
Robust Computational Secret Sharing and a
Unified Account of Classical Secret-Sharing Goals

Mihir Bellare∗ Phillip Rogaway†

August 14, 2007

The proceedings version of this paper appears in ACM CCS 2007[7]. This is the full version of that paper.

Abstract

We give a unified account of classical secret-sharing goals from a modern cryptographic vantage. Our
treatment encompasses perfect, statistical, and computational secret sharing; static and dynamic adversaries;
schemes with or without robustness; schemes where a participant recovers the secret and those where an ex-
ternal party does so. We then show that Krawczyk’s 1993 protocol for robust computational secret sharing
(RCSS) need not be secure, even in the random-oracle model and for threshold schemes, if the encryp-
tion primitive it uses satisfies only one-query indistinguishability (ind1), the only notion Krawczyk defines.
Nonetheless, we show that the protocolis secure (in the random-oracle model, for threshold schemes)if the
encryption scheme also satisfies one-query key-unrecoverability (key1). Since practical encryption schemes
are ind1+key1 secure, our result effectively shows that Krawczyk’s RCSS protocol is sound (in the random-
oracle model, for threshold schemes). Finally, we prove thesecurity for a variant of Krawczyk’s protocol, in
the standard model and for arbitrary access structures, assuming ind1 encryption and a statistically-hiding,
weakly-binding commitment scheme.

Key words: Computational secret sharing, cryptographic protocols, provable security, robust computational
secret sharing, secret sharing, survivable storage.

∗ Department of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California
92093 USA. E-mail: mihir@cs.ucsd.edu WWW: www.cse.ucsd.edu/users/mihir/

† Department of Computer Science, University of California at Davis, Davis, California, 95616, USA; and Department of Com-
puter Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. E-mail: rogaway@cs.ucdavis.edu WWW:
www.cs.ucdavis.edu/∼rogaway/

Contents

1 Introduction 1

2 Preliminaries 3

3 The Definitional Framework 4

4 The HK1 Protocol (Krawczyk’s RCSS Scheme) 8
4.1 Krawczyk’s construction 8
4.2 An attack .. . 9
4.3 Privacy (in the RO model) 10
4.4 Recoverability (in the RO model) 12

5 The HK2 Protocol (Refining Krawczyk’s Scheme) 12
5.1 The construction 12
5.2 Privacy (in the standard model) 14
5.3 Recoverability (in the standard model) 16

Acknowledgments 16

References 16

A A Sufficient Condition for key1-Security 19

B Prior Secret-Sharing Definitions 20

C Secret-Sharing Lemmas 22
C.1 Share-prediction lemmas 22
C.2 A recoverability lemma .. . 25

D Proof of Privacy of HK1 (Theorem 1) 25

E Proof of Recoverability of HK1 (Theorem 3) 30

F Proof of Recoverability of HK2 (Theorem 5) 31

G Proof of Theorem 2 33

1 Introduction

Work on classical secret-sharing tends to follow the traditions and sensibilities of information theory, combi-
natorics, or coding theory, not those of modern provable-security cryptography. Consider, for example, that
the wordadversarydoes not appear in the most widely cited survey of secret sharing [48]—but the word
informationappears some 50 times. Or consider that it was nearly 15 yearsafter the invention of secret sharing
by Blakley and Shamir [9, 43] until somebody, Krawczyk [31], made more than passing mention of the fact that
there is a natural and useful complexity-theoretic setting for this problem. Even then, most subsequent work
has ignored this “computational” setting.

In this paper we will recast classical secret-sharing in the tradition of provable-security cryptography. We
will then use the freshened foundations to carry out a provable-security analysis of a well-known, useful, and
formerly unanalyzed secret-sharing scheme. Before describing thesecontributions, we give some needed back-
ground.

BACKGROUND. In a robust computational secret sharing (RCSS) protocol, a dealer,assumed to be honest,
breaks a secretX into sharesX1, . . . , Xn and distributes them ton players in such a way that an unauthorized
set of players learns nothing aboutX from their shares, yet an authorized set of players will reconstructX, de-
spite some players providing bogus shares, if and only ifX was shared. Both guarantees are computational, not
information-theoretic. So RCSS relaxes the perfect secret-sharing goal of Shamir [43] in one dimension (com-
putational privacy instead of information-theoretic privacy) and strengthens it in another (reconstructability in
the face of incorrect shares, not just missing ones).

The RCSS goal, as well as a candidate solution, was invented by Krawczyk[31]. But Krawczyk provides no
proofs or formal definitions for RCSS. Indeed his focus was not RCSSbut CSS, computational secret-sharing,
where recovery is for correct-or-missing shares. The CSS goal hadbeen earlier mentioned by Karnin, Greene,
and Hellman [30], who also consider the variant where cheating must be detected, not corrected. Robustness
(recoverability despite some wrong shares) had already been studied in the information-theoretic setting by
McEliece and Sarwate [35] and by Tompa and Woll [50].

Krawczyk’s reason to look at CSS and RCSS was to reduce the size of participant shares: his mecha-
nisms illustrate that, for threshold schemes, shares can be shorter than the secret, which is impossible in the
information-theoretic setting [15, 30]. Krawczyk provides a CSS scheme with short shares using Rabin’s idea
of an information-dispersal algorithm(IDA) [40]. Robustness is then added-on using a hash-function-based
technique that Krawczyk introduced in a separate paper [32]. Follow-on work to Krawczyk’s paper has mostly
focused on doing CSS for more general access structures [1, 14, 34, 51].

Protocols for CSS and RCSS are powerful tools or building secure and reliable distributed information-
storage systems. A user’s data (perhaps a file) is broken into pieces (shares) and stored on multiple servers
in such a way that protects the privacy of the user from nosy servers,yet permits recovery of the data even if
some of the servers provide invalid shares (either accidentally or intentionally). In recent years, and apparently
without much notice from cryptographers, such systems and architectures have emerged from places like CMU
and IBM [21, 28, 33, 39, 52]. Commercial product offerings and an open-source development community have
also taken root.1 An issue ofComputermagazine explained these ideas [54]. Yet all of this has happened in
the absence of even a formaldefinitionfor RCSS. In short, storage systems based on RCSS protocols already
exist, but embody practice getting out in front of theory. As such, one cannot answer basic questions about
these systems and their protocols, questions like “what exactly does this protocol do?” or “does CBC/IV=0
encryption suffice within it?”

OUR CONTRIBUTIONS. Coming at secret-sharing from a modern, provable-security angle, wemake two con-
tributions. One contribution is to revisit the basics of RCSS. We investigate the security of Krawczyk’s RCSS
protocol, which we call HK1. While Krawczyk made no formal definitions or claims in this regard, the only

1 Examples include Cleversafe Corporation and the Cleversafe open-source user community (see http://www.cleversafe.org and
http://www.cleversafe.com) and Security First Corporation (see http://securityfirstcorp.com).

1

protocol assume and access structure result

HK1 ind1 random-oracle model threshold insecure (Sec. 4.2)

HK1 ind1 + key1 random-oracle model threshold secure (Th. 1, Th. 3)

HK2 ind1 statistically-hiding, weakly-binding commitment arbitrary secure (Th. 4, Th. 5)

Figure 1:Summary of our results on Krawczyk’s RCSS protocol (HK1) anda variant of it (HK2). By ind1 and key1 we
mean one-query left-or-right indistinguishability and one-query key-unrecoverability.

encryption-scheme security property mentioned in his paper is the indistinguishability of EncryptK(X) and
EncryptK(X ′), which we callone-query indistinguishability(ind1). Intuitively, this is all that HK1 should
need, since, in the protocol, a key is used to encrypt just one message. Still, we show that HK1 isnot secure
under the assumption that its encryption scheme is ind1-secure, even for threshold schemes2 and the random-
oracle (RO) model [6]. Despite this, we show that HK1is secure, for threshold schemes and in the RO model,
if one assumes that the encryption scheme is ind1-secureand key1-secure, the latter beingone-query key-
unrecoverability. We complement this by proving ind1 + key1 to be the minimal assumption under which HK1
can be proved secure; see Appendix G. The assumption follows fromtwo-query indistinguishability(ind2);
see Proposition 6.Conventional encryption schemes are ind1- and key1-secure [3], so one may interpret our
results as saying that, in the end, HK1 is sound, at least in the case of threshold schemes. The proof of secu-
rity for HK2 is complex; intuitively, the complexity arises because one must sidestep the issues that cause an
ind1-based instantiation of HK1 to fail. We go on to show that making a small change to HK1—replacing its
hash-function by a noninteractivestatistically-hiding, weakly-binding(SHWB) commitment-scheme—fixes all
identified issues: the modified protocol, HK2, becomes provably secure for an arbitrary access structure, in the
standard model, assuming just ind1-secure encryption. Our results are summarized in Figure 1.

To make the above results possible, we need a definition for RCSS. Not wanting to formalize yet another
one-off secret-sharing notion, we show how to cast a large set of secret-sharing goals into a common framework.
We give concrete-security, adversary-at-the-center definitions thatencompass the perfect secret-sharing (PSS)
goal of Shamir [43]; the less-than-perfect-privacy variant by Blakley [9]; the strengthening of PSS to robust
schemes as envisioned by McEliece and Sarwate [35]; the alternative version of robustness described by Tompa
and Woll [50]; and the relaxation of all this to the computational setting, as considered by Krawczyk [31]. Our
definitions handle dynamic adversaries, apparently for the first time, and unify the information-theoretic and
complexity-theoretic views. Look ahead to Figure 4 for a preview of some ofthe secret-sharing notions we
encompass.

MORE ON DEFINITIONS. See Appendix B for a summary of existing PSS and CSS definitions [9, 31, 35, 43,
50], with and without robustness. The definitions frequently assume ana priori distribution on secrets, assume
it to be the uniform over a large set, elide the syntax of a secret-sharing scheme, omit mention of any adversary,
and make the implicit adversary static, with no simple way to make it dynamic.3 The classical PSS definitions
are so tailored to the perfect, information-theoretic case that there is no simpleway to relax things to make a
complexity-theoretic analog. Each definition is separate from each other, cut from its own cloth. No formal
definition of the RCSS goal has ever appeared.

We aim to give a unified account of classical secret-sharing. To do this we define the privacy-advantage
of an adversaryA attacking secret-sharing schemeΠ, denotedAdv

priv
Π (A), and we define the recoverability-

advantage of an adversaryB attacking a secret-sharing schemeΠ, denotedAdv
rec
Π (B), and we use these to

define all notions of interest. For example, a secret-sharing schemeΠ is a PSS scheme ifAdv
priv
Π (A) =

2 An m-out-of-n threshold scheme is a secret-sharing scheme for which anym uncorrupted players can recover the secret but
smaller sets of players cannot. The set of sets of players authorized to recover the secret is theaccess structurefor the scheme.

3 A staticadversary controls a certain set of players from the beginning, while adynamicadversary chooses whom to corrupt as it
corrupts players and learns their shares.

2

Adv
rec
Π (B) = 0 for all “permissible”A andB. There turn out to be four natural constraints onAdv

priv
Π (A)

and nine natural constraints onAdv
rec
Π (B). Each classical secret-sharing notion shows up as one of the 36

combinations.
Our approach injects some order into the current definitional jungle of secret-sharing variants. In the pro-

cess, we clarify that there have coexisted in the literature two fundamentally different notions of robustness.
In the first, an uncorrupted player recovers the secret [50]; in the second, an external party has that job [35].
What is achievable in the two settings is vastly different (eg., external-partyreconstructability can accommo-
date fewer corrupted players). It would seem that the two forms of robustness have coexisted in the literature
for some 20 years without it even having being commented on that thereare two kinds of robustness. Such a
gap is probably attributable to the prior absence of a unifying viewpoint.

We comment that while our definitional framework is broad, it does not encompass verifiable secret-sharing
(VSS) [17]. In a VSS scheme the dealer may be dishonest; for the goals in scope in this paper, the dealer is
honest. Nor do we encompass proactive secret sharing [25], which,like VSS, has always been treated in
the provable-security tradition. Our framework fails to encompass cheaterdetection or identification [12, 35],
where the adversary is capable of obstructing recovery but incapableof forcing the recovery of a bogus secret.
In this last case, however, our framework could certainly be extended toinclude these notions.

AFTERWARDS. After seeing a version of our paper, Yuval Ishai suggested a new RCSS protocol that combines
a CSS protocol and a digital signature scheme [26]. Our intent in this paperwas not to develop or analyze any
fundamentally new protocol, but to analyze an existing protocol, HK1, that isalready implemented, influential,
and well-known. We also look at HK2 since it is a simple extension to HK1 that helps to shed light on it.

2 Preliminaries

ALGORITHMS AND ADVERSARIES. When we speak of analgorithmwe mean an always-halting deterministic
or probabilistic algorithm, possibly with access to one or more named oracles. Aprobabilistic algorithm can
uniformly choose a random number between1 andi for an arbitrary positive integeri by executing a statement
a

$
← [i]. If A is an algorithm thenx

$
←A(· · ·) means to choosex according to the distribution induced by

algorithmA, run on the elided arguments. IfA is deterministic we writex ← A(· · ·) instead. IfA is a finite

set thenx
$
←A means to sample uniformly from it. IfA is a probabilistic algorithm thenx ∈ A(·) means thatx

occurs as an output with nonzero probability. We denote byX1 · · · Xn or X1 · · ·Xn a reasonable encoding
of (X1, . . . , Xn) from which the constituents are uniquely recoverable. If the lengths of eachXi is known then
concatenation serves this purpose.

GAMES. We employ code-based game-playing in our proofs, as explored in [4].In brief, a game is an always-
halting program, written in code or pseudocode, that runs with an adversary. It specifies proceduresInitialize,
Finalize, and additional procedures (likeDeal, Corrupt, and so forth), which are calledoracles. In the code of
a game, sets are initialized to empty and Booleans tofalse. The output of a game is the output of its Finalize
procedure, or the output of the adversary itself if no Finalize is specified. We writePr[GA] for the probability
that Finalize of gameG outputstrue after the interaction withA.

ENCRYPTION SCHEMES. Adapting the formalization of [3], a symmetricencryption schemeis a pair of algo-
rithmsΠEnc = (Encrypt, Decrypt) whereEncrypt is a possibly probabilistic algorithm from{0, 1}k × {0, 1}∗

to {0, 1}∗ ∪ {⊥} andDecrypt is a deterministic algorithm from{0, 1}k × {0, 1}∗ to {0, 1}∗ ∪ {⊥}. We callk
thekey length. We writeEncryptK(X) andDecryptK(Y) for Encrypt(K, X) andDecrypt(K, Y). We assume
that whether or notEncryptK(X) ∈ {0, 1}∗ (for K ∈ {0, 1}k) depends only on|X| and we call the set of allX

such thatEncryptK(X) ∈ {0, 1}∗ thedomainof Π. We require that ifY
$
← EncryptK(X) andY 6= ⊥ then

DecryptK(Y) = X.
We define two notions of security for an encryption schemeΠ = (Encrypt, Decrypt): indistinguishability

(formalized in the left-or-right manner) and key-recoverability. For consistent syntax with the rest of this paper,

3

PROCEDUREInitialize PROCEDURELeftOrRight(X0,X1) Game Ind

K
$

←{0, 1}k IF |X0| 6= |X1| THEN RETURN⊥

b
$

←{0, 1} C
$

← Encrypt
K

(Xb)

RETURNC
PROCEDUREFinalize (d)
RETURN b = d

PROCEDUREInitialize PROCEDUREEnc(X) Game Key

K
$

←{0, 1}k C
$

← Encrypt
K

(X)

RETURNC
PROCEDUREFinalize (K ′)
RETURN K = K ′

Figure 2:Games used to define the privacy of an encryption schemeΠ = (Encrypt, Decrypt).

we describe both notions using games. See Figure 2 for the definitions of these games, named Ind and Key.
Based on them, define the indistinguishability advantage byAdv

ind
Π (A) = 2 Pr[IndA] − 1. The notion is the

same as in [3]. We letAdv
key
Π (A) = Pr[KeyA] be the probability thatA recovers the encryption key.

3 The Definitional Framework

In this section we unify and extend definitions in the literature for perfect secret-sharing and computational
secret-sharing, both with and without robustness. We break with tradition by handling information-theoretic
secret-sharing neither in terms of entropy nor equality of distributions, butin a way that directly models and
measures the adversary’s aims. Also breaking with tradition, we directly handle dynamic adversaries. For ease
of comparison, some traditional secret-sharing definitions are recalled in Appendix B. We warn that, to achieve
our desired level of generality, this section is more dense and atypical thanit would be if were wejust trying to
define Krawczyk-style RCSS (entry CSS-CR2 in Figure 4).

OVERVIEW. Secret-sharing schemes have two basic requirements:privacyandrecoverability(the latter is also
calledreconstructability). Privacy entails that an unauthorized coalition of players can’t learn anything about
the secret that’s been shared. It can becomplexity-theoreticor information-theoretic. Information-theoretic
schemes maintain privacy no matter how much computing power the adversary has; complexity-theoretic
ones protect the privacy of the shared secret from adversaries with“reasonable” computing resources. In the
information-theoretic setting, security can beperfect(absolutely no information is revealed about the secret) or
possibly less than perfect, which is calledstatisticalprivacy. The adversary that is attacking a scheme’s privacy
can bestatic (it decides which players to corrupt at the beginning of its attack) ordynamic(it chooses which
players to attack one-by-one, as it learns shares). Our definition of theprivacy advantagethat an adversaryA
gets in attacking a secret-sharing schemeΠ, denotedAdv

priv
Π (A), encompass and measures all of the above

possibilities.
Recoverability entails that authorized coalitions of players can reconstruct the secret. It can be guaranteed

in theerasure modelor thesubstitution model. In the erasure model, the adversary marks shares of corrupted
players asmissingbut cannot otherwise modify a player’s share.4 Secret-sharing schemes secure in the sub-
stitution model, where the adversarymaymodify a corrupted player’s share, are calledrobust. Preserving a
distinction with us since [35, 50], we distinguish two flavors of robustness:the shared secret can be recovered
by anuncorrupted playeror by anexternal party. It is easier for an uncorrupted player to recover the secret than
for an external party to do so since an uncorrupted player knows one particular share—his own—that he can

4 One could distinguish two variants: the adversarymustmark the shares of corrupted players as missing, or the adversarymay
mark the shares of corrupted players as missing (or may leave them unchanged). We assume the former.

4

PROCEDUREDeal(S0, S1) PROCEDURECorrupt(i) Game Priv

IF NOT S THEN b
$

←{0, 1}, S
$

← Share(Sb) T ← T ∪ {i}
RETURN RETURNS[i]

PROCEDUREFinalize (d)
RETURN b = d

PROCEDUREDeal(S) PROCEDURECorrupt(i) Game Rec

IF NOT S THEN S
$

← Share(S) T ← T ∪ {i}
RETURN RETURNS[i]

PROCEDUREFinalize (S′, j)
RETURN Recover(S

T
⊔ S

′

T
, j) 6= S

Figure 3:Games used to define privacy and recoverability of secret-sharing schemeΠ = (Share, Recover).

assume to be right (remember that the types of secret sharing dealt with in thispaper assume an honest dealer).
As before, a recoverability-attacking adversary may be static or dynamic.Our definition of therecoverability
advantagethat an adversaryA gets in attacking a secret-sharing schemeΠ, denotedAdv

rec
Π (A), encompass

and measures all of the above possibilities. To accomplish this, we regard theerasure model as a special class of
adversaries,Rec♦, where anyA ∈ Rec♦ replaces the shares of corrupted players with the distinguished value♦

(missing). We likewise regard recovery-by-an-uncorrupted player as a special class of adversaries,Rec1, where
anA ∈ Rec1 is obliged to output the identity of some uncorrupted playerj. Adversaries that may arbitrarily
substitute shares for corrupted players live live in the classRec.

We will define notions in a way that permits consideration of an arbitrary access structure. Indeed we will be
more general still, defining privacy and recoverability in a way that depends on an arbitrary set of adversaries.

To simplify and strengthen definitions and theorem statements, we focus on concrete (as opposed to asymp-
totic) definitions. But we do explain how to lift the definitions to the asymptotic setting.

SYNTAX . An n-partysecret-sharing schemewith message spaceS is a pairΠ = (Share, Recover). HereShare

is a probabilistic algorithm that, on inputS ∈ S returns then-vectorS
$
← Share(S) where eachS[i] ∈ {0, 1}∗

andRecoveris a deterministic algorithm that on inputS ∈
(

{0, 1}∗ ∪ {♦}
)n

andj ∈ [0 .. n] returns a value
S ← Recover(S, j) whereS ∈ S ∪ {♦}. We assumeShare(S) returns⊥ (“undefined”) ifS 6∈ S.

Let us explain the intent of the syntax. A secret-sharing scheme specifiestwo different algorithms. The
first, Share, is used by adealerwho wants to distribute some secretS ∈ S to a group ofn players, numbered
1, . . . , n. The dealer appliesShareto the secretS. The result is a vectorS = (S[1], . . . ,S[n]) with each share
S[i] a string. The dealer givesS[i] to partyi. As Shareis probabilistic, different runs ofShare(S) may return
different vectors. When, at some later point, an entity would like to recoverthe secret, it must first try to collect
up enough shares. It forms ann-element vectorS = (S[1], . . . ,S[n]). Theith component of this vector,S[i],
is either a stringS[i] ∈ {0, 1}∗ or the distinguished value♦. In the first case the valueS[i] is thepurported
share of partyi while in the second case the shareS[i] = ♦ has been marked asmissing. The party who wants
to recover the shared secret now applies the algorithmRecoverto the vectorS and a numberj ∈ [0 .. n], the
number indicating the location of a share that isknownto be valid. If no particular share is known valid, set
j = 0 and writeRecover(S) for Recover(S, 0). To make sense, one must haveS[j] 6= ♦ if j ∈ [n] = [1 .. n].
The value that emerges from applyingRecoverwill be either the recovered secretS ∈ S or the distinguished
value♦. The latter indicates that the algorithm is unable to recover the underlying secret.

PRIVACY. Let Π = (Share, Recover) be ann-party secret-sharing scheme with message spaceS. Let A be
an adversary. We consider the privacy game Priv of Figure 3. To runA with Priv the following happens.
First, initializeT ← ∅. Now runA. It should first make an oracle callDeal(S0, S1) satisfyingS0, S1 ∈ S

and|S0| = |S1|. The game then chooses a hidden bitb and samplesS from Share(Sb). Nothing is returned
to A in response to its query. Next the adversaryA makes oracle queries of the formCorrupt(i) where

5

fullname (nick-
name)

Adv
priv

Π (A) whenA is in Adv
rec
Π (A) whenA is in reference

PSS-PR0 (PSS) 0 A ∩ Priv 0 A ∩ Rec♦ Shamir [43]

PSS-PR2 0 A ∩ Priv 0 A ∩ Rec McEliece & Sarwate [35]

PSS-SR1 0 A ∩ Priv small A ∩ Rec1 Tompa & Woll [50]

PSS-SR2 0 A ∩ Priv small A ∩ Rec Rabin & Ben-Or [41]

SSS-PR0 small A ∩ Priv 0 A ∩ Rec♦ Blakley [9]

CSS-PR0 (CSS) small A ∩ Priv ∩ Prac 0 A ∩ Rec♦ Krawczyk [31]

CSS-CR1 small A ∩ Priv ∩ Prac small A ∩ Rec1 ∩ Prac apparently new

CSS-CR2 (RCSS) small A ∩ Priv ∩ Prac small A ∩ Rec ∩ Prac Krawczyk[31]

NSS-PR0 (IDA) — — 0 A ∩ Rec♦ Rabin [40]

NSS-PR1 — — 0 A ∩ Rec1 Witsenhausen [53]

NSS-PR2 (ECC) — — 0 A ∩ Rec Shannon [44]

Figure 4: Selected ways of combiningAdv
priv

Π (A) andAdv
rec
Π (A) constraints to recover significant definitions. For

some notions it is conventional to also demand thatAdv
rec
Π (A) = 0 for all A ∈ A ∩ Rec♦.

i ∈ [n]. The query is a request tocorrupt the indicated player. In response to queryCorrupt(i) the game
setsT ← T ∪ {i} and returns shareS[i]. WhenA is done corrupting players it outputs a bitd and halts. It
is said towin if b = d. We measure its success as twice the probability of its winning minus one; formally,
Adv

priv
Π (A) = 2 Pr[PrivA] − 1. Let Priv be the class of adversaries, theprivacy adversaries, that behave as

we have just described, regardless of oracle responses.

RECOVERABILITY. Fix ann-party secret-sharing schemeΠ = (Share, Recover) with message spaceS. Let A
be an adversary. We consider the recoverability game Rec of Figure 3. First, initialize T ← ∅. Now run
adversaryA. It should first callDeal(S) for someS ∈ S. Note thatDeal takes just one argument this time.
The game then selects ann-vectorS from Share(S). Next the adversary corrupts players. Each time it calls
Corrupt(i) the game setsT ← T ∪ {i} and returnsS[i]. When the adversary is done corrupting players
it outputs a pair(S′, j) wherej ∈ [0 .. n] \ T andS

′ ∈ ({0, 1}∗ ∪ {♦})n. Let ST ⊔ S
′
T be then-vector

whoseith component isS′[i] if i ∈ T andS[i] otherwise. The adversary is said towin if Recover(ST ⊔
S

′
T , j) 6= S. We measure the adversary’s success by the real numberAdv

rec
Π (A) = Pr[RecA]. Let Rec be the

class of adversaries, therecoverability adversaries, that behave as we have just described, regardless of oracle
responses.

We define a setRec♦ ⊆ Rec, the erasure adversaries. AdversaryA ∈ Rec is in Rec♦ if, wheneverA
outputs(S′, j), we haveS′[i] = ♦ for all i ∈ [n]: the adversary replaces the shares of corrupted players by♦.
Similarly, we define a setRec1 ⊆ Rec, the recoverability-1 adversaries. AdversaryA ∈ Rec is in Rec1 if,
wheneverA outputs(S′, j), we havej > 0 and j is uncorrupted. The adversary is obliged to point to an
uncorrupted player. As a mnemonic, the adversary must identify one goodplayer.

SECRET-SHARING DEFINITIONS. Let Π = (Share, Recover) be secret-sharing scheme and letA be a class
of adversaries. We can demandAdv

priv
Π (A) be: PSS:zero for any privacy adversaries inA; SSS:small

for any privacy adversary inA; CSS: small for anypractical privacy adversary inA; or NSS:no privacy
demands at all. (Letters P, S, C, and N stand forperfect, statistical, computational, andnone, while SS is
for secret sharing.) Similarly, we can demandAdv

rec
Π (A) be: PR0: zero for anyerasureadversary inA;

PR1: zero for anyrecoverability-1adversary inA; PR2: zero forany recoverability adversary inA; SR0:
small for for any erasure adversary inA; SR1: small for any recoverability-1 adversary inA; SR2: small
for any recoverability adversary inA; CR0: small for any practical erasure adversary inA; CR1: small for
any practical recoverability-1 adversary inA; or CR2: small for any practical recoverability adversary inA.

6

(Letters P, S, and C are as before, and R is for robustness.) All in all there are4 · 9 = 36 notions obtained by
combining the named requirements onAdv

priv
Π (A) andAdv

rec
Π (A). We single out some of them in Figure 4.

Several entries in the table are familiar, and some go by other names; these are credited, where appropriate,
to the party associated to the basic notion. Some notions are not conventionallyregarded as secret-sharing yet
show up in the table: error-correcting codes and Rabin’s information dispersal algorithms [40].

(As we will be using IDAs and ECCs, let us pause and give a concrete instantiation. The simplest IDA
is based on replication:Share(X) = (X, . . . , X) andRecover((X1, . . . , Xn), j) = X if {X[i] : X[i] 6=
♦} = {X} while Recover((X1, . . . , Xn), j) = ♦ otherwise. IDAs with shorter share lengths also exist [40]. A
simple ECC scheme again uses replication:Share(X) = (X, . . . , X) andRecover(X1, . . . , Xn) = X if there
is a stringX that occurs more thann/2 times amongX1, . . . , Xn, andRecover(X1, . . . , Xn) = ♦ otherwise.
WhenA ∩ Rec ⊆ Rec1 we can change this toShare(X) = (X, . . . , X) andRecover((X1, . . . , Xn), j) = Xj

if Xj 6= ♦ andRecover((X1, . . . , Xn), j) = ♦ if Xj = ♦.)
Secret-sharing schemeΠ hasperfect privacyoverA if Adv

priv
Π (A) = 0 for all A ∈ A, and it hasperfect

recoverabilityoverA if Adv
rec
Π (A) = 0 for all A ∈ A. Figure 4 serves to rigorously define PSS-PR0 (PSS),

PSS-PR2, NSS-PR0 (IDA), NSS-PR1, and NSS-PR2: for example,Π is a PSS with respect toA if Π has
perfect privacy overA ∩ Priv and perfect recoverability overA ∩ Rec♦.

The remaining seven rows of Figure 4 containsmall or Prac, which we haven’t yet described. For the
statistical notions (smalland noPrac) one can introduce a real number in place ofsmall [50]. For example, an
ǫ-robust PSS-SR1 schemeΠ overA has perfect privacy overA andAdv

rec
Π (A) ≤ ǫ for all A ∈ A ∩ Rec1.

For the computational goals there are two options. One is to leave the security notion formally undefined
but make concrete-security statements to boundAdv

priv
Π (A) or Adv

rec
Π (A) in terms of other quantities. This

is the concrete-security approach, and we adopt it for Theorems 1–5.
A different option (which applies to any of the 36 notions) is to move to the asymptotic setting. For this one

adds in a security parameterk and interpretssmallin Figure 4 asnegligible(vanishing faster than the inverse of
any polynomial) and interpretsPrac as the class of probabilistic polynomial time (PPT) algorithms. A secret-
sharing scheme now involvesn(k) parties and has a message spaceS(k) ⊆ {0, 1}∗. TheShareandRecover
algorithms are polynomial-time that take an additional (first) input of1k. AdversaryA is likewise provided1k.
Advantage measuresAdv

priv
Π (A) andAdv

rec
Π (A) of an adversaryA become functions ofk. Note that in

moving to the asymptotic setting we do not use the length of the secret as the security parameter, a questionable
definitional choice in some prior treatments. See Appendix B.

ACCESS STRUCTURES. We defined secret-sharing goals with respect to an adversary class,but the classical
approach is to use an access structure instead. Our approach is more general (and the added generality is needed
to encompass contexts like that of McEliece and Sarwate [35]). Ann-partyaccess structureis a setA of subsets
of [n] that ismonotone: if R ⊆ S ⊆ [n] andR ∈ A thenS ∈ A. EachS ∈ A is said to beauthorized. The
most common access structure is the threshold access structureAm,n wherem, n ≥ 1 and0 ≤ m ≤ n. This is
the access structure defined by saying thatS ∈ Am,n iff S ⊆ [n] and|S| ≥ m.

We associate to anyn-party access structureA two classes of adversaries. The first,Ap, is all privacy
adversariesA that never corrupt an authorized set (A never corrupts a setS ∈ A). The second,Ar, is all
recoverability adversariesA that always leave uncorrupted an authorized set (ifA corruptsT then[n]\T ∈ A).5

In speaking of the players thatA can corrupt, we quantify over all possible oracle responses (not necessarily
those associated to any particular game). Corruptingi means callingCorrupt(i). The asymmetry embodied in
theAp andAr definitions arises because privacy is unachievable ifsomeauthorized set of players getscorrupted
while robustness is unachievable ifnoauthorized set of players remainsuncorrupted.

To access structureAwe associate adversary classAp∪Ar, which we also callA. In this way, any definition
over an adversary class provides the corresponding definition over an access structure.

VALID ADVERSARIES. For our robustness results we need a technical condition on the class ofadversaries that
5 These notions are not the same. As an example, for threshold schemes, Ap

m,n is the set of privacy adversaries that corrupt at most
m − 1 players, whileAr

m,n is the set of recoverability adversaries that corrupt at mostn − m players.

7

can be handled. First, say that adversaryA ∈ Rec cangenerate(S, S, T, S′, j) if it can call Deal(S), resulting
in sharesS, corrupt playersT ⊆ [n], and output(S′, j). We say(S, S, T, S′, j) is A-generableif there is an
A ∈ A ∩ Rec such thatA can generate(S, S, T, S′, j). Now for S

′, S′′ ∈ ({0, 1}∗ ∪ {♦})n let us say that
S

′ ≥ S
′′ (S′ is worse thanS′′) if S

′[i] = ♦ impliesS
′′[i] = ♦. We say thatA ⊆ Rec is valid (with respect

to some secret-sharing schemeΠ) if the following is true: if(S, S, T, S′, j) isA-generable andS′ ≥ S
′′ then

the following adversaryAS,T,S′,j,S′′ is inA: it calls Deal(S); then it callsCorrupt(i) for eachi ∈ T (say in
numerical order); then it outputs(S′′, j). Intuitively, if an adversary is allowed to provide a bogus shareS

′[i]
of S ∈ {0, 1}∗ it should be allowed to provide a bogus shareS

′′[i] ∈ {0, 1}∗ ∪ {♦} of S.
The classAr associated to any access structureA is valid. So too isAm,n,t ∩ Rec whereAm,n,t [35]

is Ap
m,n ∪ (Ar

m,n ∩ At) andAt is adversaries that can only output(S′, j) with S
′ having at mostt non-♦

components. ThusA ∈ Am,n,t is a privacy adversary that can corrupt at mostm− 1 playersor a recoverability
adversary that can corrupt at mostn−m players, replacing at mostt shares with strings and the rest with♦.

EXTENSIONS. One can augment a secret-sharing scheme by allowing aSetupalgorithm; we would now have
a triple of algorithmsΠ = (Setup, Share, Recover). Setupis probabilistic and outputs apublic parameterP ∈
{0, 1}∗. ProceduresShareandRecoverare providedP , as is any adversary attacking the scheme. WhileShare
could always install the public parameter in each player’s share, the effect is not the same as adding aSetup:
in one setting, the adversary has to corrupt a player to getP and in the other it is free; and there are important
efficiency-accounting consequences, as pulling out the public parameter might shorten the shares.

Our privacy and authenticity notions can be lifted to the random-oracle setting[6]. To do so, add to games
Priv and Rec a procedureHash that realizes a random function from strings of arbitrary length to strings of
some desired length. AlgorithmsShareandRecoverare allowed to callHash, as may the adversary itself.

Our notions of privacy and recoverability consider an adversary thatcan obtain the deal of only one secret.
One can easily extend our definitions to handle the sharing of multiple secrets.A standard hybrid argument can
be used to show that the two definitions are equivalent (up to a multiplicative factor of the number of secrets
dealt). This result depends on theSharealgorithm being stateless, as it is for all the schemes of this paper. If
Shareis stateful, a natural counter-example shows that the deal-one-secret and deal-multiple-secret notions are
inequivalent.

STATIC ADVERSARIES. Classical definitions of secret sharing assume a static adversary. Thisis encompassed
by our framework in the sense that it is easy to restrict attention to static adversaries. LetStatic be the set of
all adversariesA for which there is a setT associated toA such that, regardless ofA’s input, coins, and oracle
responses, the set of players corrupted byA is T . To consider static adversaries restrict to sets likePriv∩Static.
A static adversaryA can be imagined to deterministically “decide” at the beginning of its execution which
playersT to corrupt. We define adversaries

4 The HK1 Protocol (Krawczyk’s RCSS Scheme)

4.1 Krawczyk’s construction

We reproduce Krawczyk’s construction using our notation. Fix a family ofadversariesA. We build ann-
party secret-sharing scheme with message spaceS from the five components: (1) a symmetric encryption
schemeΠEnc = (Encrypt, Decrypt) with k-bit keys and message spaceS; (2) ann-party PSSΠPSS = (SharePSS,
RecoverPSS) overAwith message space{0, 1}k; (3) ann-party IDAΠIDA = (ShareIDA , RecoverIDA) overAwith
message spaceΣ∗; (4) ann-party ECCΠECC = (ShareECC, RecoverECC) overA with message space{0, 1}h;
and (5) a functionHash: {0, 1}∗ → {0, 1}h. We callΠEnc, ΠPSS, ΠIDA , ΠECC, Hash the underlyingprimitivesof
the HK1 scheme, and say that they are overA, for n parties and forh-bit hashes. From such a set of primitives
define HK1[ΠEnc, ΠPSS, ΠIDA , ΠECC, Hash] = (Share, Recover) as specified and illustrated in Figure 5. In its
line 21, if X[i] = ♦ then our convention is to assign♦ to all variables on the left-hand side of the assignment
statement; otherwiseX[i] is parsed into its corresponding, uniquely defined constituents. Similarly, ifK = ♦

8

PROCEDUREShare(X)

10 K
$
←{0, 1}k ; C

$
← EncryptK(X)

11 K
$
← SharePSS(K)

12 C
$
← ShareIDA (C)

13 FOR i← 1 TO n DO

14 H[i]← Hash(K[i] C[i])

15 Si
$
← ShareECC(H[i])

16 FOR i← 1 TO n DO

17 X[i]←K[i]C[i] S1[i] · · ·Sn[i]
18 RETURN X

PROCEDURERecover(X, j)
20 FOR i← 1 TO n DO

21 K[i]C[i] S1[i] · · ·Sn[i]←X[i]
22 FOR i← 1 TO n DO

23 H[i]← RecoverECC(Si, j)
24 FOR i← 1 TO n DO

25 IF X[i] 6= ♦ AND Hash(K[i] C[i]) 6= H[i]
26 THEN K[i]← ♦ ; C[i]← ♦

27 K ← RecoverPSS(K, j)
28 C ← RecoverIDA (C, j)
29 X ← DecryptK(C)
30 RETURN X

Rand(k)

Encrypt

SharePSS ShareIDA

Hash Hash Hash

ShareECC ShareECC ShareECC

❄

❄

✲

❄

❄

❅
❅

❅
❅

❅❅

❍❍❍❍❍❍❍❍❍❍❍

❍❍❍❍❍❍❍❍❍❍❍

❍❍❍❍❍❍❍❍❍❍❍

✟✟✟✟✟✟✟✟✟✟✟

�
�

�
�

��

❄ ❄ ❄

❄ ❄ ❄

❄ ❄ ❄

❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄

X

K

K[1] K[2] K[3] C[1] C[2] C[3]

H[1] H[2] H[3]

X[1] X[2] X[3]

S1[1] S1[2] S1[3] S2[1] S2[2] S2[3] S3[1] S3[2] S3[3]

��
��
��

��
��
��

��
��
��

S1[1]
S2[1]
S3[1]

S1[2]
S2[2]
S3[2]

S1[3]
S2[3]
S3[3]

Figure 5:Left: Definition of the HK1 constructionΠ = (Share, Recover) = HK1[ΠEnc,ΠPSS,ΠIDA ,ΠECC, Hash]. Right:
Illustration of the scheme’sSharealgorithm forn = 3 players. ProcedureRand, on inputk, returns a uniformly random
k-bit string.

or C = ♦ when line 29 is executed then our convention is thatX = ♦. Let HK1[ΠEnc, ΠPSS, ΠIDA , ΠECC] =
(Share, Recover) be the random-oracle variant of this scheme in whichHash: {0, 1}∗ → {0, 1}h is chosen at
random by games Priv and Rec.

SECURITY. Since an encryption key is used by the share algorithm to encrypt just one message, it is natural to
think that HK1 is secure if the encryption scheme satisfies one-query indistinguishability (ind1). But we show
that the ind1 condition doesnot guarantee privacy of HK1, even in the random-oracle model. Specifically, we
show that even one-time-pad encryption, which is certainly ind1-secure,is not enough. Intuitively, the problem
is that the hash function is deterministic —even a random oracle is deterministic in the sense that, when invoked
twice on the same input, it returns the same answer both times— and hence the valuesH[i] computed at line
14 can provide partial information about the keyK.

4.2 An attack

We now detail the attack. For concreteness, assume we haven = 3 players and wish to use the 2-out-of-3
threshold scheme, access structureA2,3. Assume the domain of secrets isS = {0, 1}128 and the do-
main of messages is the same. In the RO-based construction HK1[ΠEnc, ΠPSS, ΠIDA , ΠECC] assume we in-
stantiateΠEnc with one-time-pad encryption,C = EncryptK(X) = K ⊕X. Assume we instantiateΠPSS

9

with the 2-out-of-3 Shamir secret-sharing scheme over the finite fieldF2128 . Assume we instantiateΠIDA

with replication, soShareIDA (C) = (C, C, C). Assume we likewise instantiateΠECC with replication, so
ShareECC(H) = (H, H, H).

To understand the attack we first point out that with Shamir’s secret-sharing scheme [43], not only can you
reconstruct the key (the secret) fromm = 2 out of n = 3 shares, but you can also reconstruct a share (say
share 2) given one share (say share 1) and the underlying keyK that was dealt. (This is done by interpolation,
in the same manner that the secret is normally recovered.) Specifically, for the 2-out-of-3 scheme there is an al-
gorithmR such thatR(K[1], K) = K[2] for all K ∈ SharePSS(K). We will use this fact to violate privacy. Our
adversaryA selects any two distinct 128-bit strings,X0 andX1, and callsDeal(X0, X1). Let b, K, K, C, H,
andX be as specified in game Priv in response to theDealquery. Next, adversaryA callsCorrupt(1) to get
backX[1], from which it parses outK[1] andC[1] = C, the latter because the IDA is replication. It now
setsK0 = C ⊕X0 andK1 = C ⊕X1. Note thatKb = K. AdversaryA now defines the candidate share
K

0[2] = R(K[1], K0) for K0 and defines the candidate shareK
1[2] = R(K[1], K1) for K1. We know that

K
b[2] = K[2]. The adversaryA computesH0[2] = Hash(K0[2] C) andH

1[2] = Hash(K1[2] C). We know
thatHb[2] = H[2]. But embedded inX[1] is H[2], since the ECC also was replication, whichA extracts. So
let A return 1 ifH1[2] = H[2] and 0 otherwise. We now show thatA has advantage1 − 2−h (recall thath is
output length ofHash). If b = 1 thenA always returns 1. FromK[1], K0[2] one can recoverK0 and, similarly,
from K[1], K1[2] one can recoverK1. But K0 6= K1 becauseX0 6= X1, so it must be thatK0[2] 6= K

1[2].
We conclude thatK0[2]C 6= K

1[2] and so the probability that their hashes collide (under the random-oracle
modeled hash-functionHash) is at most2−h. So if b = 0 adversaryA outputs 1 with probability2−h.

One might be tempted to reason that if the HK1 construction is wrongevenwith a one-time pad andeven
in the RO model, then certainly it is wrong when any “real” encryption scheme and hash-function are used, as
these will have inferior properties. But this is not the case, as there are ways in which a “real” encryption scheme
is superior to a one-time pad that are of relevance here. The attack aboveused the fact that with a one-time-
pad, given a plaintext/ciphertext pair(X, C) one can recover the keyK via K = C ⊕X. Had the encryption
scheme been secure against one-query key-recovery (key1), meaning that it was computationally infeasible to
find the key from a plaintext/ciphertext pair, we would not have been able tomount the attack. And common
encryption schemes like CBC modedoprovide security against key recoverability under standard assumptions.

DISCUSSION. The intent of HK1 was to make shares shorter than the secret. This will nothappen if one-
time-pad encryption is used, leading one to question the practical relevanceof the above counterexample and
to ask if ind1 security suffices for encryption schemes in which the ratio of message length to key length is
always large. We have not been able to resolve the latter question, and, inparticular, have found neither a
proof nor a counterexample for whether ind1 implies key1 for encryption schemes of the type just mentioned.
As for practical relevance, note that a distributed file system should allow the sharing of files of any length,
small or large, so security must be provided even for messages shorter than the key. A reasonable encryption
scheme could use one-time-pad encryption for short messages and some other form of encryption for longer
ones. Indeed, this could be particularly efficient.

4.3 Privacy (in the RO model)

We now show that ind1+ key1 security is enough to prove the security of HK1, in the RO model, undercertain
conditions on the access structure. Our result applies to threshold access structures or any other adversary
classA whereA ∩ Priv = Ap

m,n. This includesAm,n,t as the distinction betweenAm,n,t andAm,n vanishes
after intersecting withPriv.

Theorem 1 [Privacy of HK1, random-oracle model, threshold schemes] Let A = Ap
m,n and letΠ =

HK1[ΠEnc, ΠPSS, ΠIDA , ΠECC] with primitives overA, for n-parties, and withh-bit hashes. LetA ∈ A be an
adversary that makes at mostq queries to itsHashoracle. Then there are adversariesB1 andB2 attacking the

10

symmetric encryption schemeΠEnc such that

Adv
priv
Π (A) ≤ Adv

ind
ΠEnc(B1) + 2qn ·Adv

key
ΠEnc(B2) +

2q + n2

2h

where adversaryB1 makes only one query to its left-or-right oracle, adversaryB2 makes only one query to its
encryption oracle, and the running times ofB1 andB2 are that ofA plus overhead consisting of one execution
of theSharealgorithm ofΠ and, forB2, an additionaln executions of theRecoveralgorithm ofΠPSS.

It is easy to show thatAdv
ind
ΠEnc(B1) andAdv

key
ΠEnc(B2) are small for efficient one-query adversariesB1 andB2

(ind1+ key1 security) ifAdv
ind
ΠEnc(B3) is small for any efficient two-query adversary (ind2). See Appendix A

for a proof. We choose to express our result in terms of ind1+ key1 security in order to precisely hone in on
what HK2 needs. Note that a PRP-secure blockcipher is ind1+ key1 secure (even though it is not ind2-secure)
and therefore an appropriate realization ofΠEnc for HK1. Similarly, common modes of operation like CBC are
ind1+ key1 secure, even for a fixed IV.

Proof intuition: The proof is challenging due to the basic weakness in HK1 exploited in our earlier attack: that
the hash function is deterministic and thus may not preserve privacy of the shares to which it is applied. The
full proof, which relies on some lemmas concerning PSS privacy from Appendix C.1, is given in Appendix D.

We begin by highlighting two features of the proof. The first is that it relies not just on the privacy but also
the recoverability ofΠPSS. (At first glance it is unclear why the privacy ofΠ should need the recoverability of
ΠPSS.) The second is that it requires a condition onΠPSS that we callshare unpredictability. This condition is
not true for an arbitrary access structure. But it is true for threshold access structures and, more generally, for
all access structures that areextensible. We define the latter property in Appendix D.

Suppose we aim to construct an adversaryB1 attacking the ind1-property ofΠEnc. It would runA. The difficulty
is thatB1 would not know the keyK and thus it would be unable to reply to oracle queries ofA because these
replies are a function of the shares ofK. We can, however, consider a new game where the plaintext is encrypted
underK but the share vectorK is produced from a different keyK ′, expecting this to be perfectly adversarially
indistinguishable from the original game due to the privacy of the PSS scheme. It is the determinism of the
hash function that causes difficulties in establishing something like this. The problem is in answering a hash
query ofA that contains the shareK[i] of an uncorrupted playeri. This is addressed in two steps. The first
is to argue that as long asm − 2 or fewer players have been corrupted, the share of an uncorruptedplayer
is unpredictable and thus has low probability of being aHash query ofA. This is true because of the share-
unpredictability lemmas, which say that even an adversary knowing the secret andm−2 or fewer shares cannot
predict any remaining share with reasonable advantage. Here the threshold ism, meaning privacy of the secret
is guaranteed even if the adversary knowsm − 1 shares, but share-unpredictability allows the adversary only
m − 2 shares, because we need to assume it might also know the secret. The second step is to argue that if
the adversary has corruptedm − 1 players then, if it queriesHashon the share of an uncorrupted player, we
havem shares of the secret and, via theRecoverprocedure of the PSS scheme, can recover the underlying key.
This leads to a key-recovery adversary.

We warn that this sketch elides many issues; see Appendix D.

M INIMALITY OF THE ASSUMPTION. Theorem 1 shows that ind1+key1 security of the encryption scheme is
sufficientfor the privacy of HK1. We now show that it is alsonecessary. That is, we show that foranyencryption
schemeΠEnc that isnot ind1+key1 secure,Π = HK1[ΠEnc, ΠPSS, ΠIDA , ΠECC] can fail to provide privacy. The
proof of the following is in Appendix G.

Theorem 2 [Minimality of the ind1+key1 assumption for proving the security of HK1] Fix an encryption
schemeΠECC = (Encrypt, Decrypt) and a numberh. Then there existsm, n,A = Am,n, ΠPSS, ΠIDA , andΠECC

where, lettingΠ = HK1[ΠEnc, ΠPSS, ΠIDA , ΠECC] (with primitives overA, for n-parties, andh-bit hashes), for

11

any adversaryB there is an adversaryA such that

Adv
priv
Π (A) ≥ Adv

key
ΠEnc(B)− 2−h , (1)

and for any adversaryB there is an adversaryA such that

Adv
priv
Π (A) ≥ Adv

ind
ΠEnc(B) . (2)

In both cases the running timeA is essentially that ofB (see the proof), andA makes at most one query to each
of its oracles.

Theorems establishing the necessity of an assumption within some protocol arenot common, so let us explain
why the theorem above accomplishes this. Suppose you wanted to prove that Π = HK1[ΠEnc, ΠPSS, ΠIDA , ΠECC]
achieved the privacy property assuming thatΠPSS, ΠIDA , andΠECC are good PSS, IDA, and ECC schemes. The
theorem above establishes that, if you make an assumption onΠEnc that doesn’t imply ind1+key1 security, you
won’t be able to get a proof.

4.4 Recoverability (in the RO model)

We prove recoverability for any (valid) class of adversaries, which includes the adversaries associated to any
access structure, andAm,n,t as well. Appendix E.

Theorem 3 [Recoverability of HK1, random-oracle model] Let A be a valid class of adversaries and let
Π = HK1[ΠEnc, ΠPSS, ΠIDA , ΠECC] with primitives overA, for n parties, and withh-bit hashes. LetA ∈ A be an
adversary that asks at mostq queries to itsHashoracle. ThenAdv

rec
Π (A) ≤ (q + 2n)2/2h+1 .

The recoverability of HK1 requires only the collision-intractability of the hashfunctionHash; it is possible to
restate the theorem above and adjust its proof to show that an attack on the recoverability of HK1 implies an
equally effective method to find collisions inHash. We didn’t express the result this way since the proof of
privacy was already in the random-oracle model.

5 The HK2 Protocol (Refining Krawczyk’s Scheme)

We now alter HK1 by replacing its deterministic hash functionHashwith a randomized commitment scheme.
This changes the protocol, as the randomness used in the commitment must be inserted into the shares. We are
then able to show that the new protocol, HK2, is a good RCSS under standard assumptions.

5.1 The construction

COMMITMENT SCHEMES. We formalize a (noninteractive) commitment scheme as a pairΠCom = (Ct, Vf).
HereCt is a probabilistic algorithm that takes a messageM ∈ {0, 1}∗ and returns either a pair(Y, R), whereY
is thecommittalandR is thedecommittal, or else it returns⊥. Algorithm Vf is deterministic and, on input
Y, M, R, returns a bit. ThedomainDom ⊆ {0, 1}∗ of ΠCom is the set of allM ∈ {0, 1}∗ such thatCt(M) is
never⊥. We assume that whether orCt(M) is⊥ is independent of its coin tosses (which ensures that it is easy
to check if a point is in the domain).

There are two security properties,hidingandbinding, each defined by a game. See Figure 6. In game Hide,
multiple queries toLeftOrRight are allowed, and argumentsM0 andM1 to LeftOrRight need not be of equal
length. The advantage ofA in attacking the hiding-property of the commitment scheme isAdv

hide
ΠCom(A) =

2 Pr[HideA] − 1. We say thatΠCom is ǫ(·)-hiding if Adv
hide
ΠCom(A) ≤ ǫ(q) for any adversaryA that makes at

mostq oracle queries. Note that the adversary is not computationally restricted; we have given a statistical

12

PROCEDUREInitialize PROCEDURELeftOrRight(M0,M1) Game Hide

b
$

←{0, 1} IF M0 6∈ Dom OR M1 6∈ Dom
THEN RETURN⊥

PROCEDUREFinalize (d) (Y,R)
$

← Ct(Mb)
RETURN b = d RETURNY

PROCEDURECommit(M0) PROCEDUREFinalize (M1, R1) Game Bind
IF M0 6∈ Dom THEN RETURN⊥ IF M1 6∈ Dom THEN RETURN⊥
(Y,R0)

$

← Ct(M) RETURN (M0 6= M1 AND

RETURN (Y,R0) Vf (Y,M0, R0) = 1 AND

Vf (Y,M1, R1) = 1)

Figure 6:Games used to define the security of a commitment schemeΠCom = (Ct, Vf) with domainDom.

PROCEDUREShare(X)

10 K
$
←{0, 1}k ; C

$
← EncryptK(X)

11 K
$
← SharePSS(K) ; C

$
← ShareIDA (C)

12 FOR i← 1 TO n DO

13 (H[i], R[i])
$
← Ct(K[i] C[i])

14 Si
$
← ShareECC(H[i])

15 FOR i← 1 TO n DO

16 X[i]← R[i]K[i]C[i] S1[i] · · ·Sn[i]
17 RETURN X

PROCEDURERecover(X, j)
20 FOR i← 1 TO n DO

21 R[i]K[i]C[i] S1[i] · · ·Sn[i]←X[i]
22 FOR i← 1 TO n DO H[i]← RecoverECC(Si, j)
23 FOR i← 1 TO n DO

24 IF X[i] 6= ♦ AND Vf (H[i], K[i] C[i], R[i]) = 0
25 THEN K[i]← ♦ ; C[i]← ♦

26 K ← RecoverPSS(K, j) ; C ← RecoverIDA (C, j)
27 X ← DecryptK(C)
28 RETURN X

Figure 7:Definition of the HK2 constructionΠ = (Share, Recover) = HK2[ΠEnc,ΠPSS,ΠIDA ,ΠECC,ΠCom].

notion of privacy. For thebinding game, Bind, there is noInitialize procedure. We define the advantage ofA
in attacking the binding-property of the commitment scheme asAdv

bind
ΠCom(A) = Pr[BindA]. The notion is

weaker than the classical notion of binding, which would speak to the computational infeasibility to find any
Y, M0, R0, M1, R1 such thatM0, M1 ∈ Dom AND M0 6= M1 AND Vf (Y, M0, R0) = 1 AND Vf (Y, M1, R1) =
1. The conventional notion is analogous to the collision resistance of a hash function while our notion is more
like a UOWHF [37] (also called TCR hash-function [5]). Informally, we refer to a commitment schemeΠCom

asstatistically-hiding, weakly-binding(SHWB) if Adv
hide
Π (A) is small for any reasonable adversariesA and

Adv
bind
Π (A) is small for any reasonable adversariesA.

THE HK2 SCHEME. Fix an adversary classA. We build ann-party secret-sharing scheme with message
spaceS from components: (1) a symmetric encryption schemeΠEnc = (Encrypt, Decrypt) with k-bit keys and
a message spaceS; (2) ann-party PSSΠPSS = (SharePSS, RecoverPSS) overA with message space{0, 1}k;
(3) ann-party IDA ΠIDA = (ShareIDA , RecoverIDA) overA with message spaceΣ∗; (4) ann-party ECCΠECC =
(ShareECC, RecoverECC) overA with message space{0, 1}h; and (5) a commitment schemeΠCom = (Ct, Vf)
with domainDom whereK[i] C[i] ∈ Dom if K ∈ SharePSS(K) andC ∈ ShareIDA (C) for someK ∈ {0, 1}k,
X ∈ S, andC ∈ EncryptK(X). We callΠEnc, ΠPSS, ΠIDA , ΠECC, ΠCom the underlyingprimitivesof the HK2
scheme, and we say that they are overA, and forn parties. From such a set of primitives we define the secret-
sharing scheme HK2[ΠEnc, ΠPSS, ΠIDA , ΠECC, ΠCom] = (Share, Recover) as specified by Figure 7. The figure uses
the same conventions as those of Figure 5.

13

PROCEDUREInitialize G0–G2

K
$
←{0, 1}k ; b

$
←{0, 1} ; K

$
← SharePSS(K)

RETURN

PROCEDUREDeal(X0, X1) G0, G1, G4, G5

C
$
← EncryptK(Xb) ; C

$
← ShareIDA (C)

FOR i← 1 TO n DO

(H[i], R[i])
$
← Ct(K[i] C[i]) ; Si

$
← ShareECC(H[i])

PROCEDURECorrupt(i) G0, G5

X[i]← R[i] K[i]C[i] S1[i] · · ·Sn[i]
RETURN X[i]

PROCEDUREFinalize(d) G0–G5

RETURN (d = b)

PROCEDUREInitialize G3–G5

K, K ′ $
←{0, 1}k ; b

$
←{0, 1}

K
$
← SharePSS(K ′)

PROCEDUREDeal(X0, X1) G2, G3

C
$
← EncryptK(Xb) ; C

$
← ShareIDA (C)

FOR i← 1 TO n DO

(H[i], R[i])
$
← Ct(0C[i])

Si
$
← ShareECC(H[i])

PROCEDURECorrupt(i) G1–G4

R[i]
$
← DCt(H[i], K[i] C[i])

X[i]← R[i] K[i] C[i] S1[i] · · ·Sn[i]
RETURN X[i]

Figure 8:Games for proving Theorem 4, the privacy of the HK2 scheme.

5.2 Privacy (in the standard model)

The difficulty in establishing privacy in the standard model is that our adversary is dynamic, and so we run
into theselective-decommitment problem; see Dwork, Naor, and Reingold [19]. One could always pretend
the adversary to be static and take a hit of2n in the security bound when the adversary is dynamic, but we
don’t want to do this, as we are interested in concrete security and resultswith good asymptotic counterparts.
Another way around this is to use a statistically-hiding chameleon commitment-scheme. Instead we make do
with a weaker requirement, just the statistical hiding. We comment that for the case of static adversaries it
would suffice that the commitment be computationally rather than statistically hiding.

Theorem 4 [Privacy of HK2] LetA be an adversary class andΠ = HK2[ΠEnc, ΠPSS, ΠIDA , ΠECC, ΠCom] with
primitives overA, for n parties, and with anǫ(·)-hidingΠCom. Let A ∈ A ∩ Priv be an adversary for attacking
the privacy ofΠ. Then there is an adversaryB for attacking the privacy ofΠEnc such that

Adv
priv
Π (A) ≤ Adv

ind
ΠEnc(B) + 4ǫ(n)

whereB makes only one query to its left-or-right oracle and the running time ofB is that ofA plus overhead
consisting of one execution of theSharealgorithm ofΠ.

Proof: [Theorem 4]The proof relies on the games in Figure 8. The figure showsmany procedures, indicating
next to each in which games it is included. For example, gameG0 is defined by the procedures on the left-
hand-side of the figure. The procedureCorrupt of gamesG1–G4 refers to a probabilistic algorithmDCt that
works as follows. On inputY, M it lets Ω(Y, M) denote the set of all coinsω such thatCt, on inputM and
coinsω, returns a pair whose first component isY . If Ω(Y, M) = ∅ thenDCt returns⊥. Else it picksω at
random fromΩ(Y, M), runsCt on inputM and coinsω to get a pair(Y, R), and returnsR. Note this algorithm
is not necessarily efficiently implementable. We note that

Adv
priv
Π (A) = 2 · Pr

[

GA
0

]

− 1 . (3)

GameG1 differs from gameG0 only in theCorrupt procedure, which resamplesR[i] as shown. Clearly,

Pr
[

GA
0

]

= Pr
[

GA
1

]

= Pr
[

GA
2

]

+(Pr
[

GA
1

]

−Pr
[

GA
2

]

) . (4)

14

We will construct an adversaryD1 attacking the hiding-property ofΠCom such that

Pr
[

GA
1

]

− Pr
[

GA
2

]

= Adv
hide
ΠCom(D1) . (5)

AdversaryD1 picks b
$
←{0, 1} and runsA. When A makes a queryX0, X1 to its Deal oracle, adver-

saryD1 picksK
$
←{0, 1}k andC

$
← EncryptK(Xb). It then picksK

$
← SharePSS(K). For i running from1

to n, it queries0 C[i], K[i] C[i] to its LeftOrRight oracle, letsH[i] denote the value returned, and lets

Si
$
← ShareECC(H[i]). WhenA makes aCorrupt(i) query, adversaryD1 computes its reply according to

the code of theCorrupt procedure of gamesG1, G2. Note that this step is not necessarily efficient, butD1 does
not have to be computationally bounded. WhenA halts without outputd, adversaryD returns1 if d = b and0
otherwise. One can check that (5) is true.

Next we have
Pr

[

GA
2

]

= Pr
[

GA
3

]

+ (Pr
[

GA
2

]

− Pr
[

GA
3

]

) , (6)

whereG3 differs from G2 only in the Initialize procedure which now producesK by sharing notK but an
independently and randomly chosen keyK ′. We claim that

Pr
[

GA
2

]

= Pr
[

GA
3

]

. (7)

To justify the above, we build an adversaryP attacking the privacy of the PSS schemeΠPSS such that

Adv
priv
ΠPSS(P) = Pr

[

GA
2

]

− Pr
[

GA
3

]

. (8)

But the privacy ofΠPSS tells us that the advantage ofP is zero, yielding (7). AdversaryP begins by pickingK
andK ′ at random from{0, 1}k andb at random from{0, 1}. It then queriesK ′, K to its Deal oracle. We

know that the latter creates sharesK
$
← SharePSS(L) whereL = K ′ if the challenge bit chosen by game Priv

is zero andL = K if it is one. NowP starts runningA, responding toA’s oracle queries as follows. WhenA
queriesDeal(X0, X1) adversaryP executes the code of theDealprocedure of gamesG2, G3. WhenA makes a
Corrupt(i) query, adversaryP itself makes aCorrupt(i) query to obtain shareK[i], producesX[i] as per the
code of theCorrupt procedure of gamesG2, G3, and returnsX[i] to A. As before, this step is not necessarily
efficient, butP need not be computationally bounded. WhenA halts and outputs a bitd, adversaryP returns 1
if b = d and0 otherwise. It is easy to see that (8) is true.

Next we have
Pr

[

GA
3

]

= Pr
[

GA
4

]

+ (Pr
[

GA
3

]

− Pr
[

GA
4

]

) . (9)

We next construct an adversaryD2 attacking the hiding-property ofΠCom such that

Pr
[

GA
3

]

− Pr
[

GA
4

]

= Adv
hide
ΠCom(D2) . (10)

The construction ofD2 is similar to that ofD1 and is therefore omitted. GamesG5 differs fromG4 only in its
Corrupt procedure as shown. Clearly

Pr
[

GA
4

]

= Pr
[

GA
5

]

. (11)

We now construct adversaryB attacking the privacy ofΠEnc such that

2 · Pr
[

GA
5

]

− 1 ≤ Adv
ind
ΠEnc(B) . (12)

AdversaryB picks K ′ at random and letsK
$
← SharePSS(K ′). It then runsA. When A makes a query

Deal(X0, X1), B queriesX0, X1 to its own left-or-right encryption oracle to get backC
$
← EncryptK(Xb),

whereb is the challenge bit andK the key chosen by the Ind game defining the privacy ofΠEnc. Now B exe-
cutes the last five lines of theDealprocedure of gameG5. WhenA makes aCorrupt(i) query, adversaryB

15

can execute the code of theCorrupt procedure of gameG5 since it knowsK[i]. WhenA halts and outputs a
bit d, adversaryB returnsd. The advantage ofB is 2 Pr[b = d]− 1, so (12) is true.

Let D be the hiding-adversary that flips a fair coin and, if it lands heads, runsD1, otherwise,D2. Clearly

Adv
hide
ΠCom(D) = 0.5 ·Adv

hide
ΠCom(D1) + 0.5 ·Adv

hide
ΠCom(D2) . (13)

SinceΠCom is assumed to beǫ(·)-hiding andD makes at mostn oracle queries we have

Adv
hide
ΠCom(D) ≤ ǫ(n) . (14)

Putting together (3)–(14) concludes the proof.

5.3 Recoverability (in the standard model)

We now establish the recoverability of HK2. The theorem applies to any valid adversary class and assumes a
weakly-binding committal. The proof is in Appendix F.

Theorem 5 [Recoverability of HK2] Let A be a valid adversary class and letΠ = HK2[ΠEnc, ΠPSS, ΠIDA ,
ΠECC, ΠCom] with primitives overA and forn parties. LetA ∈ A. Then there is an adversaryB attacking the
binding-property ofΠCom such thatAdv

rec
Π (A) ≤ n · Adv

bind
ΠCom(B) and where the running time ofB is that

of A plus overhead consisting of an execution of theShareandRecoveralgorithms of protocolΠ.

REALIZING THE COMMITMENT. Constructions are known for noninteractive, statistically-hiding commitment-
schemes that meet the standard binding requirement, and therefore our own. One is based on discrete log [11],
another, on a collision-resistant hash-function [18, 23]. These constructions are all reasonably efficient. Ac-
tually, having relaxed the binding requirement, one can replace the collision-resistant hash-function of the
constructions just mentioned with the UOWHF primitive of Naor and Yung [37].This provides a basis for the
plausibility-style result that a one-way function suffices for efficient RCSS [42]6, and it also provides the basis
for a practical scheme that builds its UOWHF from appropriately keying a cryptographic hash-function.

Acknowledgments

Many thanks to Mark O’Hare and Rick Orsini, of Security First Corp., forcalling our attention to the foun-
dational issues of RCSS and for supporting our work to resolve them. Thanks to Hugo Krawczyk for helpful
comments.

References

[1] P. Béguin and A. Cresti. General short computational secret sharing schemes.Advances in Cryptology –
EUROCRYPT ’95, LNCS vol. 921, pp. 194–208, 1995.

[2] A. Beimel and B. Chor. Universally ideal secret sharing schemes.IEEE Trans. on Info. Theory,vol. 40,
no. 3, pp. 786–794, 1994.

[3] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric encryption.
38th Annual Symposium on Foundations of Computer Science(FOCS 1997), pp. 394–403, 1997.

6 Statistically hiding commitment-schemes satisfying the standard (rather than our weakened) notion of binding can be built from
one-way permutations [36] and even one-way functions [24]. But these schemes are interactive, and so unsuitable for our application.

16

[4] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-
playing proofs.Advances in Cryptology – EUROCRYPT ’06, LNCS vol. 4004, Springer, pp. 409–426,
2006.

[5] M. Bellare and P. Rogaway. Collision-resistant hashing: towards making UOWHFs practical.Advances
in Cryptology – CRYPTO ’97, LNCS vol. 1294, Springer, pp. 470–484, 1997.

[6] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing efficient protocols.
Proc. of the First Annual Conference on Computer and Communications Security (ACM CCS), ACM
Press, 1993.

[7] M. Bellare and P. Rogaway. Robust computational secret sharing and a unified account of classical
secret-sharing goals. Proceedings version of this paper.Proc. of the 14th ACM Conference on Computer
and Communications Security(ACM CCS), ACM Press, 2007.

[8] J. Benaloh and J. Leichter. Generalized secret sharing and monotone functions.Advances in Cryptol-
ogy – CRYPTO ’88, LNCS vol. 403, Springer, pp. 27–36, 1990.

[9] G. Blakley. Safeguarding cryptographic keys.AFIPS National Computer Conference, vol. 48, pp. 313–
317, 1979.

[10] C. Blundo, A. De Santis, G. Di Crescenzo, A. Gaggia, and U. Vaccaro. Multi-secret sharing schemes.
Advances in Cryptology – CRYPTO ’94, LNCS vol. 839, Springer, pp. 150–163, 1994.

[11] J. Boyar, S. Kurtz, and M. Krentel. A discrete logarithm implementation of perfect zero-knowledge
blobs.J. of Cryptology, vol. 2, no. 2, pp. 63–76, 1990.

[12] E. Brickell and D. Stinson. The detection of cheaters in threshold schemes.SIAM J. of Discrete Math,
vol. 4, no. 4, pp. 502–510, 1991.Earlier version in Crypto 88.

[13] E. Brickell and D. Stinson. Some improved bounds on the information rate of perfect secret sharing
schemes.J. of Cryptology, vol. 5, 153–166, 1992.

[14] C. Cachin. On-line secret sharing.IMA Conference on Cryptography and Coding, LNCS vol. 1025,
Springer, pp. 190-198, 1995.

[15] R. Capocelli, A. DeSantis, L. Gargano, and U. Vaccaro. On the size of shares for secret sharing schemes.
J. of Cryptology, vol. 6, pp. 157–167, 1993.

[16] M. Carpentieri, A. De Santis, and U. Vaccaro. Size of shares andprobability of cheating in threshold
schemes.Advances in Cryptology – EUROCRYPT ’93, LNCS vol. 765, Springer, pp. 117–125, 1993.

[17] B. Chor, S. Goldwasser, S. Micali, and B. Awerbach. Verifiable secret sharing and achieving simultane-
ity in the presence of faults.FOCS ’85, IEEE Press, pp. 383–395, 1985.

[18] I. Damg̊ard, T. Pedersen, and B. Pfitzmann. On the existence of statistically hiding bit commitment
schemes and fail-stop signatures.J. of Cryptology, vol. 10, no.3, pp. 163–194, 1997.

[19] C. Dwork, M. Naor, O. Reingold, and L. Stockmeyer. Magic functions.JACM, vol. 50, no. 6, pp. 852–
921, 2003.

[20] P. Feldman. A practical scheme for non-interactive verifiable secret sharing.FOCS ’87, IEEE Computer
Society, pp. 427–437, 1987.

17

[21] G. Ganger, P. Khosla, M. Bakkaloglu, M. Bigrigg, G. Goodson, S. Oguz, V. Pandurangan, C. Soules,
J. Strunk, and J. Wylie. Survivable storage systems.DARPA Information Survivability Conference and
Exposition, vol. 2, IEEE Press, pp. 184–195, 2001.

[22] S. Goldwasser and S. Micali. Probabilistic encryption.Journal of Computer and System Sciences
(JCSS), vol. 28, no. 2, pp. 270–299, 1984.

[23] S. Halevi and S. Micali. Practical and provably-secure commitment schemes from collision-free hash-
ing. Advances in Cryptology – CRYPTO ’96, LNCS vol. 1109, Springer, pp. 201-215, 1996.

[24] I. Haitner and O. Reingold. Statistically-hiding commitment from any one-way function. Cryptology
ePrint report 2006/436, 2006.

[25] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing or: how to cope with
perpetual leakage.Advances in Cryptology – CRYPTO ’95, LNCS vol. 963, Springer, pp. 339–352,
1998.

[26] Y. Ishai. Personal communication, February 2007.

[27] M. Ito, A. Saito, and T. Nishizeki. Secret sharing schemes realizinggeneral access structure.IEEE
Globecom 87, pp. 99–102, 1987.

[28] A. Iyengar, R. Cahn, C. Jutla, and J. Garay. Design and implementation of a secure distributed data
repository.14th IFIP International Information Security Conference, pp. 123–135, 1998.

[29] W. Jackson and K. Martin. Combinatorial models for perfect secret-sharing schemes.J. of Comb. Math-
ematics and Comb. Computing, vol. 28, pp. 249–265, 1998.

[30] E. Karnin, J. Greene, and M. Hellman. On secret sharing systems.IEEE Transactions on Information
Theory,vol. 29, no. 1, pp. 35–51, 1983.

[31] H. Krawczyk. Secret sharing made short. LNCS vol. 773, Springer, pp. 136–146, 1993.Advances in
Cryptology – CRYPTO ’93.

[32] H. Krawczyk. Distributed fingerprints and secure information dispersal.Twelfth Annual ACM Sympo-
sium on Principles of Distributed Computing(PODC 1993), ACM Press, pp. 207–218, 1993.

[33] S. Lakshmanan, M. Ahamad, and H. Venkateswaran. Responsive security for stored data.IEEE
Trans. on Parallel and Distributed Systems, vol. 14, no. 9, pp. 818–828, 2003.

[34] A. Mayer and M. Yung. Generalized secret sharing and group-key distribution using short keys.Com-
pression and Complexity of Sequences 1997, IEEE Press, pp. 30–44, 1997.

[35] R. McEliece and D. Sarwate. On sharing secrets and Reed-Solomoncodes.Communication of the ACM,
vol. 24, pp. 583–584, 1981.

[36] M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung. Perfectzero-knowledge arguments for NP using
any one-way permutation.Journal of Cryptology, vol. 11, no. 2, pp. 87–108, 1998.

[37] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications.Twenty
first Annual ACM Symposium on Theory of Computing(STOC 1989), IEEE Press, pp. 33–43, 1989.

[38] W. Ogata, K. Kurosawa, and D. Stinson. Optimum secret sharing scheme secure against cheating.SIAM
J. on Discreet Mathematics, vol. 20, no. 1, pp. 79–95, 2006.

18

[39] A. Paul, S. Adhikari, and U. Ramachandran. Design of a secure and fault tolerant environment for
distributed storage. Georgia Tech Center for Experimental Research in Computer Science (CERCS)
Technical Report GIT-CERCS-04-02, 2004.

[40] M. Rabin. Efficient dispersal of information for security, load balancing, and fault tolerance.Journal of
the ACM, vol. 36, no. 2, pp. 335–348, 1989.

[41] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority.Sym-
posium on the Theory of Computing(STOC 1989), ACM Press, pp. 730-85, 1989.

[42] J. Rompel. One-way functions are necessary and sufficient forsecure signatures.STOC ’90, pp. 387–
394, 1990.

[43] A. Shamir. How to share a secret.Communications of the ACM, vol. 22, no. 11, pp. 612–613, 1979.

[44] C. Shannon. A mathematical theory of communication.Bell System Technical Journal, vol. 27, pp. 379–
423 and pp. 623–656, July and October, 1948.

[45] G. Simmons. How to (really) share a secret.Advances in Cryptology – CRYPTO ’88, LNCS vol. 403,
Springer, pp. 390–448, 1989.

[46] G. Simmons. An introduction to shared secret and/or shared controlschemes and their application.
Chapter 9 fromContemporary Cryptology: The Science of Information Integrity, IEEE Press, pp. 441–
497, 1991.

[47] M. Stadler. Publicly verifiable secret sharing.Advances in Cryptology – EUROCRYPT ’96. LNCS
vol. 1070, Springer, pp. 190–199, 1996.

[48] D. Stinson. An explication of secret sharing schemes.Designs, Codes and Cryptography, vol. 2, Kluwer,
pp. 357–390, 1992.

[49] D. Stinson and R. Wei. Bibliography of secret sharing schemes. On-line bibliography, 216 references,
dated 13 Oct 1998. http://www.cacr.math.uwaterloo.ca/ dstinson/ssbib.html.

[50] M. Tompa and H. Woll. How to share a secret with cheaters.Journal of Cryptology, vol. 1, pp. 133–138,
1988. Earlier version inCrypto ’86.

[51] V. Vinod, A. Narayanan, K. Srinathan, C. Rangan, and K. Kim. Onthe power of computational secret
sharing.Progress in Cryptology – INDOCRYPT 2003, LNCS vol. 2904, Springer, pp. 162–176, 2003.

[52] M. Waldman, A. Rubin, and L. Cranor. The architecture of robustpublishing systems.ACM Transac-
tions on Internet Technology(TOIT), vol. 1, no. 2, pp. 199–230, 2001.

[53] H. Witsenhausen. The zero-error side information problem and chromatic numbers.IEEE Transactions
on Information Theory, vol. 22, no. 5, pp. 592–593, 1976.

[54] J. Wylie, M. Bigrigg, J. Strunk, G. Ganger, H. Kiliççöte, and P. Khosla. Survivable information storage
systems.IEEE Computer, vol. 33, no. 8, pp. 61–68, August 2000.

A A Sufficient Condition for key1-Security

An encryption scheme secure againstq ≥ 2 queries in the indistinguishability sense is also secure against
q − 1 queries in key-recoverability sense (so, in particular, ind2-security implies key1-security). For complete-
ness, we formalize and prove this below. In particular, two-query indistinguishability (ind2) implies one-query
key-recoverability (key1), but an encryption scheme secure in the key1 sense need not be secure against key-
recovery at all (the one-time pad is an example).

19

Proposition 6 Let Π = (Encrypt, Decrypt) be an encryption scheme with message space including{0, 1}m

for somem. Let A be a (key-recovery) adversary. Then there exists a (distinguishing) adversaryD such that
Adv

ind
Π (D) ≥ Adv

key
Π (A) − 2−m and whereD makes one more oracle query than doesA, makes oracle

queries of total lengthm bits more than the total length ofA’s queries, andD runs in time which isA’s running
time plus the time for oneDecryptcall on anm-bit string.

Proof: ConstructD as follows. It runsA, answering eachEnc(X) query by callingLeftOrRight(X, X) and re-

turning the response. WhenA halts with outputK ′, haveD computeX
$
←{0, 1}m, C

$
← LeftOrRight(X, 0m),

andX ′ = DecryptK′(C). Let D return 0 ifX = X ′ and1 otherwise.

Let Left and Right denote the games that are the same as the Ind game except the encryption oracleEnc is
replaced by the oracle that always encrypts the left or right queries, respectively. Suppose thatD plays game
Left. Then the probability thatD will output true is at leastAdv

key
Π (A). On the other hand, suppose thatD

plays game Right. Then ifD outputstrue it means thatD, givenno information aboutX, managed to correctly
guess it. The chance of this is at most2−m. Now, as is standard,Adv

ind
Π (D) = 2 Pr[IndD]− 1 = Pr[LeftD ⇒

true]− Pr[RightD], and so we conclude thatAdv
ind
Π (D) ≥ Adv

key
Π (A)− 2−m.

While ind2-security implies ind1+key1 security, the reverse certainly is not the case. As an example, CBC
encryption with a zero-IV is readily shown to be ind1+key1 secure (whenbased on a PRP), but it is not ind2
secure. It is for this reason that Theorem 1 employs the weaker ind1+key1 assumption.

B Prior Secret-Sharing Definitions

The purpose of this section is to sketch the most prominent definitions for classical secret-sharing goals. We do
not aim to give a comprehensive survey, which would include many variations of the same.

BLAKLEY AND SHAMIR (1979). A threshold scheme with parametersm and n (that is, a secret-sharing
scheme for the access structureAm,n) was defined by Shamir [43] as follows7: Our goal is to divideS into n
piecesS1, . . . , Sn in such a way that: (1) knowledge of anym or moreSi pieces makesS easily computable;
and (2) knowledge of anym− 1 or fewerSi pieces leavesS completely undetermined (in the sense that all its
possible values are equally likely).

The definition above is somewhat informal, and admits multiple, basically equivalent formalizations. The
two most prominent are theconditional-probability formulationand theentropy formulation. One can either
assume that the finite set of possible secretsS is endowed with a distribution and define a threshold scheme
for this distribution, or one can require the scheme to work forany distributionS; see, for example, [2, 29].
Illustrating the former approach, letS denote the random variable that takes on values fromS according to the
associated distribution and letSi be the random variable that takes on values of the sharei for i ∈ [n]. For
the conditional-probability formulation one would then require that for any distinct {i1, . . . , ir} ⊆ [n] and any
(si1 , . . . , sir) such thatPr[(Si1 , . . . , Sir) = (si1 , . . . , sir)] > 0, we have that: (1) ifr ≥ m then there exists
a uniques ∈ S such thatPr[S = s | Si1 = si1 ∧ · · · ∧ Sir = sir] = 1; and (2) if r < m then, for each
s ∈ S we have thatPr[S = s | Si1 = si1 ∧ · · · ∧ Sir = sir] = Pr[S = s]. The statement we have just given
paraphrases [38]. For the entropy formalization [30] one would require that: (1) for anym-tuple of distinct
indicesi1, . . . , im ∈ [n] we have thatH(S | Si1 , . . . , Sim) = 0; and (2) for anyr < m and for anyr-tuple of
distinct indicesi1, . . . , ir ∈ [n] we have thatH(S | S1, . . . , Sr) = H(S). HereH(X) = −

∑

x∈X p(x) lg p(x)
andH(X | Y) = −

∑

x∈X,y∈Y p(x)p(x | y) lg p(x | y) andX andY are random variables andp(x) denotes
the probability thatX = x andp(y) denotes the probability thatY = y andp(x | y) denotes the probability
thatX = x given thatY = y. Both formulations of the PSS notion readily lift to define secret-sharing schemes
over an arbitrary access structureA.

7 For consistency with the rest of this paper, we have changed the names of variables.

20

MCELIECE AND SARWATE (1981). These authors were interested in threshold schemes that are secure against
computationally-unbounded adversaries that can arbitrarily replace the shares of somet of the players [35]. An
external party, not a protocol participant, recovers the secret. It is not possible to say precisely what notion
the authors aim for because their work is stated in terms of characteristics ofschemes achievable using Reed-
Solomon codes, not general characteristics sought in a secret-sharing scheme. That said, the authors seem to be
interested in achieving the PSS-PR2 goal of Figure 4 with respect to the adversary class we calledAm,n,t.

TOMPA AND WOLL (1986). These authors are interested inm-out-of-n threshold schemes that are secure
against computationally-unbounded adversaries that can arbitrarily replace the shares of them − 1 corrupted
players and where some uncorrupted protocol participant is the entity thatis recovering the secret [50]. The
envisaged adversary is static. The authors state the problem like this (changing only some variable names):
Divide a secretS ∈ {0, 1, . . . , s− 1} into “shares” S1, S2, . . . , Sn such that: (a) Knowledge of anym shares
is sufficient to reconstructS efficiently. (b) Knowledge ofm − 1 shares provides no more information about
the value ofS that was known before. (c) There is only a small probabilityǫ > 0 that anym − 1 participants
i1, i2, . . . , im−1 can fabricate new sharesS′

i1
, S′

i2
, . . . , S′

im−1
that deceive amth participantim. Here, deceiv-

ing themth participant means that, fromS′
i1

, S′
i2

, . . . , S′
im−1

, andSim , the secretS′ reconstructed is “legal”
(i.e.,S′ ∈ {0, 1, . . . , s − 1}), but “incorrect” (i.e., S′ 6= S). This model is investigated in works like [16, 38],
which also addresses some informalities in the definition above (like if the underlying secretS is uniform or if
one is instead maximizing over allS).

The above goal is approximately translated into our definition for PSS-SR1 (and also demanding perfect-
recoverability for erasure adversaries). Note that in a setting like this, withconcrete security and a statistical
error bound, the difference between static and dynamic adversarieswill be relevant: one could easily construct
an (artificial) secret-sharing scheme with a larger smallest-possible robustness parameterǫ if one quantifies over
the class of static adversaries instead of dynamic ones.

KRAWCZYK (1993)AND OTHERS. A definition for CSS, for the case of ann-out-of-m threshold scheme, was
sketched by Krawczyk [31]. It is stated like this, apart from minor changes in notation.Let Π be ann-party
secret-sharing scheme. For any secretS and for any set of indices1 ≤ ii ≤ · · · ≤ ir ≤ n letDΠ(S, i1, . . . , ir)
denote the probability distribution on the sequence of sharesSi1 , Si2 , . . . , Sir induced by the output of running
theSharealgorithm onS. The requirement is that for any pair of equal-length secretsS′ andS′′ and any set
of indicesi1, i2, . . . , ir with r < m, the distributionsDΠ(S′, i1, i2, . . . , ir) andDΠ(S′′, i1, i2, . . . , ir) must be
polynomially indistinguishable.Krawczyk earlier indicates that indistinguishability is in terms ofthe lengths
of messages or secrets. In Krawczyk’s definitional sketch, he omits mention of recoverability. Parameterizing
security by in the length of the secret might be unfortunate, effectively excluding a treatment of protocols that
share a one-bit secret, say, an apparently legitimate thing to want to do.

A somewhat different approach to formalizing CSS is given by Cachin [14] and refined by Vinod et al. [51].
For privacy one requires that the probability that an adversary can guess the shared secret is negligible (in the
security parameterized, which is again the length of the secret). One effectively assumes that the set of secrets
is large and that secrets are chosen uniformly from that set (assumptionsthat seem undesirable). Regardless, an
inability to guess the shared secret, an idea going back to Blakley [9], seemsto make for an overly weak notion
of security, as a huge amount of partial information about the secret mightbe leaked while the secret remains
hard-to-guess. Such considerations are well-known from the contextof encryption-scheme privacy, going back
to Goldwasser and Micali [22], and they are just as relevant here.

As for the RCSS goal, Krawczyk says only that this isa secret-sharing scheme that can correctly recover
the secret even in the presence of a (bounded) number of corruptedshares, while keeping the secrecy require-
ment[31]. Comments in the paper make it clear that the author was thinking in terms of the model of robustness,
where an external party recovers the secret.

Krawczyk clearly had further ideas along the lines of those pursued in thecurrent paper. In particular, he
indicates thata stronger definition can be stated in terms of a dynamic and adaptive adversary that progressively
chooses them−1 shares to be revealed to him depending on previously opened shares.He also indicates thatthe

21

PROCEDUREInitialize GSe, GSh

S
$
← S; S

$
← SharePSS(S)

PROCEDURECorrupt(i) GSe, GSh, GSh+, G
T ← T ∪ {i}
RETURN S[i]

PROCEDUREFinalize(Y) GSe
RETURN (Y = S) AND T 6∈ A

PROCEDUREInitialize GSh+
S

$
← S ; S

$
← SharePSS(S)

RETURN S

PROCEDUREInitialize G

S0, S1 $
← S ; S

$
← SharePSS(S1)

RETURN S0

PROCEDUREFinalize(j, Y) GSh
RETURN (S[j]=Y) AND (j 6∈T) AND T 6∈A

PROCEDUREFinalize(j, Y) GSh+, G
RETURN (S[j]=Y) AND (j 6∈T) AND T∪{j} 6∈A

Figure 9:Games in the PSS lemmas. The Figure defines four games, GSe, GSh, GSh+, and an auxiliary gameG to be
used in the proofs.

traditional notion of perfect secret sharing can be defined in an analogous way. . . by replacing “polynomially
indistinguishable” with “identical” (or equivalently, by replacing polynomial-time distinguishability tests with
computationally unlimited tests)[31].

C Secret-Sharing Lemmas

C.1 Share-prediction lemmas

Assume that a secret is uniformly chosen from a finite set of possible secrets. We consider the probability
that an adversary, without having corrupted an authorized subset ofplayers, predicts either the secret that was
distributed or the share of an uncorrupted player. The probability of the first is easily shown to be low by the
privacy of the scheme, essentially confirming that our definition implies previous ones. Share prediction is
more subtle since whether or not it is hard depends on the access structure. We provide sufficient conditions
on the access structure for share prediction to have low probability. We give two lemmas, one for adversaries
that don’t know the secret and one for adversaries that do. The latteris used in our proof of privacy of the HK1
construction (Theorem 1). We consider dynamic adversaries throughout, and in that sense our statements are
stronger than in traditional treatments of secret sharing.

We formalize the claims via the games of Figure 9. The Figure shows differentprocedures, listing next to
each the games in which this procedure appears, so that a total of four games are described. For our first lemma,
we consider the game GSe whoseInitialize procedure picks a random secret from the (finite) message spaceS

of the given PSS schemeΠPSS and creates shares for it. The game answersCorrupt queries and declares the
adversary to have won if its outputY equals the secret but the set of corrupted players is not authorized. The
following says that the probability that the adversary wins is at most1/|S|.

Lemma 7 Let ΠPSS = (SharePSS, RecoverPSS) be an-party PSS scheme over message spaceS and access
structureA. Then for any adversaryD

Pr
[

GSeD
]

≤
1

|S|
. (15)

Proof: [Lemma 7]We will specify an adversaryP attacking the privacy ofΠPSS such that

Adv
priv
ΠPSS(P) ≥ Pr

[

GSeD
]

−
1

|S|
. (16)

22

Since the advantage ofP is 0 by the assumed privacy of the PSS scheme, equation (16) implies equation (15).
AdversaryP picks S0, S1 at random fromS and queriesS0, S1 to its Deal oracle. It then starts runningA.
WhenA makes aCorrupt(i) query, adversaryP itself makes aCorrupt(i) query, and returns the response
to D. WhenD halts with outputY , adversaryP returns1 if Y = S1 and0 otherwise. Denoting the output
of P by d and the challenge bit chosen by game Priv byb we have

Adv
priv
ΠPSS(P) = Pr [d = 1 | b = 1]− Pr [d = 1 | b = 0] .

Now we claim

Pr [d = 1 | b = 1] = Pr
[

GSeD
]

(17)

Pr [d = 1 | b = 0] ≤
1

|S|
, (18)

from which (16) follows. Equality (17) is evident from the definitions. In the caseb = 0, adversaryP has no
information aboutS1 which is chosen at random fromS and hence the probability thatY = S1 is at most1/|S|,
justifying (18).

Our next lemma considers the game GSh whoseInitialize procedure picks a random secret from the (finite)
message spaceS of the given PSS schemeΠPSS and creates shares for it. The game answersCorrupt queries
and declares the adversary to have won if it outputsj, Y such thatY equals thej-th share of the secret but no
Corrupt(j) query was made. We are interested in bounding the probability that the adversary wins.

However, this probability is not always small. It depends on the access structure. Consider for example the
access structureA that contains just the sets[n − 1] and[n] and letS = {0, 1}k. Let algorithmSharePSS(S)
returnS whereS[1], . . . ,S[n − 1] are chosen at random fromS subject toS[1] ⊕ · · · ⊕ S[n − 1] = S and
S[n] = 0k. Then an adversary that outputsn, 0k wins with probability 1.

This type of anomaly seems however absent for “natural” access structures, and in particular for the thresh-
old oneAm,n. To be general, we define a property of access structures that is sufficient to ensure that the
probability of the adversary winning the GSh game is small. We say thatA is extendibleif for every T ⊆ [n]
such thatT 6∈ A, and everyj 6∈ T , there exists aT ′ ⊆ [n] such thatT ∪ T ′ 6∈ A but T ∪ T ′ ∪ {j} ∈ A.
That is,T can be extended to an unauthorized subset such that addition ofj makes it authorized. We callT an
extensionof T, j.

Note that theA of our example above is not extendible. Indeed if we setj = n andT = ∅ thenT, j has no
extension. However,Am,n is extendible, as are many other natural access structures. The followingsays that
the probability of winning GSh is at most1/|S| if the access structure is extendible. The interesting aspect of
the proof is that it relies on the recoverability of the PSS scheme, not just its privacy. Below, ifY is a share
vector thenOpened(Y) denotes the set{ i : Y [i] 6= ♦ } of all indices at whichY is defined.

Lemma 8 Let ΠPSS = (SharePSS, RecoverPSS) be an-party PSS scheme over message spaceS and extendible
access structureA. Then for any adversaryE

Pr
[

GShE
]

≤
1

|S|
. (19)

Proof: [Lemma 7]Consider the following adversaryD for the GSe game. It initializesn-vectorY to have all
components♦, and then runsE. WhenE makes aCorrupt(i) query, so doesD. It stores the response asY [i]
and also returns this response toE. Eventually, adversaryE halts with outputj, Y . We say this output isvalid
if Opened(Y) 6∈ A andj 6∈ Opened(Y). If the output is not valid thenD returns something arbitrary like0, ε.
Else, it letsY [j]← Y and letsT ′ be an extension ofT, j, which we know exists by the extendibility assumption
onA. For eachi ∈ T ′ it makes aCorrupt(i) query and stores the response inY [i]. The extendibility property

23

now guarantees thatOpened(Y) ∈ A, soD runsRecoverPSS(Y) to get back a secretS′, outputsS′, and halts.
The extendibility property also guarantees thatT ∪ T ′ 6∈ A so thatD has not corrupted an authorized subset in
the case the output ofE is valid. Now if the outputj, Y of E is valid and satisfiesS[j] = Y thenS′ = S. If
the output ofE is not valid thenE does not win. This means that

Pr
[

GShE
]

≤ Pr
[

GSeD
]

, (20)

whence (19) follows from Lemma 7.

An adversary in the GSh+ game has the same share-prediction objective as an adversary in the GSh game but
differs in that it gets the secret as input. (The secret is the output of theInitialize procedure which by definition
becomes the input to the adversary.) Thus we are now asking how hard it isto predict a share when you know
the secret. The following lemma bounds the probability that the adversary winsunder the same conditions as in
Lemma 8. The crucial difference is that in the GSh+ game, the adversary wins only if not justT butT ∪ {j} is
not authorized. In the caseA = Am,n, this means that we allow it to corrupt onlym− 2 players, notm− 1 as
in Lemma 8. Intuitively, this says that giving the adversary the secret is like giving it one extra share from the
point of view of its ability to predict other shares.

Lemma 9 Let ΠPSS = (SharePSS, RecoverPSS) be an-party PSS scheme over message spaceS and extendible
access structureA. Then for any adversaryF

Pr
[

GShF+
]

≤
1

|S|
. (21)

Proof: [Lemma 9]We first claim that
Pr

[

GShF+
]

= Pr
[

GF
]

, (22)

where gameG is defined via Figure 9. Intuitively, this says that providingF the shared secret as input does not
help it; it does equally well with a random, independent secret as input. To justify (22) we provide an adversary
P attacking the privacy ofΠPSS such that

Adv
priv
ΠPSS(P) = Pr

[

GShF+
]

− Pr
[

GF
]

. (23)

Since the advantage ofP is 0 by the assumed privacy ofΠPSS, (23) implies (22). AdversaryP picksS0, S1

at random fromS and queriesS0, S1 to its Dealoracle. It initializes setT to empty and starts runningF on
input S1. WhenA makes aCorrupt(i) query,P puts i in T , itself makes aCorrupt(i) query, and returns
the response toF . WhenF halts with output(j, Y), adversaryP makes aCorrupt(j) query to obtainS[j].
If S[j] = Y andj 6∈ T thenP returns1, else0. Equation (23) follows because

Pr [d = 1 | b = 1] = Pr
[

GShF+
]

and Pr [d = 1 | b = 0] = Pr
[

GF
]

,

whered denotes the output bit ofP andb the challenge bit chosen by game Priv.

Note that the set of players corrupted byP is T ∪ {j} whereT is the set of players corrupted byF . But if
T ∪ {j} is not authorized, as is required forF to win, thenP has not corrupted an authorized player, as is
required for it to win. This is where we use the assumption thatF wins only if not justT but T ∪ {j} is not
authorized.

To complete the proof we specify an adversaryE for game GSh such that

Pr
[

GF
]

≤ Pr
[

GShE
]

.

Now (21) follows from Lemma 8. AdversaryE picksS′ at random fromS and runsF on inputS′. It answers
F ’s Corrupt queries via its ownCorrupt oracle. WhenF halts with outputj, Y , adversaryE also outputsj, Y
and halts.

24

C.2 A recoverability lemma

The following result lets one think of perfect recoverability in a more conventional, adversary-free way.

Lemma 10 [adversary-free recoverability] Let Π = (Share, Recover) be a secret-sharing scheme over mes-
sage spaceS that achieves perfect recoverability over the valid access structureA. Suppose(S, S, T, S′, j) is
A-generable andS′ ≥ S

′′. ThenRecover(ST ⊔ S
′′
T , j) = S.

Proof: By the validity ofA there is an adversaryAS,T,S′,j,S′′ ∈ A that callsDeal(S), callsCorrupt(i) for
eachi ∈ T , then outputs(S′′, j). Now AS,T,S′,j,S′′ will win the Rec game iffRecoveroutputs anS∗ 6= S.
But AS,T,S′,j,S′′ never wins the Rec game becauseAdv

rec
Π (AS,T,S′,j,S′′) = 0. It follows thatRecover(S′

T
⊔

S
′′
T , j) = Recover(ST ⊔ S

′′
T , j) = S.

D Proof of Privacy of HK1 (Theorem 1)

We will actually show something stronger than what is claimed in the theorem statement, namely, that the
scheme works for anyextendible access structure, as defined in Appendix C. We will also use the lemmas of
that appendix.

Proof: [Theorem 1]The proof will use code-based game-playing [4]. A game inthis case will consist of an
Initialize procedure, procedures to respond to adversary oracle queries ofDeal, Corrupt, andHash, and a
Finalizeprocedure.

As is usually the case with game-playing proofs, the different games used have many procedures in common.
To compact the game descriptions, we accordingly do not describe each game in full but rather describe all
procedures used individually, putting next to their name the games in which they appear. Boxed code in a
procedure appears in the game if and only if the game name has a box aroundit. In this way, Figures 10 and 11
describe a total of 10 games,G0–G9. As an example of how to read the figures, the upper leftInitialize of
Figure 10 occurs in gamesG0, G1, G2, G3, G4, G6, G7, G8 while the upper rightInitialize of the same Figure
occurs in the remaining two games, namelyG5, G9. TheCorrupt andFinalizeprocedures are the same for all
games.

We will be building adversaries that will runA as a subroutine, themselves responding to the latter’s oracle
queries. GameG0 moves us towards this perspective. (GameG0 is specified by the procedures in the left
column of Figure 10, with the boxed statement included in theDealprocedure.) Our claim is that

Adv
priv
Π (A) = 2 · Pr

[

GA
0

]

− 1 .

To justify this let us explain what the game does. ItsInitialize procedure picks the keyK and generates shares
for it just like in the game defining the privacy ofΠ. While, ideally, we would like to pick the response
to Hash(x) at the timex is queried toHash, the game picks the valuesHash(K[i] C[i]) up-front in theDeal
procedure. (This value is represented byH[i]. TheIF statement in procedureDealensures consistency, meaning
thatHash(K[i] C[i]) = Hash(K[j] C[j]) in case the arguments toHashare the same in both cases.) It does
this because it may soon need to provideX[i] as a response to aCorrupt(i) query, and this share depends on
Hash(K[j] C[j]) for all 1 ≤ j ≤ n. The assignment ofH[i] to Hash(K[i] C[i]) is done only at the time the
adversary makes hash oracle queryK[i] C[i], necessitating theIF statement in the corresponding procedure.

With the goal now being to upper boundPr[GA
0], let us try to provide some intuition for what follows. Suppose

we aim to construct an adversaryB attacking the privacy ofΠEnc with advantage at leastPr[GA
0]. It would run

A to getX0, X1 and pass these to its left-or-right encryption oracle, getting back a ciphertextC encryptingXc,
wherec was the random challenge bit underlying its privacy game. It could now useC to constructC and then
continue to runA, answering its oracle queries asG0 does, and thenA’s prediction of whether it is seeingX0

or X1 would revealc to B. However, adversaryB can’t answerA’s oracle queries because they depend on

25

PROCEDUREInitialize G0–G4, G6–G8

K
$
←{0, 1}k ; b

$
←{0, 1}

K
$
← SharePSS(K)

FOR i← 1 TO n DO Y [i]← ♦

PROCEDUREDeal(X0, X1) G0 , G1

C
$
← EncryptK(Xb)

C
$
← ShareIDA (C)

FOR i← 1 TO n DO

H[i]
$
←{0, 1}h

IF ∃ j < i : (K[i] C[i] = K[j] C[j]) THEN

bad← true ; H[i]←H[j]

Si
$
← ShareECC(H[i])

PROCEDURECorrupt(i) G0–G9

Y [i]←K[i]
X[i]←K[i]C[i] S1[i] · · ·Sn[i]
RETURN X[i]

PROCEDUREHash(x) G0, G1

Hash[x]
$
←{0, 1}h

FOR i← 1 TO n DO

IF (x = K[i] C[i]) THEN Hash[x]←H[i]
RETURN Hash[x]

PROCEDUREFinalize(d) G0–G9

RETURN (d = b)

PROCEDUREInitialize G5, G9

K, K ′ $
←{0, 1}k ; b

$
←{0, 1}

K
$
← SharePSS(K ′)

FOR i← 1 TO n DO Y [i]← ♦

PROCEDUREDeal(X0, X1) G2–G9

C
$
← EncryptK(Xb)

C
$
← ShareIDA (C)

FOR i← 1 TO n DO

H[i]
$
←{0, 1}h ; Si

$
← ShareECC(H[i])

PROCEDUREHash(x) G2 , G3

Hash[x]
$
←{0, 1}h

FOR i← 1 TO n DO

IF Y [i] 6= ♦ THEN

IF (x = K[i] C[i]) THEN Hash[x]←H[i]
ELSE IF (x = K[i] C[i]) THEN

bad← true ; Hash[x]←H[i]

RETURN Hash[x]

PROCEDUREHash(x) G4, G5

Hash[x]
$
←{0, 1}h

FOR i← 1 TOn DO

IF Y [i] 6= ♦ THEN

IF (x = K[i] C[i]) THEN Hash[x]←H[i]
RETURN Hash[x]

Figure 10:Procedures for games in the RO-based instantiation of the HK1 scheme, Theorem 1.

shares ofK andB does not have access toK, which is chosen by its privacy game. The obvious way to
get around this is to haveB pick some new, randomK ′, generateK via SharePSS, and use these, arguing
thatA will not know the difference due to the privacy of the PSS scheme. But theDealprocedure, which we
are suggestingB run, needs to knowall the valuesK[1], . . . ,K[n] to perform the test in theIF statement.
Similarly, the procedure for replying toHashqueries needs to test whether a query containsK[i] for somei
and thus needs to know all the valuesK too. But the PSS scheme does not provide privacy if all shares are
revealed.

So our goal to implement the above idea is to put the game in a form where responding toA’s queries is possible
without knowing the shares of any authorized subset of players. (Forconcreteness, consider the case where the
access structure isA = Am,n. In this case, we want to be able to respond toA’s queries knowing onlym − 1
or less shares ofK.) We do this in a few steps. GamesG0, G1 differ only in statements following the setting of
the flagbad, meaning are identical-until-badin the terminology of [4], and so by the Fundamental Lemma of
Game Playing from that paper we have

Pr
[

GA
0

]

= Pr
[

GA
1

]

+ (Pr
[

GA
0

]

− Pr
[

GA
1

]

)

≤ Pr
[

GA
1

]

+ Pr
[

GA
1 setsbad

]

.

26

PROCEDUREHash(x) G6

Hash[x]
$
←{0, 1}h

FOR i← 1 TO n DO

IF Y [i] 6= ♦ THEN

IF (x = K[i] C[i]) THEN Hash[x]←H[i]
ELSE IF (x = K[i] C[i]) AND Opened(Y) ∪ {i} 6∈ A THEN

bad← true

RETURN Hash[x]

PROCEDUREHash(x) G7

Hash[x]
$
←{0, 1}h

FOR i← 1 TO n DO

IF Y [i] 6= ♦ THEN

IF (x = K[i] C[i]) THEN Hash[x]←H[i]
ELSE IF (x = K[i] C[i]) AND Opened(Y) ∪ {i} ∈ A THEN

bad← true

RETURN Hash[x]

PROCEDUREHash(x) G8, G9

Hash[x]
$
←{0, 1}h

FOR i← 1 TO n DO

IF Y [i] 6= ♦ THEN

IF (x = K[i] C[i]) THEN

Hash[x]←H[i]
ELSE

Ki Ci ← x
Yx ← Y ; Yx[i]← Ki

L← RecoverPSS(Yx)
IF L = K THEN bad← true

RETURN Hash[x]

Figure 11:More procedures for the games in the proof of Theorem 1. Above, Opened(Y) denotes the set{i : Y [i] 6= ♦}
of all indices at whichY is defined, and byKi Ci ← x we mean thatx is uniquely parsed into its constituents.

Consider the experiment in which we pickK, K as in theInitialize procedure ofG1. For1 ≤ j < i ≤ n let
Ej,i denote the event thatK[j] = K[i]. Consider the adversaryEj,i for game GSh that makes aCorrupt(j)
query to getK[j], and then outputsi,K[j]. Then by Lemma 8 we have

Pr [Ej,i] = Pr
[

GShEj,i
]

≤
1

2k
.

So by the union bound,

Pr
[

GA
1 setsbad

]

≤ Pr [∃ j < i : Ej,i] ≤
∑

j<i

Pr [Ej,i] ≤
n(n− 1)

2

1

2k
.

Since the outcome ofG1 is not affected by whether or notbadis set, this means that the problematicIF statement
of theDealprocedure can be removed at the cost of a small loss. TheDealprocedure ofG2 makes this change.
With the goal of making responses toHashqueries possible without having shares of an authorized subset of
players, we split theIF statement of the corresponding procedure ofG1 into two parts inG2. Now we have

Pr
[

GA
1

]

= Pr
[

GA
2

]

(24)

= Pr
[

GA
3

]

+ (Pr
[

GA
2

]

− Pr
[

GA
3

]

)

≤ Pr
[

GA
3

]

+ Pr
[

GA
3 setsbad

]

, (25)

the last step again by the Fundamental Lemma of Game Playing. The setting of the flag bad by the Hash
procedure ofG3 does not affect the game outcome and so we have

Pr
[

GA
3

]

= Pr
[

GA
4

]

.

Now notice thatG4 does not make reference to unopened shares ofK. So at this point we claim that the privacy
of the PSS scheme implies

Pr
[

GA
4

]

= Pr
[

GA
5

]

, (26)

27

whereG5 differs from G4 only in the Initialize procedure which now producesK by sharing notK but an
independently and randomly chosen keyK ′.

Let us now justify (26). To do this we build an adversaryP1 attacking the privacy ofΠPSS such that

Adv
priv
ΠPSS(P1) = Pr

[

GA
4

]

− Pr
[

GA
5

]

. (27)

But the privacy ofΠPSS tells us that the advantage ofP1 is zero, yielding (26). AdversaryP1 begins by picking
K andK ′ at random from{0, 1}k andb at random from{0, 1}. It createsn-vectorY to have all components♦.

It then queriesK ′, K to itsDealoracle. We know that the latter creates a share vectorK
$
← SharePSS(L) where

L = K ′ if the challenge bitb′ of the oracle is0 andL = K if b′ = 1. Now P1 starts runningA, responding to
A’s oracle queries as follows. WhenA makes aDealqueryX0, X1, adversaryP1 executes the code of theDeal
procedure of gamesG4, G5. WhenA makes aCorrupt(i) query,P1 itself makes aCorrupt(i) query to obtain
shareK[i]. It then setsX[i] ← K[i]C[i] S1[i] · · ·Sn[i] andY [i] ← K[i], and returnsX[i] to A. WhenA
makes aHash(x) query,P1 executes the code of theHash procedure of gamesG4, G5 and returnsHash[x]
to A. WhenA halts and outputs a bitd, adversaryP1 returns 1 ifb = d and 0 otherwise. It is easy to see that
(27) is true.

GameG5 usesC, an encryption ofXb underK, but makes no other reference toK. This puts us in the position
we wanted above where we can use the privacy ofΠEnc. Namely, we will now specifyB1 so that

2 · Pr
[

GA
5

]

− 1 ≤ Adv
ind
ΠEnc(B1) . (28)

AdversaryB1 picksK ′ at random and letsK
$
← SharePSS(K ′). It createsn-vectorY to have all components♦.

It then runsA. WhenA makes a queryX0, X1 to its Dealoracle,B1 queriesX0, X1 to its own left-or-right
encryption oracle to get back a ciphertextC

$
← EncryptK(Xb), whereb is the challenge bit chosen by the left-

or-right encryption oracle. NowB1 executes the last three lines of theDealprocedure of gameG5. WhenA
makes aCorrupt(i) query,B1 can execute the code of theCorrupt procedure of gameG5 since it knowsK[i].
WhenA makes aHash(x) query,B1 can similarly execute the code of procedureHash of G5 to obtain the
reply and return it toA. WhenA halts and outputs a bitd, adversaryB1 returnsd. The advantage ofB1 is
2 Pr[b = d]− 1, so (28) is true.

To summarize, at this point we have shown that

Adv
priv
Π (A) ≤ Adv

ind
ΠEnc(B1) +

n(n− 1)

2k
+ 2 · Pr

[

GA
3 setsbad

]

. (29)

The difficult part of the proof is to boundPr[GA
3 setsbad]. For this we use the key-recovery security ofΠEnc.

Let us again first try to give some intuition. The difficulty with applying the privacy of the PSS scheme is thatA
has information aboutC. Indeed, in the worst case, the ECC could be replication, meaningC[i] = C for all
1 ≤ i ≤ n, so thatA would haveC after oneCorrupt query. If the encryption scheme, like in our one-time-pad
example, permitted recovery of the key from a ciphertext, thenA could setbadin G3 with high probability. For
example, suppose the access structure isAm,n and we are using Shamir’s PSS scheme. AdversaryA can obtain
m − 1 shares ofK, then useK and these shares to compute an unopened shareK[i], and queryK[i] C[i]
to Hash. In this case, however, we could obtainK from this last oracle query and the opened shares by using
the recovery procedure of the PSS scheme. But we can’t apply this strategy if A setsbadafter opening only
m− 2 or fewer shares. In that case, however, Lemma 9 applies, saying that even thoughA knowsK, it has low
probability of predicting an unopened share.

However, in implementing this we face the same difficulties as above. We can’t build a key-recovery adversary
if it needs to know shares of the challenge keyK to simulateA. We want instead to use shares of a different,
randomK ′. But for this to be justifiable via the security of the PSS scheme, the game must refer only to opened
shares, andG3 does not do this. We now proceed to resolve these problems.

28

We begin by splitting the bad event into two, one for the case where the set ofcorrupted players together with
the player indicated in the query settingbaddo not form an authorized subset, and the other where they do:

Pr
[

GA
3 setsbad

]

= Pr
[

GA
6 setsbad

]

+ Pr
[

GA
7 setsbad

]

.

To get some intuition, consider again the case where the access structure isAm,n. Then the first case corre-
sponds tobadbeing set withm − 2 or less shares opened, and the second the case wherem − 1 shares were
open.

We claim Lemma 9 implies

Pr
[

GA
6 setsbad

]

≤
q

2k
. (30)

Let us justify this. For eachj in the range1 ≤ j ≤ q we consider the following adversaryFj for the GSh+
game. It gets as input a keyK chosen at random from{0, 1}k by the game, and, via aCorrupt(i) query, can
obtainK[i], whereK

$
← SharePSS(K) were generated by the GSh+ game.Fj begins by creatingn-vectorY to

have all components♦. It then picks a bitb at random, and initializing a counterc to 0. It then runsA. WhenA
makes a queryX0, X1 to itsDealoracle,Fj executes the code of theDealprocedure of gameG6, which it can
do since it knowsK. WhenA makes a queryi to its Corrupt oracle,Fj obtainsK[i] via a corrupt query and
then executes the code of theCorrupt procedure ofG6. WhenA makes a queryx to its Hashoracle,Fj does
the following:

c← c + 1 ; Hash[x]
$
←{0, 1}h

FOR i← 1 TO n DO

IF Y [i] 6= ♦ THEN

IF (x = K[i] C[i]) THEN Hash[x]←H[i]
ELSE IF (c = j) THEN Kj Cj ← x

RETURN Hash[x]

Above, byKj Cj ← x we mean thatx is uniquely parsed into its constituents. WhenA has terminated,
algorithmFj returnsKj and halts. Then

Pr
[

GA
6 setsbad

]

≤

q
∑

j=1

Pr
[

GSh
Fj

+

]

≤

q
∑

j=1

1

2k
=

q

2k
,

yielding (30). Above, the second inequality is by Lemma 9.

If badis set inG7 thenOpened(Yx) = {i : Yx[i] 6= ♦} is an authorized subset and hence by the recoverability
properties ofΠPSS, applyingRecoverPSS to Yx is guaranteed to return the secretK in G8. Thus

Pr
[

GA
7 setsbad

]

≤ Pr
[

GA
8 setsbad

]

. (31)

Now, once again, we have managed to create a game, namelyG8, that does not reference any unopened share,
and are thus in a position to apply the privacy ofΠPSS, which we claim implies

Pr
[

GA
8 setsbad

]

= Pr
[

GA
9 setsbad

]

. (32)

NoteG9 differs fromG8 only in theInitialize procedure which generatesK not fromK but from an indepen-
dently chosenK ′. To justify (32) we can again build an adversaryP2 such that

Adv
priv
ΠPSS(P2) = Pr

[

GA
8 setsbad

]

− Pr
[

GA
9 setsbad

]

, (33)

obtaining (32) because the advantage ofP2 is 0 due to the assumed privacy ofΠPSS. AdversaryP2 begins by
picking K andK ′ at random from{0, 1}k and b at random from{0, 1}. It createsn-vectorY to have all

29

components♦. It then queriesK ′, K to its Deal oracle. The latter creates sharesK
$
← SharePSS(L) where

L = K ′ if the challenge bitb′ of the oracle is0 andL = K if b′ = 1. Now P2 starts runningA, responding
to A’s oracle queries as follows. WhenA makes aDealqueryX0, X1, adversaryP2 executes the code of the
Deal procedure of gamesG8, G9. WhenA makes aCorrupt(i) query,P2 itself makes aCorrupt(i) query
to obtain shareK[i]. It then setsX[i] ← K[i]C[i] S1[i] · · ·Sn[i] andY [i] ← K[i], and returnsX[i] to A.
WhenA makes aHash(x) query,P2 executes the code of theHash procedure of gamesG8, G9 and returns
Hash[x] to A. WhenA halts and outputs a bitd, adversaryP2 ignoresd and returns 1 iffbadwas set when it
responded to someHashquery. It is easy to see that (33) is true.

We will now specifyB2 so that

Pr
[

GA
9 setsbad

]

≤ qn ·Adv
key
ΠEnc(B2) . (34)

Recall that the key-recovery game picks at random a keyK and providesB2 with an encryption oracle
EncryptK(·). AdversaryB2 picksK ′ at random and letsK

$
← SharePSS(K ′). It createsn-vectorY to have all

components♦ and picks bitb at random. It initializes a counterc to 0. It then picks a guessg1
$
← [q] and a

guessg2
$
← [n]. It then runsA. WhenA makes a queryX0, X1 to its Dealoracle, adversaryB2 queriesXb

to its encryption oracle to get back an encryptionC of Xb underK. Now B2 executes the last three lines of
theDealprocedure of gameG9. WhenA makes aCorrupt(i) query, adversaryB2 can execute the code of the
Corrupt procedure of gameG5 since it knowsK[i]. WhenA makes aHash(x) query, adversaryB2 does the
following:

c← c + 1 ; Hash[x]
$
←{0, 1}h

FOR i← 1 TO n DO

IF Y [i] 6= ♦ THEN

IF (x = K[i] C[i]) THEN Hash[x]←H[i]
ELSE IF (c, i) = (g1, g2) THEN

Ki Ci ← x ; Yx ← Y ; Yx[i]← Ki ; L← RecoverPSS(Yx)
RETURN Hash[x]

That is, when(c, i) is equal to(g1, g2), adversaryB2 records the candidate key asL. WhenA has terminated,
adversaryB2 returnsL and halts. One can check that (34) is true.

In summary, this second part of the proof has shown that

Pr
[

GA
3 setsbad

]

≤
q

2k
+ qn ·Adv

key
ΠEnc(B2) .

Combining this with (29) completes the proof of the theorem.

E Proof of Recoverability of HK1 (Theorem 3)

Proof: [Theorem 3]LetΠ = (Share, Recover), ΠEnc = (Encrypt, Decrypt), ΠPSS = (SharePSS, RecoverPSS),
ΠIDA = (ShareIDA , RecoverIDA), andΠECC = (ShareECC, RecoverECC). Consider runningA with game Rec.
Let K, C,K, C, H, S1, . . . ,Sn, X denote the quantities chosen by theShare algorithm when it is exe-
cuted by theDeal procedure in response toA’s Deal query ofX. Let (X ′, j) denote the output ofA. Let
K ′, C ′, K ′, C ′, H ′, S′

1, . . . ,S
′
n, X ′ denote, respectively, the quantitiesK, C,K, C, H, S1, . . . ,Sn, X as de-

fined byRecover(XT ⊔X
′
T , j) when it is executed by theFinalizeprocedure of Rec, whereT is the set of

players thatA corrupted. We consider the following events:

30

E1: ∃ℓ ∈ [n] such thatH[ℓ] 6= H
′[ℓ]

E2: ∃ℓ ∈ T such thatK ′[ℓ] C
′[ℓ] 6∈ {♦ ♦, K[ℓ] C[ℓ]}

E3: K 6= K ′

E4: C 6= C ′

If C = C ′ andK = K ′ then the secretX ′ that is recovered equalsX so

Adv
rec
Π (A) ≤ Pr[E3 ∨ E4]

≤ Pr[E1 ∨ E2 ∨ E3 ∨ E4]

= Pr[E1] + Pr[E1 ∧ E2] + Pr[E1 ∧ E2 ∧ E3] + Pr[E1 ∧ E2 ∧ E3 ∧ E4]

≤ Pr[E1] + Pr[E1 ∧ E2] + Pr[E2 ∧ E3] + Pr[E2 ∧ E4] . (35)

We bound each addend above in turn. LetE1,ℓ be the event thatH[ℓ] 6= H
′[ℓ]. If i 6∈ T then(XT ⊔X

′
T)[i] =

X[i] and henceS′
ℓ[i] = Sℓ[i] by line 21 in Figure 5. ButSℓ is an output ofShareECC(H[ℓ]) andT ∈ A, so

RecoverECC(S′
ℓ, j) = H[ℓ] by Lemma 10 applied toΠECC, meaningH ′[ℓ] = H[ℓ]. SoPr[E1,ℓ] = 0. Now by

the union bound we have

Pr[E1] ≤
n

∑

ℓ=1

Pr[E1,ℓ] = 0 . (36)

Next we claim that

Pr[E2] ≤
(q + 2n)2

2h+1
. (37)

We justify this as follows. Supposeℓ ∈ T andK
′[ℓ] C ′[ℓ] 6= ♦ ♦. By lines 21 and 25 of Figure 5 it must be that

Hash(K ′[ℓ] C ′[ℓ]) = H[ℓ]. But if E1 thenH
′[ℓ] = H[ℓ], and by line 14 of Figure 5 we know thatH[ℓ] =

Hash(K[ℓ] C[ℓ]). So we haveHash(K ′[ℓ] C ′[ℓ]) = Hash(K[ℓ] C[ℓ]). Thus ifK ′[ℓ] C ′[ℓ] 6= K[ℓ] C[ℓ] then
we have a collision inHash. Thus if E1 ∧ E2 we have found a collision inHash. At this point we need
only bound the probability of a collision inHash. The random-oracleHash is invoked at mostq + 2n times,
justifying (37).

Next we claim that
Pr[E2 ∧ E3] = 0 . (38)

We justify this as follows. Ifi 6∈ T then (XT ⊔ X
′
T)[i] = X[i] and henceK ′[i] = K[i] by line 21 of

Figure 5. Ifi ∈ T andE2 holds thenK ′[i] ∈ {♦, K[i]}. But K is an output ofSharePSS(K) andT ∈ A, so
RecoverPSS(K ′, j) = K by Lemma 10 applied toΠPSS, meaningK ′ = K. SoE3 cannot hold.

Finally, we claim that
Pr[E2 ∧ E4] = 0 . (39)

We justify this as follows. Ifi 6∈ T then (XT ⊔ X
′
T)[i] = X[i] and henceC ′[i] = C[i] by line 21 of

Figure 5. If i ∈ T andE2 holds thenC ′[i] ∈ {♦, C[i]}. But C is an output ofShareIDA (C) andT ∈ A, so
RecoverIDA (C ′, j) = C by Lemma 10 applied toΠIDA , meaningC ′ = C. SoE4 cannot hold.

Putting together equations (35)–(39) completes the proof.

F Proof of Recoverability of HK2 (Theorem 5)

Proof: [Theorem 5]LetΠ = (Share, Recover), ΠEnc = (Encrypt, Decrypt), ΠPSS = (SharePSS, RecoverPSS),
ΠIDA = (ShareIDA , RecoverIDA), andΠECC = (ShareECC, RecoverECC). Consider runningA with game Rec.
Let K, C,K, C, H, S1, . . . ,Sn, X denote the quantities chosen by theShare algorithm when it is exe-
cuted by theDeal procedure in response toA’s Deal query ofX. Let (X ′, j) denote the output ofA. Let

31

PROCEDURECorrupt(i)
RETURN X[i]

PROCEDUREFinalize(X ′, j)
FOR i← 1 TO n DO

R
′[i]K ′[i]C ′[i] S

′
1[i]S

′
2[i] · · ·S

′
n[i]←X

′[i]
RETURN (K ′[ℓ] C ′[ℓ], R′[ℓ])

PROCEDUREDeal(X)

ℓ
$
← [n] ; K

$
←{0, 1}k ; C

$
← EncryptK(X)

K
$
← SharePSS(K) ; C

$
← ShareIDA (C)

FOR i← 1 TO n DO

IF i = ℓ THEN (H[ℓ], R[ℓ])
$
← Commit(K[ℓ] C[ℓ])

ELSE (H[i], R[i])
$
← Ct(K[i] C[i])

Si
$
← ShareECC(H[i])

FOR i← 1 TO n DO

X[i]← R[i]K[i]C[i] S1[i] · · ·Sn[i]

Figure 12:Procedures used by adversaryABIND to respond to oracle queries ofA in the proof of Theorem 5.

K ′, C ′, K ′, C ′, H ′, S′
1, . . . ,S

′
n, X ′ denote, respectively, the quantitiesK, C,K, C, H, S1, . . . ,Sn, X as de-

fined byRecover(XT ⊔X
′
T , j) when it is executed by theFinalizeprocedure of Rec, whereT is the set of

players thatA corrupted. We consider the following events:

E1: ∃ℓ ∈ [n] such thatH[ℓ] 6= H
′[ℓ]

E2: ∃ℓ ∈ T such thatK ′[ℓ] C
′[ℓ] 6∈ {♦ ♦, K[ℓ] C[ℓ]}

E3: K 6= K ′

E4: C 6= C ′

If C = C ′ andK = K ′ then the secretX ′ that is recovered equalsX so

Adv
rec
Π (A) ≤ Pr[E3 ∨ E4]

≤ Pr[E1 ∨ E2 ∨ E3 ∨ E4]

= Pr[E1] + Pr[E1 ∧ E2] + Pr[E1 ∧ E2 ∧ E3] + Pr[E1 ∧ E2 ∧ E3 ∧ E4]

≤ Pr[E1] + Pr[E1 ∧ E2] + Pr[E2 ∧ E3] + Pr[E2 ∧ E4] . (40)

We bound each addend above in turn. LetE1,ℓ be the event thatH[ℓ] 6= H
′[ℓ]. If i 6∈ T then(XT ⊔X

′
T)[i] =

X[i] and henceS′
ℓ[i] = Sℓ[i] by line 21 in Figure 7. ButSℓ is an output ofShareECC(H[ℓ]) andT ∈ A, so

RecoverECC(S′
ℓ, j) = H[ℓ] by Lemma 10 applied toΠECC, meaningH ′[ℓ] = H[ℓ]. SoPr[E1,ℓ] = 0. Now by

the union bound we have

Pr[E1] ≤
n

∑

ℓ=1

Pr[E1,ℓ] = 0 . (41)

Next we construct adversaryB such that

Pr[E1 ∧ E2] ≤ n ·Adv
bind
ΠCom(B) . (42)

AdversaryB runsA, responding to itsDealandCorrupt oracle calls via the procedures of Figure 12. WhenA
halts with output(X ′, j), adversaryB runs the Finalize procedure of the same figure.

Next we claim that
Pr[E2 ∧ E3] = 0 . (43)

We justify this as follows. Ifi 6∈ T then (XT ⊔ X
′
T)[i] = X[i] and henceK ′[i] = K[i] by line 21 of

Figure 7. Ifi ∈ T andE2 holds thenK ′[i] ∈ {♦, K[i]}. But K is an output ofSharePSS(K) andT ∈ A, so
RecoverPSS(K ′, j) = K by Lemma 10 applied toΠPSS, meaningK ′ = K. SoE3 cannot hold.

Finally, we claim that
Pr[E2 ∧ E4] = 0 . (44)

32

PROCEDUREA
RunB

WhenB makes a queryEnc(M)

X1 ←M ; X0 ←M
Deal(X0, X1)
X[1]← Corrupt(1)
K[1] C h1h2h3 ←X[1]
ReturnC to B

WhenB outputsK ′

K
′[2]← R(K[1], K ′)

IF Hash(K ′[2]C) = h2 THEN

X ← DecryptK′(C)
IF X = X1 THEN RETURN1 ELSE RETURN0

RETURN 0

PROCEDUREA
RunB

WhenB makes a queryLeftOrRight(X0, X1)
Deal(X0, X1)
X[1]← Corrupt(1)
K[1] C h1h2h3 ←X[1]
ReturnC to B

WhenB outputsb′

RETURN b′

Figure 13:Adversaries for establishing the minimality of the ind1+key1 assumption for the privacy of HK1, Theorem 2.

We justify this as follows. Ifi 6∈ T then (XT ⊔ X
′
T)[i] = X[i] and henceC ′[i] = C[i] by line 21 of

Figure 7. If i ∈ T andE2 holds thenC ′[i] ∈ {♦, C[i]}. But C is an output ofShareIDA (C) andT ∈ A, so
RecoverIDA (C ′, j) = C by Lemma 10 applied toΠIDA , meaningC ′ = C. SoE4 cannot hold.

Putting together equations (40)–(44) completes the proof.

G Proof of Theorem 2

We use the same approach as in our attack on HK1, except that the one-time pad is replaced by the given
encryption schemeΠEnc. So letn = 3, m = 2, let ΠPSS be Shamir’s scheme overF2128 for A = A2,3, and
let ΠIDA and ΠECC both be replication. LetR denote the algorithm such thatR(K[1], K) = K[2] for all
K ∈ SharePSS(K). (We already discussed that Shamir’s scheme admits an efficient suchR.)

The adversaryA for the proof of part (1) is shown on the left-hand side of Figure 13. Wewrite M for the
bitwise complement ofM (here, an arbitrary string distinct fromM). We proceed to the analysis. Let PrivL
and PrivR denote the games that are the same as the Priv game except the encryption oracleDealis replaced by
the oracle that always deals the left or right queries, respectively. Let K denote the underlying key chosen by
theDealoracle. Then

Pr[PrivRA ⇒ 1] ≥ Pr
[

PrivRA ⇒ 1 | K = K ′
]

· Pr[K = K ′]

= 1 ·Adv
key
ΠEnc(B)

and

Pr[PrivLA ⇒ 1]

= Pr
[

PrivLA ⇒ 1 | K = K ′
]

· Pr[K = K ′] + Pr
[

PrivLA ⇒ 1 | K 6= K ′
]

· Pr[K 6= K ′]

= 0 · Pr[K = K ′] + 2−h · Pr[K 6= K ′]

≤ 2−h .

Thus
Adv

priv
Π (A) = Pr[PrivRA ⇒ 1]− Pr[PrivLA ⇒ 1] ≥ Adv

key
ΠEnc(B)− 2−h .

33

This completes the proof for part (1).
The adversaryA for the proof of part (2) is shown on the right-hand side of Figure 13. The analysis is

straightforward and omitted.

34

