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Abstract 
 

The integer addition is often applied in ciphers as a cryptographic 
means. In this paper we will present some results about the linear 
approximating for the integer addition. 
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1. Preliminary 
 
For the undecided effect of carry operations in the integer addition, it is often used as a 
cryptographic means in some ciphers, for instance, in the candidate ciphers of eSTREAM (The 
ECRYPT Stream Cipher Project) some of them employed the combination of the integer addition, 
XOR and rotations as main cryptographic transformation. Therefore, it is significant to know the 
effect of the integer addition in cryptography. J. Wallen [3] provided an algorithm for computing 
the correlation of linear approximation of addition modulo 2n . In this paper, we will show some 
explicit results about the linear approximating to the integer addition.  
 
2. Some basic results  
 
In this paper, the symbol ⊕  as usually stands for XOR operation. Suppose z is a binary 

segment of length n , denoted by [ ]z i  the i-th bit, and let 1( ) [ ]
i

s z z i=∑ , 0 1( ) ( )s z n s z= − , 

and 0 1( ) ( ) ( )d z s z s z= − , that is, 0 ( )s z and 1( )s z are the numbers of the bit “0” and bit “1” in 

z  respectively, and ( )d z  is the bias of them. Let x  and y  be two integers of length n bits, 

denoted by ( , ) ( ) ( )L x y x y x y= + ⊕ ⊕ , ( , ) (1 ) ( )L x y x y x y= + + ⊕ ⊕� , and define 
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We have the following result 
 
Proposition 1  
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Proof.  It is easy to check directly 0 1D = , so we assume that 0i > . For an integer z , 

denoted by iz  the integer formed by the segment of z from bit 0 to bit i . Let ( , )w L x y= , 

denoted by iN  the number of ( , )L x y with [ ] 1w i = . It is easy to know that [ ] 0w i =  if and 



only if 1 1 2i
i ix y− −+ < , so 
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The proof of (1.3) is similar to the above, so omitted. It is easy to know that  
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From Proposition 1, we have seen that x y+ is still some like x y⊕ on the bits in statistics, 

especially for the first bits, though there are undecided carry operations in the addition. In other 

words, the probability ( )[ ] ( )[ ]x y i x y i+ = ⊕  has notable advantage when i is small, e.g. 

0,1,2, ,i etc= " . In the following, we will show a more general result on the linear 

approximating to the integer addition.  

Suppose that z is a integer variable over the domain Ω , denoted by ( ) [ ]
i

z z iδ =⊕  and define 

(| | 2 ( )) / | |z
z

zδ
∈Ω

Δ = Ω − Ω∑ .                     (2.7) 

Moreover, for a constant integer c , denoted by { }| [ ] 1C i c i= = . Suppose the 1{ }s
kC i= , 

1 2 si i i> > >" , as usual, | |C represents the cardinality of set C , i.e. | |C s= , and define 
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Proposition 2 Suppose that c is a constant integer, denoted by ( , ) &cL L x y c= and 

( , ) &cL L x y c=� � , we have 
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Proof.  We prove the formula (2.8) by the induction on | |C . By the Proposition 1, we have 



known the formula (2.8) is true when 1s = . Now assume it is true in the case s . We consider 

the first 1si + bits, denoted by 0N  and 1N  the numbers of the pairs ( , )x y of 1si + -bits integers 

such that 12 six y ++ <  and 12 six y ++ ≥ , we have known that which are equal the numbers of 

the pairs ( , )x y with that 1( , )[ ] 0sL x y i + = and1 respectively and  
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Denote 1,1k k sj i i k s+= − ≤ ≤ , and 1{ }s
kC j′ = , then we apply the induction on the set C′ , 

that is, on the segments of integers beginning the 1si + -th bit, we have   
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The proof for the second formula of (2.8) is similar to the above, so omitted.             
                                                                            
 
In the some real cases, it is possible to come into the partial cases, that is, 

in ( , ) ( ) ( )L x y x y x y= + ⊕ ⊕ the variable y a=  is a constant. Let c  be a constant, denoted 

by ( , ) &cL L x a c= , we define  
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Moreover,  let 0 1( , ) ( ( , ), ( , ))a c a c a cφ φΦ = . We will simply write them as Φ， 1φ  and 0φ    



if the parameters are clear from the context, In the following we will mainly calculate the 

( , )a cΦ . 

Suppose that { | [ ] 1}A i a i= = and { | [ ] 1}C i c i= = , that is, A and C are the sets of the 

positions of bits “1” of the constants a and c respectively. Without loss the generality, we 
assume that  

1 1 2 2 ,s sA C AC A C A C∪ = "                        (2.11) 

which is the arrangement of A and C in the order from small to large, where 
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= =∪ ∪ . In this paper we restrict the case A C∩ =∅ . Denoted by ka the 

segment of the integer a formed by 1A to kA . Let iα be the smallest element of iA but 

1 0,α = 1s nα + = , and 1 ,i i in α α+= − 1 i s≤ ≤ , ( ) 2 2i

i

t
i
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A αχ −

∈

= ∑ . Suppose 0{ } ,k
i iC x=  

0 1 ,kx x x< < <"   we define  
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Lemma 1 If 1,s = then 

1( , ) ( )a c a Cφ τ= ⋅ .                         (2.13) 

Proof. It is clear that the number 1( , )a cφ is the number of ( , )L x a with odd carries in the 

positions of constant c . Suppose that 0 0 1{ } , ,k
i kC x x x x= < < <"  denoted by rN  the 

number of ( , )L x a with r carries in the positions of constant c . It is not difficult to know that 

the r carries must appear in the first r positions of C , i.e. 0 1 1,rx x x −< < <" hence it is easy 

to have  
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For two vectors 1 2( , ), ( , )v x y v u w= = , we define  



1 2 ( , )v v xu yw xw yu∗ = + + .                       (2.16) 

and for 2-vector ( , )x y , we define ( , ) ( , )T x y y x= . Let 
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Lemma 2   
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Proof.  Let z be the integer of length n such that mod(2 )nz x a≡ + , and 2na a= − , 

hence it has mod(2 )nx z a= + , so  

( , ) ( ) ( ) ( ) ( , ) ( )L a x z a z a z a z a a a L z a a a= ⊕ + ⊕ = ⊕ + ⊕ ⊕ ⊕ = ⊕ ⊕ , 
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It is easy to know that the bits of ( , )L z a excel over sA  will be “0” for the bits of a  and 

a z+ after sA all are “1” , so it follows that 

1( , ) & ( , ) & sL z a c L z a c −=  

We divide the a integers in the interval [0, )a into ( ) 1sAχ + classes , 0 ( )i sS i Aχ≤ ≤ , an 



integer z belongs to iS  iff ( )s sz A iα χ>> = − . It is clear that for 

1, 2, , ( ), | | 2 s
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The equation above can be written as  

1 1[ ] ( ) ( , ) [ 1]s s ss A a c sχ − −Γ = Φ +Γ −                   (2.20) 

So, the equation (2.19) will be followed by the induction.                              
 
                             

For each integer k , 1 k s≤ ≤ , denoted by ( ) ( )k k kd A Cχ τ= ⋅ , (2 , )kn
k k kd dζ = − ,  

Moreover, let ( )kp a and ( )kq a be defined as in the Lemma 2 and denoted by 

1 1( ) ( ( ) ( )),k k k ke C q a p aτ − −= ⋅ − ( , )k k ke eσ = − , and assuming that 0 1(1,0), (0,0)σ σ= = , 

and 1 (1,0)sζ + = , then we have   

Proposition 3 If ,A C∩ =∅  
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Proof. We will apply the induction on s . From Lemma 1, we can know that the Proposition 3 is 

true for 1.s = Consider the integers of length sα , by the induction we have 
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In the case s , it is clear that there are 1sa −  integers that will carry in the position sα , which are 

1 12 , 2 1, , 2 1s s s
s sa aα α α
− −− − + −" . Suppose that in these 1sa −  integers there are 

[ 1]p s − ones in 1[ 1]sφ −  and [ 1]q s − ones in 0[ 1]sφ −  respectively. Consider the last 

segments of integers from the sα -bit to the end, let ka and kc be defined as the above and 

k ka a a= −� , k kc c c= −� , and denoted by 0N and 1N  the numbers of the segments 

1 1( , ) &s sL x a c− −� � with even and odd bit ”1” respectively, by Lemma 1, we know 
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Where Im( , ) .x y y=                                                           

 
As a example, the case 2s = , 

2 1 1| |
1 1 2 1 2 1 2( , ) 2 2 2 ( 1) ( )n n Ca c d d d d a Cφ τ= ⋅ + ⋅ − ⋅ + − ⋅ . 

 
The case A C∩ ≠ ∅  may be treated in a similar way but will require a little more consideration 

to set i i iA C B∩ = and as the first step to calculate in the case of a block ABC , the detail 

discussion is omitted.                                            
 
3. Conclusion 
 
We hope that these results presented here will be useful in the designs and cryptanalysis of ciphers 
in the future, the results of Proposition 1 were once appeared in the paper [1] and [2].   
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