opportunities to
interact with tags (“fly-by” attacks, in Section §7.)

• Security proofs for the protocol families (Sections §5, §6, §7.)

2 Previous work

The need for lightweight security mechanisms in RFID applications does not imply that one can
afford to provide security under limited attack models, as there is no reason to expect that attack-
ers will also have limited resources. For instance, Green et al. [8] have shown how realistic, simple
attacks can compromise tags that use encryption with small keys—even though only brief interac-
tions between attackers and the target tag ever take place—we shall call such limited-interaction
attacks fly-by attacks. Proposed protocols, some very ingenious [26], and which moreover enjoy
strong security properties under limited attack models [28] have been shown to be vulnerable to
man-in-the-middle-attacks [19] that could be implemented as fly-by attacks. Other interesting pro-
tocols, such as YA-TRAP [35], use timestamps. While effective in reducing complexity, the use of
timestamps leaves the tags vulnerable to denial-of-service attacks that can permanently invalidate
the tags, as pointed out by G. Tsudik in [35].

The research literature in RFID security, including anonymous authentication protocols, is
already quite extensive and growing—for reference, a fairly comprehensive repository is available
online at [2]. Here, we shall refrain from a comprehensive review and focus consideration on
those works most directly related to our construction. Ohkubo et al. [32] proposed a hash-based
authentication protocol that bears close resemblance to our protocols. However, the scheme in [32]
is vulnerable to certain re-play attacks. The proposed modifications in [3] address the replay-attack
problem but does not consider the issue of availability, and their scheme is vulnerable to attacks
where the attacker forces an honest tag to fall out of synchronization with the server so that it
can no longer authenticate itself successfully. Dimitriou [18] also proposes an anonymous RFID
protocol vulnerable to de-synchronization attacks against availability.

Another hash-based authentication protocol is introduced by Henrici et al [23]. Their solution
does not provide full privacy guarantees, in particular, the tag is vulnerable to tracing when the
attacker interrupts the authentication protocol mid-way. Molnar et al [30] propose a hash-tree
based authentication scheme for RFIDs. As most tree-based scheme, the amount of computation
required per tag is not constant, but logarithmic with the number of tags in the hash-tree. Also, if a
tag is lost, anonymity for the rest of the hash-tree group may be compromised. Finally, the scheme
does not provide for forward-anonymity. A scheme by Juels [25] only provides security against
“fly-by” attacks where the attacker is allowed to interact with the tag for a fixed time budget but
does not provide protection in the case of tag capture.

Our proposed solutions address all these issues within a comprehensive security framework.
We note that relatively little work has been done on RFID protocols where security is provided
in a unified model (for examples, see [1, 9]). Admittedly, in the RFID setting, one should be
aggressive in making simplifications to security models that are justified, as in such a constrained
environment some tradeoffs are needed in order to minimize the complexity and maximize the
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efficiency of the designed solution. One such restriction that we adopt is that we prohibit tags from
parallel execution of authentication protocols (note that the prohibition does not extend to corrupt
parties or non-tag entities). This restriction is readily relaxed when tags use multiple separate keys
for concurrent executions.

In this paper we articulate security models for anonymous RFID authentication and key ex-
change protocols. These models extend the framework introduced in [9] in several ways. We
support session-key compromise and replacement, extending the model to support analysis of key-
exchange protocols ([9] considers only authentication). In [27], an alternative anonymity definition
is proposed, following a traditional adversary-game approach (i.e., without consideration for com-
posability issues).

The proposed model defines security in terms of indistinguishability between real and ideal
protocol simulations, an approach first outlined by Beaver [7, 6, 5], and extended by Canetti as
the universal composability framework [10, 11, 12]. A similar approach has also been pursued
by Pfitzmann and Waidner [33, 34], under the name reactive systems. Several protocols have
been proposed under the UC framework, including authentication and key-exchange [15, 24, 14],
zero-knowledge proofs [13, 16], and other cryptographic primitives [29]. More recently, an RFID
privacy-oriented protocol has been proven in the UC setting [1].

3 Ideal functionalities

In this section, we introduce three ideal functionalities, the anonymous (forward-secure) entity
authentication functionality Faauth, the anonymous (forward-secure) key-exchange functionality
Faake, and finally the anonymous communication functionality Fcom. In the following, each of these
functionalities is described in detail.

3.1 Anonymous entity authentication functionality

Entity authentication is a process in which one party is assured of the identity of another party
by acquiring corroborative evidence. Anonymous authentication is a special type of entity au-
thentication where the identities of the communication parties remain private to third parties that
may eavesdrop on their communication or even invoke and interact with the parties. In the UC
framework, it is captured by the parties having ideal access to a anonymous entity authentication
functionality, which we denote by Faauth. This functionality is presented in Figure 1.

Party. In our functionality, there are two types of protocol parties, server and tag. In each
session, there is a single instance of a party of type server and arbitrarily many instances of type
tag. The function type(p) returns the type of party p in the current session. The adversary A and
the environment Z are considered system parties.

Session. A single session spans the complete life time of our authentication scheme. It consists of
many concurrent subsessions, which are initiated by protocol parties upon receiving input Initiate
from the environment Z. While the server and tags initiate subsessions, the adversary controls the
concurrency and interaction between these subsessions. Two protocol parties are feasible partners
in authentication if they are composed of a tag and a server. Upon successful completion of a
subsession, each party accepts its corresponding partner as authenticated. The environment Z
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Functionality Faauth

Faauth has session identity sid and only admits messages from the same session sid.

Upon receiving input Initiate from protocol party p : if party p is corrupted then ignore
this message. Else generate a unique subsession identification s, record init(s, p) and send
init(s, type(p), active(p)) to the adversary.

Upon receiving message Accept(s, s′) from the adversary: if there are two records init(s, p)
and init(s′, p′) such that parties p and p′ are feasible partners, then remove these records,
record partner(s′, p′, s, p) and write output ACCEPT(p′) to party p. Else if there is a record
partner(s, p, s′, p′) then remove this record and write output ACCEPT(p′) to party p.

Upon receiving message Impersonate(s, p′) from the adversary: if there is a record init(s, p)
and party p′ is corrupted then remove this record and write output ACCEPT(p′) to p.

Upon receiving message Corrupt(s) from the adversary: if there is a record init(s, p) or
partner(s, p, s′, p′) such that p is corruptible then mark p as corrupted and remove state(p).

Figure 1: Ideal anonymous authentication.

may read the output tapes of the tags and server any moment during the session, which terminates
when the environment Z stops. The environment Z may contain many other sessions of arbitrary
protocols, thus allowing our protocol to start and run concurrently with arbitrary others.

Authenticity. Successful authentication in the real world is a result of sharing common secrets—
one party can corroborate the values produced by another as functions of the shared secrets. The
choice of authentication partners is decided by the real adversary, who has full control of the
network. In the ideal world, this is emulated by invocations of the command Accept, one for each
partner. The true identity of the partner is given to the authenticating parties, regardless of the
action of the adversary. This limits the adversary to invocation of the protocols and scheduling of
the output of each party only.

Anonymity. The only information revealed to the adversary by the functionality is the type of
the party, whether it is a tag or server. The observable difference is due to the fact that the real
server always starts the protocol.

Forward security. The real adversary may corrupt parties—only tags, the server is incorruptible—
obtaining keys and any persistent memory values. These may compromise the anonymity of the
current subsession and earlier incomplete ones. In order to corrupt a tag not actively running, the
environment Z may request the tag to start a new subsession and then inform the adversary to
corrupt it.

The effect of corruption in the ideal world, via command Corrupt, is that the adversary can
impersonate corrupted tags, via Impersonate command, and link all incomplete subsessions up
to the last successfully completed one, via active(p)—the list of identifications of preceding incom-
plete subsession, returned from the functionality after a Initiate command. Once a subsession is
successfully completed in the ideal world, this subsession and all earlier subsessions of the same
party are protected against all future corruptions of any party.
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In the functionality, state(p) is the list of all subsession records maintained by the functionality
concerning party p in the current session. This list is removed from the memory of ideal functionality
up on corruption of the tag p, effectively leaves control of the corrupted tag to the adversary. The
only information retained is the fact that p is corrupted.

Activation sequence. In our protocols and functionalities, the receiving party of any message
or subroutine output is activated next. If no out going message or subroutine output is produced
in the processing of an incoming message, then by convention the environment Z is activated next.

3.2 Anonymous authenticated key-exchange functionality

Functionality Faake

Faake has session identity sid and only admits messages from the same session sid.

Upon receiving input Initiate from protocol party p : if party p is corrupted then ignore
this message. Else generate a unique subsession identification s, record init(s, p) and send
init(s, type(p), active(p)) to the adversary.

Upon receiving message Accept(s, s′) from the adversary: if there are two records init(s, p)
and init(s′, p′) such that parties p and p′ are feasible partners, then remove these records, generate
a random key k, record partner(s′, p′, s, p, k) and write output ACCEPT(p′, k) to party p. Else if
there is a record partner(s, p, s′, p′, k) then remove this record and write output ACCEPT(p′, k) to
party p.

Upon receiving message Impersonate(s, p′, k′) from the adversary: if there is a record init(s, p)
and party p′ is corrupted then remove this record, and write output ACCEPT(p′, k′) to p.

Upon receiving message Corrupt(s) from the adversary: if there is a record init(s, p) or
partner(s, p, s′, p′, k) such that p is corruptible then mark p as corrupted and remove state(p).

Figure 2: Ideal anonymous authenticated key exchange.

The functionality for anonymous key-exchange Faake is presented in Figure 2. This functionality
is a fairly straightforward extension of Faauth. As in the previous case, parties include a server,
tags, and an adversary. Authentic keys are computed as an additional, private output at the result
of a successful subsession.
Faake is activated by an Initiate input from a party belonging to the session. The list of

existing subsessions since its last successfully completed subsession are released to the adversary
via message init(s, type(p), active(p)), where s is a newly created subsession identification. Faake

also stores locally the record init(s, p).
Corruption is as in the entity authentication functionality. It is achieved by the adversary

invoking the command Corrupt. Again, successful authenticated key exchange in the real world
is a result of sharing secrets. This is achieved in the ideal world by invocations of the command
Accept by the ideal adversary, one for each partner in the pair. This only succeeds if the two
parties are both requesting authentication. Successful subsessions result in each party accepting
the partner’s true identity and generating a shared subsession key.
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As in the previous case, the adversary can impersonate parties in the ideal world by invoking
the command Impersonate, which only succeeds if the impersonated party is corrupted.

3.3 Wireless Communication

RFIDs are transponders that communicate in a wireless medium. In such a medium, communication
has the potential of being anonymous, as location, network topology, and routing strategies do not
disclose the identity of the communicating parties. Accordingly, our protocols require that only
the type of a communicating party–server or transponder (tag)—is revealed through the use of
communication. This is a common assumption of many RFID security protocols.

Functionality Fcom

Fcom has session identity sid. It only admits messages from the same session sid.

Upon receiving input Channel from party p: generate a unique channel identification c, a
record Channel(c, p) and write output c to and reactivate party p.

Upon receiving input Listen(c) from party p: if there is a record Channel(c, p) then record
Listen(c, p) and send message Listen(c) to the adversary.

Upon receiving input Broadcast(c, m) from party p: send message Broadcast(c, m) to the
adversary.

Upon receiving message Deliver(c, m) from the adversary: if there is a record Listen(c, p)
then remove this record and write output m to and reactivate party p.

Figure 3: Ideal anonymous communication.

To model this requirement in the UC framework, we introduce an ideal functionality Fcom. This
anonymous communication functionality is described in Figure 3. As the communication anonymity
requirement applies to both the real and idealized protocols, our description of the real protocol in
Section 4 also makes use of Fcom.

4 Forward-secure optimistic RFID authentication

In this section we define two novel optimistic RFID authentication protocols: O-FRAP and O-
FRAKE. Both protocols offer forward-anonymity, while requiring only minimal overhead when the
system is not under attack. Our protocols rely on a trusted setup and on the wireless communication
functionality described earlier.

These protocols are lightweight enough for RFID deployments, yet provide strong UC security
and therefore are suitable in other ubiquitous application contexts, such as sensor networks. The
only restriction is that the each component playing the role of a single tag must use separate keys
when performing authentication/key-exchange subsessions in parallel.

4.1 Trusted Setup

The following trusted setup is done in a physically secure environment. For each tag i, a fresh
key pair (ri, k

a
i , kb

i ) is randomly generated and shared between the tag and the server. The server
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stores all the keys in a database and the tag stores its key in its non-volatile memory. Additionally,
the server also stores the previous value of each key (ri, k

a
i , kb

i ) in the database before any updates,
which happen only when the tag is authenticated. The subkey kb

i is generated and used in key
exchange protocol only.

4.2 RFID entity authentication

Our first protocol, O-FRAP, is an Optimistic two pass Forward-secure RFID Authentication Pro-
tocol. In this protocol, rsys and rtag are values generated pseudo-randomly by the server and the
tag, respectively, so as to anonymize the session and to prevent replays. The value rtag is generated
pseudo-randomly for optimistic identification of the tag. Value ka

tag is the tag’s current key and is
updated by the server after the tag is authenticated, and by the tag after the server is authenticated.

On activation by the server, the tag computes four values ν1, ν2, ν3, ν4 by applying the pseudo-
random function F to (ka

tag , rtag ||r
′

sys). Note that in all our protocols we use the following conven-
tion: any sent value x is received as x′ by the receiver. The value x′ may be different from x if it
is corrupted by the adversary.

In O-FRAP, ν1 is used to update the pseudo-random value rtag; ν2 is used for authentication
of the tag; ν3 is used to authenticate the server; ν4 is used to update ka

tag. In our protocols we use
the following convention: the four values computed by the server by applying the pseudo-random
function F to (ka

j , r′tag‖rsys) are denoted by ν∗

1 , ν∗

2 , ν∗

3 , ν∗

4 . When the adversary is passive, these
values correspond to the unstared values. In particular ν∗

2 = ν ′

2 and ν∗

3
′ = ν3, and the server and

tag output ACCEPT.
Observe that the tag key ka

tag is updated after each server authentication, giving strong sepa-
ration properties between sessions. In particular, if a tag is compromised, it cannot be linked to
transcripts of earlier sessions. This guarantees strong separation of sessions and hence forward-
anonymity.

4.3 RFID authenticated key exchange

We next describe O-FRAKE, an Optimistic Forward-secure RFID Authenticated Key Exchange
protocol –see Figure 4. The protocol is essentially the same as O-FRAP except that five random
values ν1, ν2, ν3, ν4, ν5 are generated the pseudo-random function F . The output value kb

tag is an
agreed subsession key for securing the communication channel between the server and the tag,
for example to protect transmission of private information collected by the tag. Corruption or
replacement of kb

tag (either during the authentication protocol or during later use) is an attack
on the exchanged key and has no effect on the authentication key ka

tag . Furthermore, even if
the adversary corrupts the tag, prior session keys are protected and prior session transcripts are
unlinkable. This enforces separation of sessions and provides forward-anonymity, authenticity and
secrecy.

5 Proof of security

Theorem 1 O-FRAP and O-FRAKE UC-securely implements the anonymous RFID authentica-
tion and anonymous RFID authenticated key exchange ideal functionalities, respectively.

Proof. We shall prove the theorem for O-FRAKE. O-FRAP then follows similarly. Observe
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Figure 4: O-FRAP and O-FRAKE: optimistic forward-secure RFID entity Authentication and Authenti-
cated Key Exchange protocols, respectively. O-FRAKE differs from O-FRAP only in the generation of an

additional value to be used as session key (here shown inside a box ).

Server(D) Tag(rtag , ka
tag, kb

tag )

csys ← Fcom.Channel ctag ← Fcom.Channel

Fcom.Broadcast(csys, rsys)

rsys
✲

r′sys ← Fcom.Listen(ctag)

ν ← F (ka
tag, rtag‖r

′

sys)

(ν1, ν2, ν3, ν4, ν5 )
parse
←− ν

(rtag, rtag)← (rtag, ν1)

Fcom.Broadcast(ctag, rtag‖ν2)
rtag‖ν2

✛

(r′tag‖ν
′

2)← Fcom.Listen(csys)

if exists (r′tag, k
a
i , kb

i ) ∈ D then

SearchRange← [i, i]

else

SearchRange← [1, n]

fi

for all j in SearchRange do

ν∗ ← F (ka
j , r′tag||rsys)

(ν∗

1 , ν∗

2 , ν∗

3 , ν∗

4 , ν∗

5 )
parse
←− ν∗

if ν′

2 = ν∗

2 then

output ACCEPT(tag(j), kb
j )

(rj , k
a
j , kb

j )← (ν∗

1 , ν∗

4 , ν∗

5 )

Fcom.Broadcast(csys, ν
∗

3 )

ν∗

3
✲

fi ν∗

3
′ ← Fcom.Listen(ctag)

od if ν3 = ν∗

3
′ then

output ACCEPT(server, kb
tag )

(ka
tag, kb

tag )← (ν4, ν5 )

fi

that if F in the protocol is a true random function then the keys used in all fully completed
tag subsessions are uniformly random and mutually independent. This means that conversations
in fully completed tag subsessions are independently and identically distributed. This property
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Ideal adversary S

S simulates interactions between {Â, ŝerver, t̂ags, F̂com} and between Â and Z as specified in Figure 4.

In addition, interactions between {ŝerver, t̂ags, F̂com} and Z are emulated as follows:

Upon receiving init(s, server, list) from Faake:

Create a new subsession s for ŝerver and send init(s, server, list) to Â.

Upon receiving init(s, tag, list) from Faake:
If list is empty then generate a random key (rs, k

a
s , kb

s), else copy the key from a subsession

identified in list. Add the specified key (rs, k
a
s , kb

s) to database D̂ using simulated identity

t̂ags. Create a new subsession s for t̂ags and send init(s, server, list) to Â.

Upon ŝerver outputting ACCEPT(p̂, k) during subsession s (p̂ ∈ D̂):
If p̂ is corrupted then send Impersonate(s, p̂, k) to ideal functionality Faake. Else let p̂ = t̂ags′ ,
generate a record partner(s, s′) and send Accept(s, s′) to ideal functionality Faake.

Upon t̂ags′ outputting ACCEPT(ŝerver, k):

Remove t̂ags′ ’s key from database D̂, lookup record partner(s, s′) and send Accept(s′, s) to
ideal functionality Faake.

Upon Â sending Corrupt to t̂ags′ :

Mark t̂ags′ as corrupted and store its key in D̂ permanently. In particular, instead of being
regenerated, the key is updated in future executions as normally specified by the protocol.
Send message Corrupt(s′) to ideal functionality Faake.

Figure 5: The ideal adversary S for Faake.

also holds for all subsessions separated by at least a fully completed subsession, where the key is
refreshed. Our simulation is as follows:

• Simulate a copy Â of the real adversary A, a copy ŝervers of the real server, a copy t̂ags of
a real tag for each tag subsession s and a copy F̂com of ideal functionality Fcom. Forward
messages among simulated parties {ŝerver, t̂ags, Â, F̂com} and also between Â and Z faithfully.

• The database D̂ of ŝerver contains persistent keys of corrupted tags and transient keys of
active tags. Keys are added to and removed from D̂ on demand.

• The secret key of t̂ags is copied from the immediately preceding incomplete subsession, if
there is one, or is randomly generated, if the immediately preceding incomplete subsession
of the tag is fully completed. This key is temporarily added to D̂ during simulation of the
subsession s, and is removed from D̂ after successful completion of the subsession s.

• If t̂ags is corrupted during the execution of subsession s then its key will be marked as
corrupted and will never be removed from D̂. This persistence allows corrupted tags to be
impersonated by the adversary Â. In this case, the corrupted key is updated accordingly to
the protocol after each successful impersonation of t̂ags by Â.

• To emulate the externally visible part of the protocol: upon corruption, acceptance or imper-
sonation of simulated tags, notify Faake respectively with one of three messages Corrupt(s),
Accept(s, s′) and Impersonate(s, p′).
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We describe the simulations in Figure 5. It is straightforward to verify that if the following two
conditions hold then keys used in real executions and ideal simulations are statistically identical:

1. F is a truly random function.

2. Each verification done by the server succeeds with at most one key in the database.

Consequently the real messages and the simulated messages are also statistically identical, i.e. real
and ideal are equal. The first condition fails if F is distinguishable from true random function.
The second condition fails while the first holds if there are two keys verifying the random challenge
rsys and reply (rtag, ν2). For each given tag subsession, this happens with probability at most
n21−κ, where κ is the security parameter, i.e. the minimum bit length of rsys, rtag and ν2, and
n is total number of tags managed by this server. Therefore the probability that the second fails
while the first holds is at most nL21−κ, where L is the total number of tag subsessions. Since both
conditions fail with negligible probabilities, the real and simulated messages are computationally
indistinguishable by the environment Z. �

The server and tags in our protocols are always synchronized because as the initiator of the
protocol, the server is always at most one step ahead of the tag in updating the key. Therefore
storing the previous value of the key on the server before any updates will allow the server to
accommodate tags that are behind key update due to interferences of the adversary. It appears
that our protocol described in Figure 4 does not makes use of the session identification sid provided
in the universal composability framework. However, this is not quite true. The sid is used implicitly
in the trusted setup (which is implemented externally to our protocol) to guarantee that the server
and tags in the same session share the same secret keys. Without this trusted setup assumption,
the security and functionality of our protocols is not guaranteed.

Security reduction and concrete complexity. A security reduction from distinguishing real-
vs-ideal to distinguishing pseudo-vs-true random is simple: run a faithful simulation of the real
world and use Z as the distinguisher. When a truly random function F is used in the real simulation,
we obtain exactly the ideal simulation, modulo a negligible event that the second condition fails
given that F is truly random. Therefore the advantage of distinguishing real from ideal is at most:

AdvF (T + nL, nL) + nL21−κ,

where AdvF (t, q) is the advantage of distinguishing F from true random by running in at most t

time and making at most q queries to F , L is the number of tag subsessions, n is the number of
tags and T is the combined time complexity of the environment Z and the adversary A.

6 Lightweight constructions for O-FRAP and O-FRAKE

In this section we show how to achieve a very efficient, practical construction of O-FRAP and O-
FRAKE by using only a pseudo-random generator (PRG). Estimation of the hardware requirements
of a prototypical specification are of the order of 2000 gates.

6.1 Lite pseudo-random function families

We describe how to achieve a very efficient, practical construction of large-length output pseudo-
random function families. First, we design a large-length output pseudo-random function (PRF)
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from a fixed-length output PRF and a PRG. Using ideas from [21] one can then implement the
protocols by using a PRG only. For the sake of completeness we include a proof of security of the
lemma below.

Lemma 1 If PRG is a pseudo-random generator and PRF is a pseudo-random function then
F = PRG ◦ PRF is a pseudo-random function.

Proof. Let X, Y , W , and Z be efficiently sampleable domains and let PRF : X × Y → W

be a pseudo-random function and PRG : W → Z be a pseudo-random generator. We show that
F = PRG ◦ PRF : X × Y → Z is a pseudo-random function. Indeed, let y1, y2, . . . , yn ∈ Y be
distinct values and let x ∈R X. We show that ~z = (F (x, y1), . . . , F (x, yn)) is indistinguishable from
a random vector in Zn. Notice that F (x, yi) = PRG(wi) where wi = PRF (x, yi). Since PRF

is a pseudo-random function, the vector ~w = (w1, . . . , wn) is pseudo-random in W n. This implies
that ~z = (PRG(w1), . . . , PRG(wn)) is indistinguishable from ~z∗ = (PRG(w∗

1), . . . , PRG(w∗

n)),
where w∗

1, . . . , w
∗

n are randomly and independently selected from W . By pseudo-randomness of the
distribution of PRG(w∗

i ) and the multi-sample indistinguishability theorem of Goldreich [20] and
Yao [36], ~z∗ is indistinguishable from a random vector in Zn. �

For practical RFID implementations a very efficient hardware implementation of a PRG should
be used. In general a PRG can be implemented much more efficiently than a standard cryp-
tographic pseudo-random function can. For instance, the shrinking generator 1 of Coppersmith,
Krawczyk, and Mansour [17] can be implemented with fewer than 2000 gates with approximately
80-bit security [4], which is feasible for a wide range of RFID architectures. The best known attacks
on the shrinking generator are not practical in this range of the security parameter [4]. Alterna-
tively, Grain [22] or any other secure hardware stream cipher can be used. See [31] for examples of
such ciphers.

Standard cryptographic constructions, such as HMAC (requiring a cryptographic hash function
with pseudo-random property) or CBC-MAC with a block cipher (for instance, AES) would require
around 10-15K gates. These constructions are suitable only for a narrow range of higher cost RFID
tags. However, using our constructions, one obtains a full-fledged implementation of the O-FRAP
and O-FRAKE protocols using approximately 2000–3000 gates, which covers a much wider range
of RFID architectures.

7 Featherweight RFID authentication

In this section we consider a family of RFID authentication and key exchange protocols secure
against fly-by attacks, named A-TRAP after Optimistic “Absolutely” Trivial RFID Authentication
Protocols, to emphasize their minimalistic structure and overhead. These protocols only require a
pseudo-random generator and a Time-Delay Scheduler (TDS).

The TDS is a very simple hardware device that controls the time-delay between authentication
sessions. The time-delay is minimal, say t0, between complete authentication sessions—i.e., sessions
that terminate with the tag’s key update. After each incomplete session, the time delay is doubled.
So, after m successive incomplete sessions there will be a time-delay of 2mt0. The TDS is used
to thwart attacks in which the adversary triggers incomplete sessions to desynchronize the key

1Using the shrinking generator requires care (buffering) to avoid the introduction of vulnerabilities to timing and
side-channel attacks.
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updates of the tag and the server. A limited number of time-delay doublings can be easily achieved
using capacitors, acquiring enough energy before running the protocol, and/or counters. During
this delay, the whole tag is power downed except for a counter and the clock rate is reduced to
minimal, only enough to run the counter. These have the potentials to extend the delay by few
orders of magnitude.

A-TRAP protocols offer limited protection against desynchronization attacks: a tag that can
be “interrogated” longer than an upper bound of m successive times will become permanently
invalidated. However, for attacks that interact with a tag for a time period shorter than 2mt0 time
units (a fly-by attack), these protocols offer provably secure authentication, forward-anonymity,
availability, and key-indistinguishability.

d1,1 . . . d1,m−j d1,m−j+1 . . . d1,m

...
...

...
...

di,j+1 . . . di,m g
(1)
i . . . g

(j)
i

...
...

...
...

dn,1 . . . dn,m−j dn,m−j+1 . . . dn,m

Figure 6: Update(D, i, j): discard the first j entries of the ith-row, shift the remaining entries to the left,
and finally fill in the empty cells with the next j values extracted from gi.

7.1 A-TRAP: featherweight mutual authentication

A-TRAP is a mutual authentication protocol in which, the tag and the server exchange values
ν1, ν2, ν3, respectively, generated by the pseudo-random generator gtag – see Figure 7. The server
checks that the received value g′tag is in its database D = {di,j}: if di,j = gtag

′ then it accepts the
tag as authentic. In this case it updates the i-th row of it directory D by: (a) discarding its first
j entries, (b) shifting the remaining entries to the front, and finally (c), filling the empty cells with

the next j values g
(1)
i , . . . , g

(j)
i extracted from the pseudo-random generator gi (see Figure 6). If

the value g′tag is not in D then the tag is rejected. A variant of A-TRAP achieves key exchange
by generating a third value ν3 using the pseudo-random generator gtag. The security of O-FRAP,
O-FRAKE, and the A-TRAP protocol families is discussed.

8 Conclusion

We present highly practical RFID authentication protocols that are provably secure, providing
forward-anonymity, authenticity, availability, and session key indistinguishability within a universal
composability framework. The suggested implementation of the protocols requires only the use of
pseudo-random generators and is feasible for a wide range of RFID architectures.
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