
Se
urity and Composition of Cryptographi
 Proto
ols: A Tutorial

�

Ran Canetti

y

De
ember 18, 2006

Abstra
t

What does it mean for a
ryptographi
 proto
ol to be \se
ure"? Capturing the se
urity

requirements of
ryptographi
 tasks in a meaningful way is a slippery business: On the one

hand, we want se
urity
riteria that prevent \all feasible atta
ks" against a proto
ol. On the

other hand, we want our
riteria to not be overly restri
tive; that is, we want them to a

ept

those proto
ols that do not su

umb to \feasible atta
ks".

This tutorial studies a general methodology for de�ning se
urity of
ryptographi
 proto
ols.

The methodology, often dubbed the \trusted party paradigm", allows for de�ning the se
urity

requirements of pra
ti
ally any
ryptographi
 task in a uni�ed and natural way. We �rst review

a basi
 formulation that
aptures se
urity in isolation from other proto
ol instan
es. Next we

address the se
ure
omposition problem, namely the vulnerabilities resulting from the often

unexpe
ted intera
tions among di�erent proto
ol instan
es that run alongside ea
h other in the

same system. We demonstrate the limitations of the basi
 formulation and review a formulation

that guarantees se
urity of proto
ols even in general
omposite systems.

�

This tutorial is based on a
ontribution to the distributed
omputing
olumn of SIGACT News V. 37, No. 3 & 4.

y

IBM T.J. Watson Resear
h Center,
anetti�
sail.mit.edu. Supported by NSF CyberTrust Grant #0430450.

1

Contents

1 Introdu
tion 3

2 The trusted-party paradigm 6

3 Basi
 se
urity: A simpli�ed
ase 9

3.1 A basi
 system model . 9

3.2 The de�nition of se
urity . 11

3.2.1 Dis
ussion . 12

3.3 Examples . 14

4 Basi
 se
urity: The general
ase 15

4.1 The system model . 16

4.2 De�nition of Se
urity . 16

4.2.1 Dis
ussion . 18

4.3 More examples . 20

4.4 Feasibility . 23

5 Proto
ol
omposition 24

5.1 What might go wrong . 25

5.2 How
an proto
ols be
omposed . 28

5.3 Se
urity preserving
omposition . 32

6 The
omposability properties of basi
 se
urity 33

7 Universally Composable Se
urity 35

7.1 The de�nition . 35

7.2 Composability . 37

7.2.1 Dis
ussion . 38

7.3 Feasibility and relaxations . 39

7.3.1 Adding set-up assumptions . 41

7.3.2 Relaxing UC se
urity . 42

8 Con
lusion 43

A Trusted-party based se
urity: A mini survey 49

2

1 Introdu
tion

Cryptographi
 proto
ols, namely distributed algorithms that aim to guarantee some \se
urity prop-

erties" in fa
e of adversarial behavior, have be
ome an integral part of our so
iety and everyday

lives. Indeed, we have grown a

ustomed to relying on the ubiquity and fun
tionality of
omputer

systems, whereas these systems make
ru
ial use of
ryptographi
 proto
ols to guarantee their \ex-

pe
ted fun
tionality." Furthermore, the per
eived se
urity properties of
ryptographi
 proto
ols

and the fun
tionality expe
ted from appli
ations that use them is being used by lawmakers to

modify the ground rules of our so
iety. It is thus
ru
ial that we have sound understanding of how

to spe
ify, develop, and analyze
ryptographi
 proto
ols.

The need for sound understanding is highlighted by the empiri
al fa
t that
ryptographi
 pro-

to
ols have been notoriously \hard to get right," with subtle
aws in proto
ols being dis
overed

long after development, and in some
ases even after deployment and standardization. In fa
t,

even spe
ifying the se
urity properties required from proto
ols for a given task in a rigorous and

meaningful way has proved to be elusive.

The goal of this tutorial is to introdu
e the reader to the problems asso
iated with formulating

and asserting se
urity properties of proto
ols, and to present a general methodology for modeling

proto
ols and asserting their se
urity properties. The tutorial attempts to be a

essible to non-

ryptographers and
ryptographers alike. In parti
ular, for the most part it assumes very little prior

knowledge in
ryptography. Also, while the main fo
us is on the foundational aspe
ts of spe
ifying

se
urity, the text attempts to be a

essible and useful to pra
titioners as well as theoreti
ians.

Indeed, the
onsidered se
urity
on
erns are realisti
 ones, and the end goal is to enable analyzing

the se
urity of real-world proto
ols and systems.

Cryptographi
 tasks. In general, a
ryptographi
 task, or a proto
ol problem, involves a set

parties that wish to perform some joint
omputational task based on their respe
tive lo
al inputs,

while guaranteeing some \se
urity properties" in the fa
e of various types of \adversarial behavior"

by di�erent
omponents of the system and its users.

To get some feel for the range of issues and
on
erns involved, we brie
y review some of the

ommonpla
e
ryptographi
 tasks
onsidered in the literature. Let us start with the very basi

goal of guaranteeing se
ure
ommuni
ation between parties, in fa
e of an external adversarial entity

(or entities) that have some a

ess to the
ommuni
ation network. When the adversarial a

ess

enables only re
ording of the transmissions, the most
entral
on
ern that
omes to mind is se
re
y,

namely guaranteeing that the a
tual transmissions leak as little as possible on the
ommuni
ated

information. When adversarial entities
an obtain also a
tive
ontrol over the network the se
re
y

on
ern be
omes more intri
ate, and furthermore an even more basi

on
erns arises: how to

guarantee the authenti
ity of messages, namely �nding out whether a re
eived message was indeed

sent by its
laimed sender. Additional
on
erns in
lude anonymity, namely the ability to hide the

identities of the
ommuni
ating parties, and non-repudiation, namely the ability to prove to a third

party that the
ommuni
ation took pla
e. Central tasks that are typi
ally needed to guarantee

se
ure
ommuni
ation in
lude en
ryption, digital signatures, and key-ex
hange, where two parties

wish to agree on a random value (a key) that is known only to them.

Another set of tasks, often
alled two-party tasks, involve two parties who are mutually distrust-

ful but still wish to perform some joint
omputation. Here the only adversarial behavior under

onsideration is typi
ally that of the parties themselves, and the
ommuni
ation medium is treated

as trusted. One su
h task is zero-knowledge (as in [gmra89℄), where one party wishes to
onvin
e

3

the other in the
orre
tness of some statement without dis
losing any additional information on

top of the mere fa
t that the statement is
orre
t. Another example is
ommitment (as in [b82℄),

where a party C
an
ommit to a se
ret value x, by providing some \
ommitment information"

that keeps x se
ret, while guaranteeing to a veri�er that C
an later
ome up with only one value x

that's
onsistent with
. Another example is
oin-tossing [b82℄, namely the task where two parties

want to agree on a bit, or a sequen
e of bits, that are taken from some prede�ned distribution, say

the uniform distribution. This should hold even if one of the parties is trying to bias the output

towards some value. In addition to being natural tasks on their own, proto
ols for these tasks are

often used as building blo
ks within more
omplex proto
ols.

More generally,
ryptographi
 tasks may involve multiple parties with intri
ate trust relation-

ships, and exhibit a wide variety of se
re
y and
orre
tness requirements. Furthermore, in addition

to plain
orre
tness and se
re
y, there are typi
ally other task-spe
i�

on
erns. We brie
y men-

tion some examples: Ele
troni
 voting, in a number of
ontexts, require
areful balan
ing among

orre
tness, publi
 a

ountability, priva
y and deniability. Ele
troni
-
ommer
e appli
ations su
h

as on-line au
tions, on line trading and sto
k markets, and plain on-line shopping require fairness

in
ompletion of the transa
tion, as well as the ability to resolve disputes in an a

eptable way.

On-line gambling tasks require, in addition, the ability to guarantee fair distribution of the out-

omes. Priva
y-preserving
omputations on databases introdu
e a host of additional
on
erns and

goals, su
h as providing statisti
al information while preserving the priva
y of individual entries,

obtaining data while hiding from the database whi
h data was obtained, and answering queries

that depend on several databases without leaking additional information in the pro
ess. Se
ure dis-

tributed depositories, either via a
entrally-managed distributed system or in an open, peer-to-peer

fashion, involve a host of additional se
re
y, anonymity, availability and integrity
on
erns.

Cryptographi
 proto
ols. There is vast literature des
ribing proto
ols aimed at solving the

problems mentioned above, and many others, in a variety of settings. Out of this literature, let us

mention only the works of Yao [y86℄, and Goldrei
h, Mi
ali and Wigderson [gmw87, g04℄, whi
h

give a me
hani
al way to generate proto
ols for solving pra
ti
ally any multi-party
ryptographi

proto
ol problem \in a se
ure way", assuming authenti
ated
ommuni
ation. (These
onstru
-

tions do not
over all tasks; for instan
e, they do not address the important problem of obtaining

authenti
ated
ommuni
ation. Still, they are very general.)

De�ning se
urity of proto
ols. But, what does it mean for a
ryptographi
 proto
ol to solve

a given proto
ol problem, or a
ryptographi
 task, \in a se
ure way"? How
an we formalize

the relevant se
urity requirements in a way that makes mathemati
al sense, mat
hes our informal

intention, and at the same time
an also be met by a
tual proto
ols? This turns out to be a tri
ky

business.

Initially, de�nitions of se
urity were problem-spe
i�
. That is, resear
hers
ame up with ad-ho

models of proto
ols and sets of requirements that seem to mat
h the intuitive per
eption of the

problem at hand. In addition, de�nitions were often tailored to
apture the properties of spe
i�

solutions or proto
ols. However, as pointed out already in [y82a℄, we would like to have a general

framework for spe
ifying the se
urity properties of di�erent tasks. A general framework allows for

uniform and methodologi
al spe
i�
ation of se
urity properties. Su
h a spe
i�
ation methodology

may provide better understanding of requirements and their formalization. It is also likely to result

in fewer
aws in formulating the se
urity requirements of tasks. In fa
t, it
an be argued that

having a general de�nitional framework is essential for understanding the notion of se
urity of

4

proto
ols.

Yet there is another, more
on
rete argument in favor of having a general analyti
al framework.

Traditionally, notions of se
urity tend to be very sensitive to the spe
i�
 \exe
ution environment"

in whi
h the proto
ol is running, and in parti
ular to the other proto
ols running in the system

at the same time. Thus, a set of requirements that seem appropriate in one setting may easily

be
ome insuÆ
ient when the setting is
hanged only slightly. This is a serious drawba
k when

trying to build se
ure systems that make use of
ryptographi
 proto
ols. Here a general analyti
al

framework with a uniform methodology of spe
ifying se
urity requirements
an be very useful: It

allows formulating statements su
h as \A proto
ol that realizes some task
an be used in
onjun
tion

with any proto
ol that makes use of this task, without bad intera
tions," or \Proto
ols that realize

this task
ontinue to realize it in any exe
ution environment, regardless of what other proto
ols run

in the system." Su
h se
urity-preserving
omposition theorems are essential for building se
urity

proto
ols in a systemati
 way. They
an be meaningful only in the
ontext of a general framework

for representing
ryptographi
 proto
ols.

Several general frameworks for representing
ryptographi
 proto
ols and spe
ifying the se
urity

requirements of tasks were developed over the years, e.g. [gl90, mr91, b91, b
g93, pw94, lmms98,

00, hm00, dm00, pw00, pw01,
01, mrst06, mms03, k06℄. All of these frameworks follow in

one way or another the same underlying de�nitional approa
h,
alled the trusted-party paradigm.

Still, these frameworks di�er greatly in their expressibility (i.e., the range of se
urity
on
erns and

tasks that
an be
aptured), in the models addressed, and in many signi�
ant te
hni
al details.

They also support di�erent types of se
urity-preserving
omposition theorems.

This tutorial. This tutorial
on
entrates on the trusted-party de�nitional paradigm and the se-

urity it provides. Spe
ial attention is given to the importan
e of se
urity-preserving
omposition

in
ryptographi
 proto
ols, and to the
omposability properties of this paradigm in parti
ular. We

also brie
y dis
uss the relations with other (non-
ryptographi
) general approa
hes for modeling

distributed proto
ols and analyzing their properties. For sake of
on
reteness, we base the
ur-

rent treatment on two spe
i�
 formalizations of the trusted-party paradigm; other formulations

are surveyed in the Appendix. The �rst formalization [
00℄ is somewhat simpler and provides a

rather basi
 notion of se
urity, with limited expressibility and a limited form of se
urity-preserving

omposition. The se
ond one [
01℄ is more general in terms of expressibility of
on
erns and situ-

ations, and also enables a very general form of se
urity-preserving
omposition. The presentation

here tries to \de-
ouple" the expressibility aspe
t from the aspe
t of the se
urity level; indeed, we

believe that the two aspe
ts are very di�erent from ea
h other.

We start (in Se
tion 2) with very high-level motivation and exposition of the trusted-party

paradigm. We �rst demonstrate the failure of some naive approa
hes for de�ning se
urity. We

then present the paradigm in an abstra
t form and argue why it
ould allow over
oming the same

pitfalls. We also try to demonstrate the intuitive appeal of this paradigm.

We then
ontinue to develop (in Se
tion 3) a highly simpli�ed formalization of the general

paradigm, that deals only with two parties that wish to
ompute a pre-spe
i�ed fun
tion of their

inputs, on
e, in isolation. While
onsiderably restri
ted in its expressibility, this formulation (whi
h

is a restri
ted
ase of [
00℄) allows
on
entrating on the main ideas without mu
h of the
omplexity

of the general
ase.

Se
tion 4 presents a generalization of the model from Se
tion 3 that allows
apturing general

ryptographi
 tasks, in
luding multi-party tasks, rea
tive tasks (i.e. tasks where parties provide

multiple inputs and re
eive multiple outputs), as well as �ne-tuning of the se
urity requirements.

5

This model
an be seen as a generalization of [
00℄. Still, this model
on
entrates on proto
ols that

are exe
uted on
e, in isolation. At the end of this se
tion we brie
y review some basi
 feasibility

results for this \stand-alone se
urity" model.

Se
tion 5 introdu
es the notion of se
urity-preserving proto
ol
omposition. We start by demon-

strating, via some examples, the se
urity pitfalls asso
iated with proto
ol
omposition. We then

survey some salient
omposition operations and s
enarios. Finally, we de�ne what it means for a

notion of se
urity to provide \
omposable se
urity" (with respe
t to some type of
omposition).

The presentation in this se
tion is, for the most part, independent of the material in the previous

se
tions.

Se
tion 6 reviews the
omposability properties of the \stand-alone" notion of se
urity from

Se
tion 4. In a nutshell, it is demonstrated that se
urity is preserved as long as no two proto
ol

instan
es run
on
urrently with ea
h other. However, no se
urity is guaranteed as soon as even two

proto
ols instan
es run
on
urrently.

Se
tion 7 presents and dis
usses the notion of Universally Composable (UC) se
urity [
01℄. The

salient feature of this notion is that it guarantees that se
urity is preserved in any
omposite system,

and for any set of proto
ols running
on
urrently. After presenting the notion and its relation to

the stand-alone notion from Se
tion 4, we brie
y review the known feasibility results, as well as

some relaxations of this notion that were re
ently studied in the literature.

Se
tion 8 provides a brief and subje
tive view of notions of se
urity for
ryptographi
 proto
ols.

The Appendix
ontains a mini survey of de�nitional works that follow the trusted-party paradigm.

2 The trusted-party paradigm

This se
tion motivates and sket
hes the trusted-party de�nitional paradigm, and highlights some of

its main advantages. More detailed des
riptions of a
tual de�nitions are left to subsequent se
tions.

Let us
onsider, as a generi
 example, the task of two-party se
ure fun
tion evaluation. Here two

mutually distrustful parties P

0

and P

1

want to \se
urely evaluate" some known fun
tion f , in the

sense that P

i

has value x

i

and the parties wish to jointly
ompute f(x

0

; x

1

) \in a se
ure way."

Whi
h proto
ols should we
onsider adequate for this task?

First attempts. Two basi
 types of requirements
ome to mind. The �rst is
orre
tness: the

parties that follow the proto
ol (often
alled the \good parties" or \honest parties") should output

the
orre
t value of the fun
tion evaluated at the inputs of all parties. Here the \
orre
t fun
tion

value" may
apture multiple
on
erns, in
luding authenti
ity of the identities of the parti
ipants,

integrity of the input values,
orre
t
hoi
e of random values, et
. The se
ond requirement is

se
re
y, or hiding the lo
al information held by the parties as mu
h as possible.

For instan
e,
onsider two parties (say, two databases), ea
h having a list of items, that wish

to �nd out whi
h items appear in both lists. Here,
orre
tness means that the parties output all

the entries whi
h appear in both lists, and only those entries. Se
re
y means that no party learns

anything from the intera
tion other than the joint entries.

However, in general, formalizing these requirements in a meaningful way seems problemati
.

Let us brie
y mention some of the issues. First, de�ning
orre
tness is
ompli
ated by the fa
t that

it is not
lear how to de�ne the \input value" that an arbitrarily-behaving party
ontributes to

the
omputation. In parti
ular, it is of
ourse impossible to \for
e" su
h parties to use some value

given from above. So, what would be a \legitimate", or \a

eptable" pro
ess for
hoosing inputs

by parties who do not ne
essarily follow the proto
ol?

6

Another question is how to formulate the se
re
y requirement. Here it seems reasonable to

require that parties should be able to learn from parti
ipating in the proto
ol nothing more than

their pres
ribed outputs of the
omputation, namely the \
orre
t" fun
tion value. But, even

before getting into the more te
hni
al question of how to formulate su
h a \learn nothing more"

requirement, we run into the problem that the \
orre
t fun
tion value" in itself depends on the

inputs
ontributed by parties who may not follow the proto
ol.

Let us exemplify some of these issues via the following toy proto
ol (taken from [mr91℄): Assume

that x

0

; x

1

2 f0; 1g, and that f is the ex
lusive or fun
tion, namely f(x

0

; x

1

) = x

0

� x

1

. That

is, ea
h party
ontributes an (a priori se
ret) input value, and obtains the ex
lusive or of the two

inputs. The proto
ol instru
ts P

0

to send its input to P

1

; then P

1

announ
es the result. Intuitively,

this proto
ol is inse
ure sin
e P

1

an unilaterally determine the output, after learning P

0

's input.

Yet, the proto
ol maintains se
re
y (whi
h holds va
uously for this problem sin
e ea
h party
an

infer the input of the other party from its own input and the fun
tion value), and is
ertainly

\
orre
t" in the sense that the output �ts the input that P

1

\
ontributes" to the
omputation.

This example seems to indi
ate that the a se
ure proto
ol must guarantee that the input that

a party
ontribute to the proto
ol should be
hosen without knowledge of the inputs of the other

parties (at least those who follow the proto
ol). This, in turn, suggests that the
orre
tness and

se
re
y requirements are in fa
t intertwined, namely they are two fa
ets of a single requirement,

rather than two di�erent requirements.

The same example also brings forth another se
urity requirement from proto
ols, in addition

to
orre
tness and se
re
y: We want to prevent one party from in
uen
ing the output of the other

parties in illegitimate ways, even when plain
orre
tness is not violated.

Additional problems arise when the fun
tion to be evaluated is probabilisti
, namely the parties

wish to jointly \sample" from a given distribution that may depend on se
ret values held by the

parties. Here it seems
lear that
orre
tness should take the form of some statisti
al requirement

from the output distribution. In parti
ular, ea
h party should be able to in
uen
e the output dis-

tribution only to the extent that the fun
tion allows, namely only in ways that
an be interpreted

as providing a legitimately determined input to the fun
tion. Furthermore, as demonstrated by the

following example, the
ase of probabilisti
 fun
tions puts forth an additional, impli
it se
re
y re-

quirement. (We note that this
on
ern arises even in the simpli�ed
ase where all parties are trusted

to follow the proto
ol instru
tions and the goal is to prevent illegitimate information leakage.)

Assume that the parties want to toss k
oins, where k is a se
urity parameter; formally, the

evaluated fun
tion is f(�; �) = r, where r

R

 f0; 1g

k

. Let f be a one-way permutation on domain

f0; 1g

k

(i.e., given a random k-bit value x, it is infeasible to
ompute f

�1

(x)). The proto
ol instru
ts

P

0

to
hoose s

R

 f0; 1g

k

and send r = f(s) to P

1

. Both parties output r.

This proto
ol preserves se
re
y va
uously (sin
e the parties do not have any se
ret inputs), and

is also perfe
tly
orre
t in the sense that the distribution of the joint output is perfe
tly uniform.

However, the proto
ol lets P

0

hold some \se
ret trapdoor information" on the joint random string.

Furthermore, P

1

does not have this information, and
annot feasibly
ompute it (assuming that f

is one-way). This \quirk" of the proto
ol is not merely an aestheti

on
ern. Having su
h trapdoor

information
an be devastating for se
urity if the output string r is used within other proto
ols.

This example seems to suggest that a de�nition of se
urity should somehow spe
ify also the pro
ess

in whi
h the output is to be obtained.

Other
on
erns, not dis
ussed here, in
lude issues of fairness in obtaining the outputs (namely,

preventing parties from aborting the
omputation after they re
eived their outputs but before other

parties re
eived theirs), and addressing break-ins into parties that o

ur during the
ourse of the

7

omputation.

The trusted party paradigm. The trusted party paradigm follows the \uni�ed requirement"

approa
h mentioned above. The idea (whi
h originates in [gmw87℄, albeit very informally) pro
eeds

as follows. In order to determine whether a given proto
ol is se
ure for some
ryptographi
 task,

�rst envision an ideal pro
ess for
arrying out the task in a se
ure way. In the ideal pro
ess all

parties se
retly hand their inputs to an external trusted party who lo
ally
omputes the outputs

a

ording to the spe
i�
ation, and se
retly hands ea
h party its pres
ribed outputs. This ideal

pro
ess
an be regarded as a \formal spe
i�
ation" of the se
urity requirements of the task. (For

instan
e, to
apture the above se
ure fun
tion evaluation task, the trusted party simply evaluates

the fun
tion on the inputs provided by the parties, and hands the outputs ba
k to the parties. If

the fun
tion is probabilisti
 then the trusted party also makes the ne
essary random
hoi
es.) The

proto
ol is said to se
urely realize a task if running the proto
ol amounts to \emulating" the ideal

pro
ess for the task, in the sense that any damage that
an be
aused by an adversary intera
ting

with the proto
ol
an also be
aused by an adversary in the ideal pro
ess for the task.

In prin
iple, this idea seems to have the potential to answer all the
on
erns dis
ussed above.

Indeed, in the ideal pro
ess both
orre
tness and la
k of in
uen
e are guaranteed in �at, sin
e

the inputs provided by any adversarial set of parties
annot depend on the inputs provided by the

other parties in any way, and furthermore all parties obtain the
orre
t output value a

ording

to the spe
i�
ation. Se
re
y is also immediately guaranteed, sin
e the only information obtained

by any adversarial
oalition of parties is the legitimate outputs of the parties in this
oalition. In

parti
ular, no impli
it leakage of side-information
orrelated with the output is possible. Another

attra
tive property of this approa
h is its apparent generality: It seems possible to
apture the

requirements of very di�erent tasks by
onsidering di�erent sets of instru
tions for the external

trusted party.

It remains to substantiate this de�nitional approa
h in a way that maintains its intuitive appeal

and se
urity guarantees, and at the same time allows for reasonable analysis of \natural" proto
ols.

In this tutorial we des
ribe several formalizations, that di�er in their
omplexity, generality and

omposability guarantees. Yet, all these formalizations follow the same outline, sket
hed as follows.

The de�nition pro
eeds in three steps. First we formalize the pro
ess of exe
uting a distributed

proto
ol in the presen
e of adversarial behavior of some parts of the system. Here the adversarial

behavior is embodied via a single,
entralized
omputational entity
alled the adversary. Next

we formalize the ideal pro
ess for the task at hand. The formalized ideal pro
ess also involves

an adversary, but this adversary is rather limited and its in
uen
e on the
omputation is tightly

ontrolled. Finally, we say that a proto
ol � se
urely realizes a task F if for any adversary A

that intera
ts with � there exists an adversary S that intera
ts with the trusted party for F , su
h

that no \external environment," that gives inputs to the parties and reads their outputs,
an tell

whether it is intera
ting with � or with the trusted party for F . (Here the \environment" represents

\everything that happens outside the proto
ol exe
ution," in
luding both the the immediate users

of the proto
ol and other parties and proto
ols.)

Very informally, the goal of the above requirement is to guarantee that any information gathered

by the adversary A when intera
ting with �, as well as any \damage"
aused by A,
ould have

also been gathered or
aused by an adversary S in the ideal pro
ess with F . Now, sin
e the

ideal pro
ess is designed so that no S
an gather information or
ause damage more than what is

expli
itly permitted in the ideal pro
ess for F , we
an
on
lude that A too, when intera
ting with

�,
annot gather information or
ause damage more than what is expli
itly permitted by F .

8

We note that the de�nitional approa
h of
omparing an exe
ution to an idealized system
an be

viewed as a natural extension of the approa
h taken when de�ning semanti
 se
urity of en
ryption

s
heme [gm84℄ and zero-knowledge proofs [gmra89℄. Furthermore, the formulation des
ribed here

an be seen as a dire
t generalization of the formulations in [gm84, gmra89℄.

Jumping ahead, we also note that the above formulation has an apparent intuitive \
ompo-

sitionality" guarantee: Sin
e it is expli
itly required that no \environment"
an tell the proto
ol

from the trusted party, it makes sense to expe
t that a proto
ol will exhibit the same properties

regardless of the a
tivity in the rest of the system. We postpone additional dis
ussion of this

important issue to later se
tions.

3 Basi
 se
urity: A simpli�ed
ase

For the �rst formalization, we
onsider a relatively simple setting: As in the previous se
tion, we

restri
t ourselves to two-party se
ure fun
tion evaluation, namely the
ase of two parties that wish

to jointly
ompute a fun
tion of their inputs. We also restri
t ourselves to the \stand-alone"
ase,

where the proto
ol is exe
uted on
e, and no other parties and no other proto
ol exe
utions are

onsidered. Furthermore, we are only
on
erned with the
ase where one of the two parties is

adversarial. In parti
ular, the
ommuni
ation links are
onsidered \trusted", in the sense that ea
h

party re
eives all the messages sent by the other party, and only those messages. It turns out that

this setting, while highly simpli�ed, still
aptures mu
h of the
omplexity of the general problem.

We thus present it in detail before
onsidering more
omplex (and more realisti
) settings.

Se
tion 3.2 presents the de�nition. Se
tion 3.3 exempli�es the de�nition by providing some

de�nitions of
ryptographi
 tasks,
ast in this model. First, however, we present the underlying

model of distributed
omputation, in Se
tion 3.1.

3.1 A basi
 system model

Before de�ning se
urity of proto
ols, one should �rst formulate a model for representing distributed

systems and proto
ols within them. Informally, we wish to
apture a system of (resour
e bounded)

omputing elements that
ommuni
ate in an arbitrary asyn
hronous manner. This se
tion sket
hes

su
h a model; sin
e we only need to
apture two-party proto
ols, the model is somewhat simpli�ed

(it is extended later). Still, readers that are satis�ed with a more informal notion of distributed

systems, proto
ols, and polynomial-time
omputation
an safely skip this se
tion.

Several general models for representing and arguing about distributed systems exist, e.g. the

CSP model of Hoare [h85℄, the �-
al
ulus of Milner [m89, m99℄, or the I/O automata of Lyn
h

and Tuttle [lt89℄. Here we build on the intera
tive Turing ma
hines (ITMs) model, put forth in

Goldwasser, Mi
ali and Ra
ko� [gmra89℄ (see also [g01℄). Indeed, while the ITM model is more

\low level" and provides fewer and less elegant abstra
tion me
hanisms than the above models, it

allows for
apturing in a natural way the subtle relations between randomization, intera
tion, and

resour
e-bounded adversarial behavior. Spe
i�
ally, we formulate a simpli�ed version of the model

of [
01, 2005 revision℄. (Some models that aim at
ombining the
omputational advantages of the

ITM model with the analyti
al advantages of more abstra
t models in
lude [pw00, pw01,
+06,

k06℄.)

Intera
tive Turing Ma
hines. Intera
tive Turing ma
hines (ITMs) are probabilisti
 Turing

ma
hines augmented with me
hanisms that allow transferal of data between di�erent ma
hines.

9

Spe
i�
ally, an ITM is a Turing ma
hine with some externally writable tapes, namely tapes that
an

be written into by other ma
hines. It will be
onvenient to distinguish three externally writable

tapes: An input tape, representing inputs provided by the \invoking program", an in
oming
om-

muni
ation tape, representing messages
oming from the network, and a subroutine output tape,

representing outputs provided by subroutines invoked by the present program. The input tape

represents information
oming from \outside the proto
ol instan
e", while the in
oming
ommu-

ni
ation tape and the subroutine output tapes provide information that is \internal to a proto
ol

instan
e." In addition, the in
oming
ommuni
ation tape models information
oming from un-

trusted sour
es, while the information on the subroutine output tapes is treated as
oming from a

trusted sour
e.

Systems of ITMs. The model of
omputation
onsists of several instan
es of ITMs that
an

write on the externally writable tapes of ea
h other, subje
t to some global rules. We
all an ITM

instan
e an ITI. Di�erent ITIs
an run the same
ode (ITM); however they would, in general, have

di�erent lo
al states.

An exe
ution of a systems of ITMs
onsists of a sequen
e of a
tivations of ITIs. In ea
h a
tiva-

tion, the a
tive ITI pro
eeds a

ording to its
urrent state and
ontents of tapes until it enters a

spe
ial wait state. In order to allow the writing ITI to spe
ify the target ITI we enumerate the ITIs

in the system in some arbitrary order, and require that the write instru
tion spe
ify the numeral

of the target ITI. (This addressing me
hanism essentially means that ea
h two ITIs in the system

have a \dire
t link" between them. A more general addressing me
hanism is des
ribed in Se
tion

4.1.) The order of a
tivation is determined as follows: There is a pre-determined ITI,
alled the

initial ITI, whi
h is the �rst one to be a
tivated. At the end of ea
h a
tivation, the ITI whose tape

was written to is a
tivated next. If no external write operation was made then the initial ITI is

a
tivated. The exe
ution ends when the initial ITI halts. (To disambiguate the order of a
tivations,

we allow an ITI to write on an externally writable tape of at most one other ITI per invo
ation.)

In prin
iple, the global input of an exe
ution should be the initial inputs of all ITIs. For

simpli
ity, however, we de�ne the global input as the input of the initial ITI alone. Similarly,

the output of an exe
ution is the output of the initial ITI. (This formulation will suÆ
e for our

purposes.) A �nal ingredient of a system of ITMs is the
ontrol fun
tion, whi
h determines whi
h

tapes of whi
h ITI
an ea
h ITI write on. As we'll see, the
ontrol fun
tion will be instrumental in

de�ning di�erent notions of se
urity.

Looking ahead, we remark that this very rudimentary model of
ommuni
ation, with its simple

and sequential s
heduling of events, a
tually proves suÆ
ient for expressing general syn
hrony,

on
urren
y, and s
heduling
on
erns.

Polynomial-Time ITMs. In order to model resour
e-bounded programs and adversaries, we

need to de�ne resour
e-bounded ITMs. We
on
entrate on polynomial time ITMs. We wish to

sti
k with the traditional interpretation of polynomial time as \polynomial in the length of the

input." However, sin
e in our model ITMs
an write on the tapes of ea
h other,
are should be

taken to guarantee that the overall running time of the system remains polynomial in the initial

parameters. We thus say that an ITM M is polynomial time (PT) if there exists a polynomial

p(�) su
h that at any point during the
omputation the overall number of steps taken by M is at

most p(n), where n is the overall number of bits written so far into the input tape of M , minus the

number of bits written by M to the input tapes of other ITIs. This guarantees that a system of

ommuni
ating ITMs
ompletes in polynomial time in the overall length of inputs, even when ITIs

10

write on the input tapes of ea
h other. (An alternative, somewhat simpler formulation says that

the overall running time of an ITM should be polynomial in the value of a \se
urity parameter".

However, this formulation
onsiderably limits the expressibility of the model, espe
ially in the
ase

of rea
tive
omputation. See [
01℄ for more dis
ussion on notions of PPT ITMs.)

Proto
ols. A proto
ol is de�ned simply as an ITM. This ITM represents the
ode to be run by

ea
h parti
ipant, namely the set of instru
tions to be
arried out upon re
eipt of an input, in
oming

message, or subroutine output (namely, output from a subroutine). If the proto
ol has di�erent

instru
tions for di�erent roles, then the ITM representing the proto
ol should spe
ify the behaviors

of all roles. A proto
ol is PT if it is PT as an ITM.

3.2 The de�nition of se
urity

We
esh out the de�nitional plan from Se
tion 2, for the
ase of two-party, stand-alone, non-rea
tive

tasks (see Figure 1).

E

A

E

S

T_f

Pi

Figure 1: The de�nition of se
urity at a glan
e. The left �gure depi
ts an exe
ution of the proto
ol

with an adversary A. The right �gure depi
ts the ideal pro
ess for a fun
tion f ; here a party and

the adversary intera
t via a trusted party T

f

. A proto
ol � se
urely evaluates a fun
tion f if for any

adversary A there is an adversary S su
h that no environment
an tell with signi�
ant probability

whether it is intera
ting with A and a party running � or with S in the ideal pro
ess for f .

The proto
ol exe
ution experiment.

1

Let � be a two-party proto
ol. The proto
ol exe
ution

experiment pro
eeds as follows. There are three entities (modeled as ITIs): an entity P , that runs

the
ode of �, the adversary, denoted A, and the environment, denoted E .

The environment (who is a
tivated �rst) provides initial inputs to A and the party P running

�; later, it obtains the �nal outputs of P and A. (The initial inputs
an be thought of as en
oded

in E 's own input.)

On
e either P or A is a
tivated, with either an input value or an in
oming message (i.e., a value

written on the in
oming
ommuni
ation tape), it runs its
ode and potentially generates a message

to be written on the other party's in
oming
ommuni
ation tape, or an output, to be read by E .

Both P and A
an generate only a single output value throughout the
omputation.

The �nal output of the exe
ution is the output of the environment. As we'll see, it's enough to

let this output
onsist of s single bit.

1

The presentation below is somewhat informal. Formal des
ription, in terms of a system of ITMs as sket
hed in the

previous se
tion,
an be easily inferred. In parti
ular, the various model restri
tions are enfor
ed via an appropriate

ontrol fun
tion.

11

We use the following notation. Let exe

�;A;E

(x) denote the random variable des
ribing the

output of environment E when intera
ting with adversary A and proto
ol � on input x (for E).

Here the probability is taken over the random
hoi
es of all the parti
ipating entities. Let exe

�;A;E

denote the ensemble of distributions fexe

�;A;E

(x)g

x2f0;1g

� .

The ideal pro
ess. Next an ideal pro
ess for two-party fun
tion evaluation is formulated. Let

f : (f0; 1g

�

)

2

! (f0; 1g

�

)

2

be the (potentially probabilisti
) two-party fun
tion to be evaluated.

We want to formalize a pro
ess where the parties hand their inputs to a trusted entity whi
h

evaluates f on the provided inputs and hands ea
h party its pres
ribed output. For that purpose,

we add to the system an additional entity (ITI), denoted T

f

, whi
h represents the trusted party

and
aptures the desired fun
tionality. P now runs the following simple ideal proto
ol for f : When

re
eiving input value, P forwards this input to T

f

. When re
eiving an output from T

f

, P forwards

this output to E .

T

f

pro
eeds as follows: It �rst waits to re
eive input (b; x) from P and input x

0

from the

adversary A, where b 2 f1; 2g denotes whether x is to be taken as the �rst or se
ond input to f .

On
e the inputs are re
eived, T

f

evaluates the fun
tion, namely it lets x

b

 x, x

3�b

 x

0

, and

(y

1

; y

2

) f(x

1

; x

2

). Next, T

f

outputs y

3�b

to A. On
e it re
eives an ok message from A, T

f

outputs y

b

to P .

Analogously to the proto
ol exe
ution experiment, let ideal

f;A;E

(x) denote the random variable

des
ribing the output of environment E when intera
ting with adversary A and the ideal proto
ol for

f on input x (for E), where the probability is taken over the random
hoi
es of all the parti
ipating

entities. Let ideal

f;A;E

denote the ensemble fideal

f;A;E

(x)g

x2f0;1g

� .

Se
urely evaluating a fun
tion. Essentially, a two-party proto
ol � is said to se
urely evaluate

a two-party fun
tion f if for any adversary A, that intera
ts with �, there exists another adversary,

denoted S, that intera
ts with T

f

, su
h that no environment will be able to tell whether it is

intera
ting with � and A, or alternatively with T

f

and S.

To provide a more rigorous de�nition, we �rst de�ne indistinguishability of probability ensem-

bles. A fun
tion is negligible if it tends to zero faster than any polynomial fra
tion, when its

argument tends to in�nity. Two distribution ensembles X = fX

i

g

a2f0;1g

�
and X

0

= fX

0

i

g

a2f0;1g

�

are indistinguishable (denoted X � X

0

) if for any a; a

0

2 f0; 1g

k

the statisti
al distan
e between

distributions X

a

and X

0

a

is a negligible fun
tion of k.

2

Se
ure evaluation is then de�ned as follows:

De�nition 1 (Basi
 se
urity for two-party fun
tion evaluation) A two-party proto
ol � se-

urely evaluates a two-party fun
tion f if for any PT adversary A there exists a PT adversary S

su
h that for all PT environments E that output only one bit:

ideal

f;S;E

� exe

�;A;E

3.2.1 Dis
ussion

Motivating some
hoi
es in the model. Re
all that the proto
ol exe
ution experiment in-

volves only a single party running the two-party proto
ol, where the messages are ex
hanged with

2

The use of an asymptoti
 notion of similarity between distribution ensembles greatly simpli�es the presentation

and argumentation. However it inevitably introdu
es some sla
k in measuring distan
e. More pre
ise and quantitative

notions of similarity may be needed to determine the exa
t quantitative se
urity of proto
ols. Also, note that we do

not de�ne
omputational indistinguishability of probability ensembles. This is so sin
e we will only be interested in

ensembles of distributions over the binary domain f0; 1g, and for these ensembles the two notions are equivalent.

12

the adversary rather than with another party running the proto
ol. This models the fa
t that we

onsider the behavior of the system when one of the parties follows the proto
ol while the other

follows a potentially di�erent strategy. In two-party proto
ols where there are two distin
t roles

there will be two distin
t
ases depending on the role played by the party who is running the

proto
ol. However, sin
e the role
an be modeled as part of the input, this distin
tion need not be

made within the general modeling.

Re
all that the environment only sees the inputs and outputs of the adversary and the party

running the proto
ol; it does not have dire
t a

ess to the
ommuni
ation between the parties.

Indeed, the environment
aptures the \external system" that provides inputs to the parties and

obtains their outputs. the
ommuni
ation between the parties is treated as internal to the proto
ol

rather than part of its fun
tionality.

Also, noti
e that no generality is lost by restri
ting the environment to output only one bit, sin
e

a de�nition that allows the environment to generate long outputs would end up being equivalent

to the present one.

Interpreting the de�nition. It is instru
tive to see how the informal des
ription of Se
tion 2

is substantiated. First, the ideal pro
ess represents in a straightforward way the intuitive notion of

a trusted party that obtains the inputs from the parties and lo
ally
omputes the desired outputs.

In parti
ular, the input provided by the adversary depends only in the information it was initially

given from E . Furthermore, A obtains only the spe
i�ed fun
tion value.

Now, assume there existed an adversary A that
ould intera
t with the proto
ol and exhibit

\bad behavior" that
annot be exhibited in the ideal pro
ess, by any adversary S. Then there

would exist an environment E that outputs `1' with signi�
antly di�erent probabilities in the two

exe
utions, and the de�nition would be violated.

The notion of \bad behavior" is interpreted in terms of the joint distribution of the outputs

of P and A on any given input. This interpretation is very broad: For instan
e, it guarantees

that the proto
ol does not allow the adversary to gather information on the other party's input,

where this information is not available in the ideal pro
ess (sin
e otherwise the proto
ol exe
ution

would have no ideal-pro
ess
ounterpart). It also guarantees that the proto
ol does not allow an

adversarial party to in
uen
e the output of the other party in ways that are not possible in the

ideal pro
ess. In parti
ular, it is guaranteed that the adversary S in the ideal pro
ess is able to

generate an \e�e
tive adversarial input" x

2

to the trusted party that is
onsistent with P 's input

and output (namely, x

2

satis�es y

1

= f(x1; x2)

1

, where x

1

is P s input and y

1

is P 's output).

In addition, the environment
an
hoose to provide A with input that is either un
orrelated

with P 's input, or alternatively partially or fully
orrelated with P 's input. This guarantees that

the above properties of the proto
ol hold regardless of how mu
h \partial information" on P 's input

is already known to the adversary in advan
e.

Also, noti
e that the
orre
tness guarantee takes a somewhat di�erent
avor for deterministi

and probabilisti
 fun
tions: For deterministi
 fun
tions, P 's output is guaranteed to be the ex-

a
t fun
tion value, ex
ept for negligible probability, for any potential input value. For probabilisti

fun
tions, it is only guaranteed that the distribution of P 's output is
omputationally indistinguish-

able from the distribution spe
i�ed by the fun
tion. This di�eren
e allows the analyst to
hoose

whi
h level of se
urity to require, by spe
ifying an appropriate f .

Yet, the present formulation of the ideal pro
ess does not guarantee fairness: A always re
eives

the output �rst, and
an then de
ide whether P will obtain its output.

13

Extensions. The de�nition
an be modi�ed in natural ways to require an information-theoreti

(or, statisti
al) level of se
urity, by
onsidering
omputationally unbounded adversaries and envi-

ronments, or even perfe
t se
urity, by requiring in addition that the two sides of (1) be identi
al.

(To preserve meaningfulness, S should still be polynomial in the
omplexity of A, even when A

and E are unbounded.)

Similarly, the de�nition
an be modi�ed to
onsider only restri
ted types of mali
ious behavior

of the parties, by appropriately restri
ting the adversary. For instan
e, se
urity against \semi-

honest" parties that follow the proto
ol, but may still try to gather additional information,
an be

aptured by requiring A to follow the original proto
ol. (Indeed, in situations where it is plausible

to assume that all parties always follow the pres
ribed proto
ol su
h a weaker se
urity guarantee

suÆ
es.)

3.3 Examples

To exemplify the use of De�nition 1 for
apturing the se
urity requirements of
ryptographi
 tasks,

we use it to
apture the se
urity requirements of three quite di�erent tasks. That is, for ea
h of

these tasks we formulate a two-party fun
tion that
aptures the se
urity requirements of the task.

Database Interse
tion. As a �rst example,
onsider the task mentioned in Se
tion 2: Two par-

ties, ea
h having a list of items, wish to �nd out whi
h items appear in both lists. Here both parties

have private inputs and both have private outputs whi
h are di�erent than, but related to, ea
h

other. Still, it
an be formulated as a fun
tion in a straightforward way: f

di

((x

1

1

; :::; x

1

n

); (x

2

1

; :::; x

2

m

)) =

((b

1

1

; :::; b

1

n

); (b

2

1

; :::; b

2

m

)), where b

i

j

= 1 if x

i

j

equals x

3�i

j

0

for some j

0

, and b

i

j

= 0 otherwise. This

would mean that a party P whi
h follows the proto
ol is guaranteed to get a valid answer based on

its own database x and some database x

0

, where x

0

was determined by the other party based only

on the initial input of the other party. Furthermore, the information learned by the other party

is
omputed based on the same two values x and x

0

. Also, if there is reason to believe that the

other party used some
on
rete \real" database x

0

, then
orre
tness is guaranteed with respe
t to

that spe
i�
 x

0

. Re
all, however, that the de�nition does not guarantee fairness. That is, the other

party may obtain the output value �rst, and based on that value de
ide whether P will obtain its

output value. In Se
tion 4 we will see how to express fairness within an extended formalism.

Common Randomness. Next, we
onsider a task that involves randomness requirements from

the outputs of the parties. Spe
i�
ally, we
onsider the task of generating a
ommon string that

is guaranteed to be taken from a pre-de�ned distribution, say the uniform distribution over the

strings of some length: f

k

r

(�;�) = (r; r), where r is a random k-bit string. Here the parties

are guaranteed that the output r is distributed (pseudo)randomly over f0; 1g

k

. Furthermore, ea
h

party is guaranteed that the other party does not have any \trapdoor information" on r that

annot be eÆ
iently
omputed from r alone. As mentioned in the Introdu
tion, this guarantee

be
omes
ru
ial in some
ryptographi
 appli
ations. Finally, as in the previous
ase, fairness is not

guaranteed.

Zero Knowledge. Let R : f0; 1g

�

� f0; 1g

�

! f0; 1g be a binary relation, and
onsider the

bivariate fun
tion f

R

zk

((x;w);�) = (�; (x;R(x;w))). That is, the �rst party (the \prover") has

input (x;w), while the se
ond party (the \veri�er") has empty input. The veri�er should learn

x plus the one-bit value R(x;w), and nothing else. The prover should learn nothing from the

14

intera
tion. In parti
ular, when R is the relation asso
iated with an NP language L (that is,

L = L

R

def

= fxj9w s.t. R(x;w) = 1g), these requirements are very reminis
ent of the requirements

from a Zero-Knowledge proto
ol for L: The veri�er is guaranteed that it a

epts, or outputs (x; 1),

only when x 2 L (soundness), and the prover is guaranteed that the veri�er learns nothing more

other than whether x 2 L (zero-knowledge).

It is tempting to
on
lude that a proto
ol is Zero-Knowledge for language L

R

as in [gmra89℄

if and only if it se
urely realizes f

R

zk

. This statement is true \in spirit", but some te
hni
al
aveats

exist. Below we dis
uss these
aveats; readers that are satis�ed with a more intuitive notion of

Zero-Knowledge or are not familiar with its
lassi
 de�nition may safely skip this dis
ussion.

The �rst
aveat is that [gmra89℄ de�ne Zero Knowledge so that both parties re
eive x as input,

whereas here the veri�er learns x only via the proto
ol. This di�eren
e, however, is only \
osmeti
"

and
an be resolved via simple synta
ti
 transformations between proto
ols. The remaining two

di�eren
es are more substantial: First, se
urely realizing f

R

zk

only guarantees \
omputational sound-

ness", namely soundness against PT adversarial provers. Se
ond, se
urely realizing f

R

zk

implies an

additional, somewhat impli
it requirement: When the adversary plays the role of a potentially

misbehaving prover, the de�nition requires the simulator to expli
itly hand the input x and the

witness w to the trusted party. To do this, the simulator should be able to \extra
t" these values

from the messages sent by the adversary. This requirement has the
avor of a proof of knowledge

(see e.g. [g01℄), albeit in a slightly milder form that does not require a bla
k-box extra
tor.

In
on
lusion, we have that a proto
ol se
urely realizes f

R

zk

if and only if a slight modi�
ation

of the proto
ol is a
omputationally sound Zero-Knowledge Proof of Knowledge for L

R

(with

potentially non bla
k-box extra
tors).

4 Basi
 se
urity: The general
ase

Se
tion 3 provides a framework for de�ning se
urity of a restri
ted
lass of proto
ols for a restri
ted

lass of tasks: proto
ols that involve only two parties, and tasks that
an be
aptured as two-party

fun
tions. While this
ase
aptures mu
h of the essen
e of the general notion, it la
ks in terms of

the expressibility and generality of the de�nitional paradigm.

This se
tion generalizes the treatment of Se
tion 3 in several ways, so as to
apture a wider
lass

of
ryptographi
 tasks. First we
onsider multi-party tasks and proto
ols, namely the
ase where

multiple (even unboundedly many) parties
ontribute inputs and obtain outputs. This requires

apturing various syn
hrony and s
heduling
on
erns. Se
ond, we
onsider also rea
tive tasks,

where a party provides inputs and obtains outputs multiple times, and new inputs may depend on

previously obtained outputs. Next, we let the adversary be a separate entity, rather than taking

the pla
e of some of the parti
ipants. This allows
onsidering also tasks whi
h require se
urity

against \the network", namely against parties that do not take legitimate part in the proto
ol

but may have a

ess to the
ommuni
ation. It also allows expressing situations where parties get

\
orrupted", or \broken into" in an adaptive way throughout the
omputation. Next, we allow the

adversary intera
t freely with the trusted party. This allows
apturing se
urity requirements in a

more �ne-grained way by spe
ifying the allowed information leakage and adversarial in
uen
e.

Still, throughout this se
tion we only
onsider the
ase of a single exe
ution of a proto
ol, run

in isolation. Treatment of systems where multiple proto
ol exe
utions
o-exist is deferred to the

next se
tions.

The ne
essary extensions to the basi
 system model are presented �rst, in Se
tion 4.1. Se
tion

4.2 presents the extensions to the de�nition of se
urity, while Se
tion 4.3 provides some additional

15

examples. Finally, Se
tion 4.4 brie
y reviews some basi
 feasibility results for this de�nition.

Overall, this se
tion is somewhat more detail-oriented. While useful for understanding many

ru
ial details in modeling se
urity proto
ols, it
an be safely skipped (or only skimmed) at �rst

reading.

4.1 The system model

In many respe
ts, the system model from Se
tion 3.1 suÆ
es for
apturing general multi-party

proto
ols and their se
urity. (In fa
t, some existing formalisms o�er
omparable generality, in

the sense that they do not in
lude the extensions des
ribed below.) Still, that model has some

limitations: First, it
an only handle a �xed number of intera
ting ITIs. This suÆ
es for proto
ols

where the number of parti
ipants is �xed. However, it does not allow modeling proto
ols where

the number of parties
an grow in an adaptive way based on the exe
ution of the proto
ol, or even

only as a fun
tion of a se
urity parameter. Su
h situations may indeed o

ur in real life, say in

an on-line au
tion or gambling appli
ation. Another limitation is that the addressing me
hanism

for external write requests is highly idealized, and does not allow for natural modeling of routing

and identity management issues. While this level of abstra
tion is suÆ
ient for systems with small

number of parti
ipants that know ea
h other in advan
e, it does not suÆ
e for open systems, where

parties may learn about ea
h other only via the proto
ol exe
ution.

We thus extend the model of Se
tion 3.1 in two ways (again, following [
01, 2005 revision℄).

First, we allow for new ITIs to be added to the system during the
ourse of the
omputation. This

is done via a spe
ial \invoke new ITI" instru
tion that
an be exe
uted by a
urrently running

ITI. The
ode of the new ITI should be spe
i�ed in the invo
ation instru
tion. The e�e
t of the

instru
tion is that a new ITI with the spe
i�ed
ode is added to the system. The externally writable

tapes of the new ITI
an now be written to by other ITIs. Note that, given the new formalism,

a system of ITMs
an now be spe
i�ed by a single ITM, the initial ITM, along with the
ontrol

fun
tion. All other ITIs in the system
an be generated dynami
ally during the
ourse of the

exe
ution. The notion of PT ITMs from Se
tion 3.1 remains valid, in the sense that it is still

guaranteed that a system of ITMs is guaranteed to
omplete ea
h exe
ution in polynomial time, as

long as the initial ITM is PT and the
ontrol fun
tion is polynomially
omputable.

The se
ond
hange is to add a spe
ial identity tape to the des
ription of an ITM. This tape

will be written to on
e, upon invo
ation, and will be readable by the ITM itself. This means that

the behavior of the ITM
an depend on its identity (namely on the
ontents of its identity tape).

Furthermore, an external write instru
tion will now spe
ify the target ITM via its identity, rather

than via a \dedi
ated link" (represented via some external index).

The identity of an ITI is determined by the ITI that invokes it. To guarantee unambiguous

addressing, we require that identities (often dubbed IDs) be unique. That is, an invo
ation instru
-

tion that spe
i�es an existing ID is reje
ted. (This rule
an be implemented, say, by the
ontrol

fun
tion.)

4.2 De�nition of Se
urity

We extend the de�nition of se
urity in several steps. First, we extend the model of proto
ol

exe
ution. Next, we extend the ideal pro
ess. Finally, we extend the notion of realizing a trusted

party. As we'll see, in some respe
ts the present more general de�nition is simpler to spe
ify than

the one from Se
tion 3.

16

The proto
ol exe
ution experiment. We des
ribe the generalized proto
ol exe
ution experi-

ment. Let � be a proto
ol to be exe
uted. As before, the model for exe
uting � is parameterized

by an environment E and an adversary A.

Initially, the system
onsists only of E and A. During the exe
ution, E invoke as many parties

(ITIs) as it wishes, and determine their identities. All of these parties run �. In addition, E
an

write on the input tapes of the parties throughout the
omputation, and parties
an hand outputs

to E . In addition, E
an give initial input to A and
an obtain a single (presumable �nal) output

message from A. No other intera
tion between E and the system is allowed.

On
e a party is a
tivated, either with an input value, or with an in
oming message, it follows

its
ode and potentially generates an outgoing message or an output. All outgoing messages are

handed to the adversary, regardless of the stated destinations of the messages. Outputs are handed

to E . Parties may also invoke new subroutines (ITIs), that may run either � or another
ode.

However, these subroutines are not allowed to dire
tly
ommuni
ate with E .

On
e the adversary is a
tivated, it
an deliver a message to a party, i.e. write the message on

the party's in
oming
ommuni
ation tape. In its last a
tivation it
an also generate an output, i.e.

write the output value on the in
oming
ommuni
ation tape of E .

As before, the �nal output of the exe
ution is the (one bit) output of the environment. With

little
han
e of
onfusion, we re-de�ne the notation exe

�;A;E

to refer to the present modeling.

The ideal pro
ess. The main di�eren
e from the ideal pro
ess in Se
tion 3 is that, instead of

onsidering only trusted parties that perform a restri
ted set of operations (su
h as evaluating a

fun
tion), we let the trusted party run arbitrary
ode, and in parti
ular to repeatedly intera
t with

the parties, as well as dire
tly with the adversary. We say that the
ode run by the trusted party

is the ideal fun
tionality representing the task.

In addition, the ri
her system model allows us to simplify the presentation by formulating the

ideal pro
ess as a spe
ial
ase of the general proto
ol exe
ution experiment. That is, given an ideal

fun
tionality F , we de�ne an ideal proto
ol I

F

as follows: When a party running I

F

obtains an

input value, it immediately
opies this value to the input of F . (The �rst party to do so will also

invoke F .) When a party re
eives an output from F (on its subroutine output tape), it immediately

outputs this value to E .

The notation ideal

F ;A;E

from Se
tion 3.2 is no longer needed; it is repla
ed by exe

I

F

;A;E

.

Proto
ol emulation and se
ure realization. The notion of realizing an ideal pro
ess remains

essentially the same. Yet, formalizing the ideal pro
ess as an exe
ution of a spe
ial type of a

proto
ol allows formalizing the de�nition of realizing an ideal fun
tionality as a spe
ial
ase of the

more general notion of emulating one proto
ol by another. That is:

De�nition 2 (Proto
ol emulation with basi
 se
urity) A proto
ol � emulates proto
ol � if

for any PT adversary A there exists a PT adversary S su
h that for all PT environments E that

output only one bit:

exe

�;S;E

� exe

�;A;E

De�nition 3 (Realizing fun
tionalities with basi
 se
urity) A proto
ol � realizes an ideal

fun
tionality F if � emulates I

F

, the ideal proto
ol for F .

17

Se
ure evaluation vs. observational equivalen
e. We
ompare the notion of emulation with

the notion of observational equivalen
e, used in the �-
al
ulus formalism of Milner [m89, m99℄, and

elsewhere. (This notion is sometimes
alled also bi-simulatability.) The two notions have somewhat

of the same
avor, in the sense that both require that an external environment (or,
ontext) will be

unable to tell whether it is intera
ting with one pro
ess or with another. (In the work of Milner, the

environment is
omputationally unbounded. A relaxation to the
ase of
omputationally bounded

environments appears in [lmms98℄.) However, emulation is a signi�
antly more lenient notion,

sin
e it provides the additional \leeway" of
onstru
ting an appropriate simulator S that will help

\fool" the external environment.

In other words, while \pro
ess A is observationally equivalent to pro
ess B" essentially means

that A and B look the same from the outside, \A emulates B" means that A
an be made to look

the same as B by variating only the adversarial
omponent.

This extra lenien
e of the notion of emulation is in fa
t at the
ore of what makes it realiz-

able for interesting
ryptographi
 tasks, while maintaining mu
h of the meaningfulness. (Another

onsequen
e is that the present notion is not symmetri
, whereas observational equivalen
e is.)

4.2.1 Dis
ussion

Some modeling de
isions. We highlight some
hara
teristi
s of the extended model of proto
ol

exe
ution. First, the present model
ontinues to treat the environment and adversary as
entralized

entities that have global views of the distributed
omputation. While in the two-party
ase this

was a natural
hoi
e, in the multi-party
ase this modeling be
omes an abstra
tion of reality. This

modeling seems instrumental for
apturing se
urity in an appropriate way, sin
e we would want

se
urity to hold even when the adversarial entities do have global view of the
omputation. Still,

it does not allow formulating requirements that relate to a non-
entralized ideal adversary.

Another point is the restri
ted
ommuni
ation between E and A. Re
all that E
annot dire
tly

provide information to A other than at invo
ation time, and A
an dire
tly provide information

to E only at the end of its exe
ution. (Of
ourse, E and A
an ex
hange information indire
tly,

via the parties, but this type of ex
hange is limited by the properties of the spe
i�
 proto
ol � in

question.) This restri
tion is indeed natural in a stand-alone setting, sin
e there is no reason to

let the adversarial a
tivity against the proto
ol depend in an arti�
ial way on the lo
al inputs and

outputs of the non-
orrupted parties. Furthermore, it is very important te
hni
ally, sin
e it allows

proving se
urity of proto
ols that are intuitively se
ure, su
h as the [gmw87℄ proto
ol (see Se
tion

4.4).

Also, note that the present modeling of asyn
hronous s
heduling of events, while typi
al in
ryp-

tography, is di�erent than the standard modeling of asyn
hronous s
heduling in general distributed

systems, su
h as those mentioned in Se
tion 3.1. In parti
ular, there asyn
hrony is typi
ally
ap-

tured via non-deterministi
 s
heduling, where the non-determinism is resolved by an all-powerful

s
heduler that has a

ess to the entire
urrent state of the system. Here, in
ontrast, the s
heduling

is determined by the environment and adversary, namely in an algorithmi
 and
omputationally

bounded way. This modeling of asyn
hrony, while admittedly weaker, seems essential for
apturing

se
urity that holds only against
omputationally bounded atta
ks. Combining non-deterministi

and adversarial s
heduling is an interesting
hallenge.

Modeling various
orruption and
ommuni
ation methods. The simpli�ed model of Se
-

tion 3 is
on
entrated on the
ase where exa
tly one of the two parties is
orrupted. Furthermore,

this party is
orrupted in advan
e, before the proto
ol starts. In
ontrast, the extended model

18

postulates that all parties follow the spe
i�ed proto
ol �; no deviations are allowed. Deviations

from the original proto
ol are
aptured as additional proto
ol instru
tions that \get a
tivated"

upon re
eiving spe
ial
orruption messages from the adversary. For instan
e, to
apture arbitrary

deviation from the proto
ol, instru
t a party to follow the adversary's instru
tions on
e it re
eives

a spe
ial
orrupted message. To
apture parties that
ontinue following the proto
ol but pool all

their information together (aka honest-but-
urious
orruptions, a party that re
eives a
orrupted mes-

sage will send all its internal state to the adversary, and otherwise
ontinue to follow the proto
ol.

Other types of
orruptions
an be
aptured analogously. This way of modeling
orruptions has

two advantages: First it simpli�es the basi
 model by avoiding the need to expli
itly model party

orruption, and se
ond it provides
exibility in
onsidering multiple types of
orruptions within the

same model, and even within the same exe
ution.

The above experiment gives the adversary full
ontrol over the
ommuni
ation, thus representing

ompletely asyn
hronous, unreliable and unauthenti
ated
ommuni
ation. More abstra
t
ommu-

ni
ation models, providing various levels of authenti
ation, se
re
y, reliability and syn
hrony,
an

be
aptured by appropriately restri
ting the adversary. (For instan
e, to model authenti
ated
om-

muni
ation, restri
t the adversary to deliver only messages that were previously sent by parties,

and in
lude the identity of the sour
e within ea
h message.) In addition, as will be seen in Se
tion

7, all these
ommuni
ation models
an be
aptured as di�erent abstra
tions within the same basi

model, rather than having to re-de�ne the underlying model for ea
h one.

On the generalized modeling of the ideal pro
ess. Modeling the trusted party as a general

ITM greatly enhan
es the expressibility of the de�nitional framework, in terms of the types of

on
erns and levels of se
urity that
an be
aptured. Indeed, it be
omes possible to \�ne-tune" the

requirements at wish. The down side of this generality is that the exa
t se
urity impli
ation of a

given ideal fun
tionality (or, \
ode for the trusted party") is not always immediately obvious, and

small
hanges in the formulation often result in substantial
hanges in the se
urity requirements.

One way to address this diÆ
ulty, espe
ially when the ideal fun
tionality
ode is non-trivial, is to

expli
itly analyze
ertain key properties of that
ode (see e.g. [psw00a,
k02℄). Here we very brie
y

try to highlight some salient aspe
ts of the formalism, as well as useful \programming te
hniques"

for ideal fun
tionalities.

Two obvious aspe
ts of the general formulation are that it is now possible to formulate multi-

party and rea
tive tasks. In addition, letting the ideal fun
tionality intera
t dire
tly with the

adversary in the ideal pro
ess (namely, with the \simulator") has two main e�e
ts. First, providing

information to the adversary
an be naturally used to
apture the \allowed leakage of information"

by proto
ols that realize the task. For instan
e, if some partial information on the output value
an

be leaked without violating the requirements, then the ideal fun
tionality might expli
itly hand this

partial information to the adversary. (For instan
e, to
apture the fa
t that an en
ryption s
heme

need not hide th length of the plaintext, simply let the trusted party expli
itly give the length of

th plaintext to the adversary.)

Re
eiving information dire
tly from the adversary is useful in
apturing the \allowed in
uen
e"

of the adversary on the
omputation. For instan
e, if the timing of a
ertain output event is allowed

to be adversarially
ontrolled (say, within some limits), then the ideal fun
tionality might wait for a

trigger from the adversary before generating that output. Alternatively, if several di�erent output

values are legitimate for a given set of inputs, the ideal fun
tionality might let the adversary
hoose

the a
tual output within the given
onstraints. In some
ases it might even be useful to let the

adversary hand some arbitrary
ode to be exe
uted by the ideal fun
tionality in a \monitored way,"

namely subje
t to
onstraints set by the ideal fun
tionality.

19

In either
ase, sin
e the
ommuni
ation between the ideal fun
tionality and the adversary is not

part of the input-output interfa
e of the a
tual parties, the e�e
t of this
ommuni
ation is always

to relax the se
urity requirements of the task.

An example of the use of dire
t
ommuni
ation between the adversary and the ideal fun
tionality

is the modeling of the allowable information leakage and adversarial in
uen
e upon party
orruption.

In the ideal pro
ess, party
orruption is
aptured via a spe
ial message from the adversary to the

ideal fun
tionality. In response to that message, the ideal fun
tionality might provide the adversary

with appropriate information (su
h as past inputs and outputs of the
orrupted party), allow the

adversary to
hange the
ontributed input values of the
orrupted parties, or even
hange its

behavior in more global ways (say, when the number of
orrupted parties ex
eeds some threshold).

Finally, re
all that the ideal fun
tionality re
eives input dire
tly from the environment, and

provides outputs dire
tly to the environment, without intervention of the adversary. This has the

e�e
t that an ideal proto
ol
an guarantee delivery of messages, as well as
on
erns like fairness,

in the sense that one party obtains output if and only if another party does. In fa
t, spe
ial
are

should be taken, when writing an ideal fun
tionality, to make sure that the fun
tionality allows

the adversary to delay delivery of outputs (say, by waiting for a trigger from the adversary before

a
tually writing to the subroutine output tape of the re
ipient party); otherwise the spe
i�
ation

may be too strong and unrealizable by a distributed proto
ol.

4.3 More examples

De�nition 3 allows
apturing the se
urity and
orre
tness requirements of pra
ti
ally any distributed

task, in a stand-alone setting. This in
ludes, e.g., all the tasks mentioned in the introdu
tion. Here

we sket
h ideal fun
tionalities that
apture the se
urity requirements of three basi
 tasks. Ea
h

example is intended to highlight di�erent aspe
ts of the formalism.

Commitment. First we formulate an ideal fun
tionality that
aptures the se
urity requirements

from a
ommitment proto
ol, as informally sket
hed in the introdu
tion. Commitment is inherently

a two step pro
ess, namely
ommitment and opening. Thus it
annot be naturally
aptured within

the formalism of Se
tion 3, in spite of the fa
t that it is a two-party fun
tionality.

The ideal
ommitment fun
tionality, F

om

, formalizes the \sealed envelope" intuition in a

straightforward way. That is, when re
eiving from the
ommitter C an input requesting to
om-

mit to value x to a re
eiver R, F

om

re
ords (x;R) and noti�es R and the adversary that C has

ommitted to some value. (Notifying the adversary means that the fa
t that a
ommitment took

pla
e need not be hidden.) The opening phase is initiated by the
ommitter inputting a request

to open the re
orded value. In response, F

om

outputs x to R and the adversary. (Giving x to the

adversary means that the opened value
an be publi
ly available.)

In order to
orre
tly handle adaptive
orruption of the
ommitter during the
ourse of the

exe
ution, F

om

responds to a request by the adversary to
orrupt C by �rst outputting a
orruption

output to C, and then revealing the re
orded value x to the adversary. In addition, if the Re
eipt

value was not yet delivered to R, then F

om

allows the adversary to modify the
ommitted value.

This last stipulation
aptures the fa
t that the
ommitted value is �xed only at the end of the

ommit phase, thus if the
ommitter is
orrupted during that phase then the adversary might still

be able to modify the
ommitted value. (Corruption of the re
eiver does not require any move.)

F

om

is des
ribed in Figure 2. For brevity, we use the following terminology: The instru
tion

\send a delayed output x to party P" should be interpreted as \send (x; P) to the adversary; when

20

re
eiving ok from the adversary, output x to P ."

Fun
tionality F

om

1. Upon re
eiving an input (Commit; x) from party C, re
ord (C;R; x) and generate a delayed

output (Re
eipt) to R. Ignore any subsequent (Commit:::) inputs.

2. Upon re
eiving an input (Open) from C, do: If there is a re
orded value x then generate a

delayed output (Open; x) to R. Otherwise, do nothing.

3. Upon re
eiving a message (Corrupt; C) from the adversary, output a Corrupted value to C,

and send x to the adversary. Furthermore, if the adversary now provides a value x

0

, and the

(Re
eipt) output was not yet written on R's tape, then
hange the re
orded value to x

0

.

Figure 2: The Ideal Commitment fun
tionality, F

om

Realizing F

om

is a stronger requirement than the basi
 notions of
ommitment in the literature

(see e.g. [g01℄). In parti
ular, this notion requires both \extra
tability" and \equivo
ality" for

the
ommitted value. These notions (whi
h are left unde�ned here) be
ome important when using

ommitment within other proto
ols; they are dis
ussed in subsequent se
tions, as well as in [
f01,

01℄. Still, F

om

is realizable by standard
onstru
tions, assuming authenti
ated
ommuni
ation

hannels.

Key Ex
hange. Key ex
hange (KE) is a task where two parties wish to agree on a random

value (a \key") that will remain se
ret from third parties. Typi
ally, the key is then used to

en
rypt and authenti
ate the
ommuni
ation between the two parties. Key ex
hange may seem

reminis
ent of the
oin-tossing task, dis
ussed in Se
tion 3.3. However, it is a
tually quite di�erent:

Essentially, in the
ase of key-ex
hange the two parties wish to jointly thwart an external atta
ker,

whereas in
oin-tossing the parties wish to prote
t themselves from ea
h other. More pre
isely, for

key-ex
hange we only
are about the fa
t that the key is random when both parties follow their

proto
ol, whereas in
oin-tossing the output should remain random and unpredi
table even when

one or the parties deviates from the proto
ol. On the other hand, in key ex
hange it is
ru
ial

that the key remains se
ret from third parties, whereas in
oin-tossing se
re
y from third parties

is typi
ally not a
on
ern. Furthermore, sin
e key-ex
hange is usually
arried out in a multi-party

environment with asyn
hronous and unauthenti
ated
ommuni
ation, issues su
h as pre
ise timing

of events and binding of the output key to spe
i�
 identities be
ome
ru
ial. Thus, modeling of

key-ex
hange naturally involves an intera
tive interfa
e, as well
ommuni
ating dire
tly with the

adversary.

Fun
tionality F

ke

, presented in Figure 3, pro
eeds as follows. Upon re
eiving an (Initiate; I; R)

input from some party I (
alled the initiator), F

ke

sends a delayed output (Initiate; I) to R.

Upon re
eiving the input (Respond) from R, F

ke

forwards this input to the adversary. Now, when

re
eiving a value (Key; P;

~

k) from the adversary, F

ke

�rst veri�es that P 2 fI;Rg, else P gets no

output. If the two peers are
urrently un
orrupted, then P obtains a truly random and se
ret key

� for that session. If any of the peers is
orrupted then P re
eives the key

~

k determined by the

adversary.

F

ke

attempts to make only a minimal set of requirements from a
andidate proto
ol. In parti
-

ular, it attempts o allow the adversary maximum
exibility in determining the order in whi
h the

parties obtain their outputs. Also, the fa
t that there is no requirement on the key when one of the

parties is
orrupted is
aptured by allowing the adversary to determine the key in this
ase. Still,

21

Fun
tionality F

ke

1. Upon re
eiving an input (Initiate; I; R) from party I , send a delayed output (Initiate; I)

to R. Upon re
eiving (Respond) from party R, send (Respond) to the adversary.

2. Upon re
eiving a message (Corrupt; P) from the adversary, for P 2 fI; Rg, mark P as

orrupted and output (Corrupted) to P .

3. Upon re
eiving a message (Key; P;

~

k) from the adversary, for P 2 fI; Rg do:

(a) If there is no re
orded key � then
hoose �

R

 f0; 1g

k

and re
ord �.

(b) If neither I nor R are
orrupted then output (Key; �) to P . Else, output (Key;

~

k) to P .

Figure 3: The Key Ex
hange fun
tionality, F

ke

F

ke

guarantees that if two un
orrupted parties lo
ally obtain a key, then they obtain the same

value, and this value is uniformly generated and independent from the adversary's view.

Key Ex
hange is impossible to realize without some form of authenti
ation set-up, say pre-

shared keys, authenti
ation servers, or publi
-key infrastru
ture. Still, the formulation of F

ke

is

agnosti
 to the parti
ular set-up in use. It only spe
i�es the desired overall fun
tionality. In ea
h

of these
ases, F

ke

is realizable by standard proto
ols, both with respe
t to basi
 se
urity and with

respe
t to UC se
urity, dis
ussed in Se
tion 7.

Byzantine Agreement. Next we formulate an ideal fun
tionality that
aptures (one variant of)

the Byzantine Agreement task. Here ea
h party has binary input, and the parties wish to output

a
ommon value with the only restri
tion that if all parties have the same input value then they

output that value. The fun
tionality, F

ba

, is presented in Figure 4. Let us highlight some aspe
ts

of its formulation. First, the number of parties (whi
h is a parameter to F

ba

)
an depend on the

environment. Also the identities of the parti
ipants
an be determined adaptively as they join

the proto
ol. Se
ond, the fa
t that the adversary is noti�ed on any new input
aptures the fa
t

that se
re
y of the inputs of the parties is not guaranteed. Third, F

ba

allows the output value

to take any adversarially
hosen value, unless all parties have the same input. (In parti
ular, the

parties are not guaranteed to
ompute any pre-determined fun
tion of their inputs.) Four, F

ba

aptures a blo
king primitive, namely no party obtains output unless all parties provide inputs. It

also guarantees fair output delivery: As soon as one party obtains its output, all parties who ask

for their output re
eive it without delay. (Note that if F

ba

would have simply sent the outputs to

all parties, then fairness would not have been guaranteed sin
e the adversary
ould have prevented

the delivery to some parties by not returning
ontrol to F

ba

.) Five, while F

ba

does not restri
t

the identities of parti
ipants, the output of ea
h parti
ipant in
ludes the set of all parti
ipants.

Alternatively, F

ba

ould allow a party to be
ome a parti
ipant only if it satis�es some
riteria.

Finally, F

ba

does not have a postulation for the
ase of party
orruption. This
aptures the fa
t

that
orrupting a party should give no advantage to the adversary.

Note that F

ba

is agnosti
 to the spe
i�
 model of
omputation in whi
h it is realized. Naturally,

realizing F

ba

requires di�erent te
hniques in di�erent settings (depending e.g. on the level of

syn
hrony and the spe
i�
 authenti
ation set-up). We
onje
ture that, in ea
h su
h setting, realizing

F

ba

is essentially equivalent to the standard de�nition of the primitive in that model. (In parti
ular,

it is easy to see that if half or more of the parties are
orrupted then F

ba

be
omes unrealizable

in any
omputational model. Indeed, in su
h settings the Byzantine Broad
ast formulation, where

22

Fun
tionality F

ba

F

ba

pro
eeds as follows, when parameterized by the number n of parti
ipants. A set P of parti
ipant

identities is initialized to empty. Then:

1. Upon re
eiving input (Input; v) from some new party P =2 P , where v 2 f0; 1g, add P to P ,

set x

P

= v, and send a message (Input; P; v) to the adversary. As soon as jPj = n, ignore

additional (Input...) inputs.

2. Upon re
eiving input (Output) from a party P 2 P , if jPj < n then do nothing. Else:

(a) If the output value y is not yet determined then determine y as follows: If there exists

a value b 2 f0; 1g su
h that x

P

= b for all parties P 2 P , then set y = b. Else, obtain a

value y from the adversary.

(b) Output (P ; y) to P .

Figure 4: The Byzantine Agreement fun
tionality, F

ba

only one party has input, is preferable.)

4.4 Feasibility

We very brie
y mention some of the basi
 feasibility results for
ryptographi
 proto
ols, whi
h

establish a remarkable fa
t: Pra
ti
ally any
ryptographi
 task
an be realized, in prin
iple, by a

polynomial-time intera
tive proto
ol.

The �rst work to provide a general feasibility result is Yao [y86℄, whi
h showed how to se
urely

evaluate any two-party fun
tion by a two-party proto
ol, in a setting whi
h
orresponds to that of

Se
tion 3, in the
ase of \honest-but-
urious
orruptions" where even
orrupted parties
ontinue

to follow the proto
ol.

The basi
 idea is as follows. Given a fun
tion f , �rst have one party, X, with input x, prepare

a binary
ir
uit C

f

x

su
h that for any y, C

f

x

(y) = f(x; y). Then X sends to the other party, Y , an

\obfus
ated version" of C

f

x

, so that Y
an only evaluate C

f

x

on a single input of its
hoi
e, without

learning any additional information on the \internals" of C

f

x

. The obfus
ation method involves

preparing a \garbled version" of ea
h gate in the
ir
uit, plus allowing Y to obtain a mat
hing

\garbled version" of one of the possible two values of ea
h input line. Given this information, Y

will be able to evaluate the
ir
uit in a gate by gate fashion, and obtain a \garbled version" of the

output line of the
ir
uit. Finally, X will send Y a table that maps ea
h possible garbled value of

the output line to the
orresponding real value.

Goldrei
h, Mi
ali and Wigderson [gmw87℄ generalize [y86℄ in two main respe
ts. First, they

generalize Yao's \obfus
ated
ir
uit" te
hnique to multi-party fun
tions. Here all parties parti
ipate

in evaluating the \garbled gates". Further generalization to rea
tive fun
tionalities
an be done in

a straightforward way, as demonstrated in [
los02℄.

Perhaps more importantly, [gmw87℄ generalize Yao's paradigm to handle also Byzantine
or-

ruptions, where
orrupted parties may deviate from the proto
ol in arbitrary ways. This is done

via a generi
 and powerful appli
ation of Zero-Knowledge proto
ols. A somewhat over-simpli�ed

des
ription of the idea follows: In order to obtain a proto
ol � that realizes some task for Byzan-

tine
orruptions, �rst design a proto
ol �

0

that realizes the task for honest-but-
urious
orruptions.

Now, in proto
ol � ea
h party P runs the
ode of �

0

, and in addition, along with ea
h message m

23

sent by �

0

, P sends a Zero-Knowledge proof that the message m was
omputed
orre
tly, a

ording

to �

0

, based on some se
ret input and the (publi
ly available) messages that P re
eived. The proto-

ols of [gmw87℄ withstand any number of faults, without providing fairness in output generation.

Fairness is guaranteed only if the
orrupted parties are a minority.

Ben-Or, Goldwasser and Wigderson [bgw88℄ demonstrate, using algebrai
 te
hniques, that if

the parties are equipped with ideally se
ret pairwise
ommuni
ation
hannels, then it is possible to

se
urely evaluate any multi-party fun
tion in a perfe
t way (see dis
ussion following De�nition 1),

in the presen
e of honest-but-
urious
orruption of any minority of the parties. (A similar result,

with statisti
al rather than perfe
t se
urity, is given by Chaum, Crepeau and Damgaard [

d88℄.)

The same holds even for Byzantine
orruptions, as long as less only less than a third of the parties

are
orrupted. Rabin and Ben Or [rb89℄ showed how to withstand any dishonest minority in the

above model, assuming a broad
ast
hannel, and at the pri
e of allowing statisti
al se
urity. These

bounds are tight. A ni
e feature of the [bgw88, rb89℄ proto
ols is that, in
ontrast to the [gmw87℄

proto
ols, they are se
ure even against adaptive
orruptions. Se
urity against adaptive
orruptions

without ideally se
ure
ommuni
ation
hannels
an be obtained by
ombining these proto
ols with

adaptively se
ure en
ryption proto
ols su
h as [bh92,
fgn96℄.

All the above results assume ideally authenti
ated
ommuni
ation. If an authenti
ated set-up

stage is allowed, then obtaining authenti
ated
ommuni
ation is simple, say by digitally signing ea
h

message relative to pre-distributed veri�
ation keys. When no authenti
ated set-up is available,

however, then no task that requires some form of authenti
ation of the parti
ipants
an be realized.

Still, as shown in Barak et.al. [b

+

05℄, an \unauthenti
ated variant" of any
ryptographi
 task

an still be realized, mu
h in the spirit of [y86, gmw87℄, even without any authenti
ated set-up.

Interestingly, the proof of this result uses in an essential way proto
ols that are se
urely
omposable,

namely retain their se
urity properties even when running together in the same system. This
an

be seen as a demonstration of the fa
t that se
ure
omposability, dis
ussed next, is in fa
t a very

basi
 se
urity requirement for
ryptographi
 proto
ols.

5 Proto
ol
omposition

So far, we have only
onsidered se
urity in a setting where the proto
ol in question is exe
uted

on
e, in isolation. This setting is indeed appropriate as a �rst one to
onsider when the goal is to

understand the basi
 se
urity properties of a proto
ol. However, analyzing se
urity of a proto
ol in

this stand-alone setting does not allow dis
overing potential weaknesses that
ome to play when the

proto
ol runs alongside other proto
ols, or even alongside other exe
utions of the same proto
ol.

Consequently, so far the only method we have for analyzing se
urity of some system is to model

the entire system as a single proto
ol and analyze it as an atomi
 unit.

Analyzing se
urity of systems in this way is
hallenging even for modest-size systems. When

onsidering se
urity of modern, multi-party,
omplex systems, the above one-shot approa
h be
omes

ompletely impra
ti
al. Furthermore, in open systems (su
h as today's Internet) whose makeup

may
hange dynami
ally, and arbitrary new proto
ols might be added after the time of analysis,

the above notion does not provide an adequate se
urity guarantee to begin with.

Instead, we would like to be able to
arve out pie
es of a large system, analyze the se
urity of

ea
h pie
e as if it were stand-alone, and then use the se
urity of the individual pie
es to dedu
e

se
urity properties of the overall system. Furthermore, this should be doable even when the overall

system is not fully known at the time of analysis. To do that, we need to be able to argue about

the behavior and se
urity of proto
ols when running alongside, or
omposed with, other proto
ols.

24

It turns out that this is a non-trivial task.

This se
tion provides an introdu
tion to the se
urity issues asso
iated with proto
ol
omposition.

We start (in Se
tion 5.1) with some examples that demonstrate various ways in whi
h se
urity

properties might fail to hold when
omposing together proto
ols, even when the
omposed proto
ols

guarantee these properties when run in isolation. We then pro
eed (in Se
tion 5.2) to provide a

brief taxonomy of the main types of
omposition operations
onsidered in the literature. Finally,

we motivate and present the
on
ept of se
urity-preserving
omposition (Se
tion 5.3).

5.1 What might go wrong

To get some feel for the potential se
urity pitfalls in proto
ol
omposition, we sket
h three examples

that demonstrate di�erent ways in whi
h proto
ols that are arguably se
ure in a stand-alone setting

be
ome inse
ure when run in
onjun
tion with other proto
ols. In all the examples the problem

is the same: The atta
ker uses information learned in one exe
ution to \break" the se
urity of

another exe
ution. In ea
h example, this atta
k takes on a di�erent form. The presentation is very

informal throughout this se
tion; indeed, the problems dis
ussed are basi
 ones, and do not depend

on the details of a spe
i�
 de�nition of se
urity.

Key Ex
hange and Se
ure Communi
ation. This example demonstrates how two proto
ols

an intera
t badly in settings where the parties uses se
ret lo
al outputs obtained from one proto
ol

as input for the other. It highlights the subtleties involved in maintaining overall se
urity of a

system that is designed in a modular way and
onsists of di�erent intera
ting proto
ols.

Consider the task of Key Ex
hange, dis
ussed in Se
tion 4.3. Re
all that here two parties, an

initiator I and a responder R wish to jointly generate a key that remains unknown to an external

adversary. This key is typi
ally used in order to en
rypt and authenti
ate messages between I and

R. Let � be key-ex
hange proto
ol that's proven to be se
ure in a stand-alone setting (say, with

unauthenti
ated
ommuni
ation), and
onsider the proto
ol �

0

that's identi
al to � ex
ept that the

following instru
tion is added to the
ode of I and R: \If the key has already been generated, and

the in
oming message in
ludes the
orre
t value of the key, then send a message yes. Else send

no."

We �rst
laim that, in a stand-alone setting, �

0

is just as se
ure as �. Indeed, sin
e � is a

se
ure proto
ol, then
ertainly it does not instru
t any party to send the generated key in the
lear.

Furthermore, the adversary will be unable to �gure out the value of the key just by intera
ting with

the proto
ol. Thus, the added instru
tion will never be a
tivated (ex
ept perhaps with negligible

probability), and �

0

is e�e
tively identi
al to �.

On the other hand,
onsider a setting where � runs in
onjun
tion with a proto
ol that uses

the key to en
rypt messages. Furthermore, assume that the message takes one out of two possible

values (say, either \sell" or \buy"), and furthermore that the en
ryption s
heme in use is one-time-

pad. That is, the en
ryption proto
ol obtains the key k from �

0

, and has one party (say, I) send a

iphertext
 whi
h is either k � \sell" or k � \buy". (Here � stands for bitwise ex
lusive or.) We

laim that now an adversary
an use
 in order to �nd out both k and the plaintext. In fa
t, all

the adversary has to do is to
ompute

0

=
� \buy" and send it to the other party as a message

of �

0

. Now, if the en
rypted message was \buy", then

0

=
� \buy" = k� \buy"� \buy" = k and

R will respond with yes. If the en
rypted message was \sell", then R will respond with no.

The point of this example (whi
h is a variant of an observation of Ra
ko� from '95), is that �

0

allows the atta
ker to use the legitimate parties as \ora
les" for testing guesses regarding the value

25

of the key. As long as the system runs only �

0

, and the key is never used, this \weakness" has no

e�e
t. However, as soon as the key is used and some values of the key be
ome more plausible than

others, the weakness be
omes devastating. Finally, we remark that some prominent de�nitions of

se
urity for key-ex
hange in the literature (e.g., that of [br93℄) do not rule out this de
eivingly

simple weakness.

Parallel
omposition of Zero-Knowledge proto
ols. This example shows how
ertain pro-

to
ols may be se
ure when run in a stand-alone setting, but lose their basi
 se
urity properties as

soon as even two instan
es of the same proto
ol are exe
uted
on
urrently in the same system. This

holds even if the system involves no other proto
ols. (Examples of a similar nature are given in

[llr02℄ for authenti
ated Byzantine Agreement proto
ols, and in [klr06℄. An interesting aspe
t of

the [klr06℄ example is that it remains valid even when all parties are
omputationally unbounded.)

Re
all the task of Zero-Knowledge (ZK), dis
ussed in Se
tion 3.3. Here we have a publi
 binary

relation R. The prover P transmits a value x to a veri�er V , and in addition wants to
onvin
e V

that it (P) has a se
ret \witness" w su
h that R(x;w) holds. This should be done so that V learns

nothing more than the fa
t that P has su
h a witness.

The example is essentially the one in [gk89, f91℄. It uses a
ombinatorial gadget, whi
h we

des
ribe here only very informally. Assume we have a \puzzle system" where both the prover and

the veri�er
an generate puzzles p that have the following properties. First, the prover
an solve

any given puzzle. Se
ond, the veri�er
annot feasibly solve puzzles; in fa
t, the veri�er
annot even

verify the validity of a solution. That is, even for puzzles generated by the veri�er, the veri�er

annot distinguish between a valid solution or a random, invalid one. (Su
h a gadget
an be shown

to exist, either via allowing the prover to be
omputationally unbounded, as in [gk89℄, or based

on some trapdoor information held by the prover, as in [f91℄.)

Now, let � be a ZK proto
ol (for some relation R). Constru
t the proto
ol �

0

where the parties

�rst run �, and then
ontinue with the following intera
tion. First, P sends a random puzzle p to

V . Then, V responds with a purported solution s for p, plus a puzzle p

0

. If s is a
orre
t solution,

then P reveals the se
ret witness w. Otherwise, P sends to V a solution s

0

for the puzzle p

0

provided

by V .

We �rst argue that if � is ZK in a stand-alone setting, then �

0

satis�es the ZK requirement.

Intuitively, this holds sin
e, by assumption, V
annot solve puzzles, thus in a stand-alone exe
ution

of � P never reveals w (ex
ept perhaps with negligible probability). Furthermore, the fa
t that P

provides V with a solution s

0

to the puzzle p

0

is not really a problem in a stand-alone setting, sin
e

V
annot distinguish s

0

from a random value (whi
h V
ould have generated by itself).

However, when a prover P runs two
on
urrent exe
utions of �

0

with V (say, on the same input

(x;w)), then a
heating V
an easily extra
t the witness: V �rst waits to re
eive the puzzles p

1

and

p

2

from P in the two sessions. It then sends (s; p

2

) to P in the �rst session, for some arbitrary s.

In response, V gets from P a solution s

2

to p

2

, whi
h it returns to P in the se
ond session. Sin
e

s

2

is a
orre
t solution, P will now dis
lose w.

Malleability of
ommitment. The following example highlight two issues. First, it demon-

strates that a multi-exe
ution system brings forth entirely new se
urity
on
erns that do not exist

in a stand-alone setting. Se
ond, it highlights the diÆ
ulty in arguing se
urity of a proto
ol with

respe
t to arbitrary other proto
ols, espe
ially proto
ols that have been designed spe
i�
ally so as

to \intera
t badly" with the analyzed proto
ol.

Re
all the task of
ommitment, dis
ussed in Se
tion 4.3. This is a two-stage task, where in

26

the
ommit stage a
ommitter C provides a re
eiver R with a \
ommitment value"
 to a se
ret

value x. In the opening stage C dis
loses x. (For simpli
ity, we assume here that both stages

onsist of a single message from C to R.) There are essentially two se
urity requirements: A

se
re
y requirement, that x remains
ompletely se
ret throughout the
ommit stage, and a binding

requirement, that there is at most one value x that R will a

ept as a valid opening for a
ommitment

value
.

Consider the following natural sealed-bid au
tion proto
ol: Ea
h party
ommits to its bid (say,

over a broad
ast
hannel). On
e the bidding stage is over, all parties open their
ommitments

and the winner is de
ided. It is tempting to dedu
e that any se
ure
ommitment proto
ol would

suÆ
e here. It turns out, however, that there exist natural
ommitment proto
ols that satisfy both

se
re
y and binding (and in fa
t satisfy the de�nition from Se
tion 4.3), but whi
h are sus
eptible

to the following atta
k: An atta
ker might use a
ommitment
, that was generated by an honest

ommitter C that
ommits to a value x, to generate a
ommitment

0

; later, when C opens
 to

value x, the atta
ker is able to \open"

0

to a value x

0

that is related to x (say, x

0

= x + 1).

3

Of

ourse, this atta
k is devastating for the au
tion proto
ol, in spite of the fa
t that neither se
re
y

nor binding of the
ommitment proto
ol were violated here. Rather, a new
on
ern arises, namely

the need to maintain \independen
e" between the
ommitted values in di�erent exe
utions of the

proto
ol. This
on
ern (whi
h is
alled non-malleability in the literature, following [ddn00℄ who

pointed out this
on
ern and showed how to address it) does not
ome to play in a stand-alone

exe
ution.

Several non-malleable
ommitment s
hemes have been
onstru
ted, using di�erent set-up and

network assumptions. Indeed, these s
hemes are not sus
eptible to the above atta
k. However,

noti
e that this atta
k
aptures only a limited aspe
t of the \independen
e" problem, where there

are only two exe
utions, and more importantly the exe
utions are of the same proto
ol. What

about independen
e between an exe
ution of a
ommitment proto
ol � and an exe
ution of another

proto
ol, �

0

? This seems like a hopeless goal, espe
ially when �

0

is designed spe
i�
ally to intera
t

with �. To see this,
onsider the following example. Let � be any (even non-malleable)
ommitment

proto
ol, and let �

0

be the proto
ol where in order to
ommit to a value x, one runs � on
ommitted

value x� 1. Assume that C
ommits using proto
ol �, and that a mali
ious C

0

announ
es that it

ommits using proto
ol �

0

. Now, when C sends its
ommitment string
, all C

0

has to do is to
opy

 as its own
ommitment. When C opens
 to a value x, C

0

an use the same opening to open
 to

the value x+1. Note that C

0

an use �

0

in a
ompletely di�erent
ontext, say with a set of parties

that do not know about C or �. This will make the atta
k hard to dete
t.

Indeed, guaranteeing se
urity against these \
hosen proto
ol atta
ks" seems intuitively impossi-

ble. However,
ontrary to this intuition, Se
tion 7 demonstrates that su
h atta
ks
an be prote
ted

against in most
ases, via appropriate use of some set-up assumptions.

3

For instan
e,
onsider Pedersen's
ommitment s
heme [p91℄: Let G be an algebrai
 group of large prime order,

and assume that two random generators g; h of G are publi
ly known (say, they are announ
ed by the au
tioneer).

In the
ommit stage, C sends
 = g

x

� h

r

, where x 2 G is the
ommitted value, and r

R

 G. To open, C sends x

and r and R a

epts if
 = g

x

� h

r

. Here se
re
y is perfe
t (and un
onditional). Binding holds under the assumption

that
omputing dis
rete logarithms in G is infeasible. In fa
t, a somewhat augmented variant also realizes F

om

as

in De�nition 3. Still,
onsider a mali
ious
ommitter C

0

that wishes to
ommit to the value
ommitted by C, plus

one. Then all C

0

has to do is to generate

0

=
 � g. When C

0

sees a valid opening (x; r) of
, it
an generate the valid

opening (x+ 1; r) of

0

.

27

5.2 How
an proto
ols be
omposed

This se
tion provides a brief taxonomy of the di�erent types of proto
ol
omposition operations

onsidered in the literature, namely the various ways of
ombining together proto
ols in a single

system. Taking another point of view, these operations naturally
orrespond to di�erent ways of

de-
omposing a
omplex system into separate pie
es, whi
h we would like to view as individual

\proto
ols."

We �rst list some salient parameters for
omposition operations. Next we dis
uss some well-

studied settings in terms of these parameters. Finally, we show how all these settings
an be
ast

as spe
ial
ases of a single, general
omposition operation.

Timing
oordination: This parameter refers to the possible ways in whi
h the messages of the

individual exe
utions
an interleave with ea
h other. Salient options in
lude:

Sequential
omposition: Here no two messages of di�erent proto
ol exe
utions may inter-

leave. That is, when ordering the events of sending and re
eiving of messages in the

system along a
ommon time axis, then all the events related to ea
h proto
ol exe
ution

must form an uninterrupted sequen
e.

Enfor
ing global sequentiality requires ea
h party to lo
ally
oordinate the di�erent

exe
utions in terms of the timing of message sending. It also requires some level of

global
oordination among the parties, to guarantee that no party \gets ahead of the

pa
k" and starts sending messages of a new exe
ution before other parties
ompleted

prior exe
utions.

Non-
on
urrent
omposition: This is a somewhat more general variant that allows \nest-

ing" of proto
ol exe
utions, as long as there is no \interleaving" of messages. That is,

assume some message of exe
ution e

1

was delivered, and at a later point a message of

exe
ution e

2

was delivered. Then, on
e another message of exe
ution e

1

is delivered,

messages of exe
ution e

2

an no longer be delivered. Also here, guaranteeing global

non-interleaving requires global
oordination.

Parallel
omposition: Here it is assumed that the messages in ea
h proto
ol exe
ution are

naturally asso
iated with \rounds", where a \round i message" is sent only in response

to re
eiving a \round i� 1 message". The
omposed exe
ution of a given set of proto
ol

exe
utions allows any interleaving of proto
ol messages, as long as all the \round i

messages" of all the exe
utions are delivered before any \round i+1 message" is delivered.

While this
omposition method is also quite restri
tive and requires global timing
oor-

dination among the exe
utions, it is natural in syn
hronous systems where messages are

naturally asso
iated with rounds.

Con
urrent
omposition: Here any interleaving of messages from di�erent proto
ol exe-

utions is allowed. Clearly,
on
urrent
omposition allows both sequential and parallel

omposition as spe
ial
ases. It also allows many other spe
ial types of interleaving,

su
h as the
ommon
ase where various exe
utions wait for an external global event to

pro
eed. Con
urrent
omposition is very powerful in that it requires no timing
oor-

dination among the various exe
utions. Indeed, the timing of events may of
ourse be

adversarially
oordinated.

We note that the level of timing
oordination between exe
utions is in prin
iple unrelated to

the syn
hrony guarantees of the underlying
ommuni
ation network. For instan
e, di�erent

28

exe
utions
an be
omposed
on
urrently and \asyn
hronously" even when ea
h exe
ution is

syn
hronous within itself. Also, sequential or non-
on
urrent
omposition
an be sometimes

guaranteed even in a
ompletely asyn
hronous
ommuni
ation network.

Input
oordination: This parameter refers to the possible relations between the input values to

the various proto
ol exe
utions. We distinguish three variants:

Same input: Here ea
h party has the same input value for all the exe
utions. Taking the

role of a party in a proto
ol as part of its input, this means that ea
h party has the

same role in all the exe
utions it parti
ipates in. Still, di�erent exe
utions may in
lude

di�erent parties. (A somewhat more restri
tive
ase is where the same set of parties

parti
ipate in all exe
utions.)

Fixed inputs: Here the inputs to di�erent exe
utions
an be arbitrarily di�erent from ea
h

other. In parti
ular, a party may have di�erent roles in di�erent exe
utions. (For

instan
e a party may be a re
eiver in one exe
ution of a
ommitment proto
ol, and a

ommitter in a di�erent exe
ution.) Still, all inputs, in
luding the set of parti
ipants in

ea
h exe
ution, are �xed in advan
e before the exe
ution of the
omposed system starts.

Adaptively
hosen inputs: Here ea
h input to ea
h party in ea
h exe
ution
an be deter-

mined adaptively based on the
urrent state of the
omposed system. This is of
ourse

the most general setting of this parameter, and in
ludes the above two settings as spe-

ial
ases. Variants of this setting depend on the amount of information available to

the entities that
hoose the inputs; for instan
e, the inputs of a given party may be

determined only based on the information available to that party, or alternatively based

on the
urrent global state of the system.

Proto
ol
oordination: This parameter refers to the possible relations between the programs, or

odes, exe
uted in di�erent exe
utions. We distinguish two main
ases:

Self
omposition: Here all exe
utions run the same program. A
losely related
ase is

where di�erent exe
utions may run di�erent programs, but the set of programs is �xed

and known in advan
e. (Indeed, running a �xed number of programs is equivalent to

running a single program that multiplexes between the many programs depending on

the input.)

General
omposition: Here a given exe
ution of a proto
ol may be running alongside arbi-

trary other proto
ols (i.e., programs) that may not be known in advan
e. Furthermore,

these programs may be determined adaptively, depending on the proto
ol in question

and potentially even on the
urrent state of the
omposed system. This is indeed a

highly adversarial setting. Still, it seems to adequately model the situation in open and

unregulated networks su
h as the global Internet.

State
oordination: This parameter refers to the amount and type of information that is shared

among di�erent exe
utions. We distinguish the following
ases:

Independent states: This is the \
lassi
"
ase of proto
ol
omposition where di�erent ex-

e
utions have no shared state. That is, The lo
al variables of ea
h exe
ution within

ea
h parti
ipant are seen only by that exe
ution. Also, the random
hoi
es made within

ea
h exe
ution are independent from those in other exe
utions. (Of
ourse, di�erent

exe
utions
an still have related inputs.)

29

Joint state: Here some variables or random
hoi
es may be visible to multiple proto
ol

exe
utions. One salient example of su
h a setting is a proto
ol where the same se
ret

signing key for a signature s
heme is used in multiple proto
ol exe
utions (say, for

generating multiple session keys). Another example is a \
ommon random string",

namely a publi
 string that is drawn from some distribution and is assumed to be globally

available in the system. Here the \joint part" is typi
ally modeled as a \subroutine

proto
ol" that takes input from and provides output to multiple proto
ol exe
utions.

We note that, although this type of
omposition is somewhat non-traditional, without

it it would not be possible to de-
ompose su
h systems into smaller
omponents | su
h

as a single ex
hange of a key in a key-ex
hange proto
ol.

Number of exe
utions: This parameter determines the number of proto
ol exe
utions that run

together in the
omposed system. It is
ru
ial, in the sense that, for most settings of the rest

of the parameters and for ea
h i, it is possible to
onstru
t proto
ols that \
ompose se
urely"

as long as at most i exe
utions run together, but break as soon as the system involves i + 1

exe
utions. Three salient settings are:

Fixed number of exe
utions: Here the number of exe
utions is �xed in advan
e. In par-

ti
ular, it is does not depend on the input, nor on a se
urity parameter.

Bounded number of exe
utions: The maximum number of exe
utions may depend on

publi
 information, su
h as the se
urity parameter or some global input, but is known

when designing the proto
ol. In parti
ular, the
omplexity of the proto
ol may depend

on this bound.

Unbounded number of exe
utions: The number of exe
utions is
hosen adversarially in

an adaptive way, and is limited only by the runtime of the adversary. In parti
ular, it

may depend on the exe
ution, and remain unknown to all or some of the parties.

Some studied settings. Almost any
ombination of the above parameters yields a meaningful

setting for the study of se
urity-preserving proto
ol
omposition. Yet, some settings have been

the fo
us of mu
h dedi
ated study, both in the
ontext of spe
i�
 primitives su
h as key-ex
hange,

zero-knowledge or
ommitment, and in more general
ontexts. We brie
y mention some of these

settings. (For sake of
on
iseness and brevity, we do not expand here on the spe
i�

ontributions

of the works mentioned below, nor on the notions of se
urity that are obtained in ea
h of these

settings.)

Perhaps the simplest setting to
onsider is that of sequential self-
omposition with same input.

This setting is studied in the
ontext of zero-knowledge in [go94℄ and general fun
tion evaluation in

[b91℄. In the
ase of parallel and
on
urrent
omposition, it was demonstrated in Se
tion 5.1 that

zero-knowledge is not preserved under same-input self-
omposition of even two exe
utions [gk89,

f91℄. Still, proto
ols that remain zero-knowledge in this setting exist [go94℄. This primitive
ase

of
on
urrent
omposition is generalized in a number of dire
tions. One dire
tion is that of multiple

on
urrent instan
es, while keeping the restri
tion to same input. Obtaining zero-knowledge in this

ase, espe
ially when the number of exe
utions is unbounded and not known a priori, turns out to

be a non-trivial problem that requires new proto
ol te
hniques [f91, dns98, rk99, prs02℄.

Another extension is to the
ase of
on
urrent self-
omposition when parties
an have di�er-

ent inputs in di�erent exe
utions. The
ase of two
opies and �xed inputs, studied in [ddn00℄

and its many follow-up papers, brings about the
on
ern of malleability, or input independen
e.

Generalizing to adaptively
hosen inputs and a bounded number of
on
urrent instan
es, or else

30

to �xed inputs and an unbounded number of sessions, requires yet another set of te
hniques (e.g.

[pr03, p04, pr05a, pr05b℄), while a general solution for the
ase of adaptively
hosen inputs and

an unbounded number of instan
es requires either some initial set-up [l04℄ or some relaxation of

the notion of se
urity [bs05℄.

So far, we dis
ussed the
ase of self-
omposition. General
omposition was �rst studied in

the non-
on
urrent
ase, where it was shown to preserve some general ideal-model based notions

of se
urity for fun
tion evaluation [mr91,
00℄. Notions of ideal-model based se
urity that are

preserved under
on
urrent general
omposition were subsequently developed, e.g. [dm00, pw00,

pw01,
01, mrst06℄. Methods for arguing about
omposition with joint state were developed in

the
ontext of general
omposition, e.g. [
r03,
dpw07℄.

Universal
omposition. Next we des
ribe a single
omposition operation (namely, a way of

ombining several proto
ols into a single proto
ol) that
an be used to express all the settings

dis
ussed above. Having su
h a generi

omposition operation is
onvenient in that
omposability

properties proven with respe
t to this operation apply to all settings. Furthermore, this spe
i�

operation seems to
losely
orrespond to the stru
ture of a
tual proto
ols. It also meshes ni
ely

with the trusted party paradigm (we'll see this in the next se
tion).

The
omposition operation, whi
h we
all universal
omposition, is a natural extension of the

\subroutine
omposition" operation on sequential algorithms to distributed proto
ols. That is,

let � be a proto
ol (i.e., a set of instru
tions for the parti
ipants), where the instru
tions of ea
h

party in
lude an instru
tion to provide input to some \subroutine program," denoted �, as well as

instru
tions on what to do when the subroutine program � generates output. (Using the formalism

of Se
tion 3.1, the system
ontains ITIs running the
ode �, alongside ITIs running the
ode �; the

ITIs running � write in the input tapes of ITIs running �, and the ITIs running � write on the

subroutine output tapes of ITIs running �.)

Let � be another proto
ol. Then the
omposed proto
ol, denoted �

�=�

, is the proto
ol where

the
ode of ea
h party is the same as that of �, with the ex
eption that the instan
e of � is repla
ed

by an instan
e of �. That is, ea
h instru
tion to provide input to � is repla
ed by an instru
tion

to provide the same input to �, and the instru
tions to be
arried out upon re
eipt of an output

from � are now
arried out upon re
eipt of an output from �. It is stressed that the repla
ement is

done separately within ea
h party running �. In parti
ular, an exe
ution of �

�=�

involves an entire

distributed instan
e of proto
ol �, where the di�erent parties of this instan
e ex
hange messages

among themselves.

The
ase where � uses multiple (potentially unboundedly many) instan
es of � is de�ned anal-

ogously. That is, ea
h instan
e of � is repla
ed by an instan
e of �. It is assumed that proto
ol

� has some me
hanism to distinguish among the various instan
es of �; this me
hanism remains

the same with respe
t to distinguishing among the instan
es of �. While in prin
iple there is no

need to spe
ify a parti
ular me
hanism, for sake of
on
reteness we assume that � asso
iates a

unique session identi�er (SID) with ea
h instan
e of �, where the SID is in
luded in all inputs to

and outputs from this instan
e. Then the
omposed proto
ol �

�=�

keeps the same SIDs as in �.

Now, the various settings des
ribed above for proto
ol
omposition
an be
aptured via di�erent

odes for the \high-level proto
ol", �. For instan
e,
on
urrent self
omposition with same input

is
aptured by the proto
ol � that simply runs multiple instan
es of its subroutine � on the same

input, and outputs whatever these subroutines output. To
apture �xed or adaptively
hosen inputs

modify � a

ordingly, to obtain the inputs for the various instan
es in advan
e or during the
ourse

of the exe
ution. General
omposition is
aptured by allowing � to be arbitrary.

31

Sequential self
omposition in a syn
hronous exe
ution setting is
aptured by the proto
ol � that

runs multiple instan
es of its subroutine �, one after the other in a sequential way, either with the

same input or with di�erent inputs, as may be the
ase, and outputs whatever these subroutines

output. To
apture parallel
omposition, � runs all instan
es of � together and in ea
h round

delivers all the
urrent messages of all instan
es. in lo
kstep. Non-
on
urrent general
omposition

allows � to be arbitrary, as long as all parties start and end ea
h instan
e of � at the same global

round, and only messages of this instan
e of � are sent while this instan
e is a
tive.

Finally, we note that the above des
ription of universal
omposition treats the proto
ol � merely

as a formal \pla
eholder" in the des
ription of proto
ol �. Yet, as seen in the next se
tion, proto
ol

�
an have a
entral role in spe
ifying the se
urity properties required from proto
ol
omposition.

5.3 Se
urity preserving
omposition

So far, we have treated the se
urity requirements from
ryptographi
 proto
ols under
omposition

in an informal way. That is, we have expressed the desire to have proto
ols that \maintain their

se
urity properties" when run alongside other proto
ols. We have also observed, in Se
tion 5.1,

that some desirable se
urity properties may no longer hold in su
h settings. How
an we formalize

the se
urity requirements from proto
ols under
omposition?

One way, of
ourse, is to list a set of spe
i�
 properties that we would like to guarantee, and

demonstrate that these properties hold. For instan
e, for proto
ols that evaluate some fun
tion

of the inputs of the parties, we
an require that
orre
tness is preserved, in the sense that in

all instan
es the outputs of the parties agrees with the value of the fun
tion at their inputs. If

the evaluated fun
tion is probabilisti
 then we
an also require that the randomness used in ea
h

exe
ution is in some sense \independent" of the randomness used in other exe
utions. We
an also

require that se
re
y of
ertain values is preserved even in the
omposed system. (An example of a

setting where su
h a spe
i�
 requirement is made is that of
on
urrent zero-knowledge, mentioned

above.) An additional spe
i�
 requirement is that of input independen
e, or non-malleability,

namely that the outputs of a proto
ol exe
ution will not depend in \illegitimate ways" on se
ret

inputs to another exe
ution.

However, in the spirit of Se
tion 2, we prefer to make a single, uni�ed se
urity requirement

that would imply all of the spe
i�
 requirements mentioned above, as well as other potential

requirements. And, again, in the spirit of Se
tion 2, we use the ideal-model paradigm to do so.

Re
all that, by this paradigm, a proto
ol � is
onsidered a se
ure implementation for a given

task if it behaves in essentially the same way as an ideal proto
ol � for that task, where the ideal

proto
ol instru
ts all parties to privately hand their inputs to a trusted party whi
h
omputes the

desired outputs and hands them ba
k to the parties. Furthermore, the requirement \� behaves

in essentially the same way as �" is formalized to mean \� emulates �" as in De�nition 2. The

ompositionality requirement we make is analogous: Consider a task that is represented via an ideal

proto
ol �, and let � be a proto
ol that uses (potentially multiple instan
es of) �. We say that �

implements the task in a
omposable way with respe
t to �, if �
ontinues to behave essentially

the same when the instan
es of � are repla
ed by instan
es of �. In the language of universal

omposition and emulation, we want that the proto
ol �

�=�

will emulate the original proto
ol �.

De�nition 4 Proto
ol � emulates an ideal proto
ol � with �-
omposable se
urity if it holds that

�

�=�

emulates �.

We observe that the notion of
omposable se
urity indeed guarantees all the
ompositionality

requirements listed above. Indeed, when � makes subroutine
alls to the various instan
es of the

32

ideal proto
ol �, it is guaranteed that ea
h instan
e of � returns a
orre
t fun
tion value, regardless

of the a
tivity in the rest of the system. The de�nition of emulation guarantees that �
ontinues

to exhibit essentially the same behavior when the instan
es of � are repla
ed with instan
es of

�. Similarly, sin
e the trusted parties operate independently of ea
h other, their outputs are

omputed using independent random
hoi
es. Also, the se
re
y of data in ea
h individual exe
ution

is guaranteed regardless of the rest of the system. Input independen
e is guaranteed sin
e ea
h

party has to expli
itly provide its inputs to ea
h instan
e of �, based only on its legitimate outputs

from the various instan
es of �. Again, the de�nition of emulation guarantees that �
ontinues to

exhibit essentially the same behavior when the instan
es of � are repla
ed with instan
es of �.

The above line of reasoning
onsiders a single \
alling proto
ol", �. Se
ure
omposability with

respe
t to di�erent types of
omposition operations are
aptured by
onsidering the
orresponding

lasses of the
alling proto
ol, as des
ribed in Se
tion 5.2.

One potential short
oming of De�nition 4 is that the notion of emulation, as de�ned so far,

does not ne
essarily imply
omposable se
urity. This means that De�nition 4 does not ne
essarily

guarantee that se
urity is preserved under \iterated
omposition". That is, the fa
t that � emulates

� with �-
omposable se
urity does not ne
essarily imply that �

�=�

emulates � with �

0

-
omposable

se
urity for an arbitrary �

0

(or even for �

0

= �). See more dis
ussion on this point in Se
tion 7.

6 The
omposability properties of basi
 se
urity

Intuitively, the trusted-party de�nitional paradigm as formalized in Se
tion 4 appears to be \inher-

ently
ompositional". In parti
ular, the notion of proto
ol emulation seems to almost immediately

guarantee | at least in spirit | that no external pro
ess will be able to distinguish between the

emulating proto
ol and the emulated one. Thus it seems natural to expe
t that basi
 se
urity will

imply �-
omposable se
urity with respe
t to any polytime proto
ol �. That is, it is natural to

expe
t that if proto
ol � realizes an ideal fun
tionality F with basi
 se
urity (as in De�nition 3),

then �

�=�

would emulate � for any polytime proto
ol �.

It turns out that this this intuition
an indeed be formalized for some types of
omposition,

namely non-
on
urrent general
omposition. However, as soon as the non-
on
urren
y
ondition is

violated this intuition is in
orre
t. Details follow.

Re
all that in non-
on
urrent
omposition it is guaranteed that no two proto
ol instan
es run

on
urrently with ea
h other, ex
ept for simple nesting (see Se
tion 5.2). More pre
isely, say that a

proto
ol � is non-
on
urrent if any exe
ution of �

�

, with any subroutine proto
ol �, has the following

property: Order all messages sent in the system along a single time axis, and Let e

1

and e

2

be two

proto
ol exe
utions where the �rst message of e

1

was sent before the �rst message of e

2

. Then, on
e

the �rst e

2

-message is sent, no e

1

-messages are sent until the last e

2

message is delivered. Then we

have:

Theorem 5 ([
00℄) Let � and � be proto
ols su
h that � emulates � as in De�nition 3. Then, �

emulates � with �-
omposable se
urity for any non-
on
urrent proto
ol �.

Proof idea. We very brie
y sket
h the main idea behind the proof. For simpli
ity we
on
entrate

on the
ase where � uses only a single instan
e of �. Sin
e no two instan
es of � run
on
urrently,

it is straightforward to extend the proof to the
ase where � uses multiple instan
es of �.

Let A be an adversary that intera
ts with parties running �

�

. We need to
onstru
t an adversary

A

�

, su
h that no environment E will be able to tell whether it is intera
ting with �

�=phi

and A or

33

with � and A

�

. The idea is to
onstru
t A

�

in two steps: First \
ut out" of A a real-life adversary,

denoted A

�

, that operates against proto
ol � as a stand-alone proto
ol. The fa
t that � emulates

� guarantees that there exist an adversary (\simulator") A

�

, su
h that no environment
an tell

whether it is intera
ting with � and A

�

or with � and A

�

. Next,
onstru
t A

�

out of A and A

�

.

We sket
h the above steps. Essentially, A

�

represents the \segment" of A that intera
ts with

proto
ol �. That is, A

�

expe
ts to re
eive in its input (
oming from the environment E) a
on�gu-

ration of A, and simulates a run of A starting from this
on�guration. On
e the exe
ution of this

instan
e of � has
ompleted, A

�

outputs the
urrent
on�guration of the simulated A.

Adversary A

�

is essentially the adversary A, where the segment that intera
ts with � is repla
ed

by the simulator A

�

. That is, A

�

starts by invoking a
opy of A and following A's instru
tions, up

to the point where the �rst message of � is sent. At this point, A expe
ts to intera
t with �, whereas

A

�

intera
ts with �. To
ontinue running A, adversary A

�

runs A

�

, with input that des
ribes the

urrent state of A. The intera
tion between A

�

and � is emulated by A

�

, using A

�

's own a

ess to

�. Re
all that the output of A

�

is a (simulated) internal state of A at the
ompletion of proto
ol �.

On
e proto
ol �
ompletes its exe
ution and the parties return to running �, adversary A

�

returns

to running A (starting from the state in A

�

's output) and follows the instru
tions of A.

The validity of the
onstru
tion is demonstrated by redu
tion: Assume that there is an envi-

ronment E that distinguishes between an intera
tion with � and A

�

, and an intera
tion with �

�=�

and A. Then one
onstru
ts an environment, E

�

, that distinguishes between an intera
tion with �

and A

�

, and an intera
tion with � and A

�

. Essentially, E

�

runs E , where the intera
tion between

E , �, and the segment of A that does not intera
t with the subroutine, is simulated internally. The

intera
tion with the subroutine (either � or �) and its adversary (either A

�

or A

�

) is taken to be

the intera
tion with the a
tual external proto
ol and adversary.

Finally, it is shown that the view of E , when simulated by environment E

�

that intera
ts with

adversary A

�

and parties running �, is distributed identi
ally to the view of E that intera
ts with

adversary A and parties running �

�=�

. Similarly, the view of E , when simulated by environment

E

�

that intera
ts with adversary A

�

and parties running �, is distributed identi
ally to the view of

E that intera
ts with adversary A and parties running �. (These two equivalen
es are essentially

standard bisimulation arguments from the distributed systems
ommunity.) It is stressed that the

bisimulation is exa
t and the distributions over the views are identi
al. Consequently, the \loss in

se
urity" in
urred by the theorem is zero.

Basi
 se
urity under
on
urrent
omposition. Can these
omposability results be extended

to
on
urrent proto
ol
omposition? It turns out that the answer is strongly negative. In fa
t, we

have already seen a
ounter-example: As argued in Se
tion 3.3, the set of proto
ols that realize

f

R

zk

, the zero-knowledge fun
tion with relation R, roughly
orresponds to a
lass of zero-knowledge

proto
ols for the language L

R

. Furthermore, as seen in se
tion 5.1, it is possible to
onstru
t zero-

knowledge proto
ols (for any given language) where running even two instan
es of the proto
ol in

parallel allows the veri�er to extra
t the entire witness. Indeed, this example
an be easily extended

to
ome up with a proto
ol � and a relation R su
h that � realizes f

R

zk

, but �

�=�

does not emulate

�

f

R

zk

where � is the proto
ol that runs two instan
es of its subroutine
on
urrently, on the same

input. Similarly, it
an be demonstrated that basi
 se
urity does not guarantee non-malleability.

Further dis
ussion on why this is the
ase appears in the next se
tion.

34

7 Universally Composable Se
urity

In spite of the intuitive appeal and expressive power of the basi
 notion of se
urity developed in

Se
tions 3 and 4, we have seen in Se
tion 6 that this notion provides only limited
ompositionality

guarantees: As soon as proto
ols are allowed to run
on
urrently | as they often do in a
tual

omposed systems | no se
urity guarantees are given. Furthermore, we have seen examples where

se
urity breaks down
ompletely.

Universally Composable (UC) se
urity is a strengthening of the basi
 notion of se
urity, that

omes to address the issue of preserving se
urity under
on
urrent
omposition. The goal is to have

a notion of se
urity that guarantees se
urity under all
ommonpla
e types of proto
ol
omposition,

and in parti
ular the ones des
ribed in Se
tion 5.2. This should be done without losing on the

intuitive appeal and expressive power, and with as mild as possible additional requirements from

proto
ols.

4

This se
tion is organized as follows. Se
tion 7.1 presents and motivates the notion of

UC se
urity and its relation to the basi
 notion from previous se
tions. Se
tion 7.3 very brie
y

presents the known results regarding the realizability of this notion. Finally, Se
tion 7.3.2 tou
hes

upon dire
tions for relaxing UC se
urity while retaining some of its se
urity and
omposability

guarantees.

7.1 The de�nition

Why does the basi
 de�nition of se
urity from Se
tions 3 and 4 fail to guarantee se
urity under

on
urrent
omposition? When reviewing the de�nition in an attempt to answer this question, one

noti
es that the model of proto
ol exe
ution as de�ned there allows the environment, whi
h models

the \external world", to ex
hange information with the adversary, whi
h models a
oordinated

atta
k against a single proto
ol exe
ution, only on
e at the beginning of the exe
ution, where

the environment provides information to the adversary, and on
e at the end, where the adversary

provides output to the environment. In a way, this modeling treats an exe
ution of a proto
ol

as an \atomi
 step," where there is no \information
ow" between the proto
ol exe
ution and

the external environment during the proto
ol exe
ution. (Some proto
ols may indeed allow the

adversary and environment to ex
hange additional information via the inputs and outputs to the

parties, but su
h ex
hanges are proto
ol-dependent and
annot be used in general arguments on

the model.)

This modeling is indeed appropriate in a system where only a single proto
ol exe
ution is

a
tive at any given point in time. However, it seems insuÆ
ient for
apturing the often \
ir
ular"

information
ow among proto
ol exe
utions that run
on
urrently. In parti
ular, it fails to
apture

situations su
h as the ones des
ribed in Se
tion 5.1, where an atta
ker uses information gathered

in one exe
ution in order to extra
t information in another exe
ution, and then uses the extra
ted

information ba
k in the �rst exe
ution.

UC se
urity is aimed at
orre
ting this short
oming of the basi
 de�nition. The idea is to modify

the model of proto
ol exe
ution so as to allow the environment and the adversary to intera
t freely

throughout the
ourse of the
omputation. That is, whenever the environment is a
tivated, it is

allowed to provide input not only to the parties running the proto
ol, but also to the adversary.

4

The term universally
omposable se
urity might be somewhat
onfusing, given that the term universal
omposition

was used to denote a spe
i�

omposition operation. In parti
ular, several di�erent de�nitions of se
urity are known

to be \universally
omposable", in the sense that they support a universal
omposition theorem su
h as Theorem

7 below. We thus use the a
ronym \UC se
urity" to refer to the spe
i�
 notion dis
ussed here. (The dupli
ate

terminology
an be somewhat justi�ed by Proposition 8 below, whi
h implies that UC se
urity is in a sense a

minimal extension of basi
 se
urity that is preserved under universal
omposition.)

35

Similarly, whenever the adversary is a
tivated, it
an provide output to the environment. This

means that the environment and the adversary
an
ommuni
ate before and after ea
h a
tivation

of a party running the proto
ol; in other words, the \atomi
 unit" of uninterrupted exe
ution is

now a single a
tivation of a party, rather than an entire exe
ution of a proto
ol. As seen below,

this
hange to the model turns out to suÆ
e for proving general
omposability. It also
hanges the

set of a

eptable proto
ols in a radi
al way.

Another, more te
hni
al modi�
ation of the model from Se
tion 4 is to add more stru
ture

to the
ommuni
ation model in order to fa
ilitate the distin
tion between proto
ol instan
es in a

omposite system. A more detailed des
ription follows.

The system model. We use the system model from Se
tion 4.1, with one
hange. To fa
ilitate

the distin
tion among di�erent proto
ol exe
utions in a system, we assume that the identity of

ea
h party (i.e., the
ontents of the identity tape)
onsists of two �elds: a session ID (SID) and a

party ID (PID). The SID is used to spe
ify the \session", or \proto
ol instan
e" to whi
h the ITI

\belongs", and is joint to all the ITIs in a session. The PID distinguishes the ITI from other ITIs

in that proto
ol instan
e. It
an also be used to asso
iate an ITI with a \
luster" of ITIs, su
h as

the
luster of pro
edures running on a single physi
al
omputer. An instan
e of a proto
ol � with

SID s in a
ertain
on�guration of a system is now de�ned to be the set of ITIs that have
ode �

and SID s.

Remark: The above modeling of the SID is only one out of many possible ways for representing

and distinguishing among proto
ol instan
es in a
omposite system. Still, the fa
t that all ITIs in a

proto
ol instan
e have the same SID, whi
h is determined by the invoking ITI, seems like a natural

hoi
e. In parti
ular, it is easy to realize (say, by letting the party whi
h initiates an instan
e to

determine the SID and
ommuni
ate it to all other parti
ipants). It also often fa
ilitates the design

and analysis of proto
ols, by providing to the parti
ipants a
ommon value that is unique to the

instan
e.

The proto
ol exe
ution experiment. The proto
ol exe
ution experiment is the same as the

one in Se
tion 4.2, with the following two modi�
ations. First, as mentioned above, we allow the

environment to provide inputs to the adversary at any time. Similarly, we allow the adversary to

provide outputs to the environment at any time.

Se
ond, re
all that in the model of Se
tion 4.2 all parties (ITIs) invoked by the environment

must run the same proto
ol (ITM). Furthermore, all the parties were treated as parti
ipating in

a single proto
ol instan
e. In the present model, unless expli
itly restri
ted, the environment
an

in prin
iple invoke multiple proto
ol instan
es, by giving di�erent SIDs to di�erent parties. To

keep in the spirit of a single instan
e, we require that all the parties invoked by the environment

parti
ipate in the same proto
ol instan
e, namely they all have the same SID. (The value of the

SID is of
ourse
hosen by the environment.)

Analogously to the notation exe

�;A;E

from Se
tion 4.2, let u
-exe

�;A;E

(x) denote the random

variable des
ribing the output of environment E when intera
ting with adversary A and proto
ol �

on input x (for E) in the present model. u
-exe

�;A;E

denotes the ensemble fu
-exe

�;A;E

(x)g

x2f0;1g

� .

Restri
ting the environment to run only a single proto
ol instan
e signi�
antly simpli�es the

model and the analysis of proto
ols. On the down side, it
omes at the pri
e of some restri
tions

on the
lass of proto
ols whi
h
an be
omposed in a se
ure way. See more dis
ussion in Se
tion

7.2.

36

The ideal pro
ess. The ideal pro
ess remains the same as the one in Se
tion 4.2, with the

following ex
eption: We restri
t attention to ideal fun
tionalities F where an instan
e ignores

inputs that do not spe
ify its SID. (Re
all that the SID of an instan
e is determined by the ITI

that
alled this instan
e for the �rst time.) Similarly, we assume that F in
ludes its SID in all of

its outputs. We note that this restri
tion is not essential; its purpose is to simplify the modeling

and analysis of proto
ols.

Proto
ol emulation. The notion of proto
ol emulation and realizing fun
tionalities is the same

as in Se
tion 4.2, ex
ept that it relates to the present exe
ution experiments:

De�nition 6 UC proto
ol emulation and realization A proto
ol � UC-emulates proto
ol � if for any

PT adversary A there exists a PT adversary S su
h that for all PT environments E that output

only one bit:

u
-exe

�;S;E

� u
-exe

�;A;E

A proto
ol � UC-realizes an ideal fun
tionality F if � UC-emulates the ideal proto
ol for F .

7.2 Composability

The main attra
tion in UC se
urity is that it guarantees
omposable se
urity with respe
t to

almost any PT
alling proto
ol. That is, we restri
t the way a proto
ol re
eives inputs from and

provides output to the surrounding system in the following natural way: We assume that the only

omponent of the \subroutine proto
ol" that re
eives inputs from the outside and provides outputs

to the outside is the \top-level program". More pre
isely, re
all that an ITI P is
alled a subroutine

of an ITI P

0

if P takes input from P

0

or provides output to P

0

; P is a subsidiary of P

0

if it a

subroutine of P

0

or of a subsidiary of P

0

. Say that an ITM � is subroutine respe
ting if any ITI

P running the
ode � has the property that all subsidiaries of P are subroutines only of P or of

subsidiaries of P . A proto
ol is subroutine respe
ting if it is subroutine respe
ting as an ITM. We

have:

Theorem 7 Let � and � be subroutine-respe
ting PT proto
ols su
h that � UC-emulates �. Then

�

�=�

UC-emulates � for any PT proto
ol �.

Histori
al note. Theorem 7 was �rst proven in [pw00, pw01℄ for the
ase where � invokes

a single instan
e of the subroutine proto
ol �. (These proofs are set in their formalism, whi
h

has several te
hni
al di�eren
es from the one presented here.) The
ase where � may invoke

an unbounded number of instan
es of � was �rst proven in [
01℄ in a model similar to the one

presented here, and subsequently re-proven in a number of di�erent models, e.g. [bpw04, dkmr05,

k06,
klp06℄.

Proof idea. At high level, the proof of Theorem 7 follows the same steps as the proof of Theorem

5, with the ex
eption that here proto
ol �may
all multiple instan
es of �, where these instan
es run

on
urrently. Consequently, the adversary A

�

that intera
ts with proto
ol �
on
urrently invokes

multiple instan
es of the simulator A

�

, where ea
h instan
e of A

�

intera
ts with a single instan
e of

�. In order to be able to
arry out the overall intera
tion with � and the environment in a globally

onsistent manner, A

�

uses the fa
t that ea
h instan
e of A

�

outputs the ne
essary information

after ea
h a
tivation. This allows A

�

to use information generated in one instan
e of A

�

as input

37

to another instan
e of A

�

. (Re
all that in the
ase of basi
 se
urity A

�

is required to generate

output only at the end of the exe
ution; su
h a guarantee would not suÆ
e for the present
ase.)

As in the proof of Theorem 5, the proof of validity of A

�

pro
eeds by redu
tion to the validity of

A

�

. The main di�eren
e from Theorem 5 is that here there are multiple instan
es of a subroutine

proto
ol (either � or �), running
on
urrently. Thus, we need to demonstrate that no environment

an tell the di�eren
e between the
ase where all instan
es of � are repla
ed by � and the
ase

where none of the instan
es of � are repla
ed by �. This is done via a standard hybrid argument,

namely by
onsidering multiple hybrid exe
utions where in ea
h exe
ution one more instan
e of

� is repla
ed by �. An environment that distinguishes between two
onse
utive instan
es is now

translated into an environment that
ontradi
ts the validity of A

�

. We omit further details.

7.2.1 Dis
ussion

To interpret Theorem 7 re
all that, for any given
alling proto
ol �, the fa
t that �

�=�

UC-emulates

� implies that repla
ing the instan
es of � by instan
es of � does not
hange the behavior of �

with respe
t to PT adversaries in a noti
eable way; in parti
ular, it does not introdu
e any new

vulnerabilities to �

�=�

. Furthermore, re
all that any of the
omposition s
enarios mentioned in

Se
tion 5.2 (with the ex
eption of joint-state
omposition, dis
ussed below)
an be
aptured as

universal
omposition with some set of
alling proto
ols. Thus, Theorem 7 guarantees se
urity-

preserving
omposition in any of these s
enarios. Some additional aspe
ts of the theorem are

dis
ussed next.

Modular proto
ol analysis. The fa
t that Theorem 7 puts very few restri
tions on the
alling

proto
ol � makes it
ondu
ive to
arrying out the plan from the preamble of Se
tion 4.3 in a way

that meshes naturally with the stru
ture of
ommon proto
ols. That is, the theorem allows de-

omposing proto
ols to many simple subroutines, analyzing ea
h subroutine separately, and then

dedu
ing the se
urity of the overall proto
ol from the se
urity of the subroutines. In parti
ular,

the partitioning to subroutines
an be nested in an arbitrary way. This is a powerful methodology,

espe
ially given the fa
t that rigorous analysis of even simple
ryptographi
 proto
ols tends to be

dauntingly
omplex.

Enabling sound symboli
 and automated analysis. Another advantage of Theorem 7 is

that it allows to \abstra
t away"
ryptographi
 imperfe
tions su
h as
omputational bounds and

error probabilities, while maintaining soundness of the abstra
tions. This enables applying auto-

mated proof tools that require symboli
 representations of proto
ols (as in, say, [dy83℄) and
annot

dire
tly handle asymptoti
 modeling and
ryptographi
 imperfe
tions. To do that, �rst devise

fun
tionalities that
apture in an ideal way the se
urity properties of the
ryptographi
 primitives

(say, en
ryption in the
ase of [dy83℄) used in the analyzed system. Next, re-write the proto
ols to

be analyzed in a symboli
, non-asymptoti
 model that
orresponds to having a

ess to the devised

ideal fun
tionalities. Now, one
an apply an automated tool to the symboli
 representation of the

proto
ol. Finally, use the UC theorem to dedu
e that, if the
ryptographi
 proto
ols in use UC-

realize the devised ideal fun
tionalities, then the overall system enjoys the same properties proven

for the abstra
t version. Some works that take this approa
h in
lude [bjp02, bpw03,
h04, sb+06℄.

Two things should be kept in mind, however, when taking this approa
h. First, for the analysis

to be of value, one has to make sure that the asserted abstra
t se
urity properties have meaningful

translations to
on
rete se
urity properties of
on
rete proto
ols. Se
ond, the
omplexity of auto-

mated analysis tools grows very rapidly as a fun
tion of the number of messages and sessions in

38

the analyzed system (see e.g. the unde
idability and NP-
ompleteness results in [eg82, dlms99℄).

Consequently, a viable instantiation of the above approa
h would need to break down proto
ols

to simple subroutines and analyze ea
h subroutine separately as a single session. Here the UC

theorem is on
e again a
ru
ial enabler.

Representing
ommuni
ation models. Another use of Theorem 7 is for modular representa-

tion of various
ommuni
ation models within the basi
 model of
omputation des
ribed above. That

is, to
apture a given
ommuni
ation model, simply devise an ideal fun
tionality F that guarantees

the abstra
tions provided by that model. Now, designing proto
ols in that model is translated to

designing proto
ols that run in the basi
 model and make
alls to F . In order to further simplify

the
ode of F , one
an allow for multiple instan
es of F to run
on
urrently, where ea
h instan
e

deals with a single use of the underlying model (say, a single sending of a message in the
ase of

an authenti
ated
ommuni
ation abstra
tion). Here we do not ne
essarily intend to realize F in

an algorithmi
 way; rather, F merely serves as a fun
tional des
ription of the desired abstra
tion.

Still, in some
ases the same ideal fun
tionality
an be used both as the basis for a
ommuni
ation

model and as a target to be realized by
ryptographi
 proto
ols. Some
ommuni
ation models that

have been
aptured this way in
lude authenti
ated
ommuni
ation, se
ure
ommuni
ation, and

syn
hronous
ommuni
ation (see e.g. [
01, 2005 revision℄).

Composition with joint state. The restri
tion to subroutine-respe
ting proto
ols, made in

Theorem 7, ex
ludes the
ase of
omposition with joint state, namely in the
ase where parties in

two or more proto
ol instan
es have a

ess to the same instan
e of some subroutine program. We

urrently have two alternative methods to deal with this situation. A �rst method is to expli
itly

model the subroutine as an entity that intera
ts with multiple proto
ol instan
es (even arbitrary

ones). This in turn requires working with a strong variant of UC se
urity,
alled generalized UC,

whi
h allows
apturing su
h subroutines and the proto
ols that use them. See details in [
dpw07℄.

A se
ond option is to demonstrate that all the proto
ols that use the joint subroutine do so via

an interfa
e that satis�es a
ertain
ondition. Essentially, this
ondition requires that the interfa
e

looks like the interfa
e of multiple independent instan
es of a simpler pro
edure. In this
ase, one

an again demonstrate a se
urity-preserving
omposition result similar to Theorem 7. See details

in [
r03℄.

Some equivalent variants. Finally, we note that several variants of De�nition 6 turn out to be

equivalent to the present formulation. First, allowing the environment to output an arbitrarily long

string, or alternatively restri
ting the environment to deterministi

omputation do not
hange the

de�nition. Also, restri
ting the adversary A to only forward messages from the environment to

the parties and ba
k results in a de�nition that is equivalent to the present formulation. Similarly,

restri
ting the adversary S to have only bla
k-box a

ess to A results in an equivalent de�nition.

Finally, letting the simulator depend on the environment results in an equivalent de�nition. We

remark that most equivalen
es hold also in other formalisms (see e.g. [psw00℄). However, the last

equivalen
e does not hold in other formalisms, where entities are required to be polynomial in a

global se
urity parameter rather than in the length of lo
al inputs [hu05℄.

7.3 Feasibility and relaxations

We very brie
y survey the feasibility results regarding UC-realizing ideal fun
tionalities. As we'll

see, in spite of the apparent synta
ti
 similarity with basi
 se
urity (Se
tion 4.4), UC se
urity is

39

in general a
onsiderably more restri
tive notion. In parti
ular, some far-rea
hing impossibility

results exist. Consequently, several relaxations and work-arounds have been proposed. We will

brie
y survey these as well.

En
ryption, signing, and se
ure
ommuni
ation. We start with some positive results. It

turns out that for the basi
 tasks of en
ryption, digital signatures, and other tasks asso
iated

with se
ure
ommuni
ation, there are universally
omposable formulations that are realizable by

known and natural proto
ols. In fa
t, in some
ases the UC de�nitions are
losely related, or even

equivalent, to standard de�nitions (whi
h use some spe
ial-purpose formulations).

Two salient examples are the ideal publi
-key en
ryption fun
tionality, F

pke

, and the ideal sig-

nature fun
tionality, F

sig

, whi
h
apture the basi
 requirements of en
ryption and signature in an

abstra
t and un
onditional way. UC-realizing F

pke

(for non-adaptive party
orruptions) is essen-

tially equivalent to the standard notion of se
urity against
hosen
iphertext atta
ks [ddn00, rs91℄.

UC-realizing F

sig

is essentially equivalent to the standard notion of existential unforgeability against

hosen message atta
ks [gmri88℄.

Another
lass of examples are fun
tionalities related to the task of obtaining se
ure
ommuni
a-

tion. These in
lude the key-ex
hange fun
tionality from Se
tion 4.3, as well as ideal fun
tionalities

apturing authenti
ated and se
ure
ommuni
ation sessions, entity authenti
ation, and related

tasks. All of these fun
tionalities
an be UC-realized by simple and known proto
ols. For instan
e,

see the modeling of
erti�ed mail in [psw00a℄ or se
ure
hannels in [pw01,
k02℄. In addition,

both the ISO 9798-3 key-ex
hange proto
ol and IKEv2 (the revised key ex
hange proto
ol of the

IPSEC standard) UC-realize the ideal key-ex
hange fun
tionality [
k02,
k02a℄.

General feasibility. Can the general feasibility results for basi
 se
urity assuming authenti
ated

ommuni
ation (see Se
tion 4.4) be
arried over to UC se
urity? When the majority of the parties

are honest (i.e., they are guaranteed to follow the proto
ol), the answer is positive. In fa
t, some

known proto
ols for general se
ure fun
tion evaluation turn out to be universally
omposable. For

instan
e, the [bgw88℄ proto
ol (both with and without the simpli�
ation of [grr98℄), together

with en
rypting ea
h message using non-
ommitting en
ryption [
fgn96℄, is universally
ompos-

able as long as less than a third of the parties are
orrupted, and authenti
ated and syn
hronous

ommuni
ation is available. Using [rb89℄, any
orrupted minority is tolerable. Asyn
hronous
om-

muni
ation
an be handled using the te
hniques of [b
g93, bkr94℄. Note that here some of the

parti
ipants may be \helpers" (e.g., dedi
ated servers) that have no lo
al inputs or outputs; they

only parti
ipate in order to let other parties obtain their outputs in a se
ure way.

However, things are di�erent when honest majority of the parties is not guaranteed, and in

parti
ular in the
ase where only two parties parti
ipate in the proto
ol and either one of the

parties may be
orrupted. First, one of the most
ommon proof-te
hniques for
ryptographi

proto
ols, namely bla
k-box simulation with rewinding of the adversary, does not in general work

in the present framework. The reason for that is that in the present framework the ideal adversary

has to intera
t dire
tly with the environment whi
h
annot be \rewound". (Indeed, it
an be argued

that the meaningfulness of bla
k-box simulation with rewinding in a
on
urrent exe
ution setting

is questionable.)

Furthermore, in the UC framework many interesting fun
tionalities
annot be realized at all

by plain proto
ols. (A plain proto
ol uses no ideal fun
tionality other than the authenti
ated

ommuni
ation fun
tionality.) For one, the ideal
ommitment fun
tionality from Se
tion 4.3
annot

be UC-realized by plain two-party proto
ols [
f01℄. Similar impossibility results hold for the ideal

40

oin tossing fun
tionality, the ideal Zero-Knowledge fun
tionality, and the ideal Oblivious Transfer

fun
tionality [
01℄. These results extend to unrealizability by plain proto
ols of almost all \non-

trivial" deterministi
 two-party fun
tions and many probabilisti
 two-party fun
tions [
kl03℄, and

to impossibility of realizing any \ideal
ommitment fun
tionality", namely any fun
tionality that

satis�es the basi

orre
tness, binding and se
re
y properties of
ommitment in a perfe
t way

[ddmrs06℄. These results apply also to multi-party extensions of these primitives, whenever the

honest parties are not in majority.

Three main approa
hes for
ir
umventing these impossibility results have been
onsidered in

the literature. The �rst approa
h is simply to try to formulate more relaxed ideal fun
tionalities,

that will be easier to realize, but will still
apture the se
urity requirements of the desired task.

This is a task-spe
i�
 and deli
ate endeavor. Some works that take this approa
h are [
k02, ps05℄;

a salient
hara
teristi
 of these relaxations are that se
urity is guaranteed only in a
omputational

sense even in the ideal pro
ess.

A se
ond approa
h is to assume that the parties have a

ess to some trusted set-up. A third

approa
h is to relax the UC-emulation requirement. These approa
hes are des
ribed in Se
tions

7.3.1 and 7.3.2, respe
tively.

7.3.1 Adding set-up assumptions

It turns out that general feasibility
an be regained when some trusted set-up is assumed. One su
h

trusted set-up assumption,
alled the key registration (KR) model, assumes that there exists a trusted

\registration authority" where parties
an register publi
 keys asso
iated with their identities, while

demonstrating that they have a

ess to the
orresponding se
ret keys. (Alternatively, parties
an let

the authority
hoose publi
 keys for them; here the
orresponding se
ret keys need not be revealed,

even to the \owners" of the publi
 keys.) Then, parties
an query the authority for a party identity

and obtain the registered publi
 key for that identity. Pra
ti
ally any ideal fun
tionality
an be

UC-realized by intera
tive proto
ols in the key registration model, under standard
omputational

hardness assumptions. Furthermore, the proto
ols remain se
ure even in the presen
e of arbitrary

other proto
ols that use the same publi
 keys.

Taking a short detour, it is interesting to
ompare this set-up assumption to the set-up assump-

tions needed for guaranteeing authenti
ated
ommuni
ation. To obtain authenti
ated
ommuni
a-

tion (namely, to UC-realize an ideal fun
tionality that provides an authenti
ated
ommuni
ation

servi
e), it is ne
essary and suÆ
ient to have a

ess to an ideal fun
tionality that allows parties

to register publi
 keys that will be asso
iated with their identities, without having to dis
lose the

se
ret keys to the registration authority. This set-up is stru
turally similar to the key registration

set-up, ex
ept that the trust put in the registration authority is
onsiderably milder.

An alternative set-up assumption,
alled the
ommon random string (CRS) model, is that all

parties have a

ess to a string that is guaranteed to be taken from a predetermined distribution,

typi
ally the uniform distribution. Furthermore, it is assumed that the string was \ideally gener-

ated" in the sense that no set of parti
ipants have any \side information" on the
ommon string

(su
h as the preimage of the string a

ording to some one-way fun
tion). This assumption is at-

tra
tive in that it
an be realized by physi
al pro
esses that minimize the trust that parti
ipants

need to put in external authorities. Also, it does not require parties to expli
itly register before

parti
ipating in the
omputation. However, here the general feasibility results are weaker, in the

sense that the proto
ols are not (and, in fa
t, provably
annot be) shown se
ure in the presen
e of

arbitrary other proto
ols that use the same
ommon string. Instead, se
urity is shown only when

all proto
ols that use the
ommon string do so using a very spe
i�
 interfa
e.

41

Yet another alternative set-up assumption,
alled the timing model, is of a somewhat di�erent

avor: It assumes that there is a bound on the delay of messages delivered in the network, as

well as on the mutual dis
repan
y in lo
al time measurements, and that these bounds are known

to all parties. Here too it is possible to realize any ideal fun
tionality, under standard hardness

assumptions [lpt04℄.

Histori
ally, general feasibility results were �rst demonstrated in the CRS model [
los02℄. The

overall stru
ture of that proto
ol is the same as in [gmw87℄, as sket
hed in Se
tion 4.4. The

main di�eren
e is in the zero-knowledge and
oin-tossing
omponents, whi
h are very di�erent. In

parti
ular, the new
omponents (based partly on the UC
ommitment proto
ol in [
f01℄) allow for

simulation \without rewinding", using the CRS set-up. Proto
ols in the KR model again use the

same stru
ture. For non-adaptive party
orruptions, it was observed that the [
los02℄ proto
ols

an be modi�ed to work in the KR model [b
np04℄. For adaptive party
orruptions some new

proto
ols have been developed [
dpw07℄.

Can we
hara
terize whi
h fun
tionalities are realizable without set-up? or only given authen-

ti
ated
ommuni
ation? Alternatively,
an we
hara
terize the set-up fun
tionalities that suÆ
e

for realizing a given task? Some limited answers to the former question, for the
ase of evaluating

a pre-determined fun
tion of the parties' inputs, and for the
ase of fun
tionalities aimed at guar-

anteeing se
ure
ommitment, are known [
kl03, ddmrs06℄. Otherwise, these are interesting open

questions.

7.3.2 Relaxing UC se
urity

In light of the restri
tiveness of UC-emulation, and in parti
ular given the above impossibility

results regarding realizing UC-realizing fun
tionalities without initial set-up, it is natural to look

for alternative notions of se
urity, that will still provide some general se
urity and
omposability

guarantees while being easier to realize.

This question is highlighted by the fa
t that UC-emulation appears to be overly strong with

respe
t to the notion of
omposable se
urity (De�nition 4). That is, Theorem 7 states that �

�=�

UC-emulates �, where De�nition 4 only requires that �

�=�

emulates � a

ording to the basi
 notion

of emulation, namely De�nition 2. On the one hand, this extra strength is useful, in that it

guarantees that se
urity is preserved even after multiple appli
ations of the universal
omposition

operation. On the other hand, though, this extra strength raises the question of whether there is

a less demanding variant of UC-emulation that would still satisfy De�nition 4.

It turns out, however, that the answer to this question is negative. That is, it
an be seen that

any notion of emulation that satis�es De�nition 4 with respe
t to any
alling proto
ol � implies

UC-emulation. That is:

Proposition 8 Assume that proto
ol � emulates proto
ol � with �-
omposable se
urity for any

subroutine-respe
ting proto
ol �. Then � UC-emulates �.

The idea here is that an arbitrary
alling proto
ol �
an essentially mimi
 any intera
tive

environment E , even in the basi
 setting where the external environment
annot intera
t with

the adversary during the exe
ution. This holds even though �

�

is only required to emulate �

�

a

ording to the basi
 notion, sin
e the instru
tions of �
an require the adversary to provide \on-

line" information in the same way that E expe
ts to have in the UC modeling. We omit further

details.

Proposition 8
an be interpreted as stating that UC-se
urity is in some sense a \minimal"

requirement that guarantees both
omposability and basi
 se
urity. It also means that the extra

42

strength in the
on
lusion of Theorem 7
omes without any additional requirements from the

proto
ol. (Some
losely related results appear in [l03, l04℄.)

Still, some relaxed variants of UC-emulation have been proposed and shown to be preserved

under universal
omposition with arbitrary proto
ols [ps04, bs05, mmy06℄. By Proposition 8,

these variants ne
essarily provide se
urity guarantees that are weaker than basi
 se
urity. Still,

the provided guarantees are often meaningful. In addition, it was demonstrated that these notions

allow realizing any ideal fun
tionality given only authenti
ated
ommuni
ation, under general (but

stronger than usual) hardness assumptions.

Essentially, the way in whi
h these notions weaken the se
urity requirement is by allowing the

\simulator" to run in super-polynomial time T . This means that meaningful se
urity is guaranteed

only when the following two
onditions are met. First, the ideal fun
tionality should be su
h that

se
urity is guaranteed even against adversaries running in time T . This
ondition is met by most

ommon formulations of ideal fun
tionalities; in fa
t, most
ommon formulations provide \perfe
t"

se
urity, even against
omputationally unbounded ideal-model adversaries.

The se
ond
ondition is a bit more subtle: Re
all that the de�nition only guarantees that

the environment, or the
alling proto
ol,
annot tell whether it is intera
ting with the emulating

proto
ol � and adversary A (whi
h may be PT), or with the emulated proto
ol and adversary S,

whi
h may run in time T . Thus, se
urity is meaningful only when the the
alling proto
ol itself

withstands adversaries that run in time T . To exemplify this point, we note that it is possible

to
onstru
t proto
ols that are se
ure a

ording to this notion, and yet
ompletely \break down"

under self-
omposition of only two instan
es.

8 Con
lusion

This tutorial addressed the
hallenges asso
iated with rigorously modeling
ryptographi
 proto-

ols and
apturing their se
urity properties. Parti
ular stress was put on guaranteeing se
urity in

settings where proto
ols are
omposed with ea
h other in a number of ways. We have reviewed

a general de�nitional approa
h, the trusted party paradigm. We saw two formalizations of this

approa
h: A basi
 formalization, that is easier to satisfy but provides only limited se
ure
om-

posability guarantees, and a more advan
ed formalization that is
onsiderably more restri
tive in

general, but provides very strong se
ure
omposability guarantees.

When looking ba
k at the
overed material, one thing be
omes very
lear: It is far from obvious

what is \the right" way to
apture and formalize se
urity properties of
ryptographi
 proto
ols.

In fa
t, there probably is no single good way to do so, and di�erent formalisms have in
omparable

strengths. Furthermore, seemingly small di�eren
es in the formalisms result in drasti
 di�eren
es

| both in the meaningfulness (e.g. in the behavior under proto
ol
omposition), and also in the

restri
tiveness, namely in the ability to assert se
urity of natural proto
ols.

One
onsequen
e of this fa
t is that �nding viable notions of se
urity for
ryptographi
 pro-

to
ols remains an intriguing and lively resear
h area. Another
onsequen
e is that appropriately

formulating the se
urity requirements of a given
ryptographi
 task
an be a deli
ate
hallenge in

itself. In fa
t, this is often the \hard part" of the se
urity analysis, more so than a
tually asserting

that a given proto
ol satis�es the formulated property in the devised model.

A
knowledgments. My thinking and understanding of
ryptographi
 proto
ols has been shaped

over the years by dis
ussions with many insightful resear
hers, too numerous to mention here.

I thank you all. Oded Goldrei
h and Hugo Kraw
zyk were parti
ularly in
uential, with often

43

on
i
ting (
omplementary?) views of the �eld. I'm also grateful to the editor, Sergio Rajsbaum,

for his e�e
tive blend of
exibility and persisten
e and to Shai Halevi, Ralf K�usters, and Birgit

P�tzmann for helpful remarks.

Referen
es

[bjp02℄ M. Ba
kes, C. Ja
obi, B. P�tzmann. Deriving Cryptographi
ally Sound Implementations

Using Composition and Formally Veri�ed Bisimulation. In pro
eedings of Formal Methods

Europe (FME) 2002, pp. 310-329.

[bpw03℄ M. Ba
kes, B. P�tzmann, and M. Waidner. A
omposable
ryptographi
 library with

nested operations. In 10th ACM
onferen
e on
omputer and
ommuni
ations se
urity

(CCS), 2003. Extended version at the eprint ar
hive, http://eprint.ia
r.org/2003/015/.

[bpw04℄ M. Ba
kes, B. P�tzmann, and M. Waidner. A general
omposition theorem for se
ure

rea
tive systems. In 1st Theory of Cryptography Conferen
e (TCC), LNCS 2951 pp. 336{

354, Feb. 2004.

[b

+

05℄ B. Barak, R. Canetti, Y. Lindell, R. Pass and T. Rabin. Se
ure Computation Without

Authenti
ation. In Crypto'05, 2005.

[b
np04℄ B. Barak, R. Canetti, J. B. Nielsen, R. Pass. Universally Composable Proto
ols with

Relaxed Set-Up Assumptions. 45th FOCS, pp. 186{195. 2004.

[bs05℄ B. Barak and A. Sahai, How To Play Almost Any Mental Game Over the Net - Con
urrent

Composition via Super-Polynomial Simulation. 46th FOCS, 2005.

[b91℄ D. Beaver. Se
ure Multi-party Proto
ols and Zero-Knowledge Proof Systems Tolerating a

Faulty Minority. J. Cryptology, (1991) 4: 75-122.

[bh92℄ D. Beaver and S. Haber. Cryptographi
 proto
ols provably se
ure against dynami
 adver-

saries. In Euro
rypt '92, LNCS No. 658, 1992, pages 307{323.

[br93℄ M. Bellare and P. Rogaway. Entity authenti
ation and key distribution. CRYPTO'93,

LNCS. 773, pp. 232-249, 1994.

[b
g93℄ M. Ben-Or, R. Canetti and O. Goldrei
h. Asyn
hronous Se
ure Computation. 25th Sym-

posium on Theory of Computing (STOC), 1993, pp. 52-61. Longer version appears in TR

#755, CS dept., Te
hnion, 1992.

[bgw88℄ M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-

Cryptographi
 Fault-Tolerant Distributed Computation. 20th Symposium on Theory of

Computing (STOC), ACM, 1988, pp. 1-10.

[bkr94℄ M. Ben-Or, B. Kelmer and T. Rabin. Asyn
hronous Se
ure Computations with Optimal

Resilien
e. 13th PODC, 1994, pp. 183-192.

[b82℄ M. Blum. Coin
ipping by telephone. IEEE Spring COMPCOM, pp. 133-137, Feb. 1982.

[b

88℄ G. Brassard, D. Chaum and C. Cr�epeau. Minimum Dis
losure Proofs of Knowledge. JCSS,

Vol. 37, No. 2, pages 156{189, 1988.

44

[
95℄ R. Canetti. Studies in Se
ure Multi-party Computation and Appli
ations.Ph.D. Thesis,

Weizmann Institute, Israel, 1995.

[
00℄ R. Canetti. Se
urity and
omposition of multi-party
ryptographi
 proto
ols. J. Cryptology,

Vol. 13, No. 1, winter 2000.

[
01℄ R. Canetti. Universally
omposable se
urity: A new paradigm for
ryptographi
 proto
ols.

Extended abstra
t in 42nd FOCS, 2001. A revised version (2005) is available at IACR Eprint

Ar
hive, eprint.ia
r.org/2000/067/ and at the ECCC ar
hive, http://e

.uni-trier.de/e

-

reports/2001/TR01-016/.

[
+06℄ R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lyn
h, O. Pereira, and R. Segala. Task-

Stru
tured Probabilisti
 I/O Automata. In Workshop on dis
rete event systems (WODES),

2006.

[
+06a℄ R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lyn
h, O. Pereira, and R. Segala. Time-

Bounded Task-PIOAs: A Framework for Analyzing Se
urity Proto
ols. In 20th symposium

on distributed
omputing (DISC), 2006.

[
dpw07℄ R. Canetti, Y. Dodis, R. Pass and S. Wal�sh. Universally Composable Se
urity with

Pre-Existing Setup. 4th theory of Cryptology Conferen
e (TCC), 2007.

[
fgn96℄ R. Canetti, U. Feige, O. Goldrei
h and M. Naor. Adaptively Se
ure Computation. 28th

Symposium on Theory of Computing (STOC), ACM, 1996. Fuller version in MIT-LCS-TR

682, 1996.

[
f01℄ R. Canetti and M. Fis
hlin. Universally Composable Commitments. Crypto '01, 2001.

[
h04℄ R. Canetti and J. Herzog. Universally Composable Symboli
 Analysis of Cryptographi

Proto
ols (The
ase of en
ryption-based mutual authenti
ation and key-ex
hange). Eprint

ar
hive, http://eprint.ia
r.org/2004/334. Extended Abstra
t at 3rd TCC, 2006.

[
k02℄ R. Canetti and H. Kraw
zyk. Universally Composable Key Ex
hange and Se
ure

Channels . Euro
rypt '02, pages 337{351, 2002. LNCS No. 2332. Extended version at

http://eprint.ia
r.org/2002/059.

[
k02a℄ R. Canetti and H. Kraw
zyk. Se
urity Analysis of IKE's Signature-based Key-Ex
hange

Proto
ol. Crypto '02, 2002. Extended version at http://eprint.ia
r.org/2002/120.

[
kl03℄ R. Canetti, E. Kushilevitz, Y. Lindell. On the Limitations of Universally Composable Two-

Party Computation without Set-up Assumptions. EUROCRYPT 2003, pp. 68{86, 2003.

Extended version at the eprint ar
hive, eprint.ia
r.org/2004/116.

[
los02℄ R. Canetti, Y. Lindell, R. Ostrovsky, A. Sahai. Universally
omposable two-party and

multi-party se
ure
omputation. 34th STOC, pp. 494{503, 2002.

[
r03℄ R. Canetti and T. Rabin. Universal Composition with Joint State. Crypto'03, 2003.

[

d88℄ D. Chaum, C. Crepeau, and I. Damgaard. Multi-party Un
onditionally Se
ure Proto
ols.

In Pro
. 20th Annual Symp. on the Theory of Computing (STOC), pages 11{19, ACM,

1988.

45

[
klp06℄ L. Cheung, D. Kaynar, N. Lyn
h, O. Pereira. Compositional Se
urity for Task-PIOAs.

Manus
ript, 2006.

[
gks95℄ B. Chor, O. Goldrei
h, E. Kushilevitz, M. Sudan. Private Information Retrieval. 36th

FOCS, 1995, pp. 41-50.

[ddmrs06℄ A. Datta, A. Derek, J. C. Mit
hell, A. Ramanathan and A. S
edrov. Games and the

Impossibility of Realizable Ideal Fun
tionality. 3rd theory of Cryptology Conferen
e (TCC),

2006.

[dkmr05℄ A. Datta, R. K�usters, J. C. Mit
hell and A. Ramanathan. On the Relationships between

Notions of Simulation-based Se
urity. 2nd theory of Cryptology Conferen
e (TCC), 2005.

[dm00℄ Y. Dodis and S. Mi
ali. Se
ure Computation. CRYPTO '00, 2000.

[ddn00℄ D. Dolev. C. Dwork and M. Naor. Non-malleable
ryptography. SIAM. J. Computing,

Vol. 30, No. 2, 2000, pp. 391-437. Preliminary version in 23rd Symposium on Theory of

Computing (STOC), 1991.

[dy83℄ D. Dolev and A. Yao. On the se
urity of publi
-key proto
ols. IEEE Transa
tions on Infor-

mation Theory, 2(29), 1983.

[dlms99℄ N.A. Durgin, P.D. Lin
oln, J.C. Mit
hell and A. S
edrov. Unde
idability of bounded

se
urity proto
ols. Workshop on Formal Methods and Se
urity Proto
ols (FMSP), 1999.:w

[dns98℄ C. Dwork, M. Naor, and A. Sahai. Con
urrent Zero-Knowledge. In 30th STOC, pages

409{418, 1998.

[eg82℄ S. Even and Oded Goldrei
h. On the Se
urity of Multi-Party Ping-Pong Proto
ols. 24th

FOCS, 1983.

[f91℄ U. Feige. Ph.D. thesis, Weizmann Institute of S
ien
e, 1991.

[grr98℄ R. Gennaro, M. Rabin and T Rabin. Simpli�ed VSS and Fast-tra
k Multiparty Compu-

tations with Appli
ations to Threshold Cryptography, 17th PODC, 1998, pp. 101-112.

[g01℄ O. Goldrei
h. Foundations of Cryptography (Vol. 1). Cambridge Press, 2001.

[g04℄ O. Goldrei
h. Foundations of Cryptography (Vol. 2). Cambridge Press, 2004.

[gk89℄ O. Goldrei
h and H. Kraw
zyk. On the Composition of Zero-Knowledge Proof Systems.

SIAM. J. Computing, Vol. 25, No. 1, 1996.

[gmw87℄ O. Goldrei
h, S. Mi
ali and A. Wigderson. How to Play any Mental Game. 19th Sympo-

sium on Theory of Computing (STOC), 1987, pp. 218-229.

[go94℄ O. Goldrei
h and Y. Oren. De�nitions and properties of Zero-Knowledge proof systems. J.

Cryptology, Vol. 7, No. 1, 1994, pp. 1{32.

[gl90℄ S. Goldwasser, and L. Levin. Fair Computation of General Fun
tions in Presen
e of Immoral

Majority. CRYPTO '90, LNCS 537, 1990.

[gm84℄ S. Goldwasser and S. Mi
ali. Probabilisti
 en
ryption. JCSS, Vol. 28, No 2, April 1984, pp.

270-299.

46

[gmra89℄ S. Goldwasser, S. Mi
ali and C. Ra
ko�. The Knowledge Complexity of Intera
tive Proof

Systems. SIAM Journal on Comput., Vol. 18, No. 1, 1989, pp. 186-208.

[gmri88℄ S. Goldwasser, S. Mi
ali, and R.L. Rivest. A Digital Signature S
heme Se
ure Against

Adaptive Chosen-Message Atta
ks. SIAM J. Comput., April 1988, pages 281{308.

[hm00℄ M. Hirt and U. Maurer. Complete
hara
terization of adversaries tolerable in se
ure multi-

party
omputation. J. Cryptology, Vol 13, No. 1, 2000, pp. 31-60. Preliminary version in

16th Symp. on Prin
iples of Distributed Computing (PODC), ACM, 1997, pp. 25{34.

[h85℄ C. A. R. Hoare. Communi
ating Sequential Pro
esses. International Series in Computer

S
ien
e, Prenti
e Hall, 1985.

[hu05℄ D. Hofheinz and D. Unruh. Comparing Two Notions of Simulatability. 2nd theory of Cryp-

tology Conferen
e (TCC), pp. 86-103, 2005.

[ipse
℄ The IPSe
 working group of the IETF. See http://www.ietf.org/html.
harters/ipse
-

harter.html

[klr06℄ E. Kushilevitz, Y. Lindell and T. Rabin. Information-Theoreti
ally Se
ure Proto
ols and

Se
urity Under Composition. 38th STOC, pages 109-118, 2006.

[k06℄ R. K�usters. Simulation based se
urity with inexhaustible intera
tive Turing ma
hines. 19th

CSFW, 2006.

[l03℄ Y. Lindell. General Composition and Universal Composability in Se
ure Multi-Party Com-

putation. 43rd FOCS, pp. 394{403. 2003.

[l04℄ Y. Lindell. Lower Bounds for Con
urrent Self Composition. 1st Theory of Cryptology Con-

feren
e (TCC), pp. 203{222. 2004.

[llr02℄ Y. Lindell, A. Lysyanskaya and T. Rabin. On the
omposition of authenti
ated Byzantine

agreement. 34th STOC, 2002.

[lpt04℄ Y. Lindell, M. Prabhakaran, Y. Tauman. Con
urrent General Composition of Se
ure Pro-

to
ols in the Timing Model. Manus
ript, 2004.

[lmms98℄ P. Lin
oln, J. Mit
hell, M. Mit
hell, A. S
edrov. A Probabilisti
 Poly-time Framework

for Proto
ol Analysis. 5th ACM Conf. on Computer and Communi
ation Se
urity, 1998, pp.

112-121.

[lt89℄ N. Lyn
h and M. R. Tuttle. An introdu
tion to input/output automata. CWIQuarterly,

2(3):219-246, September 1989.

[lsv03℄ N. Lyn
h, R. Segala and F. Vaandrager. Compositionality for Probabilisti
 Automata. 14th

CONCUR, LNCS vol. 2761, pages 208-221, 2003. Fuller version appears in MIT Te
hni
al

Report MIT-LCS-TR-907.

[mmy06℄ T. Malkin, R. Moriarty and N. Yakovenko. Generalized Environmental Se
urity from

Number Theoreti
 Assumptions. 3rd Theory of Cryptology Conferen
e (TCC), 2006, pp.

343-359.

47

[mms03℄ P. Mateus, J. C. Mit
hell and A. S
edrov. Composition of Cryptographi
 Proto
ols in a

Probabilisti
 Polynomial-Time Pro
ess Cal
ulus. 14th CONCUR, pp. 323-345. 2003.

[mr91℄ S. Mi
ali and P. Rogaway. Se
ure Computation. unpublishedmanus
ript, 1992. Preliminary

version in CRYPTO '91, LNCS 576, 1991.

[m89℄ R. Milner. Communi
ation and Con
urren
y. Prenti
e Hall, 1989.

[m99℄ R. Milner. Communi
ating and Mobile Systems: the Pi-Cal
ulus. Cambridge University

Press, 1999.

[mms98℄ J. Mit
hell, M. Mit
hell, A. S
edrov. A Linguisti
 Chara
terization of Bounded Ora
le

Computation and Probabilisti
 Polynomial Time. 39th FOCS, 1998, pp. 725-734.

[mrst06℄ John C. Mit
hell, Ajith Ramanathan, Andre S
edrov, Vanessa Teague. A probabilisti

polynomial-time pro
ess
al
ulus for the analysis of
ryptographi
 proto
ols. Theor. Com-

put. S
i. 353(1-3): 118-164 (2006). Preliminary version in LICS'01.

[p04℄ R. Pass. Bounded-
on
urrent se
ure multi-party
omputation with a dishonest majority.

36th STOC, pp. 232{241. 2004.

[pr03℄ R. Pass, A. Rosen. Bounded-Con
urrent Se
ure Two-Party Computation in a Constant

Number of Rounds. 44th FOCS, 2003

[pr05a℄ R. Pass, A. Rosen. New and improved
onstru
tions of non-malleable
ryptographi
 pro-

to
ols. STOC, pp. 533-542, 2005.

[pr05b℄ R. Pass, A. Rosen. Con
urrent and Non-Malleable Commitments. FOCS, 2005.

[p91℄ T. P. Pedersen: Non-Intera
tive and Information-Theoreti
 Se
ure Veri�able Se
ret Sharing.

CRYPTO 1991: 129-140

[pw94℄ B. P�tzmann and M. Waidner. A general framework for formal notions of se
ure sys-

tems. Hildesheimer Informatik-Beri
hte 11/94, Universitat Hildesheim, 1994. Available at

http://www.semper.org/sirene/lit.

[psw00℄ B. P�tzmann, M. S
hunter and M. Waidner. Se
ure Rea
tive Systems. IBM Resear
h

Report RZ 3206 (#93252), IBM Resear
h, Zuri
h, May 2000.

[psw00a℄ B. P�tzmann, M. S
hunter and M. Waidner. Provably Se
ure Certi�ed Mail. IBM Re-

sear
h Report RZ 3207 (#93253), IBM Resear
h, Zuri
h, August 2000.

[pw00℄ B. P�tzmann and M. Waidner. Composition and integrity preservation of se
ure rea
tive

systems. 7th ACM Conf. on Computer and Communi
ation Se
urity (CCS), 2000, pp. 245-

254.

[pw01℄ B. P�tzmann and M. Waidner. A model for asyn
hronous rea
tive systems and its appli
a-

tion to se
ure message transmission. IEEE Symposium on Se
urity and Priva
y, May 2001.

Preliminary version in http://eprint.ia
r.org/2000/066 and IBM Resear
h Report RZ 3304

(#93350), IBM Resear
h, Zuri
h, De
ember 2000.

[prs02℄ M. Prabhakaran, A. Rosen, A. Sahai. Con
urrent Zero Knowledge with Logarithmi

Round-Complexity. 43rd FOCS, 2002: 366-375

48

[ps04℄ M. Prabhakaran, A. Sahai. New notions of se
urity: a
hieving universal
omposability with-

out trusted setup. 36th STOC, pp. 242{251. 2004.

[ps05℄ M. Prabhakaran, A. Sahai. Relaxing Environmental Se
urity: Monitored Fun
tionalities

and Client-Server Computation. 2nd Theory of Cryptology Conferen
e (TCC), 2005.

[rb89℄ T. Rabin and M. Ben-Or. Veri�able Se
ret Sharing and Multi-party Proto
ols with Honest

Majority. 21st Symposium on Theory of Computing (STOC), 1989, pp. 73-85.

[rs91℄ C. Ra
ko� and D. Simon. Non-intera
tive zero-knowledge proof of knowledge and
hosen

iphertext atta
k. CRYPTO '91, 1991.

[rk99℄ R. Ri
hardson and J. Kilian. On the Con
urrent Composition of Zero-Knowledge Proofs.

In Euro
rypt99, LNCS 1592, pages 415{413.

[sb+06℄ C. Sprenger, M. Ba
kes, D. Basin, B. P�tzmann and M. Waidner. Cryptographi
ally

Sound Theorem Proving. 19th Computer Se
urity Foundations Workshop (CSFW), 2006.

[y82a℄ A. Yao. Proto
ols for Se
ure Computation. In 23rd Annual Symp. on Foundations of

Computer S
ien
e (FOCS), pages 160{164. 1982.

[y86℄ A. Yao, How to generate and ex
hange se
rets, In 27th Annual Symp. on Foundations of

Computer S
ien
e (FOCS), pages 162{167. 1986.

A Trusted-party based se
urity: A mini survey

This se
tion brie
y surveys some works that are dire
tly relevant to the development of the trusted-

party paradigm as a method for de�ning se
urity of proto
ols. (Indeed, this is only a fra
tion of

the body of work on modeling
ryptographi
 proto
ols and asserting se
urity properties.) More

detailed surveys on this topi

an be found in [
00,
01℄. Also, some of these works have already

been mentioned earlier and are not re-addressed here.

Two works that essentially \laid out the �eld" of general se
urity de�nitions for
ryptographi

proto
ols are the work of Yao [y82a℄, whi
h expressed for the �rst time the need for a general \uni-

�ed" framework for expressing the se
urity requirements of
ryptographi
 tasks and for analyzing

ryptographi
 proto
ols; and the work of Goldrei
h, Mi
ali and Wigderson [gmw87℄, whi
h put

forth the approa
h of de�ning se
urity via
omparison with an ideal pro
ess involving a trusted

party (albeit in a very informal way).

The �rst rigorous de�nitional framework is that of Goldwasser and Levin [gl90℄. It was followed

shortly by the frameworks of Mi
ali and Rogaway [mr91℄ and Beaver [b91℄. In parti
ular, the notion

of \redu
ibility" in [mr91℄ dire
tly underlies the notion of proto
ol
omposition in many subsequent

works, in
luding the notion of universal
omposition as des
ried here. Beaver's framework is the

�rst to dire
tly formalize the idea of
omparing a run of a proto
ol to an ideal pro
ess. Still, the

[mr91, b91℄ formalisms only address se
urity in restri
ted settings; in parti
ular, they do not deal

with
omputational issues.

All the work mentioned above
on
entrate on syn
hronous
ommuni
ation and the task of

se
ure fun
tion evaluation. An extension to asyn
hronous
ommuni
ation networks is formulated

in [b
g93℄. A system model and notion of se
urity for rea
tive fun
tionalities is sket
hed in

P�tzmann and Waidner [pw94℄.

49

Canetti [
95℄ provides the �rst ideal-pro
ess based de�nition of
omputational se
urity against

resour
e bounded adversaries. [
00℄ strengthens the framework of [
95℄ to handle se
ure
om-

position. In parti
ular, se
urity of proto
ols in that framework is shown to be preserved under

non-
on
urrent universal
omposition. This work also
ontains sket
hes on how to strengthen the

de�nition to support
on
urrent
omposition. A
losely related formulation appears in [g04℄.

The framework of Hirt and Maurer [hm00℄ give a rigorous treatment of the
ase of rea
tive

fun
tionalities. Dodis and Mi
ali [dm00℄ build on the de�nition of Mi
ali and Rogaway [mr91℄

for un
onditionally se
ure fun
tion evaluation, and prove that their notion of se
urity is preserved

under a general
on
urrent
omposition operation similar to universal
omposition. However, their

de�nition involve notions that make sense only in settings where the
ommuni
ation is ideally

private; thus this de�nition does not apply to the
ommon setting where the adversary has a

ess

to the
ommuni
ation between honest parties.

The framework of P�tzmann, S
hunter and Waidner [psw00, pw00℄ is the �rst to rigorously

address
on
urrent universal
omposition in a
omputational setting. They de�ne se
urity for re-

a
tive fun
tionalities in a syn
hronous setting and prove that se
urity is preserved when a single

instan
e of a subroutine proto
ol is
omposed
on
urrently with the
alling proto
ol. An exten-

sion of the [psw00, pw00℄ framework and notion (
alled rea
tive simulatability) to asyn
hronous

networks appears in [pw01℄.

Universal
omposability in its full generality was �rst
onsidered in [
01℄, whi
h addressed the

ase of unbounded number of
on
urrently
omposed proto
ols. This work also demonstrated how

the se
urity requirements of a number of
ommonpla
e and seemingly unrelated
ryptographi
 tasks

an be
aptured via the trusted-party paradigm in the devised model.

A pro
ess
al
ulus for representing probabilisti
 polynomial time intera
ting pro
esses is de-

veloped in [lmms98, mrst06℄. In [mms03℄ the notion of proto
ol emulation and realizing an

ideal fun
tionality is formalized in this model, and shown to be preserved under universal
om-

position with any
alling proto
ol. Other models that de�ne emulation-based se
urity in
lude

[dkmr05, k06,
+06a℄.

At very high level, the notions of se
urity in [pw01,
01, mms03, dkmr05, k06℄ are similar.

However, the underlying system models di�er in a number of respe
ts, whi
h signi�
antly a�e
t

the expressibility and generality of the respe
tive models, namely the range of real-life situations

and
on
erns that
an be
aptured by the respe
tive formalisms. They also di�er in their simpli
ity

and ease of use. In addition, the models provide di�erent degrees of abstra
tion and di�erent tools

for arguing about se
urity properties. We leave a more detailed
omparison out of s
ope.

Finally, we note that the above notions of se
urity leave little room for non-determinism in pro-

to
ol des
ription and run-time s
heduling. This is a natural
hoi
e, sin
e non-determinism that is

resolved arbitrarily at run-time seems inherently in
ompatible with se
urity against
omputation-

ally bounded adversaries. However, su
h modeling does not allow utilizing the traditional analyti
al

advantages of non-determinism in modeling of distributed proto
ols. First steps towards in
orpo-

rating in the model non-determinism that's resolved at runtime are taken in [
+06,
+06a℄; the

main idea here is to allow some parts of the proto
ol exe
ution to be determined arbitrarily after

all the algorithmi

omponents are �xed.

50

