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Abstract

The nonlinearity profile of a Boolean function (i.e. the sequence of
its minimum Hamming distances nlr(f) to all functions of degrees at
most r, for r ≥ 1) is a cryptographic criterion whose role against attacks
on stream and block ciphers has been illustrated by many papers. It
plays also a role in coding theory, since it is related to the covering radii
of Reed-Muller codes. We introduce a method for lower bounding its
values and we deduce bounds on the second order nonlinearity for several
classes of cryptographic Boolean functions, including the Welch and the
multiplicative inverse functions (used in the S-boxes of the AES). In the
case of this last infinite class of functions, we are able to bound the whole
profile, and we do it in an efficient way when the number of variables is
not too small. This allows showing the good behavior of this function
with respect to this criterion as well.

Keywords: stream cipher, block cipher, Boolean function, nonlinearity profile

1 Introduction

Boolean functions are central objects for the design and the security of symmet-
ric cryptosystems (stream ciphers and block ciphers), see [2, 3]. In cryptography,
the most usual representation of these functions is the algebraic normal form
(ANF):

f(x1, . . . , xn) =
∑

I⊆{1,...,n}

aI

∏
i∈I

xi,

where the aI ’s are in F2. The terms
∏

i∈I xi are called monomials. The alge-
braic degree d◦f of a Boolean function f equals the maximum degree of those
monomials whose coefficients are nonzero in its (unique) algebraic normal form.
Affine functions are those Boolean functions of algebraic degrees at most 1.

A characteristic of Boolean functions, called their nonlinearity profile, plays
an important role with respect to the security of the cryptosystems in which
they are involved. Let f : Fn

2 → F2 be an n-variable Boolean function. For
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every non-negative integer r ≤ n, we denote by nlr(f) the minimum Hamming
distance f and all functions of algebraic degrees at most r (in the case of r = 1,
we shall simply write nl(f)). In other words, nlr(f) equals the distance from f
to the Reed-Muller code RM(r, n) of length 2n and of order r. This parameter is
called the r-th order nonlinearity of f (simply the nonlinearity in the case r = 1).
The maximum r-th order nonlinearity of all Boolean functions in n variables
equals by definition the covering radius of RM(r, n) [9]. The nonlinearity profile
of a function f is the sequence of those values nlr(f) for r ranging from 1 to
n− 1.

The same notion can be defined for S-boxes in block ciphers as well, that is,
for vectorial Boolean functions F : Fn

2 → Fm
2 . We shall denote by nlr(F ) the

minimum r-th order nonlinearity of all the component functions ` ◦ F , where `
ranges over the set of all the nonzero linear forms1 over Fm

2 . Equivalently, nlr(F )
is the minimum r-th order nonlinearity of all the functions v · F , v ∈ Fm

2 \ {0},
where “·” denotes the usual inner product in Fm

2 (or any other inner product). If
Fm

2 is endowed with the structure of the field F2m , then nlr(F ) is the minimum
r-th order nonlinearity of all the functions tr(vF (x)), v ∈ F ∗

2m , where tr is the
trace function from F2m to F2: tr(x) = x + x2 + x22

+ · · ·+ x2n−1
.

The cryptographic relevance of this parameter has been illustrated by (e.g.)
Courtois, Golic, Iwata-Kurosawa, Knudsen-Robshaw, Maurer and Millan [10,
15, 16, 18, 22, 23]. Very little is known on nlr(f) for r > 1. The best known
upper bound [7] on nlr(f) has asymptotic version:

nlr(f) = 2n−1 −
√

15
2

· (1 +
√

2)r−2 · 2n/2 + O(nr−2).

It can be proved [9, 4] that, for every positive real number such that c2 log2(e) >
1 where e is the base of the natural logarithm, (e.g. for c = 1), there exist, for
sufficiently large values of n, functions with r-th order nonlinearity greater than

2n−1 − c

√√√√ r∑
i=0

(
n

i

)
2

n−1
2 ≈ 2n−1 − c nr/2 2n/2

π1/4 r(2r+1)/4 23/4
.

This proves that the best possible r-th order nonlinearity of n-variable Boolean
functions is asymptotically equivalent to 2n−1, and that its difference with 2n−1

is polynomially (in n, for every fixed r) proportional to 2n/2. But the proof of
this fact is obtained by counting the number of functions having upper bounded
r-th order nonlinearity (or more precisely by upper bounding this number) and it
does not help obtaining explicit functions with non-weak r-th order nonlinearity.

Computing the r-th order nonlinearity of a given function with algebraic
degree strictly greater than r is a hard task for r > 1. In the case of the first
order, much is known in theory and also algorithmically since the nonlinearity is

1Replacing “nonzero linear forms” by “non-constant affine functions” clearly gives an equiv-
alent definition. A more general notion would define nlr,s(F ) as the minimum r-th order
nonlinearity of all the functions g ◦ F where g ranges over the set of all the non-constant
Boolean functions of algebraic degrees at most s.
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related to the Walsh transform, which can be computed by the algorithm of the
Fast Fourier Transform (FFT). Recall that the Walsh transform of f is defined
at any vector a ∈ Fn

2 as Wf (a) =
∑

x∈F n
2
(−1)f(x)+x·a (where x · a is an inner

product in Fn
2 - when the vector space Fn

2 is identified to the field F2n , we take
x · a = tr(xa)). The relation between the nonlinearity and the Walsh transform
is well-known: nl(f) = 2n−1 − 1

2 maxa∈F n
2
|Wf (a)|. But for r > 1, very little

is known. Even the second order nonlinearity is known only for a few peculiar
functions and for functions in small numbers of variables. A nice algorithm
due to G. Kabatiansky and C. Tavernier and improved and implemented by
Fourquet et al. [14, 17, 13] works well for r = 2 and n ≤ 11 ( in some cases,
n ≤ 13), only. It can be applied for higher orders, but it is then efficient only
for very small numbers of variables. No better algorithm is known.

Proving lower bounds on the r-th order nonlinearity of functions (and there-
fore proving their good behavior with respect to this criterion) is also a quite dif-
ficult task, even for the second order. Until recently, there had been only one at-
tempt, by Iwata-Kurosawa [16], to construct functions with lower bounded r-th
order nonlinearity. But the obtained value, 2n−r−3(r+5), of the lower bound was
small. A lower bound on the r-th order nonlinearity of functions with given alge-
braic immunity2 has been given in [6] and improved in [5]. It gives better results
than those of [16] for functions f with good algebraic immunity AI(f) (i.e. with
AI(f) not much smaller than dn/2e), but the corresponding values of the lower
bound, which is roughly equal to max

(∑AI(f)−r−1
i=0

(
n
i

)
, 2

∑AI(f)−r−1
i=0

(
n−r

i

))
,

are small too.
In the present paper, we introduce a new method for lower bounding the

nonlinearity profile of a given function. We show how to derive a lower bound
on the r-th order nonlinearity of a function f from a lower bound on the (r−1)-
th order nonlinearity of at least one of the derivatives of f . This leads to a
recursive way of lower bounding the r-th order nonlinearities of Boolean func-
tions, using what is known on their first order nonlinearities. But this method
does not allow obtaining efficient bounds. In case lower bounds exist for the
(r− 1)-th order nonlinearities of all the derivatives of f , we derive a potentially
stronger (recursive) bound. We deduce then, for some classes of functions, ex-
plicit lower bounds on their second order nonlinearities (extendable in some
cases to bounds on higher order nonlinearities, but the expressions become then
more complex) which happen to be quite efficient, as we show with tables of
values. Most interestingly, we obtain lower bounds for the whole nonlinearity
profile of the multiplicative inverse functions. These bounds are efficient when
n is not too small as we show with tables.
The paper is organized as follows. After some recalls and some simple observa-
tions done at Section 2, we give the general lower bounds at Section 3. We apply
them at Section 4 to the Maiorana-McFarland functions, to the functions of uni-
variate degree 2t − 1 on the field F2n , and to some classes of functions whose
first order nonlinearities are known good (the Welch functions, some related

2The algebraic immunity is a parameter quantifying the resistance to basic algebraic at-
tacks.
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functions, and the inverse functions), to deduce bounds on their second order
nonlinearities. In Section 5, we obtain, for every r, a lower bound on the r-th
order nonlinearity of the inverse function, which shows that it is asymptotically
equivalent to 2n−1.

2 Some simple facts

In this section, we recall some known facts on the nonlinearity profile and we
make some easy observations.

• Adding to a function f a function of algebraic degree at most r clearly
does not change the r-th order nonlinearity of f .

• Since RM(r, n) is invariant under any affine automorphism, composing
a Boolean function by an affine automorphism does not change its r-th order
nonlinearity (i.e. the characteristic nlr is affine invariant).

• The minimum distance of RM(r, n) being equal to 2n−r for every r ≤ n, we
have nlr(f) ≥ 2n−r−1 for every function f of algebraic degree exactly r+1 ≤ n.
Moreover, any minimum weight function f of algebraic degree r+1 (that is, the
indicator - i.e. the characteristic function - of any (n− r − 1)-dimensional flat,
see [21]), has r-th order nonlinearity equal to 2n−r−1 since a closest function of
algebraic degree at most r to f is clearly the null function.

• As observed by Iwata and Kurosawa [16] (for instance), if f0 is the restric-
tion of f to the linear hyperplane H of equation xn = 0 and f1 the restriction
of f to the affine hyperplane H ′ of equation xn = 1 (these two functions will be
viewed as (n − 1)-variable functions), then we have nlr(f) ≥ nlr(f0) + nlr(f1)
since, for every function g of algebraic degree at most r, the restrictions of
g to H and H ′ having both algebraic degree at most r, we have dH(f, g) ≥
nlr(f0) + nlr(f1) where dH denotes the Hamming distance (obviously, this in-
equality is more generally valid if f0 is the restriction of f to any linear hyper-
plane H and f1 its restriction to the complement of H).
- Moreover, if f0 = f1, then there is equality since if g is the best approximation
of algebraic degree at most r of f0 = f1, then g now viewed as an n-variable
function lies at distance 2nlr(f0) from f .
- Since nlr is affine invariant, this implies that, if there exists a nonzero vector
a ∈ Fn

2 such that f(x + a) = f(x), then the best approximation of f by a func-
tion of algebraic degree r is achieved by a function g such that g(x + a) = g(x)
and nlr(f) equals twice the r-th order nonlinearity of the restriction of f to any
linear hyperplane H excluding a.
- Note that the equality nlr(f) = 2nlr(f0) is also true if f0 and f1 differ by a
function of algebraic degree at most r − 1 since the function xn(f0 + f1) has
then algebraic degree at most r.
- The r-th order nonlinearity of the restriction of a function f to a hyperplane
is lower bounded by means of the r-th order nonlinearity of f (this simple result
will be a very useful tool in the sequel):

Proposition 1 Let f be any n-variable Boolean function, r a positive integer
smaller than n and H an affine hyperplane of Fn

2 . Then the r-th order nonlin-
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earity of the restriction f0 of f to H (viewed as an (n − 1)-variable function)
satisfies:

nlr(f0) ≥ nlr(f)− 2n−2.

Proof: We assume without loss of generality that H = Fn−1
2 × {0}. Let g be

any (n − 1)-variable function of algebraic degree at most r. Let us extend it
to an n-variable function (any one) of algebraic degree at most r, that we shall
still denote by g. Then we have:

dH(f0, g) = 2n−2 − 1
2

∑
x∈H

(−1)f(x)+g(x) =

2n−2 − 1
4

 ∑
x∈F n

2

(−1)f(x)+g(x) +
∑

x∈F n
2

(−1)f(x)+g(x)+xn

 =

2n−2 − 1
4

(2n − 2dH(f, g) + 2n − 2dH(f, g + xn)) ≥

−2n−2 + nlr(f).

�

Corollary 1 Let f be any n-variable Boolean function. Let k, r be positive
integers smaller than n and E a k-dimensional affine subspace of Fn

2 . Then the
r-th order nonlinearity of the restriction f0 of f to E (viewed as a k-variable
function) satisfies:

nlr(f0) ≥ nlr(f)− 2n−2 − · · · − 2k−1.

3 Lower bounds on the nonlinearity profile of a
function by means of the nonlinearity profiles
of its derivatives

Notation: We denote by Daf the so-called derivative of f in the direction of
a ∈ Fn

2 :
Daf(x) = f(x) + f(x + a).

Applying such discrete derivation several times to a function f leads to the so-
called higher order derivatives Da1 · · ·Dak

f(x) =
∑

u∈F k
2

f(x +
∑k

i=1 uiai).
Note that if a1, · · · , ak are not linearly independent then Da1 · · ·Dak

f is null
and, if they are linearly independent, then the set {x+

∑k
i=1 uiai; u ∈ F k

2 } is a
k-dimensional flat. Note also that every derivation reduces the algebraic degree
of f at least by 1.

We give now a first tight lower bound on the r-th order nonlinearity of any
function f , knowing a lower bound on the (r − 1)-th order nonlinearity of at
least one of its derivatives (in nonzero directions).
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Proposition 2 Let f be any n-variable function and r a positive integer smaller
than n. We have:

nlr(f) ≥ 1
2

max
a∈F n

2

nlr−1(Daf).

Proof: Let a0 be an element such that nlr−1(Da0f) = maxa∈F n
2

nlr−1(Daf).
For every n-variable function h of algebraic degree at most r, we have, denoting
by wH the Hamming weight: dH(f, h) = wH(f + h) and wH(Da0(f + h)) =
dH(Da0f,Da0h) ≥ nlr−1(Da0f), since the function Da0h has algebraic degree
at most r − 1. So let us show that wH(f + h) ≥ 1

2wH(Da0(f + h)). Let H be
a linear hyperplane such that a0 6∈ H. The Hamming weight of the function
Da0(f + h) equals twice the Hamming weight of its restriction to H. For every
x ∈ H such that Da0(f + h)(x) = 1, either x or x + a0 belongs to the support
of f + h. Hence, the Hamming weight of f + h is at least half the Hamming
weight of Da0(f + h). This completes the proof. �

This bound is tight. Indeed, take for f any Boolean function of algebraic
degree r+1 and of Hamming weight 2n−r−1 (i.e. the indicator of any (n−r−1)-
dimensional flat). The r-th order nonlinearity of f equals its weight (see Section
2). The nonzero derivatives of f are the indicators of (n− r)-dimensional flats
and their (r − 1)-th order nonlinearity equals their weight 2n−r.

Obviously, Proposition 2 can be repeatedly applied: for every i, we have

nlr(f) ≥ 1
2i

max
a1,...,ai∈F n

2

nlr−i(Da1 · · ·Dai
f).

This bound is also tight (take the same function as above). But we clearly
can not get a bound which is equivalent to 2n−1 with Proposition 2. Hence, a
better bound is necessary.

We give now (in Corollary 2) a potentially stronger lower bound, valid when
a lower bound on the (r−1)-th order nonlinearity is known for all the derivatives
(in nonzero directions) of the function.

Proposition 3 Let f be any n-variable function and r a positive integer smaller
than n. We have:

nlr(f) ≥ 2n−1 − 1
2

√
22n − 2

∑
a∈F n

2

nlr−1(Daf).
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Proof: Let h be any n-variable function of algebraic degree at most r. We have: ∑
x∈F n

2

(−1)f(x)+h(x)

2

=
∑

x,y∈F n
2

(−1)f(x)+f(y)+h(x)+h(y)

=
∑

a∈F n
2

∑
x∈F n

2

(−1)f(x)+f(x+a)+h(x)+h(x+a)

=
∑

a∈F n
2

∑
x∈F n

2

(−1)Daf(x)+Dah(x).

For every a ∈ Fn
2 , the derivative Dah has algebraic degree at most r−1. Hence,

we have
∑

x∈F n
2
(−1)Daf(x)+Dah(x) = 2n − 2dH(Daf,Dah) ≤ 2n − 2nlr−1(Daf).

This implies:

dH(f, h) = 2n−1 − 1
2

∑
x∈F n

2

(−1)f(x)+h(x)

≥ 2n−1 − 1
2

√
22n − 2

∑
a∈F n

2

nlr−1(Daf).

�

This bound also is tight. Take for f the indicator of any (n − r − 1)-
dimensional flat again. It has 2n−r−1 null derivatives (when a belongs to the
direction of the flat). The 2n−2n−r−1 nonzero derivatives of f are the indicators
of (n−r)-dimensional flats and have therefore (r−1)-th order nonlinearity 2n−r.
We deduce 2n−1− 1

2

√
22n − 2

∑
a∈F n

2
nlr−1(Daf) = 2n−1− 1

2

√
22n − (2n+1 − 2n−r)2n−r =

2n−1 − 1
2

√
(2n − 2n−r)2 = 2n−r−1 = nlr(f).

Remark. The bound of Proposition 3 is clearly better, in general, than that of
Proposition 2, and it will actually lead to efficient bounds. But it is not clear
to us whether it is always better (or equal): for every function h of algebraic
degree at most r, we have the inequality

2n−1 − 1
2

√ ∑
a∈F n

2

∑
x∈F n

2

(−1)Daf(x)+Dah(x)

= min(dH(f, h), dH(f, h + 1))

≥ 1
2

max
b∈F n

2

dH(Dbf,Dbh)

but when upper bounding
∑

x∈F n
2
(−1)Daf(x)+Dah(x) by 2n − 2 nlr−1(Daf) and

lower bounding dH(Dbf,Dbh) by nlr−1(Dbf), we cannot know whether this
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inequality will remain true. However, we could not find examples where the
bound of Proposition 3 is worse than that of Proposition 2.

Corollary 2 Let f be any n-variable function and r a positive integer smaller
than n. Assume that, for some non-negative integers K and k, we have nlr−1(Daf) ≥
2n−1 −K 2k for every nonzero a ∈ Fn

2 , then

nlr(f) ≥ 2n−1 − 1
2

√
(2n − 1)K2k+1 + 2n

≈ 2n−1 −
√

K 2(n+k−1)/2.

Proof: According to Proposition 3, we have

nlr(f) ≥ 2n−1 − 1
2

√
22n − 2(2n − 1)(2n−1 −K 2k)

= 2n−1 − 1
2

√
(2n − 1)K 2k+1 + 2n.

�

We can see that, contrary to Proposition 2, Proposition 3 and Corollary 2 can
allow proving that some infinite class of functions has a nonlinearity asymptot-
ically equivalent to 2n−1.

Remark. Let f have algebraic degree exactly 3. Proposition 2 implies that
nl2(f) ≥ 2n−3 (since at least one of the derivatives of f has degree exactly 2
and therefore has first-order nonlinearity at least 2n−2). If we assume that all
the derivatives Daf , a 6= 0 have algebraic degree exactly 2, then Corollary 2
with K = 1 and k = n−2 implies that nl2(f) ≥ 2n−1− 1

2

√
(2n − 1)2n−1 + 2n =

2n−1− 1
2

√
(2n + 1)2n−1 ≈ 2n−1−2n−3/2, which is stronger. Note that n-variable

cubic functions whose derivatives Daf , a 6= 0 all have algebraic degree 2 do exist
for n ≥ 5, since the number of functions of algebraic degrees at most 3 equals
2(n

3)+(n
2)+n+1, the number of functions of algebraic degrees at most 3 having at

least one affine derivative is upper bounded by (2n−1) 2(n−1
3 )+(n−1

2 )+2n (indeed,
such function is an affine-type extension of a function of algebraic degree at most
3 on a linear hyperplane of Fn

2 ) and the difference between these two numbers
is strictly positive for n ≥ 5.

Applying two times Proposition 3, we obtain the bound

nlr(f) ≥

2n−1 − 1
2

√√√√ ∑
a∈F n

2

√
22n − 2

∑
b∈F n

2

nlr−2(DaDbf). (1)

Applying it ` times, we get
nlr(f) ≥
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2n−1 − 1
2

√√√√√ ∑
a1∈F n

2

√√√√ ∑
a2∈F n

2

· · ·
√

22n − 2
∑

a`∈F n
2

nlr−`(Da1 · · ·Da`
f).

4 Functions with provably lower bounded sec-
ond order nonlinearity

We study now the main classes of Boolean and vectorial functions which are
used in cryptography: the Maiorana-McFarland functions (which have led to
many constructions of functions allowing good trade-off between several crypto-
graphic criteria, such as nonlinearity, resiliency ...), the known vectorial Boolean
functions F over the field F2n whose nonlinearities are provably high and the
related component functions tr(λF (x)).

4.1 Maiorana-McFarland functions

Let k be a positive integer smaller than n, let g be a Boolean function on Fn−k
2

and let φ be a mapping from Fn−k
2 to F k

2 . Set:

fφ,g(x, y) = x · φ(y) + g(y), x ∈ F k
2 , y ∈ Fn−k

2

where “·” is the usual inner product in F k
2 .

We have (see e.g. [2]):

nl1(fφ,g) ≥ 2n−1 − 2k−1 max
u∈F k

2

|φ−1(u)|, (2)

where |φ−1(u)| denotes the size of the pre-image φ−1(u). Any derivative of
such Maiorana-McFarland function is a Maiorana-McFarland function: for every
a ∈ F k

2 and every b ∈ Fn−k
2 , we have D(a,b) (fφ,g(x, y+b)) = x·Db φ(y)+a·φ(y)+

Db g(y) = fDb φ,a·φ+Dbg(x, y). Note that for b = 0, we have maxu∈F k
2
|(Dbφ)−1(u)| =

2n−k. We deduce from Proposition 3 and from Relation (2) that

nl2(fφ,g) ≥ 2n−1 − 1
2

√
A,

where A equals:

22n − 2 (2n − 2k)(2n−1 − 2k−1 max
u∈F k

2 ,b∈(F n−k
2 )∗

|(Db φ)−1(u)|) =

2n+k + 2k(2n − 2k) max
u∈F k

2 ,b∈(F n−k
2 )∗

|(Db φ)−1(u)|.

Similar bounds on nlr(fφ,g) can also be given.
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4.2 Functions of univariate degree 2t − 1

Let Fn
2 be identified with the field F2n ; we still denote by tr the trace function

from Fn
2 to F2. Let t ≤ n be a positive integer and F (x) a univariate polynomial

of degree 2t − 1 over Fn
2 . Let f(x) = tr(F (x)). Then every derivative3 Daf ,

a 6= 0, is the trace of a univariate function of degree 2t − 2 and equals in fact
the trace of a univariate function of degree at most 2t − 3, after reduction using
the equality tr(y2) = tr(y). The term in x2t−3 can come from derivating the
monomial of degree 2t−1 only, and thus cannot vanish (since for every nonzero
λ, tr(λ(x2t−1+(x+a)2

t−1)) equals tr(λx2t−3a2) plus the trace of a polynomial of
degree less than 2t − 3). Hence, according to the Weil bound [20], its first-order
nonlinearity is then at least 2n−1 − (2t − 4)2n/2−1. Corollary 2 with K = 2t − 4
and k = n/2 − 1 implies that nl2(f) ≥ 2n−1 − 1

2

√
(2n − 1)(2t − 4)2n/2 + 2n ≈

2n−1 − 23n/4+t/2−1.
The same arguments show that nl2(F ) is lower bounded by this same value.

4.3 The Welch function

The vectorial Welch function Fwelch : x → x2t+3, where t = n−1
2 , n odd,

is an AB function, i.e. has the best possible nonlinearity 2n−1 − 2
n−1

2 as a
vectorial function from F2n to F2n [1]. It is a permutation. So all the Boolean
functions tr(λx2t+3), λ 6= 0, are affinely equivalent to each others (through the
automorphisms x → µx). We shall therefore study only the function tr(x2t+3)
that we shall denote by fwelch(x). The second order nonlinearity of this function
is good, for all the values of n for which it could be computed; we shall see at
Subsection 4.5 that it is slightly better than that of the inverse function (for
instance, for n = 9, it equals 184, according to [14, 17, 13]). Note however that
this function cannot be used for a general purpose as a cryptographic function
since its algebraic degree (which equals, for any such function, the 2-weight of
the exponent, i.e., the number of 1’s in its binary expansion) equals 3 and is
too low (for instance, it does not allow resistance to higher order differential
cryptanalyses). Nevertheless, let us determine a lower bound on the first-order
nonlinearities of its derivatives, in order to compare what we get thanks to
Corollary 2 with the actual values of its second order nonlinearity obtained by
computing.

Lemma 1 Any derivative, in a nonzero direction, of the function fwelch(x) =
tr(x2t+3) has nonlinearity at least 2n−1 − 2

n+3
2 .

Proof: A straightforward calculation (which was the starting point of Dob-
bertin’s proof of the almost perfect nonlinearity of the Welch function [12]) gives
for every nonzero a ∈ F2n that, denoting r = t + 1, we have Dafwelch(ax) =
tr(a2t+3[q(x + x2t

) + 1]), where q(x) = x2r+1 + x3 + x.

3The term of derivative is used in this paper in the sense of discrete derivative, only. It
must not be confused with the derivative F ′(x) of the polynomial F (x), or with the trace of
the polynomial F ′(x).
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The function ga(x) = tr(a2t+3(q(x + x2t

)) is such that ga(x + 1) = ga(x).
According to what we have seen at Section 2, this implies that nl(Dafwelch)
equals twice the nonlinearity of the restriction of ga to the linear hyperplane
H = {x ∈ F2n / tr(x) = 0} (indeed, H excludes 1 since n is odd). Since the
function x ∈ H → x+x2t

is a linear automorphism of H, nl(Dafwelch) therefore
equals twice the r-th order nonlinearity of the restriction of tr(a2t+3q(x)) to H.
Let us denote b = a2t+3. The nonlinearity of the n-variable quadratic func-
tion tr(bq(x)) equals 2n−1−2

n+k
2 −1 where k is the dimension of the vectorspace

E = {x ∈ F2n /∀y ∈ F2n , tr(b q(x))+tr(b q(y))+tr(b q(x+y)) = 0} and has same
evenness as n (see [21, 2]). We have tr(b q(x)) + tr(b q(y)) + tr(b q(x + y)) =
tr(b (x2r

+ x2)y + b (y2r

+ y2)x) = tr([b (x2r

+ x2) + b2t

x2t

+ b2n−1
x2n−1

]y),
since r + t = n, tr(u2) = tr(u) and u2n

= u, for every u ∈ F2n . We de-
duce that E = {x ∈ F2n / b (x2r

+ x2) + b2t

x2t

+ b2n−1
x2n−1

= 0} = {x ∈
F2n / b2(x2r+1

+ x4) + b2r

x2r

+ b x = 0}. We use now the multivariate method
initiated in numerous papers by H. Dobbertin. Let us denote y = x2r

and
d = b2r

, then the equation becomes

E1 : b2y2 + d y = b2x4 + b x.

Squaring gives
E2 : b4y4 + d2y2 = b4x8 + b2x2

and raising E1 to the 2r power gives

E3 : d2x4 + b2x2 = d2y4 + d y.

The square root (that is, the 2n−1-th power) of equation E1 + E3 is

E′1 : d y2 + b y = b x2 + (b x)2
n−1

+ d x2 + b x.

The equation b4E3 + d2E2 gives

E′2 : d4y2 + b4d y = b4d2x4 + b6x2 + b4d2x8 + b2d2x2.

The equation b2E′1 + d E1 gives

E′′1 : (b3 + d2)y =

b3x2 + b2(b x)2
n−1

+ b2d x2 + b3x + b2d x4 + b d x

and the equation d4E1 + b2E′2 gives

E′′2 : (d5 + b6d)y =

b2d4x4 + b d4x + b6d2x4 + b8x2 + b6d2x8 + b4d2x2.

The square of the equation obtained by elimination of y between the two equa-
tions E′′1 and E′′2 gives an equation of degree 16 in x. Hence, we have k ≤ 4
and therefore k ≤ 3 since n is odd. Applying then Proposition 1, we deduce
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that the first-order nonlinearity of Dafwelch is at least 2 (2n−1−2
n+1

2 −2n−2) =
2n−1 − 2

n+3
2 . �

Corollary 2 with K = 1 and k = n+3
2 gives then:

Proposition 4 Let Fwelch(x) = x2t+3 and fwelch(x) = tr(x2t+3), t = n−1
2 .

Then we have:

nl2(fwelch) ≥ 2n−1 − 1
2

√
(2n − 1)2

n+5
2 + 2n

≈ 2n−1 − 2(3n+1)/4.

Hence, nl2(Fwelch) satisfies this same inequality.

In Table 1, for n ranging from 5 to 13, we indicate the values given by this
bound, compared with the actual values, computed by running a computer,
with an algorithm due to G. Kabatiansky and C. Tavernier and improved and
implemented by Fourquet et al. [14, 17, 13]. For values of n smaller than 5, the
bound gives negative numbers and for values greater than 13, the algorithm is
unable to produce exact results. Note that Proposition 4 gives an approximation
of the actual value which is proportionally better and better when n increases.
Moreover, the difference between 2n−1 and our bound equals twice the difference
between 2n−1 and the actual value, in average for 5 ≤ n ≤ 13. In Table 2 we
give, for n = 15 and 17, the values given by our bound, compared with upper
bounds obtained by Fourquet et al. [14, 17, 13].

n 5 7 9 11 13
the bound 0 19 128 662 3072

the actual values 6 36 184 848 [3487; 3632]
% 0 53 70 78 [83; 91]

Table 1: The values of the lower bound on nl2(Fwelch) given by Propo-
sition 4, the actual values and the ratio

n 15 17
the lower bound 13487 57343

overestimation of the values 15488 63680
% 87 90

Table 2: The values of the lower bound on nl2(Fwelch) given by Propo-
sition 4, an overestimation of the actual values and the ratio

Important remark. In fact, Proposition 3 gives even nicer results than those
deduced from Proposition 4 (and listed in Table 1) when using the fast FFT
algorithm to compute the nonlinearities of the derivatives of the Welch function.
We obtain this way Table 3.
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n 5 7 9 11 13
bound from Prop. 3 6 34 173 792 3440

Table 3: The values of the lower bound on nl2(Fwelch) given by Propo-
sition 3 and the FFT algorithm

4.4 A power function with better second-order nonlinear-
ity

We study now a function which is similar to the Welch function, but whose
second order nonlinearity computed in [14, 17, 13] gives better results than for
the Welch function. The Boolean function fwelch′(x) = tr(Fwelch′(x)), where
Fwelch′(x) = x2r+3; r = n+1

2 , n odd (that we shall call the modified-Welch
function) has derivatives Dafwelch′(x) = tr(a x2r+2 + a2x2r+1 + a2r

x3) + `(x)
where ` is affine. Similarly to the case of the Welch function, the nonlinearity
of this quadratic function equals 2n−1− 2

n+k
2 −1 where k is the dimension of the

vectorspace E = {x ∈ F2n / a2n−1
x2r−1

+ a2r−1
x2r

+ a2x2r

+ a2r

x2r−1
+ a2r

x2 +
a2r−1

x2n−1
= 0}. We denote y = x2r

and b = a2r

. The square of the equation
above becomes:

E1 : (a + b2)y + (b + a4)y2 + b2x4 + bx = 0.

The square of E1 is:

E2 : (a2 + b4)y2 + (b2 + a8)y4 + b4x8 + b2x2 = 0

and its 2r-th power is:

E3 : (b + a4)x2 + (a2 + b4)x4 + a4y4 + a2y = 0.

Eliminating y4 from equations E2 and E3 gives the equation E′1 : (a6 +
a4b4)y2 +(a10 +a2b2)y+a4b4x8 +(a2 +b4)(b2 +a8)x4 +(a4b2 +(b+a4)3)x2 = 0.
Eliminating y from E1 and E3 and taking the square root of the resulting
equation gives E′2 : (a5·2n−1

+a2b)y2+(ab2n−1
+a3)y+(ab+(a+b2)3·2

n−1
)x2+

(a2n−1
+ b)(b2n−1

+ a2)x + ab2n−1
x2n−1

= 0. Eliminating then y2 from E′1
and E′2 gives an equation E′′1 in y, x8, x4, x2, x and x2n−1

. Eliminating y2

from equations E1 and E′1 gives and equation E′′2 in y, x8, x4, x2 and x.
Eliminating y from E′′1 and E′′2 and squaring the resulting equation gives an
equation P (x) = 0 where the polynomial P has degree 16. This shows that
k ≤ 3. We deduce that the nonlinearity of Dafwelch′ is at least 2n−1−2

n+1
2 and

Corollary 2 with K = 1 and k = n+1
2 gives then:

nl2(fwelch′) ≥ 2n−1 − 1
2

√
(2n − 1)2

n+3
2 + 2n (3)

≈ 2n−1 − 2(3n−1)/4.

Hence, nl2(Fwelch′) satisfies this same inequality.
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Remark. The methods we used for lower bounding the second order nonlinear-
ities of the Welch functions and of the modified-Welch functions are not exactly
the same. In fact, the method used to prove Proposition 4 is slightly more com-
plex than that used for proving (3), because this last method gives worse results
in the case of the Welch function. In the case of the modified-Welch function,
both methods give the same result and we presented the simplest one.

The bound of Relation (3) is better than for the Welch function. And ac-
tually, for n = 9, we can see in Table 4 below that the value of nl2(fwelch′) is
188 as shown in [14], which is better than for the Welch function (that is, 184).
Note at the last line of Table 4 that our bound is better than in the case of the
Welch function. The difference between 2n−1 and our bound is in average 1.5
times the difference between 2n−1 and the actual value (for these values of n).
Finally, note that our bound gives a lower bound for n = 13 which is better
than what could give the algorithm.
In Table 5 we give, for n = 15 and 17, the values given by our bound, compared
with upper bounds obtained by Fourquet et al. [14, 17, 13].

n 5 7 9 11 13
the bound 5 32 165 768 3371

the actual values 6 36 188 848 [3300; 3696]
% 83 89 88 90 [91; 100]

Table 4: The values of the lower bound on nl2(Fwelch′) given by (3),
the actual values and the ratio

n 15 17
the lower bound 14335 59741

overestimation of the values 15504 63648
% 92 94

Table 5: The values of the lower bound on nl2(Fwelch′) given by (3),
an overestimation of the actual values and the ratio

Obviously, the observation we made above that our bound is better in the
case of the modified Welch function than in the case of the Welch function is
strengthened after this improvement.

4.5 The inverse function

Let us consider the so-called inverse function Finv(x) = x2n−2, where n is any
positive integer; we denote fλ(x) = tr(λx2n−2), where λ is any element of F ∗

2n .
Here again, all the Boolean functions fλ, λ 6= 0, are affinely equivalent to each
others. We shall write finv for f1. But we shall need however the notation fλ

in the calculations below. We have fλ(x) = tr
(

λ
x

)
, with the convention that

λ
0 = 0 (we shall always assume this kind of convention in the sequel). Recall that
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the component functions of the Substitution boxes (S-boxes) of the Advanced
Encryption Standard (AES) - the current standard for block encryption in civil
framework [11] - are all of the form fλ (with n = 8).
We shall be able to obtain a lower bound for the whole nonlinearity profile of
finv.

For every nonzero a ∈ F2n , we have (Dafλ)(ax) = tr
(

λ
ax + λ

ax+a

)
=

tr
(

λ/a
x2+x

)
= fλ/a(x2 + x) if x 6∈ F2 and (Dafλ)(ax) = tr(λ/a) if x ∈ F2.

We deduce that, for every r, we have nlr(Dafλ) = nlr(gλ/a) if tr(λ/a) = 0
and nlr(Dafλ) ≥ nlr(gλ/a)− 2 otherwise, where gλ/a(x) = fλ/a(x2 + x) is such
that gλ/a(x + 1) = gλ/a(x). We have seen at Section 2 that this implies that
nlr(gλ/a) equals twice the r-th order nonlinearity of the restriction of gλ/a to
any linear hyperplane H excluding 1. Since the function x → x2 + x is a lin-
ear isomorphism from H to the hyperplane {x ∈ F2n / tr(x) = 0}, we see that
nlr(gλ/a) equals twice the r-th order nonlinearity of the restriction of fλ/a to
this hyperplane. Applying then Proposition 1, we deduce that

nlr(Dafλ) ≥ 2 nlr(fλ/a)− 2n−1 − 2 tr(λ/a) (4)

(where tr(λ/a) is viewed here as an element of {0, 1} and not of F2). The first
order nonlinearity of the inverse function is lower bounded by 2n−1 − 2n/2 (it
equals this value if n is even). It has been more precisely proven in [19] that
the character sums

∑
x∈F2n

(−1)fλ(x)+tr(ax), called Kloosterman sums, can take
any value divisible by 4 in the range [−2n/2+1 + 1, 2n/2+1 + 1].
We deduce:

Lemma 2 Every derivative (in a nonzero direction) of any inverse Boolean
function has first-order nonlinearity at least 2n−1 − 2n/2+1 if tr(λ/a) = 0 and
at least 2n−1 − 2n/2+1 − 2 otherwise.

Remark.
In [8] is proven that, when a ranges over F ∗

2n , the values of the sums∑
x∈F2n

(−1)Dafinv(x)

are all integers divisible by 8 in the range [−2n/2+1 − 3, 2n/2+1 + 1]. Nothing is
proven for the sums

∑
x∈F2n

(−1)Dafinv(x)+tr(bx). This property of the former
sums cannot be extended to all of the latter, since the derivatives of the inverse
Boolean function would then have nonlinearities at least 2n−1 − 2n/2 − 1 and
this would lead, thanks to Corollary 2, to a lower bound on the second order
nonlinearity of this function which is in contradiction with the actual values
given at Table 6. Is it possible to prove that some of the derivatives of finv have
nonlinearities at least 2n−1−2n/2−1? The nice idea of [8] for proving the result
in the case b = 0 does not seem to work for b 6= 0: denoting y = x2n−2 and ob-
serving that (Dafλ)(ax) = tr

(
λ y2

a(y+1)

)
= tr

(
λ
a (y + 1) + λ

a(y+1)

)
if y 6= 0, 1,

brings back to Kloosterman sums when b = 0, but when b 6= 0, we have
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(Dafλ)(ax)+tr(bx) = tr
(
λ(y + 1) + λ

a(y+1) + b
y

)
and this leads to a sum which

is more complex than a Kloosterman sum.

Applying Proposition 3 and Lemma 2, we deduce

nl2(finv) ≥ 2n−1 − 1
2

√
(2n − 1)2n/2+2 + 4 · 2n−1 + 2n.

Proposition 5 Let Finv(x) = x2n−2 and finv(x) = tr(x2n−2). Then we have:

nl2(finv) ≥ 2n−1 − 1
2

√
(2n − 1)2n/2+2 + 3 · 2n

≈ 2n−1 − 23n/4.

Hence, nl2(Finv) satisfies this same inequality.

In Table 6, for n ranging from 4 to 12 (for smaller values of n, the bound gives
negative numbers), we indicate the values given by this bound, compared with
the actual values computed by Fourquet et al. [14, 17, 13]. Note that, as in the
previous cases, Proposition 5 gives an approximation of the actual value which is
proportionally better and better when n increases. In fact, the approximation
is better than for the Welch function. The difference between 2n−1 and our
bound is in average 1.5 times the difference between 2n−1 and the actual value
(for these values of n).
In Table 7 we give, for n = 13, 14 and 15, the values given by our bound,
compared with upper bounds obtained by Fourquet et al. [14, 17, 13].

n 4 5 6 7 8 9 10 11 12
bound 0 2 9 25 63 147 329 718 1534
values 2 6 14 36 82 182 392 842 [1720; 1776]

% 0 33 52 69 76 80 84 85 [86; 89]

Table 6: The values of the lower bound on nl2(Finv) given by Propo-
sition 5, the actual values and the ratio

n 13 14 15
the lower bound 3232 6740 13944

overestimation of the values 3696 7580 15506
% 87 89 90

Table 7: The values of the lower bound on nl2(Finv) given by Propo-
sition 5, an overestimation of the actual values and the ratio

Here again, Proposition 3 gives nicer results than those deduced from Propo-
sition 5 and listed in Table 6, when using the fast FFT algorithm to compute
the nonlinearities of the derivatives of the inverse function: see Table 8.
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n 4 5 6 7 8 9 10 11 12
Prop. 3 2 5 12 30 69 156 340 731 1551

Table 8: The values of the lower bound on nl2(Finv) given by Propo-
sition 3 and the FFT algorithm

4.6 Remark on the Kasami function

Determining or efficiently lower bounding the first-order nonlinearities of the
derivatives of the Kasami functions is an open problem, and we could not obtain
a lower bound on its nonlinearity profile by using Corollary 2. When n is odd,
an obvious observation is that, for every Boolean function g of algebraic degree
strictly less than the algebraic degree k + 1 of the Kasami function f(x) =
tr(ax22k−2k+1), gcd(k, n) = 1, the Hamming distance between the functions f

and g is equal to the Hamming weight of the function tr(ax23k+1 + g(x2k+1)).
Indeed, the mapping x → x2k+1 is a permutation and f(x2k+1) = tr(ax23k+1).
When the algebraic degree of g is at most r ≤ k, this function has algebraic
degree at most 2r. Since the function f +g has algebraic degree k+1 under this
same condition, we deduce that nlr(f) ≥ max(2n−2r, 2n−k−1), for every r ≤ k.
The second order nonlinearities of Kasami functions seem worse than those of
the Welch, modified-Welch and inverse functions, according to [14, 17, 13], but
they seem much better than what gives this observation for r = 2.

5 A bound for the whole nonlinearity profile of
the inverse function

Thanks to Proposition 5 and to Relation (4), we deduce from Proposition 3 that
we have nl3(finv) ≥ 2n−1 − 1

2

√
A, where

A = 22n − 2
[
(2n − 1)

(
2n−1 −

√
(2n − 1)2n/2+2 + 3 · 2n

)
− 2 · 2n−1

]
.

Hence:

Proposition 6 Let Finv(x) = x2n−2 and finv(x) = tr(x2n−2). Then we have:

nl3(finv) ≥ 2n−1 − 1
2

√
2(2n − 1)

√
(2n − 1)2n/2+2 + 3 · 2n + 3 · 2n ≈ 2n−1 −

27n/8. Hence, nl3(Finv) satisfies this same inequality.

We cannot produce a table to compare this bound and the actual values, as
we did for the second order, because for small values of n (precisely, for n ≤ 8),
the bound gives negative numbers, and for greater values, the algorithm is un-
able to produce results.
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5.1 Improvement of the bound

We shall see now that applying Inequality (1) and Corollary 1 gives a better
bound on nl3(Finv) than applying Propositions 1, 5 and 3 as we did above.
For this, we need first to calculate DaDbfinv. We have seen that, for every
a 6= 0, we have (Dafλ)(ax) = fλ/a(x2 + x), except for the two points x = 0, 1
when tr(λ/a) = 1. We can deduce (or check directly) that, for every a 6= 0
and b 6= 0, 1, we have DabDafinv(ax) = f 1

a(b2+b)

(
x4+x2

b4+b2 + x2+x
b2+b

)
, except for the

4 points 0, 1, b and b + 1 when tr
(

1
a + 1

ab + 1
a+ab

)
= 1. The linear mapping

x → x4+x2

b4+b2 + x2+x
b2+b has kernel {0, 1, b, b + 1} and is therefore 4-to-1 and its

image is an (n − 2)-dimensional vector-space. We deduce, using Corollary 1,
that the (first-order) nonlinearity of DabDafinv is at least 4(nl(finv) − 2n−2 −
2n−3) − 4 tr

(
1
a + 1

ab + 1
a+ab

)
. We know that nl(finv) is at least 2n−1 − 2n/2.

Hence: nl(DabDafinv) ≥ 2n−1 − 2n/2+2 − 4 tr
(

1
a + 1

ab + 1
a+ab

)
. We have now

to upper bound, for every a 6= 0, the Hamming weight of the function b 6=
0, 1 → tr

(
1
a + 1

ab + 1
a+ab

)
. It equals the Hamming weight of the function b →

Dafinv(b) + finv(a). Hence, ac cording to the result of [8] recalled above, it is
upper bounded by 2n−1 + 2n/2 + 2. We deduce then from Inequality (1):

nl3(f) ≥ 2n−1 − 1
2

√
(2n − 1)

√
A,

where A = 22n − 2(2n − 2)(2n−1 − 2n/2+2) + 8 · (2n−1 + 2n/2 + 2) = 23n/2+3 +
3 · 2n+1 − 2n/2+3 + 16. This gives:

Proposition 7 Let Finv(x) = x2n−2 and finv(x) = tr(x2n−2). Then we have:

nl3(f) ≥ 2n−1− 1
2

√
(2n − 1)

√
23n/2+3 + 3 · 2n+1 − 2n/2+3 + 16 ≈ 2n−1−27n/8−1/4.

This bound is asymptotically slightly better than the bound of Proposition
6. It is much better for small values of n.

In Table 9, for n ranging from 7 to 13, we indicate the values given by these
two bounds (for n < 7 they both give nothing better than 0).

n 7 8 9 10 11 12 13
bound of Proposition 6 0 0 18 77 228 592 1430
bound of Proposition 7 5 20 58 149 358 827 1859

Table 9: The values of the lower bounds on nl3(Finv) given by Propo-
sitions 6 and 7

Remark. It may seem surprising that both methods do not lead to the same
bound, since what we do in the first method is applying Proposition 3 twice
and since Relation (1) is nothing but Proposition 3 applied twice. Let us look
more closely where is the difference between the methods. If we denote Lr(f) =
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2n−2nlr(f) (which is usual - L1(f) is often called the linearity of f), then Propo-
sition 3 says that Lr(f) ≤

√∑
a Lr−1(Daf) and Relation (1) that Lr(f) ≤√∑

a

√∑
b Lr−2(DaDbf). In the case of the inverse function, we have, roughly,

that Lr(Dafinv) ≤ 2Lr(finv) and Lr(DaDbfinv) ≤ 4Lr(finv), for a 6= 0, b 6=
0, a. In the first method we write, roughly: L3(finv) ≤

√
2(2n − 1)L2(finv) ≤√

2(2n − 1)
√

2(2n − 1)L(finv) = 23/4(2n − 1)3/4(L(finv))1/4 and in the second:

L3(finv) ≤
√

(2n − 1)
√

4(2n − 2)L(finv) ≈ 21/2(2n − 1)3/4(L(finv))1/4.

5.2 Nonlinearities of orders greater than 3

The process leading to Proposition 6 can be iteratively applied, giving a lower
bound on the r-th order nonlinearity of the inverse functions for r ≥ 4. The
expression of this lower bound is:

nlr(finv) ≥ 2n−1 − lr,

where, according to Relation (4) and to Corollary 2, the sequence lr is defined
by l1 = 2n/2 and lr =

√
(2n − 1)(lr−1 + 1) + 2n−2. The expression of lr is

more and more complex when r increases (still more complex when using the
improved method). Its value is approximately equal to kr, where k1 = n/2 and
kr = n+kr−1

2 , and therefore kr = (1− 2−r) n. Hence, nlr(Finv) is approximately
lower bounded by 2n−1 − 2(1−2−r) n and asymptotically equivalent to 2n−1.

Using the method of Proposition 7 gives a better but more complex sequence.

Conclusion

For the first time, we could obtain a method for efficiently lower bounding
the nonlinearity profile of Boolean functions and we deduced a proof that the
multiplicative inverse function has good behavior with respect to this important
cryptographic criterion, at least when n is not too small. This function is used
in 8 variables as the basic Substitution box (S-box) of the Advanced Encryption
Standard (AES). Our results give an additional confirmation that the choice of
J. Daemen and V. Rijmen was appropriate, unless its strong structure can be
used in future cryptanalyses, for instance in algebraic attacks.
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