
Preimage Attacks On Provably Secure FFT

Hashing proposed at Second Hash Workshop in

2006

Donghoon Chang

Center for Information Security Technologies(CIST),
Korea University, Korea

dhchang@cist.korea.ac.kr

Abstract. ‘Provably Secure FFT Hashing’ (We call FFT-Hash in this
paper) was suggested by Lyubashevsky et al.. in Second Hash Workshop
in Aug. 2006. This paper shows preimage attacks on hash functions based
on three modes of FFT-Hash. In case of ‘Nano’ whose output size is 513
bits, we can find a preimage with complexity 2385. In case of ‘Mini’ whose
output size is 1025 bits, we can find a preimage with complexity 2769.
In case of ‘Mini’ whose output size is 28672 bits, we can find a preimage
with complexity 224576 . This means that the structure of FFT-Hash is
weak in the viewpoint of the preimage resistance. We recommend that
FFT-Hash can not be used in case of the output size less than 256 bits
because the full security against the preimage attack are crucial in such
a short output size. And also we should not chop the hash output in
order to get a short hash output like SHA-224 and SHA-384, because for
example we can find a preimage with complexity 2128 (not 2256) in case
of ‘Nano’ with chopping 257 bits whose hash output is 256 bits.

Keywords : Hash Function, Preimage Attack.

1 Introduction

Since MD4-style hash functions were broken, the research on the provably secure
hash functions have been required. We can construct a hash function based on a
hard problem. By the way, when we design a hash function based on a hard prob-
lem, it is difficult to construct a hash function satisfying several properties such
as preimage resistance, collision resistance, second-preimage resistance, partial
preimage resistance and pseudorandomness because we have to design a hash
function with only one hard problem. FFT-Hash has provably secure against
the collision attack. But FFT-Hash can not say the security against other prop-
erties. In this paper we show that FFT-Hash is not secure against the preimage
attack. Especially, we should not use the chopping method in case of FFT-Hash
like SHA-224 and SHA-256.
The organization of this paper is as follows. In section 2, we explain FFT-Hash.
And then, in section 3, we show the preimage attacks on it. In section 4, we
conclude.

2 FFT-Hash

Lyubashevsky et al. [1] suggested ‘FFT-Hash’ in Second Hash Workshop in Aug.
2006. They suggested three modes which are ‘Mini’, ‘Nano’ and ‘Bulk’. They
are not hash functions but compression functions. They are keyed compression
functions. ‘Mini’, ‘Nano’ are described in Fig. 1 and 2 where ai,j ’s are keys and
wi’s are fixed constants and FFT operation is a bijection and can be efficiently
invertible. In case of ‘Bulk’, n = 1024 and m = 16 and d = 15 and p ≈ 228 and
the input size is 65536 bits and the output size is 28672 bits.

x1,1
…

⊗w
0

x1,2

⊗w
1

x1,64

⊗w
63

FFT

y1,1
…y1,2 y1,64

⊗ ⊗ ⊗a1,2 a1,64

x2,1
…

⊗w
0

x2,2

⊗w
1

x2,64

⊗w
63

FFT

y2,1
…y2,2 y2,64

⊗a2,1 ⊗ ⊗a2,2 a2,64

x8,1
…

⊗w
0

x8,2

⊗w
1

x8,64

⊗w
63

FFT

y8,1
…y8,2 y8,64

⊗a8,1 ⊗ ⊗a8,2 a8,64

…

z1,1 z1,2 z1,64 z2,1 z2,2 z2,64 z8,1 z8,2 z8,64

zi = z1,i ⊕ z2,i ⊕ z3,i ⊕ ⊕ z8,i
…

z1 z2 z64
…

Fig. 1. Nano (n = 64, m = 8, d = 3, p = 257) : xi,j ∈ {0, 1, 2, 3}, wi, ai,j , yi,j , zi,j , zi ∈
{0, 1, 2, · · · , 256}. Input size is 1024 bits. Output size is 513 bits.

x1,1
…

⊗w
0

x1,2

⊗w
1

x1,128

⊗w
127

FFT

y1,1
…y1,2 y1,128

⊗a1,1 ⊗ ⊗a1,2 a1,128

x2,1
…

⊗w
0

x2,2

⊗w
1

x2,128

⊗w
127

FFT

y2,1
…y2,2 y2,128

⊗a2,1 ⊗ ⊗a2,2 a2,128

x8,1
…

⊗w
0

x8,2

⊗w
1

x8,128

⊗w
127

FFT

y8,1
…y8,2 y8,128

⊗a8,1 ⊗ ⊗a8,2 a8,128

…

z1,1 z1,2 z1,128 z2,1 z2,2 z2,128 z8,1 z8,2 z8,128

zi = z1,i ⊕ z2,i ⊕ z3,i ⊕ ⊕ z8,i
…

z1 z2 z128
…

Fig. 2. Mini (n = 128, m = 8, d = 3, p = 257) : xi,j ∈ {0, 1, 2, 3}, wi, ai,j , yi,j , zi,j , zi ∈
{0, 1, 2, · · · , 256}. Input size is 2048 bits. Output size is 1025 bits.

3 Preimage Attack on FFT-Hash

As we said in the previous section, FFT operation is a bijection and can be
efficiently invertible. Using this property, we can find preimages of ‘Nano’, ‘Mini’
and ‘Bulk’. In this section, we will show that the complexity to find a preimage
of given t-bit hash output is 2t−n·log

2
(d+1).

Weak Property of FFT-Hash

With ‘Nano’, we explain the weak property of FFT-Hash. Other cases can be
explained in the same way. In Fig. 3, we let xi = xi,1||xi,1|| · · · ||xi,64. Given zi

(1 6 i 6 64) and xj (2 6 j 6 8), x1 is determined and we can find x1 with
complexity 1 because FFT operation is efficiently invertible. For any xj , we can
say in the same way.

x1,1
…

⊗w
0

x1,2

⊗w
1

x1,64

⊗w
63

FFT

y1,1
…y1,2 y1,64

⊗a1,1 ⊗ ⊗a1,2 a1,64

x2,1
…

⊗w
0

x2,2

⊗w
1

x2,64

⊗w
63

FFT

y2,1
…y2,2 y2,64

⊗a2,1 ⊗ ⊗a2,2 a2,64

x8,1
…

⊗w
0

x8,2

⊗w
1

x8,64

⊗w
63

FFT

y8,1
…y8,2 y8,64

⊗a8,1 ⊗ ⊗a8,2 a8,64

…

z1,1 z1,2 z1,64 z2,1 z2,2 z2,64 z8,1 z8,2 z8,64

zi = z1,i ⊕ z2,i ⊕ z3,i ⊕ ⊕ z8,i
…

z1 z2 z64
…

Fig. 3. Weak Property of Nano.

preimage attacks on FFT-Hash

Let f be each compression function. IV is the initial value. b is the message
block size. In case of Nano, IV is 513 bits and b = 511. In case of Mini, IV is
1025 bits and b = 1023. In case of Bulk, IV is 28672 bits and b = 36864. Then
we can find a padded 2-block preimage g(M) = M1||M2 of a given hash output
O. Let g be a padding method. g(x) = x||10t||bin64(x) where t is the smallest
non-negative integer such that g(x) is a multiple of b and bini(x) is the i-bit
binary representation of x.
Nano. We want to find a padded 2-block preimage g(M) = M1||M2 of a
given hash output O where M is 2 · 511 − 65 bits and last 65 bits of M2 is
‘1||bin64(M)’. We choose randomly M1. Then we know the value of h (513 bits)

f f
IV

M1 M2

Oh

Fig. 4. Preimage Attack : Given a hash output O, we want to find a padded 2-block
preimage M1||M2.

in Fig. 4. Then, we have 2446 cases of M2 because last 65 bits are fixed. In Fig.
1, h||M2 = x1||x2|| · · · ||x8 where x1, x2, x3, x4, the fist bit of x4 and the last
65 bits of x8 are fixed. So, except 128-bit x6, we do the exhaustive searching
with the complexity 2318. For each case, x6 is automatically determined as de-
scribed above. So we can reduce the complexity 2128 for each of 2318 cases. If
x6,i ∈ {0, 1, 2, 3} for 1 6 i 6 64, then we have a preimage M of O. Since output
size is 513 bits, in order to get a preimage on average, we have to repeat to choose
M1 randomly 267 times. Therefore, the total complexity to find a preimage is
2385.

Mini. We want to find a padded 2-block preimage g(M) = M1||M2 of a given
hash output O where M is 2·1023−65 bits and last 65 bits of M2 is ‘1||bin64(M)’.
We choose randomly M1. Then we know the value of h (1025 bits) in Fig.
4. Then, we have 2958 cases of M2 because last 65 bits are fixed. In Fig. 2,
h||M2 = x1||x2|| · · · ||x8 where x1, x2, x3, x4, the fist bit of x4 and the last
65 bits of x8 are fixed. So, except 256-bit x6, we do the exhaustive searching
with the complexity 2702. For each case, x6 is automatically determined as de-
scribed above. So we can reduce the complexity 2256 for each of 2702 cases. If
x6,i ∈ {0, 1, 2, 3} for 1 6 i 6 128, then we have a preimage M of O. Since output
size is 1025 bits, in order to get a preimage on average, we have to repeat to
choose M1 randomly 267 times. Therefore, the total complexity to find a preim-
age is 2769.

Bulk. We want to find a padded 2-block preimage g(M) = M1||M2 of a given
hash output O where M is 2·36864−65 bits and last 65 bits of M2 is ‘1||bin64(M)’.
We choose randomly M1. Then we know the value of h (28672 bits) in Fig. 4.
Then, we have 236799 cases of M2 because last 65 bits are fixed. And h||M2 =
x1||x2|| · · · ||x8 where x1 ∼ x7 and the last 65 bits of x16 are fixed. So, except
4096-bit x8, we do the searching with the complexity 224576. For each case,
4096-bit x6 is automatically determined as described above. So we can reduce
the complexity 24096 for each of 224576 cases. If x6,i ∈ {0, 1, 2, 3} for 1 6 i 6 128,
then we have a preimage M of O. Since the output size is 28672 bits, the total
complexity to find a preimage is 224576.

preimage attacks on FFT-Hash with Chopping

Since the output sizes of three modes of FFT-Hash are big, the chopping of the
hash output may be used like SHA-224 and SHA-384. However, we should not
use the chopping method in case of FFT-Hash. Even though we use the chopping
method, in case of each mode, the complexity to find a preimage of given t − s

hash output where s-bit is chopped is 2t−s−n·log
2
(d+1). When the mode is Nano

(t = 513, n = 64 and d = 3) and s = 257 , then the complexity is 2128.

4 Conclusion

Standard Hash Function may be used in many areas. So we need to design a
hash function satisfying several properties. And also the hash function should
be efficient. Even though FFT-Hash is provably secure against the collision at-
tack, FFT-Hash is not secure against the preimage attack and also not efficient.
Therefore, in order to use FFT-Hash practically, FFT-Hash should be modified,
which may make the security proof difficult.

References

1. Second Hash Workshop held by NIST, Aug. 2006. You can download all papers and
presentations from http://www.csrc.nist.gov/pki/HashWorkshop.

