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Abstract

We give a unified account of classical secret-sharing goaia & modern cryptographic vantage. Our
treatment encompasses perfect, statistical, and congnabsecret sharing; static and dynamic adversaries;
schemes with or without robustness; schemes where a partiaiecovers the secret and those where an ex-
ternal party does so. We then show that Krawczyk’s 1993 podtimr robust computational secret sharing
(RCSS) need not be secure, even in the random-oracle moddbathreshold schemes, if the encryp-
tion primitive it uses satisfies only one-query indistirghability (ind1), the only notion Krawczyk defines.
Nonetheless, we show that the protoisadecure (in the random-oracle model, for threshold scheifig®
encryption scheme also satisfies one-query key-unredailigrgkeyl). Since practical encryption schemes
are ind1+keyl secure, our result effectively shows that€ryk’s RCSS protocol is sound (in the random-
oracle model, for threshold schemes). Finally, we proves#wairity for a variant of Krawczyk’s protocol, in
the standard model and for arbitrary access structuresirasg ind1 encryption and a statistically-hiding,
weakly-binding commitment scheme.
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1 Introduction

Work on classical secret-sharing tends to follow the traditions and sensghditimformation theory, combi-
natorics, or coding theory, not those of modern provable-securigtagyaphy. Consider, for example, that
the wordadversarydoes not appear in the most widely cited survey of secret sharing [d@]-the word
informationappears some 50 times. Or consider that it was nearly 15 gtarshe invention of secret sharing
by Blakley and Shamir [9, 43] until somebody, Krawczyk [31], made moae fhassing mention of the fact that
there is a natural and useful complexity-theoretic setting for this probleran Ehen, most subsequent work
has ignored this “computational” setting.

In this paper we will recast classical secret-sharing in the tradition ofpte-security cryptography. We
will then use the freshened foundations to carry out a provableigeanalysis of a well-known, useful, and
formerly unanalyzed secret-sharing scheme. Before describingdbeséutions, we give some needed back-
ground.

BACKGROUND. In a robust computational secret sharing (RCSS) protocol, a deaisumed to be honest,
breaks a secreX into sharesXy, ..., X,, and distributes them to players in such a way that an unauthorized
set of players learns nothing abaXitfrom their shares, yet an authorized set of players will reconsiiicte-
spite some players providing bogus shares, if and on¥\fas shared. Both guarantees are computational, not
information-theoretic. So RCSS relaxes the perfect secret-sharihgfgdlamir [43] in one dimension (com-
putational privacy instead of information-theoretic privacy) and stiets it in another (reconstructability in
the face of incorrect shares, not just missing ones).

The RCSS goal, as well as a candidate solution, was invented by Kray&dyiBut Krawczyk provides no
proofs or formal definitions for RCSS. Indeed his focus was not RAABESS, computational secret-sharing,
where recovery is for correct-or-missing shares. The CSS godbdwd earlier mentioned by Karnin, Greene,
and Hellman [30], who also consider the variant where cheating musttbetel@, not corrected. Robustness
(recoverability despite some wrong shares) had already been studiegl iimfdhmation-theoretic setting by
McEliece and Sarwate [35] and by Tompa and Woll [50].

Krawczyk’s reason to look at CSS and RCSS was to reduce the sizetafigent shares: his mecha-
nisms illustrate that, for threshold schemes, shares can be shorter thatrtste which is impossible in the
information-theoretic setting [15, 30]. Krawczyk provides a CSS scheitiesivort shares using Rabin’s idea
of aninformation-dispersal algorithnflDA) [40]. Robustness is then added-on using a hash-functioeebas
technique that Krawczyk introduced in a separate paper [32]. Followark to Krawczyk’s paper has mostly
focused on doing CSS for more general access structures [1, 54,34

Protocols for CSS and RCSS are powerful tools or building securediadle distributed information-
storage systems. A user’s data (perhaps a file) is broken into pie@ggsland stored on multiple servers
in such a way that protects the privacy of the user from nosy senetrgermits recovery of the data even if
some of the servers provide invalid shares (either accidentally or intelyiona recent years, and apparently
without much notice from cryptographers, such systems and architettave emerged from places like CMU
and IBM [21, 28, 33, 39, 52]. Commercial product offerings and p@mesource development community have
also taken root. An issue ofComputermagazine explained these ideas [54]. Yet all of this has happened in
the absence of even a forndgfinitionfor RCSS. In short, storage systems based on RCSS protocols already
exist, but embody practice getting out in front of theory. As such, omaasanswer basic questions about
these systems and their protocols, questions like “what exactly does thiegrdo?” or “does CBC/IV=0
encryption suffice within it?”

OUR CONTRIBUTIONS Coming at secret-sharing from a modern, provable-security anglenake two con-
tributions. One contribution is to revisit the basics of RCSS. We investigateethwity of Krawczyk's RCSS
protocol, which we call HK1. While Krawczyk made no formal definitions lairos in this regard, the only

1 Examples include Cleversafe Corporation and the Cleversafe oproesoser community (see http://www.cleversafe.org and
http://lwww.cleversafe.com) and Security First Corporation (see httputisgirstcorp.com).



’ protocol ‘ assume and access structure‘ result ‘

HK1 ind1 random-oracle model threshold insecure (Sec. 4.2)
HK1 |indl1 + keyl random-oracle model threshold secure (Th. 1, Th. 3)
HK2 ind1 statistically-hiding, weakly-binding commitment  arbitrary secure (Th. 4, Th. 5)

Figure 1:Summary of our results on Krawczyk’s RCSS protocol (HK1) andriant of it (HK2). By ind1 and keyl we
mean one-query left-or-right indistinguishability andeequery key-unrecoverability.

encryption-scheme security property mentioned in his paper is the indistiadpilisy of Encrypt,(X) and
Encrypt,(X'), which we callone-query indistinguishabilityind1). Intuitively, this is all that HK1 should
need, since, in the protocol, a key is used to encrypt just one messifjavesshow that HK1 isnot secure
under the assumption that its encryption scheme is ind1-secure, evenefshidil schemésand the random-
oracle (RO) model [6]. Despite this, we show that Hiskecure, for threshold schemes and in the RO model,
if one assumes that the encryption scheme is ind1-seamulekeyl-secure, the latter beirape-query key-
unrecoverability We complement this by proving ind1 + key1 to be the minimal assumption undein Wit
can be proved secure; see Appendix G. The assumption followstisorguery indistinguishabilityind2);
see Proposition 6.Conventional encryption schemes are ind1- andskeyte [3], so one may interpret our
results as saying that, in the end, HK1 is sound, at least in the case dfdlireshemes. The proof of secu-
rity for HK2 is complex; intuitively, the complexity arises because one musstgehe issues that cause an
ind1-based instantiation of HK1 to fail. We go on to show that making a smallgghemHK1—replacing its
hash-function by a noninteractiggatistically-hiding, weakly-bindinSHWB) commitment-scheme—fixes all
identified issues: the modified protocol, HK2, becomes provably secuemfarbitrary access structure, in the
standard model, assuming just ind1-secure encryption. Our resultsraneasized in Figure 1.

To make the above results possible, we need a definition for RCSS. Nahg/ém formalize yet another
one-off secret-sharing notion, we show how to cast a large seti@tsgtaring goals into a common framework.
We give concrete-security, adversary-at-the-center definitiongtitampass the perfect secret-sharing (PSS)
goal of Shamir [43]; the less-than-perfect-privacy variant by Bkak$g; the strengthening of PSS to robust
schemes as envisioned by McEliece and Sarwate [35]; the alternatsrervef robustness described by Tompa
and Woll [50]; and the relaxation of all this to the computational setting, asidered by Krawczyk [31]. Our
definitions handle dynamic adversaries, apparently for the first time, mifidthe information-theoretic and
complexity-theoretic views. Look ahead to Figure 4 for a preview of sombekecret-sharing notions we
encompass.

MORE ON DEFINITIONS See Appendix B for a summary of existing PSS and CSS definitions [953433
50], with and without robustness. The definitions frequently assunagpaiori distribution on secrets, assume
it to be the uniform over a large set, elide the syntax of a secret-shahieg®s; omit mention of any adversary,
and make the implicit adversary static, with no simple way to make it dyn&iie classical PSS definitions
are so tailored to the perfect, information-theoretic case that there is no sirapl® relax things to make a
complexity-theoretic analog. Each definition is separate from each otltdrom its own cloth. No formal
definition of the RCSS goal has ever appeared.

We aim to give a unified account of classical secret-sharing. To do #hidefine the privacy-advantage
of an adversaryl attacking secret-sharing scheifiedenotedAdvy; " (A4), and we define the recoverability-
advantage of an adversafy attacking a secret-sharing schefitedenotedAdv“(B), and we use these to
define all notions of interest. For example, a secret-sharing sclibfsea PSS scheme iAdv]"(A) =

2 An m-out-of-n threshold scheme is a secret-sharing scheme for whichrampcorrupted players can recover the secret but
smaller sets of players cannot. The set of sets of players authorizecoier the secret is theecess structuréor the scheme.

3 A staticadversary controls a certain set of players from the beginning, witil@amicadversary chooses whom to corrupt as it
corrupts players and learns their shares.



Advi¢(B) = 0 for all “permissible” A and B. There turn out to be four natural constraintsmdv%riV(A)
and nine natural constraints oadvi(B). Each classical secret-sharing notion shows up as one of the 36
combinations.

Our approach injects some order into the current definitional jungle oétsslaring variants. In the pro-
cess, we clarify that there have coexisted in the literature two fundameniidlyedt notions of robustness.
In the first, an uncorrupted player recovers the secret [50]; in tbensk an external party has that job [35].
What is achievable in the two settings is vastly different (eg., external-pactnstructability can accommo-
date fewer corrupted players). It would seem that the two forms ofstabas have coexisted in the literature
for some 20 years without it even having being commented on that #nete/o kinds of robustness. Such a
gap is probably attributable to the prior absence of a unifying viewpoint.

We comment that while our definitional framework is broad, it does notrapess verifiable secret-sharing
(VSS) [17]. In a VSS scheme the dealer may be dishonest; for the goaispe & this paper, the dealer is
honest. Nor do we encompass proactive secret sharing [25], wiikehYSS, has always been treated in
the provable-security tradition. Our framework fails to encompass chéetection or identification [12, 35],
where the adversary is capable of obstructing recovery but incapafaecing the recovery of a bogus secret.
In this last case, however, our framework could certainly be extendiedltale these notions.

AFTERWARDS. After seeing a version of our paper, Yuval Ishai suggested a reé8S3protocol that combines

a CSS protocol and a digital signature scheme [26]. Our intent in this pagsenot to develop or analyze any
fundamentally new protocol, but to analyze an existing protocol, HK1, tleteady implemented, influential,

and well-known. We also look at HK2 since it is a simple extension to HK1 tHashe shed light on it.

2 Preliminaries

ALGORITHMS AND ADVERSARIES When we speak of amlgorithmwe mean an always-halting deterministic
or probabilistic algorithm, possibly with access to one or more named oraclpsobabilistic algorithm can
uniformly choose a random number betwdesnds for an arbitrary positive integeérby executing a statement
as [i]. If Ais an algorithm then: < A(---) means to choose according to the distribution induced by
algorithm A, run on the elided arguments. Af is deterministic we writec < A(- - - ) instead. IfA is a finite

setthen: <~ A means to sample uniformly from it. K is a probabilistic algorithm then € A(-) means that:
occurs as an output with nonzero probability. We denotehy- - - X, or X7 - -- X, a reasonable encoding
of (X1, ..., X,) from which the constituents are uniquely recoverable. If the lengthsobf Eais known then
concatenation serves this purpose.

GAMES. We employ code-based game-playing in our proofs, as explored iin[#}ief, a game is an always-
halting program, written in code or pseudocode, that runs with an adyetsapecifies procedurdsitialize,
Finalize and additional procedures (likeal Corrupt, and so forth), which are callestacles In the code of

a game, sets are initialized to empty and Boolearfaimzse. The output of a game is the output of its Finalize
procedure, or the output of the adversary itself if no Finalize is speciMwrite Pr[G“] for the probability
that Finalize of gamé- outputstrue after the interaction wittd.

ENCRYPTION SCHEMES Adapting the formalization of [3], a symmetr@mcryption schemis a pair of algo-
rithmsII™ = (Encrypt Decrypt) whereEncryptis a possibly probabilistic algorithm frog0, 1}’“ x {0,1}"
to {0,1}* U { L} andDecryptis a deterministic algorithm frori0, 1}* x {0,1}* to {0, 1}* U {_L}. We callk
thekey length We write Encrypt,- (X ) andDecrypt, (Y') for Encrypt K, X ) andDecrypt K,Y"). We assume
that whether or noEncrypt, (X) € {0,1}* (for K € {0,1}*) depends only ohX | and we call the set of al
such thatEncrypt,-(X) € {0,1}* the domainof II. We require that i <~ Encrypt,(X) andY # L then
Decrypt,.(Y) = X.

We define two notions of security for an encryption sch@ine (Encrypt Decrypt): indistinguishability
(formalized in the left-or-right manner) and key-recoverability. Forsistent syntax with the rest of this paper,



PROCEDUREInitialize PROCEDURELeftOrRight( X, X*) Game Ind

K <& {0,1}" IF | Xo| # | X1| THEN RETURN L
b {0,1} C < Encrypt,. (X?)
RETURNC

PROCEDUREFinalize(d)
RETURN b =d

PROCEDUREInitialize PROCEDUREENQ(X) Game Key
K <& {0,1)" C < Encrypt, (X)
RETURNC

PROCEDUREFinalize(K")
RETURN K = K’

Figure 2:Games used to define the privacy of an encryption scHéme( Encrypt Decrypt).

we describe both notions using games. See Figure 2 for the definitionssef gaenes, named Ind and Key.
Based on them, define the indistinguishability advantaga Hy24(A4) = 2 Pr[Ind] — 1. The notion is the

same as in [3]. We IeAdvlffy(A) = Pr[Key“] be the probability thatl recovers the encryption key.

3 The Definitional Framework

In this section we unify and extend definitions in the literature for perfemtesesharing and computational
secret-sharing, both with and without robustness. We break with tradijidrabdling information-theoretic
secret-sharing neither in terms of entropy nor equality of distributionsinbaitway that directly models and
measures the adversary’s aims. Also breaking with tradition, we directiiddgnamic adversaries. For ease
of comparison, some traditional secret-sharing definitions are recallegdaerlix B. We warn that, to achieve
our desired level of generality, this section is more dense and atypicait thauald be if were wgusttrying to
define Krawczyk-style RCSS (entry CSS-CR2 in Figure 4).

OVERVIEW. Secret-sharing schemes have two basic requiremeirivsicy andrecoverability(the latter is also
calledreconstructability. Privacy entails that an unauthorized coalition of players can’t leaythang about
the secret that's been shared. It canchenplexity-theoretior information-theoretic Information-theoretic
schemes maintain privacy no matter how much computing power the adve@srcdmplexity-theoretic
ones protect the privacy of the shared secret from adversariesr@@bonable” computing resources. In the
information-theoretic setting, security canerfect(absolutely no information is revealed about the secret) or
possibly less than perfect, which is callgtdtisticalprivacy. The adversary that is attacking a scheme’s privacy
can bestatic (it decides which players to corrupt at the beginning of its attacldymamic(it chooses which
players to attack one-by-one, as it learns shares). Our definition pfitrecy advantagehat an adversaryt
gets in attacking a secret-sharing schdiealenotedAdv}"" (A), encompass and measures all of the above
possibilities.

Recoverability entails that authorized coalitions of players can recohgtieisecret. It can be guaranteed
in the erasure modebr thesubstitution modelln the erasure model, the adversary marks shares of corrupted
players asnissingbut cannot otherwise modify a player’'s shar&ecret-sharing schemes secure in the sub-
stitution model, where the adversamnay modify a corrupted player’'s share, are caltetbust. Preserving a
distinction with us since [35, 50], we distinguish two flavors of robustnéssshared secret can be recovered
by anuncorrupted playeor by anexternal party It is easier for an uncorrupted player to recover the secret than
for an external party to do so since an uncorrupted player knows amieydar share—his own—that he can

4 One could distinguish two variants: the adversamystmark the shares of corrupted players as missing, or the advarsary
mark the shares of corrupted players as missing (or may leave thdranged). We assume the former.



PROCEDUREDeal S, S1) PROCEDURECorrupt(i) Game Priyv
IF NOT S THEN b < {0,1}, S < Shards?) T — TU{i}
RETURN RETURN S|[i]

PROCEDUREFinalize(d)
RETURN b =d

PROCEDUREDeal(S) PROCEDURECorrupt(4) Game Rec¢
IF NOT S THEN S <& Shards) T — TuU{i}
RETURN RETURN S[i]

PROCEDUREFiInalize(S’, j)
RETURN Recove(S+U S/, j) # S

Figure 3:Games used to define privacy and recoverability of secratirsinschemél = (Share Recovey.

assume to be right (remember that the types of secret sharing dealt withpapgisassume an honest dealer).
As before, a recoverability-attacking adversary may be static or dynaicdefinition of therecoverability
advantagethat an adversaryl gets in attacking a secret-sharing schdmealenotedAdvi;(A), encompass
and measures all of the above possibilities. To accomplish this, we regadthee model as a special class of
adversarieRec(), where anyd € Rec{) replaces the shares of corrupted players with the distinguisheddalue
(missing). We likewise regard recovery-by-an-uncorrupted playarspecial class of adversariBscl, where
an A € Recl is obliged to output the identity of some uncorrupted playeAdversaries that may arbitrarily
substitute shares for corrupted players live live in the dRegs

We will define notions in a way that permits consideration of an arbitrarysscteucture. Indeed we will be
more general still, defining privacy and recoverability in a way that dépen an arbitrary set of adversaries.

To simplify and strengthen definitions and theorem statements, we focusioret®(as opposed to asymp-
totic) definitions. But we do explain how to lift the definitions to the asymptotic setting

SYNTAX . An n-partysecret-sharing schenvéith message spaceis a pairll = (Share Recovel. HereShare

is a probabilistic algorithm that, on inpste S returns then-vectorS <~ Sharé.S) where eacts|i] € {0, 1}*
and Recoveris a deterministic algorithm that on inpSt € ({0,1}* U {0})" andj € [0..n] returns a value
S «— RecovetS, j) whereS € SU {0}. We assum&haréS) returnsL (“undefined”) if S & S.

Let us explain the intent of the syntax. A secret-sharing scheme spduitiedifferent algorithms. The
first, Share is used by alealerwho wants to distribute some sectete S to a group ofn players, numbered
1,...,n. The dealer applieShareto the secret. The result is a vecta$ = (S[1],.. ., S[n]) with each share
S[i] a string. The dealer giveS|[i] to partyi. As Shareis probabilistic, different runs oSharg.S) may return
different vectors. When, at some later point, an entity would like to redtnesecret, it must first try to collect
up enough shares. It forms arelement vectoS = (S[1],..., S[n]). Thei*® component of this vectoS|i],
is either a stringS[i] € {0,1}" or the distinguished valué. In the first case the valu§[i] is thepurported
share of party while in the second case the sh&g] = { has been marked asissing The party who wants
to recover the shared secret now applies the algorf@&roverto the vectorS and a numbejy € [0..n], the
number indicating the location of a share thakimwnto be valid. If no particular share is known valid, set
j = 0 and writeRecove(S) for Recove(S,0). To make sense, one must hag| # ¢ if j € [n] = [1..n].
The value that emerges from applyiRgcoverwill be either the recovered secrgte S or the distinguished
value. The latter indicates that the algorithm is unable to recover the underlyingtsec

PRIVACY. Letll = (Share Recove) be ann-party secret-sharing scheme with message sfadest A be
an adversary. We consider the privacy game Priv of Figure 3. ToAruwith Priv the following happens.
First, initialize T « (. Now run A. It should first make an oracle cdllealS°, S*) satisfyings?, S* € S
and|S°| = |S'|. The game then chooses a hiddenbbiind samplesS from SharéS?). Nothing is returned
to A in response to its query. Next the adversarymakes oracle queries of the for@orrupt(i) where



fullname (nick- || AdvE™(4)| whenAisin | Advif°(4)| whenAisin reference
name)

PSS-PRO (PSS 0 AN Priv 0 AN RecO Shamir [43]
PSS-PR2 0 AN Priv 0 ANRec McEliece & Sarwate [35
PSS-SR1 0 AN Priv small AN Recl Tompa & Woll [50]
PSS-SR2 0 AN Priv small ANRec Rabin & Ben-Or [41]
SSS-PRO small AN Priv 0 AN RecO Blakley [9]
CSS-PRO (Css small AN PrivN Prac 0 AN RecO Krawczyk [31]
CSS-CR1 small AN PrivN Prac small AN Recl N Prac apparently new
CSS-CR2 (RCSS small AN PrivN Prac small AN Recn Prac Krawczyk[31]
NSS-PRO (IDA) — — 0 AN RecO Rabin [40]
NSS-PR1 — — 0 AN Recl Witsenhausen [53
NSS-PR2 (ECC) — — 0 AN Rec Shannon [44]

Figure 4: Selected ways of combining.dv>™(A4) and Adv}°(A) constraints to recover significant definitions. For
some notions it is conventional to also demand thdtv};°(A) = 0 for all A € A N Recd.

i € [n]. The query is a request torrupt the indicated player. In response to quéryrrupt(i) the game
setsT' «— T U {i} and returns shar8[:]. WhenA is done corrupting players it outputs a Hiaand halts. It

is said towin if b = d. We measure its success as twice the probability of its winning minus one; formally
Advl™(A) = 2Pr[Priv] — 1. Let Priv be the class of adversaries, fhévacy adversariesthat behave as

we have just described, regardless of oracle responses.

RECOVERABILITY. Fix ann-party secret-sharing scherfle= (Share Recove) with message spa& Let A

be an adversary. We consider the recoverability game Rec of Figur@s, iRitialize T <+ (). Now run
adversaryA. It should first callDeal S) for someS € S. Note thatDealtakes just one argument this time.
The game then selects anvector S from SharéS). Next the adversary corrupts players. Each time it calls
Corrupt(i) the game set§" «— T U {i} and returnsS[:]. When the adversary is done corrupting players
it outputs a pair(S’, j) wherej € [0..n] \ T'andS" € ({0,1}* U {0})". Let Sy U S’. be then-vector
whosei*™™ component isS’[i] if i € T and S[i] otherwise. The adversary is saidwon if Recove(Sz LI
S!.,j) # S. We measure the adversary’s success by the real nusthef;°(A) = Pr[Rec']. Let Rec be the
class of adversaries, tmecoverability adversarieghat behave as we have just described, regardless of oracle
responses.

We define a seRec{) C Rec, the erasure adversariesAdversaryA € Rec is in Rec{ if, wheneverA
outputs(S’, j), we haveS’[i] = ¢ for all i € [n]: the adversary replaces the shares of corrupted playefs by
Similarly, we define a seRecl C Rec, the recoverability-1 adversariesAdversaryA € Rec is in Recl fif,
wheneverA outputs(S’, j), we havej > 0 andj is uncorrupted. The adversary is obliged to point to an
uncorrupted player. As a mnemonic, the adversary must identify onepjagel.

SECRETFSHARING DEFINITIONS. LetIl = (Share Recovel be secret-sharing scheme andebe a class
of adversaries. We can demardddv];"'(A) be: PSSzerofor any privacy adversaries idl; SSS:small
for any privacy adversary ind; CSS: small for anypractical privacy adversary ind; or NSS:no privacy
demands at all. (Letters P, S, C, and N standfderfect statistical computational and none while SS is
for secret sharing Similarly, we can demanddvi;°(A) be: PRO: zero for angrasureadversary inA,
PR1: zero for anyecoverability-ladversary in4; PR2: zero forany recoverability adversary i; SRO:
small for for any erasure adversary 1 SR1: small for any recoverability-1 adversary/y SR2: small
for any recoverability adversary id; CRO: small for any practical erasure adversaryAnCR1: small for

any practical recoverability-1 adversary.ify or CR2: small for any practical recoverability adversary4n



(Letters P, S, and C are as before, and R is for robustness.) All in &l #ne4 - 9 = 36 notions obtained by
combining the named requirements Awv{; " (4) and Advi;°(A). We single out some of them in Figure 4.

Several entries in the table are familiar, and some go by other names; taesedited, where appropriate,
to the party associated to the basic notion. Some notions are not conventregallgled as secret-sharing yet
show up in the table: error-correcting codes and Rabin’s informatiorediapalgorithms [40].

(As we will be using IDAs and ECCs, let us pause and give a concretninegtion. The simplest IDA
is based on replicationSharé X) = (X,..., X) andRecovef(Xy,...,X,),7) = X if { X[i] : X[i] #

O} = {X} while Recovef(Xy,...,X,),j) = O otherwise. IDAs with shorter share lengths also exist [40]. A
simple ECC scheme again uses replicatiharé X ) = (X, ..., X) andRecove(Xy,..., X,) = X if there

is a stringX that occurs more tham/2 times amongXy, ..., X,,, andRecove(X,, ..., X,) = ¢ otherwise.
WhenA N Rec C Recl we can change this tBharé X') = (X,..., X) andRecove((X1,...,X,),j) = X;

if X; # ¢ andRecove((X1,...,X,),j) =01if X; =0.)

Secret-sharing scheriehasperfect privacyover A if Adv%ﬂv(A) = (0 forall A € A, and it hagerfect
recoverabilityover A if Advii(A) = 0 for all A € A. Figure 4 serves to rigorously define PSS-PRO (PSS),
PSS-PR2, NSS-PRO (IDA), NSS-PR1, and NSS-PR2: for exarhple,a PSS with respect td if II has
perfect privacy overd N Priv and perfect recoverability ovet N Rec¢.

The remaining seven rows of Figure 4 contaimallor Prac, which we haven't yet described. For the
statistical notionsgmalland noPrac) one can introduce a real number in placesofall[50]. For example, an
e-robust PSS-SR1 scherieover A has perfect privacy oved andAdvii“(A) < eforall A € AN Recl.

For the computational goals there are two options. One is to leave the seairity formally undefined
but make concrete-security statements to b} (A) or Advii°(A) in terms of other quantities. This
is the concrete-security approach, and we adopt it for Theorems 1-5.

A different option (which applies to any of the 36 notions) is to move to the asyimsetting. For this one
adds in a security parameteand interpretsmallin Figure 4 asiegligible(vanishing faster than the inverse of
any polynomial) and interpre®rac as the class of probabilistic polynomial time (PPT) algorithms. A secret-
sharing scheme now involvegk) parties and has a message sp@e C {0,1}". The Shareand Recover
algorithms are polynomial-time that take an additional (first) input‘ofAdversaryA is likewise provided.*.
Advantage measureAdvy;'"(A4) and Advii°(A) of an adversaryd become functions ok. Note that in
moving to the asymptotic setting we do not use the length of the secret as thigygeatameter, a questionable
definitional choice in some prior treatments. See Appendix B.

ACCESS STRUCTURES We defined secret-sharing goals with respect to an adversary lolagbe classical
approach is to use an access structure instead. Our approach is mena ¢end the added generality is needed
to encompass contexts like that of McEliece and Sarwate [35])-partyaccess structuris a set4 of subsets
of [n] that ismonotoneif R C S C [n] andR € AthenS € A. EachS € A s said to beauthorized The
most common access structure is the threshold access strugtyrevherem, n > 1 and0 < m < n. Thisis
the access structure defined by saying that A,,, ,, iff S C [n] and|S| > m.

We associate to any-party access structutd two classes of adversaries. The firgl?, is all privacy
adversariesA that never corrupt an authorized set fever corrupts a séf € A). The second A", is all
recoverability adversaries that always leave uncorrupted an authorized set @ibrrupts” then[n]\ T € A).°
In speaking of the players that can corrupt, we quantify over all possible oracle responses (nessauly
those associated to any particular game). Corruptmegans callingCorrupt(i). The asymmetry embodied in
the AP and A" definitions arises because privacy is unachievalderiieauthorized set of players getsrrupted
while robustness is unachievablenif authorized set of players remaiascorrupted

To access structutd we associate adversary clagsU.4", which we also call. In this way, any definition
over an adversary class provides the corresponding definition o\acess structure.

VALID ADVERSARIES. For our robustness results we need a technical condition on the ckadgarsaries that

5 These notions are not the same. As an example, for threshold schéfnesis the set of privacy adversaries that corrupt at most
m — 1 players, whileAy, ,, is the set of recoverability adversaries that corrupt at mostm players.



can be handled. First, say that adversdrg Rec cangenerate(S, S, T, .S’, j) if it can call Deal S), resulting
in sharesS, corrupt playerd” C [n], and output S’, j). We say(S, S, T, S’, j) is A-generablef there is an
A € AN Rec such that4 can generatéS, S, T,S’,j). Now for S’,S” € ({0,1}" U {O})" let us say that
S’ > S” (S’ is worse thanS”) if S’[i] = ¢ implies S”[i] = {. We say thatd C Rec is valid (with respect
to some secret-sharing schetffgif the following is true: if (S, S, T, S’, j) is A-generable an®’ > S” then
the following adversaryls 1 s ; s is in A: it calls Deal S); then it callsCorrupt (i) for eachi € T' (say in
numerical order); then it outputss”, j). Intuitively, if an adversary is allowed to provide a bogus sh#ig]
of S € {0,1}" it should be allowed to provide a bogus sha&téi] € {0,1}" U {0} of S.

The classA™ associated to any access structures valid. So too isA,, ,+ N Rec where A, ,, + [35]
is Amn U (A5, ,, N A¢) and A; is adversaries that can only outpif’, j) with S having at most non<
components. Thud € A,, ,,; is a privacy adversary that can corrupt at mast- 1 playersor a recoverability
adversary that can corrupt at mest- m players, replacing at mosshares with strings and the rest with

EXTENSIONS. One can augment a secret-sharing scheme by allowBef@algorithm; we would now have

a triple of algorithmdI = (Setup Share Recovey. Setupis probabilistic and outputsgublic parameterP €
{0,1}". ProcedureShareandRecoverare providedP, as is any adversary attacking the scheme. Wsflare
could always install the public parameter in each player’s share, thet &ffaot the same as addingSetup

in one setting, the adversary has to corrupt a player t@Pgatd in the other it is free; and there are important
efficiency-accounting consequences, as pulling out the public panamigtet shorten the shares.

Our privacy and authenticity notions can be lifted to the random-oracle sgiingo do so, add to games
Priv and Rec a procedurdashthat realizes a random function from strings of arbitrary length to strifigs o
some desired length. Algorithn&hareand Recoverare allowed to calHash as may the adversary itself.

Our notions of privacy and recoverability consider an adversaryctmabbtain the deal of only one secret.
One can easily extend our definitions to handle the sharing of multiple se&rgtsndard hybrid argument can
be used to show that the two definitions are equivalent (up to a multiplicatiter faf the number of secrets
dealt). This result depends on tB&arealgorithm being stateless, as it is for all the schemes of this paper. If
Shareis stateful, a natural counter-example shows that the deal-one-sedré¢al-multiple-secret notions are
inequivalent.

STATIC ADVERSARIES. Classical definitions of secret sharing assume a static adversarys Enmisompassed
by our framework in the sense that it is easy to restrict attention to staticsalies. LeStatic be the set of

all adversaries! for which there is a séf’ associated tol such that, regardless dfs input, coins, and oracle
responses, the set of players corruptedibg 7". To consider static adversaries restrict to setshike N Static.

A static adversaryd can be imagined to deterministically “decide” at the beginning of its executionhwhic
playersT to corrupt. We define adversaries

4 The HK1 Protocol (Krawczyk’s RCSS Scheme)

4.1 Krawczyk’s construction

We reproduce Krawczyk’s construction using our notation. Fix a familgabfersariesd. We build ann-
party secret-sharing scheme with message sfaitem the five components: (1) a symmetric encryption
schemdlI®™ = (Encrypt Decrypt) with k-bit keys and message spatg2) ann-party PSSI7%° = (Sharé>*,
Recovefs9) over.A with message spad®, 1}*; (3) ann-party IDAII™ = (Sharé” , Recovef*) over.A with
message space*; (4) ann-party ECCII®®® = (Sharé“‘, Recovef°®) over A with message spacd), l}h;

and (5) a functiorHash: {0,1}" — {0, 1}h. We callTI®™, I17SS TI'™* | TIFC, Hashthe underlyingprimitivesof

the HK1 scheme, and say that they are adefor n parties and foh-bit hashes. From such a set of primitives
define HKIII®™ 1175 T1"°* | T15¢¢, HasH = (Share Recovey as specified and illustrated in Figure 5. In its
line 21, if X [i] = ¢ then our convention is to assignto all variables on the left-hand side of the assignment
statement; otherwis& [i] is parsed into its corresponding, uniquely defined constituents. Similafy=f ¢



X
PROCEDUREShar¢ X) Randk)
10 K < {0,1}"; ¢ < Encrypt, (X)
11 K < Sharé*y(K) K
12 C <& Sharé* () Encrypt
13 FORi «+— 1TOn DO
14 H[i] — Hash K[i] C]i]) Sharéss Sharé
15 8; < Sharé°°(H][i])
16 FORi < 1TOn DO K[| KRINK[3] ci scpl | cp

17 X[i] — K[i|C[i] Si[i]-- - Snli]
18 RETURNX

PROCEDURERecove(X, j)
20 FOR? «— 1 TOn DO

21 K{[i|C[i] S1[i]--- Su[i] — X|i] Hash Hash Hash
22 FORi <+ 1TOn DO

23 Hi] — Recovef“(S;, j) i e b
24 FORi « 1707 DO Sharé®° Sharé® Sharé®°
25 IF X [i] # O AND Hash K [i| C[i]) # H]i] l l l l l l l l l
26 THEN K[i] < O; C[i] < O
27 K « Recovefs{ K, ) S1[1] S1[2] S1[3] | S2[1] S2[2] Sa3] | S[1] Sa[2] Sa[3]
28 C «— Recovef* (C, j) g;m g;% 5;%
29 X « Decrypt,(C) Sa1] S3[2] Ss[3]
30 RETURNX

y X1 , X 2] y X3

Figure 5:Left Definition of the HK1 constructiofil = (Share Recovey = HK1[I15 11755 11" | TI5¢¢, HasH. Right
lllustration of the scheme’Sharealgorithm forn = 3 players. ProcedurRand on inputk, returns a uniformly random
k-bit string.

or C = { when line 29 is executed then our convention is that= . Let HK1[IT5™, I17%S T1"™* TIF<¢] =
(Share Recovel be the random-oracle variant of this scheme in whitssh {0,1}* — {0,1}" is chosen at
random by games Priv and Rec.

SECURITY. Since an encryption key is used by the share algorithm to encrypt jashessage, it is natural to
think that HK1 is secure if the encryption scheme satisfies one-query irgligthmability (ind1). But we show
that the ind1 condition doa®ot guarantee privacy of HK1, even in the random-oracle model. Specifigaly
show that even one-time-pad encryption, which is certainly ind1-seisutet enough. Intuitively, the problem
is that the hash function is deterministic —even a random oracle is deterministeseitise that, when invoked
twice on the same input, it returns the same answer both times— and hence #eHalucomputed at line
14 can provide partial information about the k&y

4.2 An attack

We now detail the attack. For concreteness, assume werhav8 players and wish to use the 2-out-of-3
threshold scheme, access structutgs. Assume the domain of secrets §s = {0,1}'*® and the do-
main of messages is the same. In the RO-based constructioflIAKII"S 1™ TI5“] assume we in-
stantiatelI*™ with one-time-pad encryptior;’ = Encrypt(X) = K@ X. Assume we instantiatel”s*



with the 2-out-of-3 Shamir secret-sharing scheme over the finite egld. Assume we instantiaté™
with replication, soSharé”* (C) = (C,C,C). Assume we likewise instantiad®““ with replication, so
Sharé““(H) = (H,H, H).

To understand the attack we first point out that with Shamir’s secretrgfecheme [43], not only can you
reconstruct the key (the secret) from = 2 out of n = 3 shares, but you can also reconstruct a share (say
share 2) given one share (say share 1) and the underlying kbt was dealt. (This is done by interpolation,
in the same manner that the secret is normally recovered.) Specificallyefardht-of-3 scheme there is an al-
gorithmR such thatR( K [1], K) = K [2] forall K € Sharé&*3(K'). We will use this fact to violate privacy. Our
adversaryA selects any two distinct 128-bit string&? and X !, and callsDeal X°, X!). Letb, K, K,C, H,
and X be as specified in game Priv in response toflealquery. Next, adversary calls Corrupt(1) to get
back X [1], from which it parses ouK[1] andC[1] = C, the latter because the IDA is replication. It now
setsk = Cp X?andK' = C@ X'. Note thatk® = K. AdversaryA now defines the candidate share
K'2] = R(K[1], K") for KV and defines the candidate shd@[2] = R(K|[1], K') for K. We know that
KP’[2] = K|[2]. The adversaryl computesH °[2] = Hash K°[2] C') andH'[2] = Hash K'[2] C). We know
that H®[2] = H|[2]. But embedded idX [1] is H[2], since the ECC also was replication, whidrextracts. So
let A return 1 if H'[2] = H|[2] and 0 otherwise. We now show thdthas advantage — 2~" (recall thath is
output length oHasH. If b = 1thenA always returns 1. Fronk [1], KY[2] one can recovek® and, similarly,
from K 1], K''[2] one can recovek'. But K° # K! becauseX® # X!, so it must be thak°[2] # K'[2].

We conclude thak°[2] C # K'[2] and so the probability that their hashes collide (under the random-oracle
modeled hash-functiodash is at mos2~". So ifb = 0 adversary4 outputs 1 with probabilitR—".

One might be tempted to reason that if the HK1 construction is wewmegwith a one-time pad aneven
in the RO model, then certainly it is wrong when any “real” encryption schemdehash-function are used, as
these will have inferior properties. But this is not the case, as theresgreiwwhich a “real” encryption scheme
is superior to a one-time pad that are of relevance here. The attack akeddhe fact that with a one-time-
pad, given a plaintext/ciphertext pdik, C') one can recover the key via K = C'@® X. Had the encryption
scheme been secure against one-query key-recovery (keyIingdhat it was computationally infeasible to
find the key from a plaintext/ciphertext pair, we would not have been abieotmnt the attack. And common
encryption schemes like CBC mode provide security against key recoverability under standard assumptions

DiscussioN The intent of HK1 was to make shares shorter than the secret. This willapgen if one-
time-pad encryption is used, leading one to question the practical relegfiite above counterexample and
to ask if ind1 security suffices for encryption schemes in which the ratio akage length to key length is
always large. We have not been able to resolve the latter question, apdrticular, have found neither a
proof nor a counterexample for whether ind1 implies keyl for encryptibermes of the type just mentioned.
As for practical relevance, note that a distributed file system should allevgharing of files of any length,
small or large, so security must be provided even for messages shantehthkey. A reasonable encryption
scheme could use one-time-pad encryption for short messages and tham&onm of encryption for longer
ones. Indeed, this could be particularly efficient.

4.3 Privacy (in the RO model)

We now show that ind% keyl security is enough to prove the security of HK1, in the RO model, wattain
conditions on the access structure. Our result applies to thresholdsatoestures or any other adversary
classA whereA N Priv = A}, ,,. This includesA,, ., ; as the distinction betweed,, ,, ; and.A,, ,, vanishes
after intersecting withPriv.

Theorem 1 [Privacy of HK1, random-oracle model, threshold schens Let A = A}, ,, and letll =

HKL[IT5™ TIPS T1I"™* | TIF°C] with primitives over.A, for n-parties, and withh-bit hashes. Led € A be an
adversary that makes at mastjueries to itsHashoracle. Then there are adversarigsand B, attacking the
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symmetric encryption schemé&" such that

2q + n?
oh

AdviY(A) < Adviie(B1) + 2qn - Adviih(Bs) +

where adversarys; makes only one query to its left-or-right oracle, advergasymakes only one query to its
encryption oracle, and the running timesif and B; are that ofA plus overhead consisting of one execution
of the Sharealgorithm ofIT and, forBs, an additionah executions of thé&kecoveralgorithm ofTIP5, |

Itis easy to show tha&dv}‘fgnc(Bl) andAdVllE[egnc(Bg) are small for efficient one-query adversarigsand B

(ind1 + key1l security) ifAdviﬁ“Einc(Bg) is small for any efficient two-query adversary (ind2). See Appendix A
for a proof. We choose to express our result in terms of idkeyl security in order to precisely hone in on
what HK2 needs. Note that a PRP-secure blockcipher is-inkidy1 secure (even though it is not ind2-secure)
and therefore an appropriate realizatiodk6f° for HK1. Similarly, common modes of operation like CBC are
ind1+ key1 secure, even for a fixed IV.

Proof intuition: The proof is challenging due to the basic weakness in HK1 exploited in digresttack: that
the hash function is deterministic and thus may not preserve privacy oh#ressto which it is applied. The
full proof, which relies on some lemmas concerning PSS privacy fromeAgix C.1, is given in Appendix D.

We begin by highlighting two features of the proof. The first is that it reliesjust on the privacy but also
the recoverability of 1755, (At first glance it is unclear why the privacy &f should need the recoverability of
I17%%)) The second is that it requires a conditionIaff* that we callshare unpredictability This condition is
not true for an arbitrary access structure. But it is true for threshaidss structures and, more generally, for
all access structures that anetensible We define the latter property in Appendix D.

Suppose we aim to construct an advergayyattacking the ind1-property ™. It would runA. The difficulty
is that B, would not know the key< and thus it would be unable to reply to oracle queried dfecause these
replies are a function of the shares6f We can, however, consider a new game where the plaintext is encrypted
underK but the share vectdK is produced from a different kelf’, expecting this to be perfectly adversarially
indistinguishable from the original game due to the privacy of the PSS schinsethe determinism of the
hash function that causes difficulties in establishing something like this. THeepn is in answering a hash
query of A that contains the shad& [i] of an uncorrupted player This is addressed in two steps. The first
is to argue that as long aa — 2 or fewer players have been corrupted, the share of an uncorrpfzger
is unpredictable and thus has low probability of beingashquery of A. This is true because of the share-
unpredictability lemmas, which say that even an adversary knowing thet sextn — 2 or fewer shares cannot
predict any remaining share with reasonable advantage. Here thedldrestu, meaning privacy of the secret
is guaranteed even if the adversary knows- 1 shares, but share-unpredictability allows the adversary only
m — 2 shares, because we need to assume it might also know the secret. ®he stp is to argue that if
the adversary has corrupted — 1 players then, if it queriesiashon the share of an uncorrupted player, we
havem shares of the secret and, via tRecovemprocedure of the PSS scheme, can recover the underlying key.
This leads to a key-recovery adversary.

We warn that this sketch elides many issues; see Appendix D.

MINIMALITY OF THE ASSUMPTION. Theorem 1 shows that ind1+keyl security of the encryption scheme is
sufficientfor the privacy of HK1. We now show that it is alsecessaryThat is, we show that fanyencryption
schemdlI®™ that isnot ind1+keyl securell = HKZL[II®™, 175 1" TI5““] can fail to provide privacy. The
proof of the following is in Appendix G.

Theorem 2 [Minimality of the ind1+keyl assumption for proving the seurity of HK1] Fix an encryption

schemdlI®“¢ = (Encrypt Decrypt) and a numbeh. Then there exists:, n, A = A,, 5, 1175, II'"™, andII*©
where, lettingll = HK1[II5™, 11755 1" TI5¢¢] (with primitives over.A, for n-parties, andi-bit hashes), for
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any adversary3 there is an adversary such that
AdvEY(A) > Advi(B) - 27", (1)
and for any adversar® there is an adversary such that
AdvEY(A) > AdviE.(B). )

In both cases the running timeis essentially that o3 (see the proof), and makes at most one query to each
of its oracles. |

Theorems establishing the necessity of an assumption within some protocoit&@mmon, so let us explain
why the theorem above accomplishes this. Suppose you wanted to proVe-thBIK1[I15™, 11755 1" | TT5¢¢]
achieved the privacy property assuming th&ts, 11, andII*““ are good PSS, IDA, and ECC schemes. The
theorem above establishes that, if you make an assumptidif6that doesn’t imply ind1+keyl security, you
won't be able to get a proof.

4.4 Recoverability (in the RO model)

We prove recoverability for any (valid) class of adversaries, whichudes the adversaries associated to any
access structure, andl,, ,, + as well. Appendix E.

Theorem 3 [Recoverability of HK1, random-oracle model] Let .A be a valid class of adversaries and let
IT = HKZ1[II, 1175 T1"4 | T15°¢] with primitives overA, for n parties, and withh-bit hashes. Letl € A be an
adversary that asks at mastjueries to itsHashoracle. TherAdvis(A) < (g + 2n)?/2/+1 . |

The recoverability of HK1 requires only the collision-intractability of the hasittion Hash it is possible to
restate the theorem above and adjust its proof to show that an attack @ttivenability of HK1 implies an
equally effective method to find collisions tHash We didn’t express the result this way since the proof of
privacy was already in the random-oracle model.

5 The HK2 Protocol (Refining Krawczyk’'s Scheme)

We now alter HK1 by replacing its deterministic hash functidmshwith a randomized commitment scheme.
This changes the protocol, as the randomness used in the commitment mustrtaesliimgo the shares. We are
then able to show that the new protocol, HK2, is a good RCSS under stastrmptions.

5.1 The construction

COMMITMENT SCHEMES. We formalize a (noninteractive) commitment scheme as alp@it = (Ct, Vf).
HereCtis a probabilistic algorithm that takes a message= {0,1}" and returns either a pait’, R), whereY’

is thecommittaland R is thedecommittgl or else it returnsL. Algorithm Vf is deterministic and, on input

Y, M, R, returns a bit. ThelomainDom C {0,1}" of I1°" is the set of all’\/ € {0,1}" such thatCt(M) is
never_L. We assume that whether 6t()) is L is independent of its coin tosses (which ensures that it is easy
to check if a point is in the domain).

There are two security propertigsding andbinding, each defined by a game. See Figure 6. In game Hide,
multiple queries td_eftOrRight are allowed, and argumenig, and M to LeftOrRight need not be of equal
length. The advantage of in attacking the hiding-property of the commitment schemA&vﬁ‘égm(A) =
2 Pr[Hide!] — 1. We say thaflI®" is (-)-hiding if Adviigs,(A) < €(q) for any adversaryd that makes at
mostq oracle queries. Note that the adversary is not computationally restriceedthave given a statistical
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PROCEDUREInitialize PROCEDURELeftOrRight(My, M) Game Hidsg
b {0,1} IF My ¢ Dom OR M; ¢ Dom
THEN RETURN L
PROCEDUREFinalize(d) (Y, R) < Ct(M,)
RETURN b=d RETURNY
PROCEDURECommIt( M) PROCEDUREFinalize(M, R1) Game Bind
IF My ¢ Dom THEN RETURN L IF M7 ¢ Dom THEN RETURN L
(Y, Ro) < Ct(M) RETURN (My # M; AND
RETURN (Y, Ry) VF (Y, My, Ry) = 1 AND
VI(Y, My, Ry) = 1)

Figure 6:Games used to define the security of a commitment sch&iffe= (Ct, Vf) with domainDom.

PROCEDURESharé X) PROCED.UREReCOVG(X,j)
10 Ki{o,l}k; CﬁEncrypl}((X) 20 FOR? «+ 1TOn DO

s s 21 R[|K[]CTi| Si[t] - - Spli] — X[d]
11 K < Sharé®X(K); C < Shar€*(C) 5, ropi” 110nDO H{[i] — Recovef(S;, j)
12 FORi < 1 TOn DO

23 FOR?+ 1 TOn DO

13 (HI[i], R[i]) < Ct(K[i] C[i]) 24 IF X[i] # O AND Vf(H][i], K[i] C[i], R[i]) = 0
14 S; < Sharé°°(H][i]) 25 THEN K[i] — O; C[i] — O

15 FORi < 1 TOn DO 26 K < Recovef*S(K,j); C «— Recovef*(C,j)

16 Xi] < R[]K[i]C[i] S1[i]--- Snli] 27 X « Decrypt,(C)

17 RETURN X 28 RETURNX

Figure 7:Definition of the HK2 constructiofil = (Share Recovef = HK2[ITE", TIPSS T1'PA T15¢C T1¢°M).

notion of privacy. For thdinding gameBind, there is ndnitialize procedure. We define the advantagedof
in attacking the binding-property of the commitment scheme\ds pigo(4) = Pr[Bind*]. The notion is
weaker than the classical notion of binding, which would speak to the cotitmahinfeasibility to find any
Y, My, Ry, M1, Ry such thatMy, M; € Dom AND My # M; AND VF(Y, My, Ry) = 1 AND VF(Y, My, R;) =
1. The conventional notion is analogous to the collision resistance of a hiastiodh while our notion is more
like a UOWHF [37] (also called TCR hash-function [5]). Informally, wéereto a commitment schenié<”
asstatistically-hiding, weakly-bindingSHWB) if Adviid¢(A) is small for any reasonable adversariesind
Advbnd(A) is small for any reasonable adversaries

THE HK2 scHEME Fix an adversary clasg. We build ann-party secret-sharing scheme with message
spaceS from components: (1) a symmetric encryption schéi& = (Encrypt Decrypt) with k-bit keys and

a message spa& (2) ann-party PSSII?S = (Sharé®S, Recovefs) over A with message spacg, 11*;

(3) ann-party IDATI™ = (Sharé”*, Recovef*) over A with message space’; (4) ann-party ECCIIF¢ =
(Sharé®, Recovef°c) over A with message spadg, 1}"; and (5) a commitment scheni&" = (Ct, Vf)

with domainDom whereK [i] C[i] € Dom if K € Sharé*S(K) andC € Sharé* (C) for someK e {0,1}",

X € S, andC € Encrypt,(X). We call I, 1175 T1'™ | TI5<¢, I1°°™ the underlyingprimitives of the HK2
scheme, and we say that they are aMeiand forn parties. From such a set of primitives we define the secret-
sharing scheme HKRIE™ TIPS T1'P* | T15¢C T1°°"] = (Share Recovey as specified by Figure 7. The figure uses
the same conventions as those of Figure 5.
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PROCEDUREInitialize Go—G2

. . . ) PROCEDUREInitialize GG
RETURN ’ e ’
K < Sharé*(K')
PROCEDUREDeal X", X1) Go, G1,G4,Gs

PROCEDUREDeal X, X1) Ga, G
C <& Encrypt (X?); C & Sharé (C)
FORi < 1 TOn DO

(H[i, R[i]) < Ct(0 C[i])

C < Encrypt, (X"); C < Sharé* (C)
FOR? «— 1 TOn DO
(H[i], Rli)) < CH(K[i]| C[i]); S; < Sharé°°(H i)

PROCEDURECorrupt (i) Go, Gs S < Sharé“(H[i)

X[i] — R[i| K[i|C[i] S1[i] - - - Sp[i] ,

RETURN X [1] PROCEDURECorrupt(7) G1—Gy
R[i] < DCt(H[i], K[i] C[i])

PROCEDUREFinaliz&d) Go—Gs X[i] — R[i| K[i] C[i] Si[i] - - Sy]i]

RETURN (d = b) RETURN X [7]

Figure 8:Games for proving Theorem 4, the privacy of the HK2 scheme.

5.2 Privacy (in the standard model)

The difficulty in establishing privacy in the standard model is that our &dwgris dynamic, and so we run
into the selective-decommitment problesee Dwork, Naor, and Reingold [19]. One could always pretend
the adversary to be static and take a hibfin the security bound when the adversary is dynamic, but we
don’t want to do this, as we are interested in concrete security and restiitgood asymptotic counterparts.
Another way around this is to use a statistically-hiding chameleon commitment-schestead we make do
with a weaker requirement, just the statistical hiding. We comment that for 8 afastatic adversaries it
would suffice that the commitment be computationally rather than statistically hiding.

Theorem 4 [Privacy of HK2] Let.A be an adversary class abid= HK2[T15", 1755 T1'™* | T15°¢, T1°"] with
primitives overA, for n parties, and with an(-)-hiding I1¢°™. Let A € A N Priv be an adversary for attacking
the privacy offl. Then there is an adversaByfor attacking the privacy ofl“™ such that

AdvETY(A) < AdvPE.(B) + 4e(n)

where B makes only one query to its left-or-right oracle and the running timB & that of A plus overhead
consisting of one execution of ti&harealgorithm ofII. 1

Proof: [Theorem 4]The proof relies on the games in Figure 8. The figure shwavy procedures, indicating
next to each in which games it is included. For example, gamés defined by the procedures on the left-
hand-side of the figure. The proceduWerrupt of games=,—G4 refers to a probabilistic algorith@Ct that
works as follows. On input, M it lets Q(Y, M) denote the set of all coins such thatCt, on input) and
coinsw, returns a pair whose first componentyis If Q(Y, M) = () thenDCt returns_L. Else it picksw at
random from€)(Y, M), runsCt on inputM and coinsv to get a pai(Y, R), and returnsk. Note this algorithm

is not necessarily efficiently implementable. We note that

AdvP™Y(A) = 2-Pr[Gf] —1. (3)
GameG, differs from game=, only in the Corrupt procedure, which resamplégi| as shown. Clearly,

Pr [G{] =Pr [G{] = Pr [G{]+(Pr [G{] -Pr [GZ]) . (4)
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We will construct an adversary, attacking the hiding-property af<*” such that
Pr [G{] — Pr[G4] = Advi&.(Dy) . (5)

Adversary D; picks b<>-{0,1} and runsA. When A makes a queryX?, X' to its Deal oracle, adver-
sary D picks K < {0,1}* andC < Encrypt,-(X?). It then picksK < SharéSS(K). Fori running from1

to n, it queries0 C|i], K[i] C[i] to its LeftOrRight oracle, letsH[i] denote the value returned, and lets
S; & Sharé““(H]|i]). When A makes aCorrupt(i) query, adversaryD; computes its reply according to
the code of the&Corrupt procedure of gameasy, GGo. Note that this step is not necessarily efficient, Bytdoes
not have to be computationally bounded. Whehalts without output/, adversaryD returnsl if d = b and0
otherwise. One can check that (5) is true.

Next we have
Pr[G3] = Pr[GE] + (Pr[G3] —Pr[G{]), (6)

where G5 differs from G5 only in the Initialize procedure which now producds by sharing notK” but an
independently and randomly chosen K&}, We claim that

Pr[G3] = Pr[GY] . @)
To justify the above, we build an adversapyattacking the privacy of the PSS schehi&® such that
AdvPRi(P) = Pr[G4] - Pr[G4] . (8)

But the privacy oflI”s%tells us that the advantage Bfis zero, yielding (7). Adversar begins by pickingk’
and K’ at random from{0, 1}* andb at random from{0, 1}. It then queriesk”’, K to its Dealoracle. We
know that the latter creates shad&s<- Sharé*3 (L) where L = K’ if the challenge bit chosen by game Priv
is zero and. = K ifitis one. Now P starts runningd, responding toA’s oracle queries as follows. Wheh
queriesDeal XY, X'!) adversaryP executes the code of tii2ealprocedure of gamess, G3. WhenA makes a
Corrupt(i) query, adversary itself makes & orrupt(i) query to obtain shar& [:], producesX [i] as per the
code of theCorrupt procedure of gameSs, G, and returnsX [i] to A. As before, this step is not necessarily
efficient, butP need not be computationally bounded. Whehalts and outputs a hit, adversaryP returns 1

if b = d and0 otherwise. It is easy to see that (8) is true.

Next we have
Pr[G4] = Pr[G{] + (Pr[G4] —Pr[G{]) . (9)

We next construct an adversaby, attacking the hiding-property ¢i°” such that
Pr[G4] — Pr[G{] = AdvE&.(D,) . (10)

The construction o) is similar to that ofD; and is therefore omitted. Gamés differs fromG,4 only in its
Corrupt procedure as shown. Clearly
Pr[G{] = Pr[G{] . (11)

We now construct adversary attacking the privacy ofl=* such that

2-Pr[Gf] -1 < AdvilE.(B). (12)

Adversary B picks K’ at random and letd <~ SharéSS(K’). It then runsA. When A makes a query

Dea(X°, X'), B queriesX?, X' to its own left-or-right encryption oracle to get back<>- Encrypt, (X?),
whereb is the challenge bit an&” the key chosen by the Ind game defining the privaci&f. Now B exe-
cutes the last five lines of thBealprocedure of gamé&'s. When A makes aCorrupt(i) query, adversanB
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can execute the code of tli&rrupt procedure of gamé&'’; since it knowsK [i]. When A halts and outputs a
bit d, adversaryB returnsd. The advantage @B is 2 Pr[b = d] — 1, so (12) is true.

Let D be the hiding-adversary that flips a fair coin and, if it lands heads, P2ynstherwise,D,. Clearly
Advi& (D) = 0.5 Advide,(D1) + 0.5 - Adviide,(D2) . (13)
Sincell°™ is assumed to be-)-hiding andD makes at most oracle queries we have
Adviigs. (D) < e(n). (14)

Putting together (3)—(14) concludes the probf.

5.3 Recoverability (in the standard model)

We now establish the recoverability of HK2. The theorem applies to any validraary class and assumes a
weakly-binding committal. The proof is in Appendix F.

Theorem 5 [Recoverability of HK2] Let .4 be a valid adversary class and lét= HK2[II&™ I1755 T1"™*

IT5cc 11°° with primitives over.4 and forn parties. LetA € A. Then there is an adversafy attacking the
binding-property ofilI®°” such thatAdvi;i(4) < n - Adv?fé‘fm(B) and where the running time d@? is that
of A plus overhead consisting of an execution of 8teareand Recoveralgorithms of protocoll. |

REALIZING THE COMMITMENT. Constructions are known for noninteractive, statistically-hiding commitment-
schemes that meet the standard binding requirement, and thereforerouDoeris based on discrete log [11],
another, on a collision-resistant hash-function [18, 23]. Thesetrmti®ns are all reasonably efficient. Ac-
tually, having relaxed the binding requirement, one can replace the collisgistant hash-function of the
constructions just mentioned with the UOWHF primitive of Naor and Yung [3T]s provides a basis for the
plausibility-style result that a one-way function suffices for efficienS®g42F, and it also provides the basis
for a practical scheme that builds its UOWHF from appropriately keyinyptographic hash-function.
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A A Sufficient Condition for key1-Security

An encryption scheme secure agaigst> 2 queries in the indistinguishability sense is also secure against
q — 1 queries in key-recoverability sense (so, in particular, ind2-security is\pigl-security). For complete-
ness, we formalize and prove this below. In particular, two-query indisishgbility (nd2) implies one-query
key-recoverability (keyl), but an encryption scheme secure in the geyse need not be secure against key-
recovery at all (the one-time pad is an example).
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Proposition 6 Let IT = (Encrypt Decrypt) be an encryption scheme with message space including}™
for somem. Let A be a (key-recovery) adversary. Then there exists a (distinguishilvgysaryD such that
Advird(D) > Advlﬁey(A) — 27™ and whereD makes one more oracle query than degsmakes oracle
gueries of total lengtln bits more than the total length dfs queries, and) runs in time which is4’s running
time plus the time for on®ecryptcall on anm-bit string. |

Proof: ConstructD as follows. It runs4, answering eackBnc( X ) query by callingLeftOrRight( X, X') and re-

turning the response. Whehhalts with outputs’, haveD computeX < {0,1}",C & LeftOrRight( X,0™),
and X’ = Decrypt,,(C). Let D return 0 if X = X’ and1 otherwise.

Let Left and Right denote the games that are the same as the Ind gamé tlecepcryption oraclé&nc is
replaced by the oracle that always encrypts the left or right quedepectively. Suppose that plays game
Left. Then the probability thab will output true is at IeastAdvll‘Iey(A). On the other hand, suppose tliat
plays game Right. Then i outputstrue it means thaD, givennoinformation aboutX’, managed to correctly
guess it. The chance of this is at m@st™. Now, as is standardd dvi}¢(D) = 2 Pr[Ind”] — 1 = Pr[Left” =
true] — Pr[Right”], and so we conclude thatdviid(D) > AdviY (4) —27™. 1

While ind2-security implies ind1+keyl security, the reverse certainly is reoc#ése. As an example, CBC
encryption with a zero-IV is readily shown to be ind1+keyl secure (Wiemed on a PRP), but it is not ind2
secure. Itis for this reason that Theorem 1 employs the weaker ingl-#esumption.

B Prior Secret-Sharing Definitions

The purpose of this section is to sketch the most prominent definitions feicdhsecret-sharing goals. We do
not aim to give a comprehensive survey, which would include many vanmtibthe same.

BLAKLEY AND SHAMIR (1979). A threshold scheme with parametetsandn (that is, a secret-sharing
scheme for the access structutg, ,,) was defined by Shamir [43] as followsOur goal is to divideS into n
piecesSy, ..., S, in such a way that: (1) knowledge of anyor more S; pieces make§ easily computable;
and (2) knowledge of any. — 1 or fewerS; pieces leave$s completely undetermined (in the sense that all its
possible values are equally likely).

The definition above is somewhat informal, and admits multiple, basically eqoivialenalizations. The
two most prominent are theonditional-probability formulatiorand theentropy formulation One can either
assume that the finite set of possible secfets endowed with a distribution and define a threshold scheme
for this distribution, or one can require the scheme to workafoy distributionS; see, for example, [2, 29].
lllustrating the former approach, I8tdenote the random variable that takes on values ff@uocording to the
associated distribution and 18} be the random variable that takes on values of the shfmei € [n|. For
the conditional-probability formulation one would then require that for anyrdis{,, ...,:.} C [n] and any
(Siys- -, 8,.) such thatPr[(S;,,...,Si.) = (siy,.--,si,)] > 0, we have that: (1) if- > m then there exists
a uniques € S such thatPr[S = s |S;, = si;, A---AS;, = s;,] = 1; and (2) ifr < m then, for each
s € Swe have thaPr[S = s | S;, = s;; A--- A S, = s;,.] = Pr[S = s|. The statement we have just given
paraphrases [38]. For the entropy formalization [30] one would reghit: (1) for anym-tuple of distinct
indicesiy, ..., i, € [n] we have thatZ(S | S;,,...,S;,,) = 0; and (2) for anyr < m and for anyr-tuple of
distinctindices, ..., i, € [n] we havethati(S | Si,...,S;) = H(S). HereH (X) = — > .y p(x)lgp(z)
andH (X [Y) = = > cx ey P(@)p(z | y)lgp(z | y) and X andY are random variables andz) denotes
the probability thatX = = andp(y) denotes the probability thdf = y andp(z | y) denotes the probability
that X = z given thatY” = y. Both formulations of the PSS notion readily lift to define secret-sharingreel
over an arbitrary access structude

” For consistency with the rest of this paper, we have changed the nénmsables.
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MCELIECE AND SARWATE (1981). These authors were interested in threshold schemes thatare sgainst
computationally-unbounded adversaries that can arbitrarily replacainessof some of the players [35]. An
external party, not a protocol participant, recovers the secret. htipassible to say precisely what notion
the authors aim for because their work is stated in terms of characterissch@es achievable using Reed-
Solomon codes, not general characteristics sought in a secretesbehi@me. That said, the authors seem to be
interested in achieving the PSS-PR2 goal of Figure 4 with respect to teesadly class we called,,, ,, ;.

ToMPA AND WoLL (1986). These authors are interestedrirout-of-n threshold schemes that are secure
against computationally-unbounded adversaries that can arbitrarigcesthe shares of the — 1 corrupted
players and where some uncorrupted protocol participant is the entitisthextovering the secret [50]. The
envisaged adversary is static. The authors state the problem like thigifopamly some variable names):
Divide a secretS € {0,1,...,s — 1} into “shares” Sy, S, ..., .S, such that: (a) Knowledge of any shares

is sufficient to reconstruct efficiently. (b) Knowledge ofi — 1 shares provides no more information about
the value ofS that was known before. (c) There is only a small probabiity 0 that anym — 1 participants
i1,%2, ... ,im—1 Can fabricate new share§; ,5; ,...,S;  thatdeceive an'" participanti,,. Here, deceiv-

%10 Mgt
ing them!'™® participant means that, from’. , S! .., 8, ,andS;, , the secretS’ reconstructed is “legal”

b 97 "
(e, 5" € {0,1,...,s —1}), but “incorrect}’ (i.é., S’ # S). This model is investigated in works like [16, 38],
which also addresses some informalities in the definition above (like if the lyirdesecretS is uniform or if
one is instead maximizing over &).

The above goal is approximately translated into our definition for PSS-&fRiLglso demanding perfect-
recoverability for erasure adversaries). Note that in a setting like this,owitlrete security and a statistical
error bound, the difference between static and dynamic adversaélidse relevant: one could easily construct
an (artificial) secret-sharing scheme with a larger smallest-possible rekagiarameterif one quantifies over

the class of static adversaries instead of dynamic ones.

KRAwWCZYK (1993)AND OTHERS. A definition for CSS, for the case of anout-of-m threshold scheme, was
sketched by Krawczyk [31]. It is stated like this, apart from minor clesng notation.Let IT be ann-party
secret-sharing scheme. For any sec$etnd for any set of indices < i; < --- <, < nletDy(S,i1,...,1,)
denote the probability distribution on the sequence of shayess;,, . . ., .S;, induced by the output of running
the Sharealgorithm onS. The requirement is that for any pair of equal-length secf#tand S” and any set
of indicesiy, io, . . ., i, With r < m, the distributionsDyy (S’ i1, 42, . . ., 4,) and Dy (S”, i1, 42, . . . ,4,) must be
polynomially indistinguishableKrawczyk earlier indicates that indistinguishability is in termgtod lengths
of messages or secret Krawczyk's definitional sketch, he omits mention of recoverability.aR@eterizing
security by in the length of the secret might be unfortunate, effectivadiuding a treatment of protocols that
share a one-bit secret, say, an apparently legitimate thing to want to do.

A somewhat different approach to formalizing CSS is given by Cachipdid refined by Vinod et al. [51].
For privacy one requires that the probability that an adversary cassghe shared secret is negligible (in the
security parameterized, which is again the length of the secret). Onéaffg@ssumes that the set of secrets
is large and that secrets are chosen uniformly from that set (assumhEiseem undesirable). Regardless, an
inability to guess the shared secret, an idea going back to Blakley [9], $eenake for an overly weak notion
of security, as a huge amount of partial information about the secret imégleiaked while the secret remains
hard-to-guess. Such considerations are well-known from the casftercryption-scheme privacy, going back
to Goldwasser and Micali [22], and they are just as relevant here.

As for the RCSS goal, Krawczyk says only that thisiisecret-sharing scheme that can correctly recover
the secret even in the presence of a (bounded) number of corrsipéees, while keeping the secrecy require-
ment[31]. Comments in the paper make it clear that the author was thinking in termes wittie| of robustness,
where an external party recovers the secret.

Krawczyk clearly had further ideas along the lines of those pursued iauttient paper. In particular, he
indicates thaa stronger definition can be stated in terms of a dynamic and adaptivesatyahat progressively
chooses the:—1 shares to be revealed to him depending on previously opened shirasso indicates thate
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PROCEDUREInitialize GSh,
SES; §<E Sharéss(s)

PROCEDUREInitialize GSe GSh RETURN S

S<ES; §& Sharés(S)

PROCEDUREInitialize G
PROCEDURECorrupt(i)  GSe GShGSh,, G S0, 51 Es: § & Sharéss(st)
T —TuU/{i} RETURN S°
RETURN STi]

PROCEDUREFinalizgj,Y) GSh
PROCEDUREFinalizdY") GSe RETURN (S[j]=Y) AND (j¢T) AND T ¢ A
RETURN(Y =S)AND T ¢ A

PROCEDUREFinalizgj,Y) GSh,, G

RETURN (S[j]=Y) AND (j¢T) AND TU{j} € A

Figure 9:Games in the PSS lemmas. The Figure defines four games, GBe@ES8 , and an auxiliary gamé to be
used in the proofs.

traditional notion of perfect secret sharing can be defined in an analsgeay. . . by replacing “polynomially
indistinguishable” with “identical” (or equivalently, by replacing polynomial-tadistinguishability tests with
computationally unlimited test§31].

C Secret-Sharing Lemmas

C.1 Share-prediction lemmas

Assume that a secret is uniformly chosen from a finite set of possibletsecWe consider the probability
that an adversary, without having corrupted an authorized subpéd\adrs, predicts either the secret that was
distributed or the share of an uncorrupted player. The probability of téteiieasily shown to be low by the
privacy of the scheme, essentially confirming that our definition implies pusvimes. Share prediction is
more subtle since whether or not it is hard depends on the access grudiprovide sufficient conditions
on the access structure for share prediction to have low probability. Wgehgo lemmas, one for adversaries
that don’t know the secret and one for adversaries that do. Theiktieed in our proof of privacy of the HK1
construction (Theorem 1). We consider dynamic adversaries thratigred in that sense our statements are
stronger than in traditional treatments of secret sharing.

We formalize the claims via the games of Figure 9. The Figure shows diffgrecédures, listing next to
each the games in which this procedure appears, so that a total of foasgaie described. For our first lemma,
we consider the game GSe whdséialize procedure picks a random secret from the (finite) message Space
of the given PSS scheni&™*® and creates shares for it. The game answeénsupt queries and declares the
adversary to have won if its outplit equals the secret but the set of corrupted players is not authoribed. T
following says that the probability that the adversary wins is at mo§t|.

Lemma 7 Let II"*° = (Sharé®® Recovef*®) be an-party PSS scheme over message sifaemd access

structureA. Then for any adversarg

Pr[GSé] < ’é } (15)

Proof: [Lemma 7]We will specify an adversa#y attacking the privacy off”** such that

1

AdvPRi(P) > Pr[GSe’] - ER (16)
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Since the advantage @f is 0 by the assumed privacy of the PSS scheme, equation (16) implies equ&ijon (1
AdversaryP picks S°, S at random fronfS and queriesS®, S* to its Dealoracle. It then starts running.
When A makes aCorrupt(i) query, adversany itself makes aCorrupt(i) query, and returns the response
to D. WhenD halts with outputy’, adversaryP returnsl if Y = S' and0 otherwise. Denoting the output
of P by d and the challenge bit chosen by game Privbloye have

AdVP(P) = Pr[d=1|b=1]-Pr[d=1|b=0].

Now we claim

Prid=1|b=1] = Pr[GSé] 17)
1
Prld=1]|b=0] < ER (18)

from which (16) follows. Equality (17) is evident from the definitions. le ttase) = 0, adversaryP has no
information aboutS* which is chosen at random frofhand hence the probability that = S* is at mostl /|S],
justifying (18). 1

Our next lemma considers the game GSh whiog#alize procedure picks a random secret from the (finite)
message spa&eof the given PSS scheni&™® and creates shares for it. The game answ&nsupt queries
and declares the adversary to have won if it outguis such thafy” equals thej-th share of the secret but no
Corrupt(j) query was made. We are interested in bounding the probability that thesadyevins.

However, this probability is not always small. It depends on the accesgiste. Consider for example the
access structurgl that contains just the sets — 1] and[n] and letS = {0,1}". Let algorithmSharéss(s)
return.S whereSJ1],..., S[n — 1] are chosen at random frofhsubject toS[1] & --- ¢ S[n — 1] = S and
S[n] = 0*. Then an adversary that outputs)* wins with probability 1.

This type of anomaly seems however absent for “natural” access sesctund in particular for the thresh-
old one A,,,,. To be general, we define a property of access structures that isieniffio ensure that the
probability of the adversary winning the GSh game is small. We say4hatextendiblgf for every T' C [n]
such thatl’ ¢ A, and everyj ¢ T, there exists & C [n] suchthatr UT' ¢ AbutT UT U {j} € A.
That is, T can be extended to an unauthorized subset such that additjomaies it authorized. We cdil an
extensiorof 7', 5.

Note that thed of our example above is not extendible. Indeed if wejsetn andT = () thenT’, j has no
extension. Howevetd,, ,, is extendible, as are many other natural access structures. The follsaysdhat
the probability of winning GSh is at mosy/|S| if the access structure is extendible. The interesting aspect of
the proof is that it relies on the recoverability of the PSS scheme, not jusivezy Below, ifY is a share
vector therOpened(Y') denotes the sdti : Y[i] # ¢ } of all indices at whichy” is defined.

Lemma 8 Let I17%° = (Sharé®°, Recovef*®) be an-party PSS scheme over message s|Saard extendible
access structurd. Then for any adversark

Pr [GSH’] < ’;’ : (19)

Proof: [Lemma 7]Consider the following adversafy for the GSe game. It initializes-vectorY to have all
component®, and then rungl. WhenE makes aCorrupt(i) query, so doe®). It stores the response &3]
and also returns this responsefio Eventually, adversary' halts with outputj, Y. We say this output igalid

if Opened(Y') ¢ Aandj ¢ Opened(Y). If the output is not valid the® returns something arbitrary like e.
Else, itletsY [j] < Y and letsI” be an extension df, j, which we know exists by the extendibility assumption
on A. For each € T" it makes aCorrupt(i) query and stores the respons&iii|. The extendibility property
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now guarantees th&ipened(Y') € A, soD runsRecovef**(Y") to get back a secref’, outputsS’, and halts.
The extendibility property also guarantees that 7’ ¢ A so thatD has not corrupted an authorized subset in
the case the output df is valid. Now if the outputj, Y of E is valid and satisfie§[j] = Y thenS’ = S. If

the output of~ is not valid thenE does not win. This means that

Pr[GSH] < Pr[GSé’] , (20)

whence (19) follows from Lemma 7

An adversary in the GShgame has the same share-prediction objective as an adversary in the@8&lbf
differs in that it gets the secret as input. (The secret is the output éhitiedize procedure which by definition
becomes the input to the adversary.) Thus we are now asking how hatd fnsdict a share when you know
the secret. The following lemma bounds the probability that the adversarywites the same conditions as in
Lemma 8. The crucial difference is that in the GSiame, the adversary wins only if not juStout 7' U {;} is
not authorized. In the casé = A,, ,,, this means that we allow it to corrupt only — 2 players, notn — 1 as

in Lemma 8. Intuitively, this says that giving the adversary the secret is iegit one extra share from the
point of view of its ability to predict other shares.

Lemma 9 Let 1175 = (Sharé®’, Recovef*®) be an-party PSS scheme over message s|Saaed extendible
access structurd. Then for any adversarg

1
Pr[GSH| < R (21)
Proof: [Lemma 9]We first claim that
Pr[GSH| = Pr[G"] | (22)

where gamé- is defined via Figure 9. Intuitively, this says that providifighe shared secret as input does not
help it; it does equally well with a random, independent secret as inputsfifyj(22) we provide an adversary
P attacking the privacy ofI**°such that

AdvPii(P) = Pr[GSH] - Pr[GF] . (23)

Since the advantage @ is 0 by the assumed privacy @5, (23) implies (22). Adversary’ picks SV, S*
at random fronS and queriess®, S! to its Dealoracle. It initializes sef” to empty and starts running on
input S'. When A makes aCorrupt(i) query, P putsi in T, itself makes aCorrupt(i) query, and returns
the response té¢". WhenF' halts with output(j,Y'), adversaryP makes aCorrupt(j) query to obtainS|[j].
If S[j] =Y andj ¢ T thenP returnsl, else0. Equation (23) follows because

Prid=1]|b=1]=Pr[GSH] and Pr[d=1]b=0]=Pr[G"],

whered denotes the output bit d? andb the challenge bit chosen by game Priv.

Note that the set of players corrupted Byis 7' U {j} whereT is the set of players corrupted ly. But if

T U {j} is not authorized, as is required fét to win, thenP has not corrupted an authorized player, as is
required for it to win. This is where we use the assumption thatins only if not just7 but7 U {;} is not
authorized.

To complete the proof we specify an adversarfor game GSh such that
Pr[GF] < Pr[GSH] .

Now (21) follows from Lemma 8. Adversark picks S’ at random fron§ and runsF' on inputS’. It answers
F’s Corrupt queries via its owrCorrupt oracle. Wher¥’ halts with outpuy, Y, adversary also outputg, Y
and halts.l
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C.2 Arecoverability lemma

The following result lets one think of perfect recoverability in a more catieeal, adversary-free way.

Lemma 10 [adversary-free recoverability] Let IT = (Share Recovel be a secret-sharing scheme over mes-
sage spacB that achieves perfect recoverability over the valid access strugtuBuppose€ S, S, T, S’, j) is
A-generable and’ > S”. ThenRecove(S U S7,j) = S. |

Proof: By the validity of A there is an adversanys s j 57 € A that callsDealS), calls Corrupt(i) for
eachi € T, then outputgS”, j). Now Ag 1 g ; s Will win the Rec game iffRecoveroutputs anS* # S.
But As r,s,j,5 never wins the Rec game becausdvii(Asr,s,5,s7) = 0. It follows that Recove(S7 LI
S7.,j) = RecovetS71187,j5) =S. 1

D Proof of Privacy of HK1 (Theorem 1)

We will actually show something stronger than what is claimed in the theorem statenagnely, that the
scheme works for angxtendible access structyras defined in Appendix C. We will also use the lemmas of
that appendix.

Proof: [Theorem 1]The proof will use code-based game-playing [4]. A gamteigicase will consist of an
Initialize procedure, procedures to respond to adversary oracle queriBeapfCorrupt, and Hash and a
Finalizeprocedure.

As is usually the case with game-playing proofs, the different games @sednmany procedures in common.
To compact the game descriptions, we accordingly do not describe aauwh ig full but rather describe all
procedures used individually, putting next to their name the games in whighafipeear. Boxed code in a
procedure appears in the game if and only if the game name has a box @rdaonhis way, Figures 10 and 11
describe a total of 10 game&y—(Gy. As an example of how to read the figures, the upperllettalize of
Figure 10 occurs in games,, G1, Go, G3, G4, Gg, G7, Gg wWhile the upper rightnitialize of the same Figure
occurs in the remaining two games, nam@ly, Goy. The Corrupt andFinalizeprocedures are the same for all
games.

We will be building adversaries that will rud as a subroutine, themselves responding to the latter’s oracle
gueries. Gamé&r, moves us towards this perspective. (Gafgis specified by the procedures in the left
column of Figure 10, with the boxed statement included inRiealprocedure.) Our claim is that

AdviV(4) = 2-Pr[Gy] - 1.

To justify this let us explain what the game does.lti#ialize procedure picks the kel and generates shares
for it just like in the game defining the privacy @f. While, ideally, we would like to pick the response
to Hash(z) at the timez is queried toHash the game picks the valuégash K[i| C|i]) up-front in theDeal
procedure. (This value is representediyi]. ThelF statement in procedui®ealensures consistency, meaning
that Hash K [i] C[i]) = Hash K [j] C[j]) in case the arguments tdashare the same in both cases.) It does
this because it may soon need to provXié¢/] as a response to@orrupt(i) query, and this share depends on
Hash K [j] C|[j]) forall 1 < j < n. The assignment off [i] to Hash( K [i| Ci]) is done only at the time the
adversary makes hash oracle quéfyi] C[i], necessitating thes statement in the corresponding procedure.

With the goal now being to upper bouBd[G4], let us try to provide some intuition for what follows. Suppose
we aim to construct an adversaByattacking the privacy ofI*™ with advantage at Ieaﬁr[G()“]. It would run
AtogetX? X! and pass these to its left-or-right encryption oracle, getting back a téhérencryptingX ¢,
wherec was the random challenge bit underlying its privacy game. It could new’'us construciC' and then
continue to run4, answering its oracle queries &g does, and ther’s prediction of whether it is seeing®

or X! would revealc to B. However, adversary? can’'t answerA’s oracle queries because they depend on
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PROCEDUREInitialize GGy, Ge—Gi
K< {0,137 b<&{0,1}

K < Sharé*(K)

FORi < 1TOnDOYi] — ¢

PROCEDUREInitialize G5, Gy
K, K'&{0,1}%: b2 {0,1}

K & SharésS(K')

FORi « 1TOnDOY[i] — ¢

PR(;CEDUREDea(XO’Xl) [Gol Gy PROCEDUREDeal X°, X!) Go—Gy
C < Encrypt (X°) C & Encrypt, (X?)
C < Sharé” (C) C < Sharé* (C)
FOR? «— 1 TOn DO FORi «— 1 TOn DO
18 h
Hli] —{0,1} H[i] < {0,1}"; S, & Sharé°°(H]i])
IF3j <i: (K[i|C[i] = K[j]Cj]) THEN
bad« true; | H[i] — H|j] PROCEDUREHasHhx) , Gs
S; & Sharé“(H]i)) HasHz] < {0,1}"
FORi <« 1 TOn DO
PROCEDURECorrupt(i) Go—Gy IF Y[i] # O THEN
Yi] — Kli] IF (z = K[i] C[i]) THEN HasHz] — Hi]
X [i] « K[i|C[i] S1[i] - - - Snli] ELSE IF(z = K[i] C[i]) THEN
RETURN X [{] bad<— true; | HasHz| — H]i] ‘
PROCEDUREHash ) Go, G1 RETURN Hasf{z]
5 h
Hashz] — {0, 1} PROCEDUREHasHx) G4, G5

FORi « 1 TOn DO
IF (x = K[i] C[i]) THEN HasHzx] < Hi]
RETURN HasHzx|

Hashz] < {0,1}"
FORi < 1 TOn DO
IF Y[i] # O THEN
IF (x = K[i] C[i]) THEN Hashz| — H]i]
RETURN HasHz]

PROCEDUREFinalizd) Go—Gy
RETURN (d = b)

Figure 10:Procedures for games in the RO-based instantiation of thk $¢keme, Theorem 1.

shares ofK and B does not have access 10, which is chosen by its privacy game. The obvious way to
get around this is to hav& pick some new, randonk”’, generateK via Sharé°, and use these, arguing
that A will not know the difference due to the privacy of the PSS scheme. Bub#wprocedure, which we

are suggesting3 run, needs to knovall the valuesK[l1],..., K[n| to perform the test in ther statement.
Similarly, the procedure for replying tHashqueries needs to test whether a query cont#iig for somei:

and thus needs to know all the valuBStoo. But the PSS scheme does not provide privacy if all shares are
revealed.

So our goal to implement the above idea is to put the game in a form wherenddsgdo A’s queries is possible
without knowing the shares of any authorized subset of players.c@rmreteness, consider the case where the
access structure id = A,, ,,. In this case, we want to be able to respondit® queries knowing onlyn — 1

or less shares dk'.) We do this in a few steps. Gamé$, G, differ only in statements following the setting of
the flagbad meaning are identical-untbadin the terminology of [4], and so by the Fundamental Lemma of
Game Playing from that paper we have

Pr [GS‘] Pr [Gﬂ + (Pr [Gfﬂ —Pr [Gﬂ)

Pr [G{'] + Pr [G{ setsbad] .

IN
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PROCEDUREHasHx) Ge
HasHz] < {0,1}"
FORi < 1 TOn DO
IF Y[i] # O THEN
IF (x = K|[i] C[i]) THEN HasHhzx] «— H]i]
ELSE IF(x = Ki] C]i]) AND Opened(Y') U {i} ¢ A THEN
bad«+ true
RETURN HasHzx|

PROCEDUREHasHhz) Gsg, Gy
HasHz] < {0,1}"
FORi < 1 TOn DO
IFY[i] # O THEN
IF (x = K[i] C[i]) THEN
HasHzx] «— H]i]

G- ELSE

Y, < Y; Y,[i] « K,

L — Recovef*¥(Y,)

IF L = K THEN bad« true
RETURN HasHzx]

PROCEDUREHasHh )
Hashz] < {0,1}"
FORi « 1 TOn DO
IF Y[i] # O THEN
IF (x = K[i] C[i]) THEN HasHhz| — H]i]
ELSE IF(z = K[i] C[i]) AND Opened(Y) U {i} € A THEN
bad— true
RETURN HasHz]

Figure 11:More procedures for the games in the proof of Theorem 1. Aopened(Y) denotes the séti : Y[i] # O}
of all indices at whichy” is defined, and by<; C; < x we mean that is uniquely parsed into its constituents.

Consider the experiment in which we piék K as in thelnitialize procedure of7;. Forl < j < ¢ < nlet
E;; denote the event th& [j] = K[i|. Consider the adversaiy;; for game GSh that makes@orrupt(j)
query to getK[j], and then outputs K [;]. Then by Lemma 8 we have

Pr[Ej;] = Pr[GSH%i] < 2%

So by the union bound,

A . nn—1) 1
Pr [G{ setshad] < Pr(3j<i: Ej;] < Z<:Pr Bjil < =55 -
1<t

Since the outcome @, is not affected by whether or nbadis set, this means that the problematistatement

of the Dealprocedure can be removed at the cost of a small loss DEa#procedure o7y makes this change.
With the goal of making responses ffashqueries possible without having shares of an authorized subset of
players, we split ther statement of the corresponding proceduré/gfinto two parts inGs. Now we have

Pr[G{] = Pr[G{] (24)
= Pr [G?] + (Pr [G?} —Pr [G?D
< Pr[G4] + Pr |G setshad] , (25)

the last step again by the Fundamental Lemma of Game Playing. The setting ofgtladlay the Hash
procedure of73 does not affect the game outcome and so we have

Pr [Gfﬂ = Pr [Gf] .

Now notice that7, does not make reference to unopened sharés @&o at this point we claim that the privacy
of the PSS scheme implies
Pr[G{] = Pr[G{] , (26)
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where G5 differs from G4 only in the Initialize procedure which now producds by sharing notk” but an
independently and randomly chosen K&

Let us now justify (26). To do this we build an adversdtyattacking the privacy aofl”*s such that
AdvPi(P) = Pr[GY] - Pr[GY] . (27)

But the privacy offI”*tells us that the advantage Bf is zero, yielding (26). Adversar¥, begins by picking
K andK’ at random from{0, 1}* andb at random fron{0, 1}. It creates:-vectorY to have all components.

It then queriesk’, K to its Dealoracle. We know that the latter creates a share vel§tet- SharéSS(L) where

L = K’ if the challenge bit’ of the oracle i9) andL = K if ¥’ = 1. Now P, starts running4, responding to
A’s oracle queries as follows. Whehmakes aDealquery X, X!, adversary?, executes the code of tiizeal
procedure of gameS,, G5. WhenA makes &Corrupt(i) query, P, itself makes aCorrupt(i) query to obtain
shareK7[i|. It then setsX[i| — K[i|C[i] Si[i]---Sy,[i] andY [i] «— K]i], and returnsX[i] to A. WhenA
makes aHashx) query, P, executes the code of thidash procedure of game&, G5 and returndHasHz]

to A. When A halts and outputs a bit, adversaryP; returns 1 ifb = d and 0 otherwise. It is easy to see that
(27) is true.

GameG; usesC, an encryption ofX® underk, but makes no other referencefto This puts us in the position
we wanted above where we can use the privadf®f. Namely, we will now specifyB; so that

2-Pr[Gi] —1 < Advi&(B) . (28)

AdversaryB; picks K’ at random and let& < Sharé>(K’). It creates:-vectorY” to have all components.
It then runsA. WhenA makes a quenX?, X! to its Dealoracle,B; queriesX", X! to its own left-or-right

encryption oracle to get back a ciphertékti Encrypt(X?), whereb is the challenge bit chosen by the left-
or-right encryption oracle. NouB; executes the last three lines of tBealprocedure of gamé&'s. When A
makes &Corrupt(i) query,B; can execute the code of ti@&rrupt procedure of gamé's since it knowsK [i].
When A makes aHash(x) query, B, can similarly execute the code of procediéfashof G5 to obtain the
reply and return it tod. When A halts and outputs a bit, adversaryB; returnsd. The advantage oB; is
2Pr[b = d] — 1, so (28) is true.

To summarize, at this point we have shown that

n(n—1)

AdeHriV(A) S Advil-rllgnc(Bl) + 271: —+ 2.Pr [GgA SetSbad] . (29)

The difficult part of the proof is to bounilr[G4 setsbad]. For this we use the key-recovery securityBe.

Let us again first try to give some intuition. The difficulty with applying the aciy of the PSS scheme is that

has information abouf’. Indeed, in the worst case, the ECC could be replication, meatijiig= C' for all

1 <7 < n, so thatd would haveC after oneCorrupt query. If the encryption scheme, like in our one-time-pad
example, permitted recovery of the key from a ciphertext, theould setbadin G3 with high probability. For
example, suppose the access structus,is, and we are using Shamir's PSS scheme. Adverdargn obtain

m — 1 shares ofK, then useK and these shares to compute an unopened déie and queryK|[i| Ci]

to Hash In this case, however, we could obtdihfrom this last oracle query and the opened shares by using
the recovery procedure of the PSS scheme. But we can't apply thisgstrid A setsbadafter opening only

m — 2 or fewer shares. In that case, however, Lemma 9 applies, sayinyématreughA knows K, it has low
probability of predicting an unopened share.

However, in implementing this we face the same difficulties as above. We cald'tebkey-recovery adversary
if it needs to know shares of the challenge K€yto simulateA. We want instead to use shares of a different,
randomK”’. But for this to be justifiable via the security of the PSS scheme, the game rfersiméy to opened
shares, andrs; does not do this. We now proceed to resolve these problems.
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We begin by splitting the bad event into two, one for the case where the setrapted players together with
the player indicated in the query settihgddo not form an authorized subset, and the other where they do:

Pr [G4 setsbad] = Pr[G{ setsbad] + Pr [G# setshad] .

To get some intuition, consider again the case where the access structyyg,isThen the first case corre-
sponds tabadbeing set withm — 2 or less shares opened, and the second the case wheré shares were
open.

We claim Lemma 9 implies

Pr [G{ setsbad] < 2%. (30)

Let us justify this. For eachi in the rangel < j < ¢ we consider the following adversa#y; for the GSh.
game. It gets as input a kdy chosen at random frorD, 1}’C by the game, and, via @orrupt(i) query, can
obtain K[|, where K & Sharé*%( K') were generated by the GSlgame.F; begins by creating-vectorY to
have all components. It then picks a bib at random, and initializing a counteto 0. It then runs4d. WhenA
makes a query’, X; to its Dealoracle,F; executes the code of tiRealprocedure of gamé's, which it can
do since it knowsK'. WhenA makes a query to its Corrupt oracle,F; obtainsK [i] via a corrupt query and
then executes the code of therrupt procedure ofi's. WhenA makes a query to its Hashoracle,F; does
the following:

¢ —c+1; HasHz] < {0,1}"
FORi « 1 TOn DO
IF Y [i] # O THEN
IF (z = K[i] C[i]) THEN HasHhz| — H]i]
ELSEIF(c=j) THENK; Cj «—
RETURN HasHzx|

Above, by K; C; «— x we mean thatr is uniquely parsed into its constituents. Whénrhas terminated,
algorithmF; returnsK; and halts. Then

q q
F; 1 q
Pr [G{ setshad] < ;Pr {G3h+f] < > =

J=1

yielding (30). Above, the second inequality is by Lemma 9.

If badis setinG; thenOpened(Y;) = {i : Y,[i] # O } is an authorized subset and hence by the recoverability
properties ofl 1755, applyingRecovef*°to Y, is guaranteed to return the secketin Gg. Thus

Pr (G4 setsbad] < Pr[G§ setsbad] . (31)

Now, once again, we have managed to create a game, nérgetizat does not reference any unopened share,
and are thus in a position to apply the privac B, which we claim implies

Pr [G{ setsbad] = Pr |Gy setsbad] . (32)

Note Gy differs from Gy only in thelnitialize procedure which generatés not from K but from an indepen-
dently choserk’. To justify (32) we can again build an adversdrysuch that

AdVP(Py) = Pr[GY setsbad] — Pr [Gy setsbad] |, (33)

obtaining (32) because the advantagePefis 0 due to the assumed privacy 0f*%. AdversaryP, begins by
picking K and K’ at random from{0, 1}* andb at random from{0,1}. It createsn-vectorY to have all
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components). It then queriesk’, K to its Dealoracle. The latter creates shat&s«- Sharé&*3(L) where
L = K'if the challenge bit/ of the oracle i) andL = K if ¥/ = 1. Now P, starts running4, responding
to A’s oracle queries as follows. Whetimakes aDealquery X°, X!, adversaryP, executes the code of the
Dealprocedure of game€'s, Gg. When A makes aCorrupt(i) query, P, itself makes aCorrupt(i) query
to obtain shard[i]. It then setsX [i] — K[i|C[i] Si[i]---Sy[i] andY[i] — K]i], and returnsX[i] to A.
When A makes aHashx) query, P, executes the code of thidashprocedure of game&g, Gy and returns
HasHzx] to A. When A halts and outputs a bit, adversaryP, ignoresd and returns 1 ifbadwas set when it
responded to somidashquery. It is easy to see that (33) is true.

We will now specifyB; so that
Pr (G setsbad] < gn- Advlﬁegc(Bg) . (34)

Recall that the key-recovery game picks at random a Kewnd providesB; with an encryption oracle
Encrypt, (). AdversaryB, picks K’ at random and let& < Sharé>(K'). It creates:-vectorY to have all
components) and picks bith at random. It initializes a counterto 0. It then picks a guesg & [q] and a
guessy, & [n]. It then runsA. WhenA makes a quenX®, X! to its Dealoracle, adversary, queriesX®

to its encryption oracle to get back an encrypti@rof X under k. Now B, executes the last three lines of
the Dealprocedure of gamé&'y. WhenA makes aCorrupt(i) query, adversarys, can execute the code of the
Corrupt procedure of gamé&'s since it knowsK [i]. When A makes aHashx) query, adversary3, does the
following:

¢ —c+1; HasHz] < {0,1}"
FORi < 1 TOn DO
IF Y[i] # O THEN
IF (xr = K[i] C[i]) THEN HasHhz| «— H{i]
ELSE IF(¢,i) = (g1, g2) THEN
K;Ci—uxz; Y, < Y;Y,[i] — K;; L— Recovef*(Y,)
RETURN HasHzx]

That is, when(c, i) is equal to(g1, g2), adversaryBs records the candidate key &s When A has terminated,
adversaryB; returnsLZ and halts. One can check that (34) is true.

In summary, this second part of the proof has shown that
Pr [G4 setsbad] < 2% +qn - Advlﬁegqc(Bg) :

Combining this with (29) completes the proof of the theordm.

E Proof of Recoverability of HK1 (Theorem 3)

Proof: [Theorem 3]Letll = (Share Recovey, 115 = (Encrypt Decrypt), 11755 = (Sharé®®, Recovef*®),
™ = (Sharé*, Recovef*), andII*¢ = (Sharé“‘, Recovefc). Consider runningd with game Rec.
Let K,C,K,C,H,S,...,S,, X denote the quantities chosen by tB&darealgorithm when it is exe-
cuted by theDeal procedure in response t's Dealquery of X. Let (X', ;) denote the output ofl. Let
K',C',K',C' H',S!,...,S], X  denote, respectively, the quantitiasC, K,C, H, S, ..., S,, X as de-
fined by Recove(X= LI X/, j) when it is executed by thEinalizeprocedure of Rec, wherg is the set of
players thatd corrupted. We consider the following events:
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Ey: 3¢ e [n] suchthatH[¢] # H'[(]
Ey: 3 eT suchthatK'[(] C'[(] & {0 O, K[¢] C[{]}
Ey K#K'
Ey C#C
If C = C"andK = K’ then the secreX’ that is recovered equal§ so

Advii®(A)

IN

r|Es3 Vv E4]

Pr]

Pr[Ey V Ey V B3 V Ey]
[
[

IN

= Pr El] + Pr[El AN EQ] + PT[El /\EQ VAN Eg] + Pl"[El /\EQ /\Eg VAN E4]
Pr El] -+ Pr[El VAN EQ] -+ PI“[EQ VAN Eg] + PI‘[EQ VAN E4} . (35)

IN

We bound each addend above in turn. Egt, be the event thall [¢] # H'[{]. If i ¢ T then(X7 L X/)[i] =
X [i] and henceS)[i] = S,[i] by line 21 in Figure 5. ButS, is an output ofSharé““(H [¢]) andT € A, so
Recovef“(S},j) = H[(] by Lemma 10 applied tdI=°°, meaningH’[¢] = H[(]. SoPr[E; ] = 0. Now by
the union bound we have

PriEy] < ) Pr[Ey] = 0. (36)
/=1
Next we claim that ( 2
q—+2n

We justify this as follows. Suppodec T andK'[¢] C'[¢] # ¢ ¢. By lines 21 and 25 of Figure 5 it must be that
Hash K'[¢)C'[¢]) = HI¢]. Butif E; thenH'[¢(] = H|/], and by line 14 of Figure 5 we know th&f [(] =
Hash K [¢] C[(]). So we haveHash K'[¢] C'[{]) = Hash K [¢] C[¢(]). Thus if K'[¢] C'[{] # K] C[¢] then
we have a collision irHash Thus if E; A E, we have found a collision imdash At this point we need
only bound the probability of a collision iflash The random-oraclélashis invoked at most; + 2n times,
justifying (37).
Next we claim that

PT[EQ NEs]=0. (398)
We justify this as follows. Ifi ¢ T then (X7 U X7.)[i] = X[i] and henceK'[i] = K][i] by line 21 of
Figure 5. Ifi € T and E holds thenK'[i] € {0, K[i]}. But K is an output ofSharé*3(K) andT € A, so
Recovef*S(K', j) = K by Lemma 10 applied tbl">°, meaningKk’ = K. So E3 cannot hold.
Finally, we claim that

PT[EQ NE4=0. (39)
We justify this as follows. Ifi ¢ T then (X7 U X7)[i] = X[i] and henceC’[i] = CIi] by line 21 of
Figure 5. Ifi € T and E holds thenC'[i] € {0, CJi]}. But C is an output ofSharé” (C) andT € A, so
Recovef* (C’, j) = C by Lemma 10 applied tbl"™, meaning”’ = C. So E, cannot hold.

Putting together equations (35)—(39) completes the prbof.

F Proof of Recoverability of HK2 (Theorem 5)

Proof: [Theorem 5]Letll = (Share Recovel, 115 = (Encrypt Decrypi), 1175° = (Sharé>°, Recovef*®),
™ = (Sharé”, Recovef*), andII*“¢ = (Sharé“‘, Recovefc). Consider runningd with game Rec.
Let K,C,K,C,H,S,...,S,, X denote the quantities chosen by tB&arealgorithm when it is exe-
cuted by theDeal procedure in response t's Dealquery of X. Let (X', ;) denote the output ofl. Let
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PROCEDUREDeal X)
PROCEDURECorrupt(i) ¢ <_$[n] K i {0.1)" $C - Emjrypl}((X)
RETURN X [i] g)l;—i ihalrfo (nKD)(; C < Sharé* (C)
PROCEDUREFinalize (X', j) IF i = ¢ THEN (H (], R[(]) <~ Commit{ K[(] C[(])
FORi < 1 TOn DO ELSE (H[i], R[i]) < Ct(K[i] C[i])
R K'[i]C"[i] 81[1]S5[1] - - Sp[i] — X"[1] S; <& Sharé°°(HIi])

RETURN (K'[(] C'[( ] 1)) FORi « 1 TOn DO

X|[i] < R[i||K[i]C]i] S1[i]- - - Snli]

Figure 12:Procedures used by adversatyy, to respond to oracle queries dfin the proof of Theorem 5.

K',C',K',C' H',S!,...,S], X' denote, respectively, the quantitiasC, K,C, H, S, ...,S,, X as de-
fined by Recove(X U X7 ) when it is executed by thEinalizeprocedure of Rec, wherE is the set of
players thatd corrupted. We consider the following events:

Ey: 3¢ e [n] suchthatH[(] # H'[(]

Ey: A eT suchthatK'[(] C'[0] & {0 ¢, K[¢] C[]}

Es: K +#K'
Ey C#C
If C =" andK = K’ then the secreX”’ that is recovered equals so
Advii(A) < Pr[E3V E4]
< Pr[E1V EyV E3V Ey]
= Pr[E1] + Pr[E1 A E2) + Pr[E1 A Ex A E3] + Pr[E1 A Ex A E3 A By
< Pr[Ej] + Pr[E; A Es] + Pr[E3 A E3] + Pr[Ea A Ey] . (40)

We bound each addend above in turn. Egt, be the event thall [¢] # H'[/]. If i ¢ T then(X7 U X)[i] =
X [i] and henceS)[i] = S,[i] by line 21 in Figure 7. ButS, is an output ofSharé““(H[(]) andT € A, so
Recovef°c(S), j) = H|[{] by Lemma 10 applied tdI*°°, meaningH'[¢] = H|[(]. SoPr[E, ;] = 0. Now by
the union bound we have

n
Pr(Ey] < ) Pr[Ey,] = 0. (41)
=1
Next we construct adversary such that
Pr[Ey A By < n- Advhiad(B) . (42)
AdversaryB runs A, responding to itealand Corrupt oracle calls via the procedures of Figure 12. When
halts with output{ X", j), adversaryB runs the Finalize procedure of the same figure.
Next we claim that B
Pr[Eo AN E5)=0. (43)

We justify this as follows. Ifi ¢ T then (X7 U X7,)[i] = X[i] and henceK'[i] = K[i] by line 21 of
Figure 7. Ifi € T and E, holds thenK'[i] € {0, K[i]}. But K is an output ofSharé*3(K) andT € A, so
Recovef*S(K’, j) = K by Lemma 10 applied tbI"*, meaningk’ = K. So E3 cannot hold.

Finally, we claim that
PI'[EQ A E4] =0. (44)
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PROCEDUREA
RunB
WhelnB makes(? quengnc(M) PROCEDUREA
X5 My XP = M Run B
Deal X", X) When B makes a quenyeftOrRight X°, X1)
X [1] « Corrupt(1) Deal X°, X1)
K{[1] C hihshs — X[1] X [1] « Corrupt(1)
ReturnC to B / K[1] C hihyhs — X[1]
Whe/nB outputsk’ ReturnC' to B
K'[2] — R(K[1], K) When B outputsh/
IF Hash K'[2] C') = hy THEN RETURN b/
X « Decrypt,, (C)
IF X = X! THEN RETURN1 ELSE RETURNO
RETURNO

Figure 13:Adversaries for establishing the minimality of the indlykeasssumption for the privacy of HK1, Theorem 2.

We justify this as follows. Ifi ¢ T then (X7 U X7,)[i] = X[i] and henceC’[i] = CIi] by line 21 of
Figure 7. Ifi € T and E» holds thenC'[i] € {0, C[i]}. But C is an output ofSharé” (C) andT € A, so
Recovef* (C’, j) = C by Lemma 10 applied tbl"™, meaning”’ = C. So E, cannot hold.

Putting together equations (40)—(44) completes the prpof.

G Proof of Theorem 2

We use the same approach as in our attack orl,H¥cept that the one-time pad is replaced by the given
encryption schemél®™. So letn = 3, m = 2, let II”** be Shamir's scheme ovék:2s for A = Ay 3, and
let TI'™ and I1¥°¢ both be replication. LeR denote the algorithm such th&(K|[1], K) = K]2| for all
K € Sharé*(K). (We already discussed that Shamir's scheme admits an efficienfsuch

The adversaryl for the proof of part (1) is shown on the left-hand side of Figure 13.wWhiee M for the
bitwise complement of\/ (here, an arbitrary string distinct frof/). We proceed to the analysis. Let PrivL
and PrivR denote the games that are the same as the Priv game exceptypé@noracleDealis replaced by
the oracle that always deals the left or right queries, respectivetykLéenote the underlying key chosen by
the Dealoracle. Then

Pr[PrivR* = 1] > Pr[PrivR*= 1| K = K'] - Pr[K = K|
= 1-Adv;L(B)

and
Pr[PrivL? = 1]
= Pr[Privt® = 1| K=K'] Pr[K = K'| +Pr[PrivL* = 1 | K # K'| - Pr[K # K|
= 0-Pr[K =K'|+27". Pr[K # K]
< 27h,
Thus

AdviY(A) = Pr[PrivRY = 1] — PrPrivL? = 1] > Adv2.(B) —27".
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This completes the proof for part (1).
The adversanA for the proof of part (2) is shown on the right-hand side of Figure 1Be @nalysis is
straightforward and omitted.
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