Security and Composition of Cryptographic Protocols: A Tutorial*

Ran Canettif

December 18, 2006

Abstract

What does it mean for a cryptographic protocol to be “secure”? Capturing the security
requirements of cryptographic tasks in a meaningful way is a slippery business: On the one
hand, we want security criteria that prevent “all feasible attacks” against a protocol. On the
other hand, we want our criteria to not be overly restrictive; that is, we want them to accept
those protocols that do not succumb to “feasible attacks”.

This tutorial studies a general methodology for defining security of cryptographic protocols.
The methodology, often dubbed the “trusted party paradigm”, allows for defining the security
requirements of practically any cryptographic task in a unified and natural way. We first review
a basic formulation that captures security in isolation from other protocol instances. Next we
address the secure composition problem, namely the vulnerabilities resulting from the often
unexpected interactions among different protocol instances that run alongside each other in the
same system. We demonstrate the limitations of the basic formulation and review a formulation
that guarantees security of protocols even in general composite systems.

“This tutorial is based on a contribution to the distributed computing column of SIGACT News V. 37, No. 3 & 4.
"IBM T.J. Watson Research Center, canetti@csail.mit.edu. Supported by NSF CyberTrust Grant #0430450.

Contents
1 Introduction
2 The trusted-party paradigm

3 Basic security: A simplified case

3.1 A basicsystem model
3.2 The definition of security L

3.2.1 Discussion Lo e e e e e e e e
3.3 Examples e

4 Basic security: The general case

4.1 Thesystem model
4.2 Definition of Security

4.2.1 DISCusSion e e e e e e e
4.3 More examples Lo e
4.4 Feasibility e e

5 Protocol composition

5.1 What might go wrong
5.2 How can protocols be composed L o
5.3 Security preserving composition Lo Lo

6 The composability properties of basic security

7 Universally Composable Security

7.1 Thedefinition L
7.2 Composability
7.2.1 Discussiono e e e e e e e e e e
7.3 Feasibility and relaxations L L L Lo
7.3.1 Adding set-up assumptionso oo oo
7.3.2 Relaxing UC security

8 Conclusion

A Trusted-party based security: A mini survey

11
12
14

15
16
16
18
20
23

24
25
28
32

33

35
35
37
38
39
41
42

43

49

1 Introduction

Cryptographic protocols, namely distributed algorithms that aim to guarantee some “security prop-
erties” in face of adversarial behavior, have become an integral part of our society and everyday
lives. Indeed, we have grown accustomed to relying on the ubiquity and functionality of computer
systems, whereas these systems make crucial use of cryptographic protocols to guarantee their “ex-
pected functionality.” Furthermore, the perceived security properties of cryptographic protocols
and the functionality expected from applications that use them is being used by lawmakers to
modify the ground rules of our society. It is thus crucial that we have sound understanding of how
to specify, develop, and analyze cryptographic protocols.

The need for sound understanding is highlighted by the empirical fact that cryptographic pro-
tocols have been notoriously “hard to get right,” with subtle flaws in protocols being discovered
long after development, and in some cases even after deployment and standardization. In fact,
even specifying the security properties required from protocols for a given task in a rigorous and
meaningful way has proved to be elusive.

The goal of this tutorial is to introduce the reader to the problems associated with formulating
and asserting security properties of protocols, and to present a general methodology for modeling
protocols and asserting their security properties. The tutorial attempts to be accessible to non-
cryptographers and cryptographers alike. In particular, for the most part it assumes very little prior
knowledge in cryptography. Also, while the main focus is on the foundational aspects of specifying
security, the text attempts to be accessible and useful to practitioners as well as theoreticians.
Indeed, the considered security concerns are realistic ones, and the end goal is to enable analyzing
the security of real-world protocols and systems.

Cryptographic tasks. In general, a cryptographic task, or a protocol problem, involves a set
parties that wish to perform some joint computational task based on their respective local inputs,
while guaranteeing some “security properties” in the face of various types of “adversarial behavior”
by different components of the system and its users.

To get some feel for the range of issues and concerns involved, we briefly review some of the
commonplace cryptographic tasks considered in the literature. Let us start with the very basic
goal of guaranteeing secure communication between parties, in face of an external adversarial entity
(or entities) that have some access to the communication network. When the adversarial access
enables only recording of the transmissions, the most central concern that comes to mind is secrecy,
namely guaranteeing that the actual transmissions leak as little as possible on the communicated
information. When adversarial entities can obtain also active control over the network the secrecy
concern becomes more intricate, and furthermore an even more basic concerns arises: how to
guarantee the authenticity of messages, namely finding out whether a received message was indeed
sent by its claimed sender. Additional concerns include anonymity, namely the ability to hide the
identities of the communicating parties, and non-repudiation, namely the ability to prove to a third
party that the communication took place. Central tasks that are typically needed to guarantee
secure communication include encryption, digital signatures, and key-exchange, where two parties
wish to agree on a random value (a key) that is known only to them.

Another set of tasks, often called two-party tasks, involve two parties who are mutually distrust-
ful but still wish to perform some joint computation. Here the only adversarial behavior under
consideration is typically that of the parties themselves, and the communication medium is treated
as trusted. One such task is zero-knowledge (as in [GMRa89]), where one party wishes to convince

the other in the correctness of some statement without disclosing any additional information on
top of the mere fact that the statement is correct. Another example is commitment (as in [B82]),
where a party C can commit to a secret value x, by providing some “commitment information” ¢
that keeps x secret, while guaranteeing to a verifier that C' can later come up with only one value x
that’s consistent with ¢. Another example is coin-tossing [B82], namely the task where two parties
want to agree on a bit, or a sequence of bits, that are taken from some predefined distribution, say
the uniform distribution. This should hold even if one of the parties is trying to bias the output
towards some value. In addition to being natural tasks on their own, protocols for these tasks are
often used as building blocks within more complex protocols.

More generally, cryptographic tasks may involve multiple parties with intricate trust relation-
ships, and exhibit a wide variety of secrecy and correctness requirements. Furthermore, in addition
to plain correctness and secrecy, there are typically other task-specific concerns. We briefly men-
tion some examples: Electronic voting, in a number of contexts, require careful balancing among
correctness, public accountability, privacy and deniability. Electronic-commerce applications such
as on-line auctions, on line trading and stock markets, and plain on-line shopping require fairness
in completion of the transaction, as well as the ability to resolve disputes in an acceptable way.
On-line gambling tasks require, in addition, the ability to guarantee fair distribution of the out-
comes. Privacy-preserving computations on databases introduce a host of additional concerns and
goals, such as providing statistical information while preserving the privacy of individual entries,
obtaining data while hiding from the database which data was obtained, and answering queries
that depend on several databases without leaking additional information in the process. Secure dis-
tributed depositories, either via a centrally-managed distributed system or in an open, peer-to-peer
fashion, involve a host of additional secrecy, anonymity, availability and integrity concerns.

Cryptographic protocols. There is vast literature describing protocols aimed at solving the
problems mentioned above, and many others, in a variety of settings. Out of this literature, let us
mention only the works of Yao [Y86], and Goldreich, Micali and Wigderson [cMW87, G04], which
give a mechanical way to generate protocols for solving practically any multi-party cryptographic
protocol problem “in a secure way”, assuming authenticated communication. (These construc-
tions do not cover all tasks; for instance, they do not address the important problem of obtaining
authenticated communication. Still, they are very general.)

Defining security of protocols. But, what does it mean for a cryptographic protocol to solve
a given protocol problem, or a cryptographic task, “in a secure way”? How can we formalize
the relevant security requirements in a way that makes mathematical sense, matches our informal
intention, and at the same time can also be met by actual protocols? This turns out to be a tricky
business.

Initially, definitions of security were problem-specific. That is, researchers came up with ad-hoc
models of protocols and sets of requirements that seem to match the intuitive perception of the
problem at hand. In addition, definitions were often tailored to capture the properties of specific
solutions or protocols. However, as pointed out already in [Y82A], we would like to have a general
framework for specifying the security properties of different tasks. A general framework allows for
uniform and methodological specification of security properties. Such a specification methodology
may provide better understanding of requirements and their formalization. It is also likely to result
in fewer flaws in formulating the security requirements of tasks. In fact, it can be argued that
having a general definitional framework is essential for understanding the notion of security of

protocols.

Yet there is another, more concrete argument in favor of having a general analytical framework.
Traditionally, notions of security tend to be very sensitive to the specific “execution environment”
in which the protocol is running, and in particular to the other protocols running in the system
at the same time. Thus, a set of requirements that seem appropriate in one setting may easily
become insufficient when the setting is changed only slightly. This is a serious drawback when
trying to build secure systems that make use of cryptographic protocols. Here a general analytical
framework with a uniform methodology of specifying security requirements can be very useful: It
allows formulating statements such as “A protocol that realizes some task can be used in conjunction
with any protocol that makes use of this task, without bad interactions,” or “Protocols that realize
this task continue to realize it in any execution environment, regardless of what other protocols run
in the system.” Such security-preserving composition theorems are essential for building security
protocols in a systematic way. They can be meaningful only in the context of a general framework
for representing cryptographic protocols.

Several general frameworks for representing cryptographic protocols and specifying the security
requirements of tasks were developed over the years, e.g. [GL90, MR91, B91, BCG93, PW94, LMMS9IS,
c00, aM00, pm00, pPw00, w01, c01, MRST06, MMS03, KO6]. All of these frameworks follow in
one way or another the same underlying definitional approach, called the trusted-party paradigm.
Still, these frameworks differ greatly in their expressibility (i.e., the range of security concerns and
tasks that can be captured), in the models addressed, and in many significant technical details.
They also support different types of security-preserving composition theorems.

This tutorial. This tutorial concentrates on the trusted-party definitional paradigm and the se-
curity it provides. Special attention is given to the importance of security-preserving composition
in cryptographic protocols, and to the composability properties of this paradigm in particular. We
also briefly discuss the relations with other (non-cryptographic) general approaches for modeling
distributed protocols and analyzing their properties. For sake of concreteness, we base the cur-
rent treatment on two specific formalizations of the trusted-party paradigm; other formulations
are surveyed in the Appendix. The first formalization [c00] is somewhat simpler and provides a
rather basic notion of security, with limited expressibility and a limited form of security-preserving
composition. The second one [C01] is more general in terms of expressibility of concerns and situ-
ations, and also enables a very general form of security-preserving composition. The presentation
here tries to “de-couple” the expressibility aspect from the aspect of the security level; indeed, we
believe that the two aspects are very different from each other.

We start (in Section 2) with very high-level motivation and exposition of the trusted-party
paradigm. We first demonstrate the failure of some naive approaches for defining security. We
then present the paradigm in an abstract form and argue why it could allow overcoming the same
pitfalls. We also try to demonstrate the intuitive appeal of this paradigm.

We then continue to develop (in Section 3) a highly simplified formalization of the general
paradigm, that deals only with two parties that wish to compute a pre-specified function of their
inputs, once, in isolation. While considerably restricted in its expressibility, this formulation (which
is a restricted case of [c00]) allows concentrating on the main ideas without much of the complexity
of the general case.

Section 4 presents a generalization of the model from Section 3 that allows capturing general
cryptographic tasks, including multi-party tasks, reactive tasks (i.e. tasks where parties provide
multiple inputs and receive multiple outputs), as well as fine-tuning of the security requirements.

This model can be seen as a generalization of [C00]. Still, this model concentrates on protocols that
are executed once, in isolation. At the end of this section we briefly review some basic feasibility
results for this “stand-alone security” model.

Section 5 introduces the notion of security-preserving protocol composition. We start by demon-
strating, via some examples, the security pitfalls associated with protocol composition. We then
survey some salient composition operations and scenarios. Finally, we define what it means for a
notion of security to provide “composable security” (with respect to some type of composition).
The presentation in this section is, for the most part, independent of the material in the previous
sections.

Section 6 reviews the composability properties of the “stand-alone” notion of security from
Section 4. In a nutshell, it is demonstrated that security is preserved as long as no two protocol
instances run concurrently with each other. However, no security is guaranteed as soon as even two
protocols instances run concurrently.

Section 7 presents and discusses the notion of Universally Composable (UC) security [c01]. The
salient feature of this notion is that it guarantees that security is preserved in any composite system,
and for any set of protocols running concurrently. After presenting the notion and its relation to
the stand-alone notion from Section 4, we briefly review the known feasibility results, as well as
some relaxations of this notion that were recently studied in the literature.

Section 8 provides a brief and subjective view of notions of security for cryptographic protocols.
The Appendix contains a mini survey of definitional works that follow the trusted-party paradigm.

2 The trusted-party paradigm

This section motivates and sketches the trusted-party definitional paradigm, and highlights some of
its main advantages. More detailed descriptions of actual definitions are left to subsequent sections.

Let us consider, as a generic example, the task of two-party secure function evaluation. Here two
mutually distrustful parties Py and P; want to “securely evaluate” some known function f, in the
sense that P; has value z; and the parties wish to jointly compute f(z¢,z;) “in a secure way.”
Which protocols should we consider adequate for this task?

First attempts. Two basic types of requirements come to mind. The first is correctness: the
parties that follow the protocol (often called the “good parties” or “honest parties”) should output
the correct value of the function evaluated at the inputs of all parties. Here the “correct function
value” may capture multiple concerns, including authenticity of the identities of the participants,
integrity of the input values, correct choice of random values, etc. The second requirement is
secrecy, or hiding the local information held by the parties as much as possible.

For instance, consider two parties (say, two databases), each having a list of items, that wish
to find out which items appear in both lists. Here, correctness means that the parties output all
the entries which appear in both lists, and only those entries. Secrecy means that no party learns
anything from the interaction other than the joint entries.

However, in general, formalizing these requirements in a meaningful way seems problematic.
Let us briefly mention some of the issues. First, defining correctness is complicated by the fact that
it is not clear how to define the “input value” that an arbitrarily-behaving party contributes to
the computation. In particular, it is of course impossible to “force” such parties to use some value
given from above. So, what would be a “legitimate”, or “acceptable” process for choosing inputs
by parties who do not necessarily follow the protocol?

Another question is how to formulate the secrecy requirement. Here it seems reasonable to
require that parties should be able to learn from participating in the protocol nothing more than
their prescribed outputs of the computation, namely the “correct” function value. But, even
before getting into the more technical question of how to formulate such a “learn nothing more”
requirement, we run into the problem that the “correct function value” in itself depends on the
inputs contributed by parties who may not follow the protocol.

Let us exemplify some of these issues via the following toy protocol (taken from [MR91]): Assume
that zo,z1 € {0,1}, and that f is the exclusive or function, namely f(zo,z1) = zo ® 1. That
is, each party contributes an (a priori secret) input value, and obtains the exclusive or of the two
inputs. The protocol instructs Py to send its input to P;; then P; announces the result. Intuitively,
this protocol is insecure since P can unilaterally determine the output, after learning Py’s input.
Yet, the protocol maintains secrecy (which holds vacuously for this problem since each party can
infer the input of the other party from its own input and the function value), and is certainly
“correct” in the sense that the output fits the input that P, “contributes” to the computation.

This example seems to indicate that the a secure protocol must guarantee that the input that
a party contribute to the protocol should be chosen without knowledge of the inputs of the other
parties (at least those who follow the protocol). This, in turn, suggests that the correctness and
secrecy requirements are in fact intertwined, namely they are two facets of a single requirement,
rather than two different requirements.

The same example also brings forth another security requirement from protocols, in addition
to correctness and secrecy: We want to prevent one party from influencing the output of the other
parties in illegitimate ways, even when plain correctness is not violated.

Additional problems arise when the function to be evaluated is probabilistic, namely the parties
wish to jointly “sample” from a given distribution that may depend on secret values held by the
parties. Here it seems clear that correctness should take the form of some statistical requirement
from the output distribution. In particular, each party should be able to influence the output dis-
tribution only to the extent that the function allows, namely only in ways that can be interpreted
as providing a legitimately determined input to the function. Furthermore, as demonstrated by the
following example, the case of probabilistic functions puts forth an additional, implicit secrecy re-
quirement. (We note that this concern arises even in the simplified case where all parties are trusted
to follow the protocol instructions and the goal is to prevent illegitimate information leakage.)

Assume that the parties want to toss k coins, where k is a security parameter; formally, the
evaluated function is f(-,-) = r, where r ¢ {0,1}*. Let f be a one-way permutation on domain
{0,1}* (i.e., given a random k-bit value =, it is infeasible to compute f~!(z)). The protocol instructs
Py to choose s <= {0,1}* and send r = f(s) to P,. Both parties output r.

This protocol preserves secrecy vacuously (since the parties do not have any secret inputs), and
is also perfectly correct in the sense that the distribution of the joint output is perfectly uniform.
However, the protocol lets Py hold some “secret trapdoor information” on the joint random string.
Furthermore, P} does not have this information, and cannot feasibly compute it (assuming that f
is one-way). This “quirk” of the protocol is not merely an aesthetic concern. Having such trapdoor
information can be devastating for security if the output string r is used within other protocols.
This example seems to suggest that a definition of security should somehow specify also the process
in which the output is to be obtained.

Other concerns, not discussed here, include issues of fairness in obtaining the outputs (namely,
preventing parties from aborting the computation after they received their outputs but before other
parties received theirs), and addressing break-ins into parties that occur during the course of the

computation.

The trusted party paradigm. The trusted party paradigm follows the “unified requirement”
approach mentioned above. The idea (which originates in [GMW8T], albeit very informally) proceeds
as follows. In order to determine whether a given protocol is secure for some cryptographic task,
first envision an ideal process for carrying out the task in a secure way. In the ideal process all
parties secretly hand their inputs to an external trusted party who locally computes the outputs
according to the specification, and secretly hands each party its prescribed outputs. This ideal
process can be regarded as a “formal specification” of the security requirements of the task. (For
instance, to capture the above secure function evaluation task, the trusted party simply evaluates
the function on the inputs provided by the parties, and hands the outputs back to the parties. If
the function is probabilistic then the trusted party also makes the necessary random choices.) The
protocol is said to securely realize a task if running the protocol amounts to “emulating” the ideal
process for the task, in the sense that any damage that can be caused by an adversary interacting
with the protocol can also be caused by an adversary in the ideal process for the task.

In principle, this idea seems to have the potential to answer all the concerns discussed above.
Indeed, in the ideal process both correctness and lack of influence are guaranteed in fiat, since
the inputs provided by any adversarial set of parties cannot depend on the inputs provided by the
other parties in any way, and furthermore all parties obtain the correct output value according
to the specification. Secrecy is also immediately guaranteed, since the only information obtained
by any adversarial coalition of parties is the legitimate outputs of the parties in this coalition. In
particular, no implicit leakage of side-information correlated with the output is possible. Another
attractive property of this approach is its apparent generality: It seems possible to capture the
requirements of very different tasks by considering different sets of instructions for the external
trusted party.

It remains to substantiate this definitional approach in a way that maintains its intuitive appeal
and security guarantees, and at the same time allows for reasonable analysis of “natural” protocols.
In this tutorial we describe several formalizations, that differ in their complexity, generality and
composability guarantees. Yet, all these formalizations follow the same outline, sketched as follows.
The definition proceeds in three steps. First we formalize the process of executing a distributed
protocol in the presence of adversarial behavior of some parts of the system. Here the adversarial
behavior is embodied via a single, centralized computational entity called the adversary. Next
we formalize the ideal process for the task at hand. The formalized ideal process also involves
an adversary, but this adversary is rather limited and its influence on the computation is tightly
controlled. Finally, we say that a protocol m securely realizes a task F if for any adversary A
that interacts with 7 there exzists an adversary S that interacts with the trusted party for F, such
that no “external environment,” that gives inputs to the parties and reads their outputs, can tell
whether it is interacting with 7 or with the trusted party for F. (Here the “environment” represents
“everything that happens outside the protocol execution,” including both the the immediate users
of the protocol and other parties and protocols.)

Very informally, the goal of the above requirement is to guarantee that any information gathered
by the adversary A when interacting with 7, as well as any “damage” caused by A, could have
also been gathered or caused by an adversary & in the ideal process with F. Now, since the
ideal process is designed so that no S can gather information or cause damage more than what is
explicitly permitted in the ideal process for F, we can conclude that A too, when interacting with
m, cannot gather information or cause damage more than what is explicitly permitted by F.

We note that the definitional approach of comparing an execution to an idealized system can be
viewed as a natural extension of the approach taken when defining semantic security of encryption
scheme [GM84] and zero-knowledge proofs [GMRa89]. Furthermore, the formulation described here
can be seen as a direct generalization of the formulations in [GM84, GMRa89].

Jumping ahead, we also note that the above formulation has an apparent intuitive “compo-
sitionality” guarantee: Since it is explicitly required that no “environment” can tell the protocol
from the trusted party, it makes sense to expect that a protocol will exhibit the same properties
regardless of the activity in the rest of the system. We postpone additional discussion of this
important issue to later sections.

3 Basic security: A simplified case

For the first formalization, we consider a relatively simple setting: As in the previous section, we
restrict ourselves to two-party secure function evaluation, namely the case of two parties that wish
to jointly compute a function of their inputs. We also restrict ourselves to the “stand-alone” case,
where the protocol is executed once, and no other parties and no other protocol executions are
considered. Furthermore, we are only concerned with the case where one of the two parties is
adversarial. In particular, the communication links are considered “trusted”, in the sense that each
party receives all the messages sent by the other party, and only those messages. It turns out that
this setting, while highly simplified, still captures much of the complexity of the general problem.
We thus present it in detail before considering more complex (and more realistic) settings.

Section 3.2 presents the definition. Section 3.3 exemplifies the definition by providing some
definitions of cryptographic tasks, cast in this model. First, however, we present the underlying
model of distributed computation, in Section 3.1.

3.1 A basic system model

Before defining security of protocols, one should first formulate a model for representing distributed
systems and protocols within them. Informally, we wish to capture a system of (resource bounded)
computing elements that communicate in an arbitrary asynchronous manner. This section sketches
such a model; since we only need to capture two-party protocols, the model is somewhat simplified
(it is extended later). Still, readers that are satisfied with a more informal notion of distributed
systems, protocols, and polynomial-time computation can safely skip this section.

Several general models for representing and arguing about distributed systems exist, e.g. the
CSP model of Hoare [H85], the w-calculus of Milner [M89, M99], or the I/O automata of Lynch
and Tuttle [LT89]. Here we build on the interactive Turing machines (ITMs) model, put forth in
Goldwasser, Micali and Rackoff [GMRa89] (see also [GO1]). Indeed, while the ITM model is more
“low level” and provides fewer and less elegant abstraction mechanisms than the above models, it
allows for capturing in a natural way the subtle relations between randomization, interaction, and
resource-bounded adversarial behavior. Specifically, we formulate a simplified version of the model
of [c01, 2005 revision|. (Some models that aim at combining the computational advantages of the
ITM model with the analytical advantages of more abstract models include [Pw00, PWO01, 406,
K06].)

Interactive Turing Machines. Interactive Turing machines (ITMs) are probabilistic Turing
machines augmented with mechanisms that allow transferal of data between different machines.

Specifically, an ITM is a Turing machine with some externally writable tapes, namely tapes that can
be written into by other machines. It will be convenient to distinguish three externally writable
tapes: An input tape, representing inputs provided by the “invoking program”, an incoming com-
munication tape, representing messages coming from the network, and a subroutine output tape,
representing outputs provided by subroutines invoked by the present program. The input tape
represents information coming from “outside the protocol instance”, while the incoming commu-
nication tape and the subroutine output tapes provide information that is “internal to a protocol
instance.” In addition, the incoming communication tape models information coming from un-
trusted sources, while the information on the subroutine output tapes is treated as coming from a
trusted source.

Systems of ITMs. The model of computation consists of several instances of ITMs that can
write on the externally writable tapes of each other, subject to some global rules. We call an I'TM
instance an ITI. Different ITIs can run the same code (ITM); however they would, in general, have
different local states.

An execution of a systems of ITMs consists of a sequence of activations of ITIs. In each activa-
tion, the active ITI proceeds according to its current state and contents of tapes until it enters a
special wait state. In order to allow the writing I'TI to specify the target ITI we enumerate the I'TIs
in the system in some arbitrary order, and require that the write instruction specify the numeral
of the target ITI. (This addressing mechanism essentially means that each two ITIs in the system
have a “direct link” between them. A more general addressing mechanism is described in Section
4.1.) The order of activation is determined as follows: There is a pre-determined ITI, called the
initial ITI, which is the first one to be activated. At the end of each activation, the ITI whose tape
was written to is activated next. If no external write operation was made then the initial ITI is
activated. The execution ends when the initial ITI halts. (To disambiguate the order of activations,
we allow an ITI to write on an externally writable tape of at most one other ITI per invocation.)

In principle, the global input of an execution should be the initial inputs of all ITIs. For
simplicity, however, we define the global input as the input of the initial I'TT alone. Similarly,
the output of an execution is the output of the initial ITI. (This formulation will suffice for our
purposes.) A final ingredient of a system of ITMs is the control function, which determines which
tapes of which ITI can each ITI write on. As we’ll see, the control function will be instrumental in
defining different notions of security.

Looking ahead, we remark that this very rudimentary model of communication, with its simple
and sequential scheduling of events, actually proves sufficient for expressing general synchrony,
concurrency, and scheduling concerns.

Polynomial-Time ITMs. In order to model resource-bounded programs and adversaries, we
need to define resource-bounded ITMs. We concentrate on polynomial time ITMs. We wish to
stick with the traditional interpretation of polynomial time as “polynomial in the length of the
input.” However, since in our model ITMs can write on the tapes of each other, care should be
taken to guarantee that the overall running time of the system remains polynomial in the initial
parameters. We thus say that an ITM M is polynomial time (PT) if there exists a polynomial
p(+) such that at any point during the computation the overall number of steps taken by M is at
most p(n), where n is the overall number of bits written so far into the input tape of M, minus the
number of bits written by M to the input tapes of other I'TIs. This guarantees that a system of
communicating I'TMs completes in polynomial time in the overall length of inputs, even when ITIs

10

write on the input tapes of each other. (An alternative, somewhat simpler formulation says that
the overall running time of an ITM should be polynomial in the value of a “security parameter”.
However, this formulation considerably limits the expressibility of the model, especially in the case
of reactive computation. See [c01] for more discussion on notions of PPT ITMs.)

Protocols. A protocol is defined simply as an ITM. This ITM represents the code to be run by
each participant, namely the set of instructions to be carried out upon receipt of an input, incoming
message, or subroutine output (namely, output from a subroutine). If the protocol has different
instructions for different roles, then the I'TM representing the protocol should specify the behaviors
of all roles. A protocol is PT if it is PT as an ITM.

3.2 The definition of security

We flesh out the definitional plan from Section 2, for the case of two-party, stand-alone, non-reactive

tasks (see Figure 1).
/\
)

Figure 1: The definition of security at a glance. The left figure depicts an execution of the protocol
with an adversary A. The right figure depicts the ideal process for a function f; here a party and
the adversary interact via a trusted party 7y. A protocol 7 securely evaluates a function f if for any
adversary A there is an adversary S such that no environment can tell with significant probability
whether it is interacting with A and a party running = or with S in the ideal process for f.

The protocol execution experiment.! Let 7 be a two-party protocol. The protocol execution
experiment proceeds as follows. There are three entities (modeled as ITIs): an entity P, that runs
the code of 7, the adversary, denoted A, and the environment, denoted £.

The environment (who is activated first) provides initial inputs to A and the party P running
7; later, it obtains the final outputs of P and A. (The initial inputs can be thought of as encoded
in £’s own input.)

Once either P or A is activated, with either an input value or an incoming message (i.e., a value
written on the incoming communication tape), it runs its code and potentially generates a message
to be written on the other party’s incoming communication tape, or an output, to be read by &.
Both P and A can generate only a single output value throughout the computation.

The final output of the execution is the output of the environment. As we’ll see, it’s enough to
let this output consist of s single bit.

!The presentation below is somewhat informal. Formal description, in terms of a system of I'TMs as sketched in the
previous section, can be easily inferred. In particular, the various model restrictions are enforced via an appropriate
control function.

11

We use the following notation. Let EXEC; 4 ¢(z) denote the random variable describing the
output of environment £ when interacting with adversary A and protocol m on input z (for £).
Here the probability is taken over the random choices of all the participating entities. Let EXECyr 4¢
denote the ensemble of distributions {EXECy 4,&(Z)}refo,1}+-

The ideal process. Next an ideal process for two-party function evaluation is formulated. Let
f:({0,1}%)2 — ({0,1}*)? be the (potentially probabilistic) two-party function to be evaluated.

We want to formalize a process where the parties hand their inputs to a trusted entity which
evaluates f on the provided inputs and hands each party its prescribed output. For that purpose,
we add to the system an additional entity (ITI), denoted Ty, which represents the trusted party
and captures the desired functionality. P now runs the following simple ideal protocol for f: When
receiving input value, P forwards this input to 7. When receiving an output from 77, P forwards
this output to &.

T¢ proceeds as follows: It first waits to receive input (b,z) from P and input z’ from the
adversary A, where b € {1,2} denotes whether z is to be taken as the first or second input to f.
Once the inputs are received, Ty evaluates the function, namely it lets z < z, z3_p < 2/, and
(y1,y2) < f(z1,22). Next, Ty outputs yz_p to A. Once it receives an ok message from A, T;
outputs y, to P.

Analogously to the protocol execution experiment, let IDEALy 4 ¢ (x) denote the random variable
describing the output of environment £ when interacting with adversary A and the ideal protocol for
f on input z (for £), where the probability is taken over the random choices of all the participating
entities. Let IDEALy 4 ¢ denote the ensemble {IDEALf 4 .¢(%) }fze{o,1}+-

Securely evaluating a function. Essentially, a two-party protocol 7 is said to securely evaluate
a two-party function f if for any adversary A, that interacts with 7, there erists another adversary,
denoted S, that interacts with T, such that no environment will be able to tell whether it is
interacting with = and A, or alternatively with 7; and S.

To provide a more rigorous definition, we first define indistinguishability of probability ensem-
bles. A function is negligible if it tends to zero faster than any polynomial fraction, when its
argument tends to infinity. Two distribution ensembles X = {X;}qcqo,1}» and X' = {X]}4c(0,1)
are indistinguishable (denoted X ~ X') if for any a,a’ € {0,1}* the statistical distance between
distributions X, and X/ is a negligible function of k.2 Secure evaluation is then defined as follows:

Definition 1 (Basic security for two-party function evaluation) A two-party protocol m se-
curely evaluates a two-party function f if for any PT adversary A there exists a PT adversary S
such that for all PT environments £ that output only one bit:

IDEALf s ¢ =~ EXECr A€

3.2.1 Discussion

Motivating some choices in the model. Recall that the protocol execution experiment in-
volves only a single party running the two-party protocol, where the messages are exchanged with

2The use of an asymptotic notion of similarity between distribution ensembles greatly simplifies the presentation
and argumentation. However it inevitably introduces some slack in measuring distance. More precise and quantitative
notions of similarity may be needed to determine the exact quantitative security of protocols. Also, note that we do
not define computational indistinguishability of probability ensembles. This is so since we will only be interested in
ensembles of distributions over the binary domain {0,1}, and for these ensembles the two notions are equivalent.

12

the adversary rather than with another party running the protocol. This models the fact that we
consider the behavior of the system when one of the parties follows the protocol while the other
follows a potentially different strategy. In two-party protocols where there are two distinct roles
there will be two distinct cases depending on the role played by the party who is running the
protocol. However, since the role can be modeled as part of the input, this distinction need not be
made within the general modeling.

Recall that the environment only sees the inputs and outputs of the adversary and the party
running the protocol; it does not have direct access to the communication between the parties.
Indeed, the environment captures the “external system” that provides inputs to the parties and
obtains their outputs. the communication between the parties is treated as internal to the protocol
rather than part of its functionality.

Also, notice that no generality is lost by restricting the environment to output only one bit, since
a definition that allows the environment to generate long outputs would end up being equivalent
to the present one.

Interpreting the definition. It is instructive to see how the informal description of Section 2
is substantiated. First, the ideal process represents in a straightforward way the intuitive notion of
a trusted party that obtains the inputs from the parties and locally computes the desired outputs.
In particular, the input provided by the adversary depends only in the information it was initially
given from &£. Furthermore, A obtains only the specified function value.

Now, assume there existed an adversary A that could interact with the protocol and exhibit
“bad behavior” that cannot be exhibited in the ideal process, by any adversary S. Then there
would exist an environment £ that outputs ‘1’ with significantly different probabilities in the two
executions, and the definition would be violated.

The notion of “bad behavior” is interpreted in terms of the joint distribution of the outputs
of P and A on any given input. This interpretation is very broad: For instance, it guarantees
that the protocol does not allow the adversary to gather information on the other party’s input,
where this information is not available in the ideal process (since otherwise the protocol execution
would have no ideal-process counterpart). It also guarantees that the protocol does not allow an
adversarial party to influence the output of the other party in ways that are not possible in the
ideal process. In particular, it is guaranteed that the adversary S in the ideal process is able to
generate an “effective adversarial input” zs to the trusted party that is consistent with P’s input
and output (namely, zo satisfies y; = f(zl,22);, where z; is P s input and y; is P’s output).

In addition, the environment can choose to provide A with input that is either uncorrelated
with P’s input, or alternatively partially or fully correlated with P’s input. This guarantees that
the above properties of the protocol hold regardless of how much “partial information” on P’s input
is already known to the adversary in advance.

Also, notice that the correctness guarantee takes a somewhat different flavor for deterministic
and probabilistic functions: For deterministic functions, P’s output is guaranteed to be the ex-
act function value, except for negligible probability, for any potential input value. For probabilistic
functions, it is only guaranteed that the distribution of P’s output is computationally indistinguish-
able from the distribution specified by the function. This difference allows the analyst to choose
which level of security to require, by specifying an appropriate f.

Yet, the present formulation of the ideal process does not guarantee fairness: A always receives
the output first, and can then decide whether P will obtain its output.

13

Extensions. The definition can be modified in natural ways to require an information-theoretic
(or, statistical) level of security, by considering computationally unbounded adversaries and envi-
ronments, or even perfect security, by requiring in addition that the two sides of (1) be identical.
(To preserve meaningfulness, S should still be polynomial in the complexity of A, even when A
and & are unbounded.)

Similarly, the definition can be modified to consider only restricted types of malicious behavior
of the parties, by appropriately restricting the adversary. For instance, security against “semi-
honest” parties that follow the protocol, but may still try to gather additional information, can be
captured by requiring A to follow the original protocol. (Indeed, in situations where it is plausible
to assume that all parties always follow the prescribed protocol such a weaker security guarantee
suffices.)

3.3 Examples

To exemplify the use of Definition 1 for capturing the security requirements of cryptographic tasks,
we use it to capture the security requirements of three quite different tasks. That is, for each of
these tasks we formulate a two-party function that captures the security requirements of the task.

Database Intersection. As a first example, consider the task mentioned in Section 2: Two par-
ties, each having a list of items, wish to find out which items appear in both lists. Here both parties
have private inputs and both have private outputs which are different than, but related to, each
other. Still, it can be formulated as a function in a straightforward way: fo,((z1,...,z}), (22, ...,22)) =
((b1,...,bL), (b2, ...,b%)), where b;- = 1if :1:; equals :vj?fi for some j', and b;- = 0 otherwise. This
would mean that a party P which follows the protocol is guaranteed to get a valid answer based on
its own database z and some database z/, where z' was determined by the other party based only
on the initial input of the other party. Furthermore, the information learned by the other party
is computed based on the same two values z and z’. Also, if there is reason to believe that the
other party used some concrete “real” database z’, then correctness is guaranteed with respect to
that specific /. Recall, however, that the definition does not guarantee fairness. That is, the other
party may obtain the output value first, and based on that value decide whether P will obtain its
output value. In Section 4 we will see how to express fairness within an extended formalism.

Common Randomness. Next, we consider a task that involves randomness requirements from
the outputs of the parties. Specifically, we consider the task of generating a common string that
is guaranteed to be taken from a pre-defined distribution, say the uniform distribution over the
strings of some length: f¥ (—,—) = (r,7), where r is a random k-bit string. Here the parties
are guaranteed that the output is distributed (pseudo)randomly over {0, 1}*. Furthermore, each
party is guaranteed that the other party does not have any “trapdoor information” on r that
cannot be efficiently computed from 7 alone. As mentioned in the Introduction, this guarantee
becomes crucial in some cryptographic applications. Finally, as in the previous case, fairness is not
guaranteed.

Zero Knowledge. Let R : {0,1}* x {0,1}* — {0,1} be a binary relation, and consider the
bivariate function fZ((x,w),—) = (-, (z, R(z,w))). That is, the first party (the “prover”) has
input (x,w), while the second party (the “verifier”) has empty input. The verifier should learn
x plus the one-bit value R(z,w), and nothing else. The prover should learn nothing from the

14

interaction. In particular, when R is the relation associated with an NP language L (that is,

L=Lp%¥ {z|3w s.t. R(x,w) = 1}), these requirements are very reminiscent of the requirements
from a Zero-Knowledge protocol for L: The verifier is guaranteed that it accepts, or outputs (z, 1),
only when = € L (soundness), and the prover is guaranteed that the verifier learns nothing more
other than whether z € L (zero-knowledge).

It is tempting to conclude that a protocol is Zero-Knowledge for language Lp as in [GMRa89]
if and only if it securely realizes fZ. This statement is true “in spirit”, but some technical caveats
exist. Below we discuss these caveats; readers that are satisfied with a more intuitive notion of
Zero-Knowledge or are not familiar with its classic definition may safely skip this discussion.

The first caveat is that [GMRa89] define Zero Knowledge so that both parties receive z as input,
whereas here the verifier learns x only via the protocol. This difference, however, is only “cosmetic”
and can be resolved via simple syntactic transformations between protocols. The remaining two
differences are more substantial: First, securely realizing f2 only guarantees “computational sound-
ness”, namely soundness against PT adversarial provers. Second, securely realizing f£ implies an
additional, somewhat implicit requirement: When the adversary plays the role of a potentially
misbehaving prover, the definition requires the simulator to explicitly hand the input = and the
witness w to the trusted party. To do this, the simulator should be able to “extract” these values
from the messages sent by the adversary. This requirement has the flavor of a proof of knowledge
(see e.g. [GO1]), albeit in a slightly milder form that does not require a black-boz extractor.

In conclusion, we have that a protocol securely realizes f£ if and only if a slight modification
of the protocol is a computationally sound Zero-Knowledge Proof of Knowledge for Lp (with
potentially non black-box extractors).

4 Basic security: The general case

Section 3 provides a framework for defining security of a restricted class of protocols for a restricted
class of tasks: protocols that involve only two parties, and tasks that can be captured as two-party
functions. While this case captures much of the essence of the general notion, it lacks in terms of
the expressibility and generality of the definitional paradigm.

This section generalizes the treatment of Section 3 in several ways, so as to capture a wider class
of cryptographic tasks. First we consider multi-party tasks and protocols, namely the case where
multiple (even unboundedly many) parties contribute inputs and obtain outputs. This requires
capturing various synchrony and scheduling concerns. Second, we counsider also reactive tasks,
where a party provides inputs and obtains outputs multiple times, and new inputs may depend on
previously obtained outputs. Next, we let the adversary be a separate entity, rather than taking
the place of some of the participants. This allows considering also tasks which require security
against “the network”, namely against parties that do not take legitimate part in the protocol
but may have access to the communication. It also allows expressing situations where parties get
“corrupted”, or “broken into” in an adaptive way throughout the computation. Next, we allow the
adversary interact freely with the trusted party. This allows capturing security requirements in a
more fine-grained way by specifying the allowed information leakage and adversarial influence.

Still, throughout this section we only counsider the case of a single execution of a protocol, run
in isolation. Treatment of systems where multiple protocol executions co-exist is deferred to the
next sections.

The necessary extensions to the basic system model are presented first, in Section 4.1. Section
4.2 presents the extensions to the definition of security, while Section 4.3 provides some additional

15

examples. Finally, Section 4.4 briefly reviews some basic feasibility results for this definition.

Overall, this section is somewhat more detail-oriented. While useful for understanding many
crucial details in modeling security protocols, it can be safely skipped (or only skimmed) at first
reading.

4.1 The system model

In many respects, the system model from Section 3.1 suffices for capturing general multi-party
protocols and their security. (In fact, some existing formalisms offer comparable generality, in
the sense that they do not include the extensions described below.) Still, that model has some
limitations: First, it can only handle a fized number of interacting I'TIs. This suffices for protocols
where the number of participants is fixed. However, it does not allow modeling protocols where
the number of parties can grow in an adaptive way based on the execution of the protocol, or even
only as a function of a security parameter. Such situations may indeed occur in real life, say in
an on-line auction or gambling application. Another limitation is that the addressing mechanism
for external write requests is highly idealized, and does not allow for natural modeling of routing
and identity management issues. While this level of abstraction is sufficient for systems with small
number of participants that know each other in advance, it does not suffice for open systems, where
parties may learn about each other only via the protocol execution.

We thus extend the model of Section 3.1 in two ways (again, following [C01, 2005 revision]).
First, we allow for new I'TIs to be added to the system during the course of the computation. This
is done via a special “invoke new ITI” instruction that can be executed by a currently running
ITI. The code of the new ITI should be specified in the invocation instruction. The effect of the
instruction is that a new I'TI with the specified code is added to the system. The externally writable
tapes of the new ITI can now be written to by other ITIs. Note that, given the new formalism,
a system of I'TMs can now be specified by a single I'TM, the initial ITM, along with the control
function. All other ITIs in the system can be generated dynamically during the course of the
execution. The notion of PT ITMs from Section 3.1 remains valid, in the sense that it is still
guaranteed that a system of I'TMs is guaranteed to complete each execution in polynomial time, as
long as the initial ITM is PT and the control function is polynomially computable.

The second change is to add a special identity tape to the description of an ITM. This tape
will be written to once, upon invocation, and will be readable by the ITM itself. This means that
the behavior of the ITM can depend on its identity (namely on the contents of its identity tape).
Furthermore, an external write instruction will now specify the target I'TM via its identity, rather
than via a “dedicated link” (represented via some external index).

The identity of an ITI is determined by the ITI that invokes it. To guarantee unambiguous
addressing, we require that identities (often dubbed IDs) be unique. That is, an invocation instruc-
tion that specifies an existing ID is rejected. (This rule can be implemented, say, by the control
function.)

4.2 Definition of Security

We extend the definition of security in several steps. First, we extend the model of protocol
execution. Next, we extend the ideal process. Finally, we extend the notion of realizing a trusted
party. As we'll see, in some respects the present more general definition is simpler to specify than
the one from Section 3.

16

The protocol execution experiment. We describe the generalized protocol execution experi-
ment. Let 7 be a protocol to be executed. As before, the model for executing 7 is parameterized
by an environment £ and an adversary A.

Initially, the system consists only of £ and A. During the execution, £ invoke as many parties
(ITIs) as it wishes, and determine their identities. All of these parties run 7. In addition, £ can
write on the input tapes of the parties throughout the computation, and parties can hand outputs
to £. In addition, £ can give initial input to A and can obtain a single (presumable final) output
message from A. No other interaction between £ and the system is allowed.

Once a party is activated, either with an input value, or with an incoming message, it follows
its code and potentially generates an outgoing message or an output. All outgoing messages are
handed to the adversary, regardless of the stated destinations of the messages. Outputs are handed
to £. Parties may also invoke new subroutines (ITIs), that may run either = or another code.
However, these subroutines are not allowed to directly communicate with €.

Once the adversary is activated, it can deliver a message to a party, i.e. write the message on
the party’s incoming communication tape. In its last activation it can also generate an output, i.e.
write the output value on the incoming communication tape of &.

As before, the final output of the execution is the (one bit) output of the environment. With
little chance of confusion, we re-define the notation EXEC; 4 ¢ to refer to the present modeling.

The ideal process. The main difference from the ideal process in Section 3 is that, instead of
considering only trusted parties that perform a restricted set of operations (such as evaluating a
function), we let the trusted party run arbitrary code, and in particular to repeatedly interact with
the parties, as well as directly with the adversary. We say that the code run by the trusted party
is the ideal functionality representing the task.

In addition, the richer system model allows us to simplify the presentation by formulating the
ideal process as a special case of the general protocol execution experiment. That is, given an ideal
functionality F, we define an ideal protocol I as follows: When a party running Ir obtains an
input value, it immediately copies this value to the input of F. (The first party to do so will also
invoke F.) When a party receives an output from F (on its subroutine output tape), it immediately
outputs this value to £.

The notation IDEALF 4 ¢ from Section 3.2 is no longer needed; it is replaced by EXECr, 4.¢.

Protocol emulation and secure realization. The notion of realizing an ideal process remains
essentially the same. Yet, formalizing the ideal process as an execution of a special type of a
protocol allows formalizing the definition of realizing an ideal functionality as a special case of the
more general notion of emulating one protocol by another. That is:

Definition 2 (Protocol emulation with basic security) A protocol = emulates protocol ¢ if
for any PT adversary A there exists a PT adversary S such that for all PT environments £ that
output only one bit:

EXECy s, &~ EXECr A s

Definition 3 (Realizing functionalities with basic security) A protocol m realizes an ideal
functionality F if m emulates Ir, the ideal protocol for F.

17

Secure evaluation vs. observational equivalence. We compare the notion of emulation with
the notion of observational equivalence, used in the 7-calculus formalism of Milner [M89, M99], and
elsewhere. (This notion is sometimes called also bi-simulatability.) The two notions have somewhat
of the same flavor, in the sense that both require that an external environment (or, context) will be
unable to tell whether it is interacting with one process or with another. (In the work of Milner, the
environment is computationally unbounded. A relaxation to the case of computationally bounded
environments appears in [LMMS98].) However, emulation is a significantly more lenient notion,
since it provides the additional “leeway” of constructing an appropriate simulator S that will help
“fool” the external environment.

In other words, while “process A is observationally equivalent to process B” essentially means
that A and B look the same from the outside, “A emulates B” means that A can be made to look
the same as B by variating only the adversarial component.

This extra lenience of the notion of emulation is in fact at the core of what makes it realiz-
able for interesting cryptographic tasks, while maintaining much of the meaningfulness. (Another
consequence is that the present notion is not symmetric, whereas observational equivalence is.)

4.2.1 Discussion

Some modeling decisions. We highlight some characteristics of the extended model of protocol
execution. First, the present model continues to treat the environment and adversary as centralized
entities that have global views of the distributed computation. While in the two-party case this
was a natural choice, in the multi-party case this modeling becomes an abstraction of reality. This
modeling seems instrumental for capturing security in an appropriate way, since we would want
security to hold even when the adversarial entities do have global view of the computation. Still,
it does not allow formulating requirements that relate to a non-centralized ideal adversary.

Another point is the restricted communication between £ and A. Recall that £ cannot directly
provide information to A other than at invocation time, and A can directly provide information
to € only at the end of its execution. (Of course, £ and A can exchange information indirectly,
via the parties, but this type of exchange is limited by the properties of the specific protocol 7 in
question.) This restriction is indeed natural in a stand-alone setting, since there is no reason to
let the adversarial activity against the protocol depend in an artificial way on the local inputs and
outputs of the non-corrupted parties. Furthermore, it is very important technically, since it allows
proving security of protocols that are intuitively secure, such as the [GMW87] protocol (see Section
4.4).

Also, note that the present modeling of asynchronous scheduling of events, while typical in cryp-
tography, is different than the standard modeling of asynchronous scheduling in general distributed
systems, such as those mentioned in Section 3.1. In particular, there asynchrony is typically cap-
tured via non-deterministic scheduling, where the non-determinism is resolved by an all-powerful
scheduler that has access to the entire current state of the system. Here, in contrast, the scheduling
is determined by the environment and adversary, namely in an algorithmic and computationally
bounded way. This modeling of asynchrony, while admittedly weaker, seems essential for capturing
security that holds only against computationally bounded attacks. Combining non-deterministic
and adversarial scheduling is an interesting challenge.

Modeling various corruption and communication methods. The simplified model of Sec-
tion 3 is concentrated on the case where exactly one of the two parties is corrupted. Furthermore,
this party is corrupted in advance, before the protocol starts. In contrast, the extended model

18

postulates that all parties follow the specified protocol 7; no deviations are allowed. Deviations
from the original protocol are captured as additional protocol instructions that “get activated”
upon receiving special corruption messages from the adversary. For instance, to capture arbitrary
deviation from the protocol, instruct a party to follow the adversary’s instructions once it receives
a special corrupted message. To capture parties that continue following the protocol but pool all
their information together (aka honest-but-curious corruptions, a party that receives a corrupted mes-
sage will send all its internal state to the adversary, and otherwise continue to follow the protocol.
Other types of corruptions can be captured analogously. This way of modeling corruptions has
two advantages: First it simplifies the basic model by avoiding the need to explicitly model party
corruption, and second it provides flexibility in considering multiple types of corruptions within the
same model, and even within the same execution.

The above experiment gives the adversary full control over the communication, thus representing
completely asynchronous, unreliable and unauthenticated communication. More abstract commu-
nication models, providing various levels of authentication, secrecy, reliability and synchrony, can
be captured by appropriately restricting the adversary. (For instance, to model authenticated com-
munication, restrict the adversary to deliver only messages that were previously sent by parties,
and include the identity of the source within each message.) In addition, as will be seen in Section
7, all these communication models can be captured as different abstractions within the same basic
model, rather than having to re-define the underlying model for each one.

On the generalized modeling of the ideal process. Modeling the trusted party as a general
ITM greatly enhances the expressibility of the definitional framework, in terms of the types of
concerns and levels of security that can be captured. Indeed, it becomes possible to “fine-tune” the
requirements at wish. The down side of this generality is that the exact security implication of a
given ideal functionality (or, “code for the trusted party”) is not always immediately obvious, and
small changes in the formulation often result in substantial changes in the security requirements.
One way to address this difficulty, especially when the ideal functionality code is non-trivial, is to
explicitly analyze certain key properties of that code (see e.g. [PSW00a, CK02]). Here we very briefly
try to highlight some salient aspects of the formalism, as well as useful “programming techniques”
for ideal functionalities.

Two obvious aspects of the general formulation are that it is now possible to formulate multi-
party and reactive tasks. In addition, letting the ideal functionality interact directly with the
adversary in the ideal process (namely, with the “simulator”) has two main effects. First, providing
information to the adversary can be naturally used to capture the “allowed leakage of information”
by protocols that realize the task. For instance, if some partial information on the output value can
be leaked without violating the requirements, then the ideal functionality might explicitly hand this
partial information to the adversary. (For instance, to capture the fact that an encryption scheme
need not hide th length of the plaintext, simply let the trusted party explicitly give the length of
th plaintext to the adversary.)

Receiving information directly from the adversary is useful in capturing the “allowed influence”
of the adversary on the computation. For instance, if the timing of a certain output event is allowed
to be adversarially controlled (say, within some limits), then the ideal functionality might wait for a
trigger from the adversary before generating that output. Alternatively, if several different output
values are legitimate for a given set of inputs, the ideal functionality might let the adversary choose
the actual output within the given constraints. In some cases it might even be useful to let the
adversary hand some arbitrary code to be executed by the ideal functionality in a “monitored way,”
namely subject to constraints set by the ideal functionality.

19

In either case, since the communication between the ideal functionality and the adversary is not
part of the input-output interface of the actual parties, the effect of this communication is always
to relax the security requirements of the task.

An example of the use of direct communication between the adversary and the ideal functionality
is the modeling of the allowable information leakage and adversarial influence upon party corruption.
In the ideal process, party corruption is captured via a special message from the adversary to the
ideal functionality. In respounse to that message, the ideal functionality might provide the adversary
with appropriate information (such as past inputs and outputs of the corrupted party), allow the
adversary to change the contributed input values of the corrupted parties, or even change its
behavior in more global ways (say, when the number of corrupted parties exceeds some threshold).

Finally, recall that the ideal functionality receives input directly from the environment, and
provides outputs directly to the environment, without intervention of the adversary. This has the
effect that an ideal protocol can guarantee delivery of messages, as well as concerns like fairness,
in the sense that one party obtains output if and only if another party does. In fact, special care
should be taken, when writing an ideal functionality, to make sure that the functionality allows
the adversary to delay delivery of outputs (say, by waiting for a trigger from the adversary before
actually writing to the subroutine output tape of the recipient party); otherwise the specification
may be too strong and unrealizable by a distributed protocol.

4.3 More examples

Definition 3 allows capturing the security and correctness requirements of practically any distributed
task, in a stand-alone setting. This includes, e.g., all the tasks mentioned in the introduction. Here
we sketch ideal functionalities that capture the security requirements of three basic tasks. Each
example is intended to highlight different aspects of the formalism.

Commitment. First we formulate an ideal functionality that captures the security requirements
from a commitment protocol, as informally sketched in the introduction. Commitment is inherently
a two step process, namely commitment and opening. Thus it cannot be naturally captured within
the formalism of Section 3, in spite of the fact that it is a two-party functionality.

The ideal commitment functionality, Fooyu, formalizes the “sealed envelope” intuition in a
straightforward way. That is, when receiving from the committer C' an input requesting to com-
mit to value z to a receiver R, Fooy records (x, R) and notifies R and the adversary that C has
committed to some value. (Notifying the adversary means that the fact that a commitment took
place need not be hidden.) The opening phase is initiated by the committer inputting a request
to open the recorded value. In response, Fooy outputs z to R and the adversary. (Giving z to the
adversary means that the opened value can be publicly available.)

In order to correctly handle adaptive corruption of the committer during the course of the
execution, Fqoy responds to a request by the adversary to corrupt C by first outputting a corruption
output to C, and then revealing the recorded value x to the adversary. In addition, if the Receipt
value was not yet delivered to R, then Foy allows the adversary to modify the committed value.
This last stipulation captures the fact that the committed value is fixed only at the end of the
commit phase, thus if the committer is corrupted during that phase then the adversary might still
be able to modify the committed value. (Corruption of the receiver does not require any move.)

Fecowm is described in Figure 2. For brevity, we use the following terminology: The instruction
“send a delayed output x to party P” should be interpreted as “send (x, P) to the adversary; when

20

receiving ok from the adversary, output « to P.”

Functionality Fcoum

1. Upon receiving an input (Commit,z) from party C, record (C, R, x) and generate a delayed
output (Receipt) to R. Ignore any subsequent (Commit...) inputs.

2. Upon receiving an input (Open) from C, do: If there is a recorded value x then generate a
delayed output (Open,z) to R. Otherwise, do nothing.

3. Upon receiving a message (Corrupt,C) from the adversary, output a Corrupted value to C,
and send z to the adversary. Furthermore, if the adversary now provides a value z', and the
(Receipt) output was not yet written on R’s tape, then change the recorded value to z'.

Figure 2: The Ideal Commitment functionality, Foom

Realizing Fqoy is a stronger requirement than the basic notions of commitment in the literature
(see e.g. [GO1]). In particular, this notion requires both “extractability” and “equivocality” for
the committed value. These notions (which are left undefined here) become important when using
commitment within other protocols; they are discussed in subsequent sections, as well as in [CFO1,
c01]. Still, Feoy is realizable by standard constructions, assuming authenticated communication
channels.

Key Exchange. Key exchange (KE) is a task where two parties wish to agree on a random
value (a “key”) that will remain secret from third parties. Typically, the key is then used to
encrypt and authenticate the communication between the two parties. Key exchange may seem
reminiscent of the coin-tossing task, discussed in Section 3.3. However, it is actually quite different:
Essentially, in the case of key-exchange the two parties wish to jointly thwart an external attacker,
whereas in coin-tossing the parties wish to protect themselves from each other. More precisely, for
key-exchange we only care about the fact that the key is random when both parties follow their
protocol, whereas in coin-tossing the output should remain random and unpredictable even when
one or the parties deviates from the protocol. On the other hand, in key exchange it is crucial
that the key remains secret from third parties, whereas in coin-tossing secrecy from third parties
is typically not a concern. Furthermore, since key-exchange is usually carried out in a multi-party
environment with asynchronous and unauthenticated communication, issues such as precise timing
of events and binding of the output key to specific identities become crucial. Thus, modeling of
key-exchange naturally involves an interactive interface, as well communicating directly with the
adversary.

Functionality Fyy, presented in Figure 3, proceeds as follows. Upon receiving an (Initiate, I, R)
input from some party I (called the initiator), Fxy sends a delayed output (Initiate,l) to R.
Upon receiving the input (Respond) from R, Fy, forwards this input to the adversary. Now, when
receiving a value (Key, P, k) from the adversary, Fyg first verifies that P € {I, R}, else P gets no
output. If the two peers are currently uncorrupted, then P obtains a truly random and secret key
k for that session. If any of the peers is corrupted then P receives the key k determined by the
adversary.

Fxe attempts to make only a minimal set of requirements from a candidate protocol. In partic-
ular, it attempts o allow the adversary maximum flexibility in determining the order in which the
parties obtain their outputs. Also, the fact that there is no requirement on the key when one of the
parties is corrupted is captured by allowing the adversary to determine the key in this case. Still,

21

Functionality Fxg
1. Upon receiving an input (Initiate, I, R) from party I, send a delayed output (Initiate,l)
to R. Upon receiving (Respond) from party R, send (Respond) to the adversary.

2. Upon receiving a message (Corrupt,P) from the adversary, for P € {I,R}, mark P as
corrupted and output (Corrupted) to P.

3. Upon receiving a message (Key, P, k) from the adversary, for P € {I, R} do:

(a) If there is no recorded key r then choose k <= {0,1}* and record k.
(b) If neither I nor R are corrupted then output (Key,) to P. Else, output (Key, k) to P.

Figure 3: The Key Exchange functionality, Fyg

Fxe guarantees that if two uncorrupted parties locally obtain a key, then they obtain the same
value, and this value is uniformly generated and independent from the adversary’s view.

Key Exchange is impossible to realize without some form of authentication set-up, say pre-
shared keys, authentication servers, or public-key infrastructure. Still, the formulation of Fyy is
agnostic to the particular set-up in use. It only specifies the desired overall functionality. In each
of these cases, Fxyg is realizable by standard protocols, both with respect to basic security and with
respect to UC security, discussed in Section 7.

Byzantine Agreement. Next we formulate an ideal functionality that captures (one variant of)
the Byzantine Agreement task. Here each party has binary input, and the parties wish to output
a common value with the only restriction that if all parties have the same input value then they
output that value. The functionality, Fs,, is presented in Figure 4. Let us highlight some aspects
of its formulation. First, the number of parties (which is a parameter to Fg,) can depend on the
environment. Also the identities of the participants can be determined adaptively as they join
the protocol. Second, the fact that the adversary is notified on any new input captures the fact
that secrecy of the inputs of the parties is not guaranteed. Third, Fs, allows the output value
to take any adversarially chosen value, unless all parties have the same input. (In particular, the
parties are not guaranteed to compute any pre-determined function of their inputs.) Four, Fg,
captures a blocking primitive, namely no party obtains output unless all parties provide inputs. It
also guarantees fair output delivery: As soon as one party obtains its output, all parties who ask
for their output receive it without delay. (Note that if Fyz, would have simply sent the outputs to
all parties, then fairness would not have been guaranteed since the adversary could have prevented
the delivery to some parties by not returning control to Fy,.) Five, while F5, does not restrict
the identities of participants, the output of each participant includes the set of all participants.
Alternatively, F5, could allow a party to become a participant only if it satisfies some criteria.
Finally, F5, does not have a postulation for the case of party corruption. This captures the fact
that corrupting a party should give no advantage to the adversary.

Note that Fg, is agnostic to the specific model of computation in which it is realized. Naturally,
realizing Fg, requires different techniques in different settings (depending e.g. on the level of
synchrony and the specific authentication set-up). We conjecture that, in each such setting, realizing
Fga is essentially equivalent to the standard definition of the primitive in that model. (In particular,
it is easy to see that if half or more of the parties are corrupted then Fg, becomes unrealizable
in any computational model. Indeed, in such settings the Byzantine Broadcast formulation, where

22

Functionality Fga

Fra proceeds as follows, when parameterized by the number n of participants. A set P of participant
identities is initialized to empty. Then:

1. Upon receiving input (Input,v) from some new party P ¢ P, where v € {0,1}, add P to P,
set zp = v, and send a message (Input,P,v) to the adversary. As soon as |P| = n, ignore
additional (Input...) inputs.

2. Upon receiving input (Output) from a party P € P, if |P| < n then do nothing. Else:

(a) If the output value y is not yet determined then determine y as follows: If there exists
a value b € {0,1} such that zp = b for all parties P € P, then set y = b. Else, obtain a
value y from the adversary.

(b) Output (P,y) to P.

Figure 4: The Byzantine Agreement functionality, Fga

only one party has input, is preferable.)

4.4 Feasibility

We very briefly mention some of the basic feasibility results for cryptographic protocols, which
establish a remarkable fact: Practically any cryptographic task can be realized, in principle, by a
polynomial-time interactive protocol.

The first work to provide a general feasibility result is Yao [Y86], which showed how to securely
evaluate any two-party function by a two-party protocol, in a setting which corresponds to that of
Section 3, in the case of “honest-but-curious corruptions” where even corrupted parties continue
to follow the protocol.

The basic idea is as follows. Given a function f, first have one party, X, with input z, prepare
a binary circuit C{ such that for any y, C:{(y) = f(z,y). Then X sends to the other party, Y, an
“obfuscated version” of Cg{f , s0 that Y can only evaluate C:{ on a single input of its choice, without
learning any additional information on the “internals” of C{. The obfuscation method involves
preparing a “garbled version” of each gate in the circuit, plus allowing Y to obtain a matching
“garbled version” of one of the possible two values of each input line. Given this information, ¥
will be able to evaluate the circuit in a gate by gate fashion, and obtain a “garbled version” of the
output line of the circuit. Finally, X will send Y a table that maps each possible garbled value of
the output line to the corresponding real value.

Goldreich, Micali and Wigderson [GMWS87] generalize [Y86] in two main respects. First, they
generalize Yao’s “obfuscated circuit” technique to multi-party functions. Here all parties participate
in evaluating the “garbled gates”. Further generalization to reactive functionalities can be done in
a straightforward way, as demonstrated in [CLOS02].

Perhaps more importantly, [GMW87] generalize Yao’s paradigm to handle also Byzantine cor-
ruptions, where corrupted parties may deviate from the protocol in arbitrary ways. This is done
via a generic and powerful application of Zero-Knowledge protocols. A somewhat over-simplified
description of the idea follows: In order to obtain a protocol 7 that realizes some task for Byzan-
tine corruptions, first design a protocol ' that realizes the task for honest-but-curious corruptions.
Now, in protocol 7 each party P runs the code of 7/, and in addition, along with each message m

23

sent by 7', P sends a Zero-Knowledge proof that the message m was computed correctly, according
to 7', based on some secret input and the (publicly available) messages that P received. The proto-
cols of [GMW87] withstand any number of faults, without providing fairness in output generation.
Fairness is guaranteed only if the corrupted parties are a minority.

Ben-Or, Goldwasser and Wigderson [BGW88| demonstrate, using algebraic techniques, that if
the parties are equipped with ideally secret pairwise communication channels, then it is possible to
securely evaluate any multi-party function in a perfect way (see discussion following Definition 1),
in the presence of honest-but-curious corruption of any minority of the parties. (A similar result,
with statistical rather than perfect security, is given by Chaum, Crepeau and Damgaard [cCD88].)
The same holds even for Byzantine corruptions, as long as less only less than a third of the parties
are corrupted. Rabin and Ben Or [RB89] showed how to withstand any dishonest minority in the
above model, assuming a broadcast channel, and at the price of allowing statistical security. These
bounds are tight. A nice feature of the [BGW88, RB89] protocols is that, in contrast to the [GMWET]
protocols, they are secure even against adaptive corruptions. Security against adaptive corruptions
without ideally secure communication channels can be obtained by combining these protocols with
adaptively secure encryption protocols such as [BH92, CFGN9I6].

All the above results assume ideally authenticated communication. If an authenticated set-up
stage is allowed, then obtaining authenticated communication is simple, say by digitally signing each
message relative to pre-distributed verification keys. When no authenticated set-up is available,
however, then no task that requires some form of authentication of the participants can be realized.
Still, as shown in Barak et.al. [BT05], an “unauthenticated variant” of any cryptographic task
can still be realized, much in the spirit of [Y86, GMW8T], even without any authenticated set-up.
Interestingly, the proof of this result uses in an essential way protocols that are securely composable,
namely retain their security properties even when running together in the same system. This can
be seen as a demonstration of the fact that secure composability, discussed next, is in fact a very
basic security requirement for cryptographic protocols.

5 Protocol composition

So far, we have only considered security in a setting where the protocol in question is executed
once, in isolation. This setting is indeed appropriate as a first one to consider when the goal is to
understand the basic security properties of a protocol. However, analyzing security of a protocol in
this stand-alone setting does not allow discovering potential weaknesses that come to play when the
protocol runs alongside other protocols, or even alongside other executions of the same protocol.
Consequently, so far the only method we have for analyzing security of some system is to model
the entire system as a single protocol and analyze it as an atomic unit.

Analyzing security of systems in this way is challenging even for modest-size systems. When
considering security of modern, multi-party, complex systems, the above one-shot approach becomes
completely impractical. Furthermore, in open systems (such as today’s Internet) whose makeup
may change dynamically, and arbitrary new protocols might be added after the time of analysis,
the above notion does not provide an adequate security guarantee to begin with.

Instead, we would like to be able to carve out pieces of a large system, analyze the security of
each piece as if it were stand-alone, and then use the security of the individual pieces to deduce
security properties of the overall system. Furthermore, this should be doable even when the overall
system is not fully known at the time of analysis. To do that, we need to be able to argue about
the behavior and security of protocols when running alongside, or composed with, other protocols.

24

It turns out that this is a non-trivial task.

This section provides an introduction to the security issues associated with protocol composition.
We start (in Section 5.1) with some examples that demonstrate various ways in which security
properties might fail to hold when composing together protocols, even when the composed protocols
guarantee these properties when run in isolation. We then proceed (in Section 5.2) to provide a
brief taxonomy of the main types of composition operations considered in the literature. Finally,
we motivate and present the concept of security-preserving composition (Section 5.3).

5.1 What might go wrong

To get some feel for the potential security pitfalls in protocol composition, we sketch three examples
that demonstrate different ways in which protocols that are arguably secure in a stand-alone setting
become insecure when run in conjunction with other protocols. In all the examples the problem
is the same: The attacker uses information learned in one execution to “break” the security of
another execution. In each example, this attack takes on a different form. The presentation is very
informal throughout this section; indeed, the problems discussed are basic ones, and do not depend
on the details of a specific definition of security.

Key Exchange and Secure Communication. This example demonstrates how two protocols
can interact badly in settings where the parties uses secret local outputs obtained from one protocol
as input for the other. It highlights the subtleties involved in maintaining overall security of a
system that is designed in a modular way and consists of different interacting protocols.

Counsider the task of Key Exchange, discussed in Section 4.3. Recall that here two parties, an
initiator I and a responder R wish to jointly generate a key that remains unknown to an external
adversary. This key is typically used in order to encrypt and authenticate messages between I and
R. Let w be key-exchange protocol that’s proven to be secure in a stand-alone setting (say, with
unauthenticated communication), and consider the protocol 7’ that’s identical to 7 except that the
following instruction is added to the code of I and R: “If the key has already been generated, and
the incoming message includes the correct value of the key, then send a message yes. Else send

no.”

We first claim that, in a stand-alone setting, 7’ is just as secure as w. Indeed, since 7 is a
secure protocol, then certainly it does not instruct any party to send the generated key in the clear.
Furthermore, the adversary will be unable to figure out the value of the key just by interacting with
the protocol. Thus, the added instruction will never be activated (except perhaps with negligible
probability), and 7’ is effectively identical to 7.

On the other hand, consider a setting where 7 runs in conjunction with a protocol that uses
the key to encrypt messages. Furthermore, assume that the message takes one out of two possible
values (say, either “sell” or “buy”), and furthermore that the encryption scheme in use is one-time-
pad. That is, the encryption protocol obtains the key k from 7', and has one party (say, I) send a
ciphertext ¢ which is either k @ “sell” or k @ “buy”. (Here @ stands for bitwise exclusive or.) We
claim that now an adversary can use c in order to find out both £ and the plaintext. In fact, all
the adversary has to do is to compute ¢ = ¢ ® “buy” and send it to the other party as a message
of ©’. Now, if the encrypted message was “buy”, then ¢ = ¢® “buy” =k ® “buy” & “buy” = k and
R will respond with yes. If the encrypted message was “sell”, then R will respond with no.

The point of this example (which is a variant of an observation of Rackoff from ’95), is that =’
allows the attacker to use the legitimate parties as “oracles” for testing guesses regarding the value

25

of the key. As long as the system runs only 7/, and the key is never used, this “weakness” has no
effect. However, as soon as the key is used and some values of the key become more plausible than
others, the weakness becomes devastating. Finally, we remark that some prominent definitions of
security for key-exchange in the literature (e.g., that of [BR93]) do not rule out this deceivingly
simple weakness.

Parallel composition of Zero-Knowledge protocols. This example shows how certain pro-
tocols may be secure when run in a stand-alone setting, but lose their basic security properties as
soon as even two instances of the same protocol are executed concurrently in the same system. This
holds even if the system involves no other protocols. (Examples of a similar nature are given in
[LLRO2] for authenticated Byzantine Agreement protocols, and in [KLRO6]. An interesting aspect of
the [KLRO6] example is that it remains valid even when all parties are computationally unbounded.)

Recall the task of Zero-Knowledge (ZK), discussed in Section 3.3. Here we have a public binary
relation R. The prover P transmits a value = to a verifier V', and in addition wants to convince V'
that it (P) has a secret “witness” w such that R(z,w) holds. This should be done so that V learns
nothing more than the fact that P has such a witness.

The example is essentially the one in [GK89, F91]|. It uses a combinatorial gadget, which we
describe here only very informally. Assume we have a “puzzle system” where both the prover and
the verifier can generate puzzles p that have the following properties. First, the prover can solve
any given puzzle. Second, the verifier cannot feasibly solve puzzles; in fact, the verifier cannot even
verify the validity of a solution. That is, even for puzzles generated by the verifier, the verifier
cannot distinguish between a valid solution or a random, invalid one. (Such a gadget can be shown
to exist, either via allowing the prover to be computationally unbounded, as in [GK89], or based
on some trapdoor information held by the prover, as in [F91].)

Now, let m be a ZK protocol (for some relation R). Construct the protocol n' where the parties
first run 7, and then continue with the following interaction. First, P sends a random puzzle p to
V. Then, V responds with a purported solution s for p, plus a puzzle p'. If s is a correct solution,
then P reveals the secret witness w. Otherwise, P sends to V a solution s’ for the puzzle p’ provided
by V.

We first argue that if 7 is ZK in a stand-alone setting, then 7’ satisfies the ZK requirement.
Intuitively, this holds since, by assumption, V' cannot solve puzzles, thus in a stand-alone execution
of m P never reveals w (except perhaps with negligible probability). Furthermore, the fact that P
provides V with a solution s’ to the puzzle p’ is not really a problem in a stand-alone setting, since
V' cannot distinguish s’ from a random value (which V' could have generated by itself).

However, when a prover P runs two concurrent executions of ' with V' (say, on the same input
(z,w)), then a cheating V' can easily extract the witness: V first waits to receive the puzzles p; and
p2 from P in the two sessions. It then sends (s,p2) to P in the first session, for some arbitrary s.
In response, V' gets from P a solution sg to py, which it returns to P in the second session. Since
S9 is a correct solution, P will now disclose w.

Malleability of commitment. The following example highlight two issues. First, it demon-
strates that a multi-execution system brings forth entirely new security concerns that do not exist
in a stand-alone setting. Second, it highlights the difficulty in arguing security of a protocol with
respect to arbitrary other protocols, especially protocols that have been designed specifically so as
to “interact badly” with the analyzed protocol.

Recall the task of commitment, discussed in Section 4.3. This is a two-stage task, where in

26

the commit stage a committer C' provides a receiver R with a “commitment value” ¢ to a secret
value z. In the opening stage C discloses z. (For simplicity, we assume here that both stages
consist of a single message from C to R.) There are essentially two security requirements: A
secrecy requirement, that x remains completely secret throughout the commit stage, and a binding
requirement, that there is at most one value z that R will accept as a valid opening for a commitment
value c.

Counsider the following natural sealed-bid auction protocol: Each party commits to its bid (say,
over a broadcast channel). Once the bidding stage is over, all parties open their commitments
and the winner is decided. It is tempting to deduce that any secure commitment protocol would
suffice here. It turns out, however, that there exist natural commitment protocols that satisfy both
secrecy and binding (and in fact satisfy the definition from Section 4.3), but which are susceptible
to the following attack: An attacker might use a commitment ¢, that was generated by an honest
committer C' that commits to a value z, to generate a commitment ¢’; later, when C opens ¢ to
value z, the attacker is able to “open” ¢ to a value z' that is related to z (say, 2’ = z +1).> Of
course, this attack is devastating for the auction protocol, in spite of the fact that neither secrecy
nor binding of the commitment protocol were violated here. Rather, a new concern arises, namely
the need to maintain “independence” between the committed values in different executions of the
protocol. This concern (which is called non-malleability in the literature, following [DDNOO] who
pointed out this concern and showed how to address it) does not come to play in a stand-alone
execution.

Several non-malleable commitment schemes have been constructed, using different set-up and
network assumptions. Indeed, these schemes are not susceptible to the above attack. However,
notice that this attack captures only a limited aspect of the “independence” problem, where there
are only two executions, and more importantly the executions are of the same protocol. What
about independence between an execution of a commitment protocol 7 and an execution of another
protocol, 7'? This seems like a hopeless goal, especially when 7’ is designed specifically to interact
with 7. To see this, consider the following example. Let 7w be any (even non-malleable) commitment
protocol, and let 7’ be the protocol where in order to commit to a value z, one runs 7 on committed
value z — 1. Assume that C' commits using protocol 7, and that a malicious C' announces that it
commits using protocol 7’. Now, when C' sends its commitment string ¢, all C’ has to do is to copy
¢ as its own commitment. When C opens c¢ to a value z, C' can use the same opening to open ¢ to
the value z + 1. Note that C' can use 7’ in a completely different context, say with a set of parties
that do not know about C or . This will make the attack hard to detect.

Indeed, guaranteeing security against these “chosen protocol attacks” seems intuitively impossi-
ble. However, contrary to this intuition, Section 7 demonstrates that such attacks can be protected
against in most cases, via appropriate use of some set-up assumptions.

3For instance, consider Pedersen’s commitment scheme [P91]: Let G be an algebraic group of large prime order,
and assume that two random generators g,h of G are publicly known (say, they are announced by the auctioneer).

In the commit stage, C sends ¢ = ¢g* - h", where z € G is the committed value, and r &G To open, C sends z
and r and R accepts if ¢ = g® - h". Here secrecy is perfect (and unconditional). Binding holds under the assumption
that computing discrete logarithms in G is infeasible. In fact, a somewhat augmented variant also realizes Fcowm as
in Definition 3. Still, consider a malicious committer C’ that wishes to commit to the value committed by C, plus
one. Then all C' has to do is to generate ¢’ = c-g. When C’ sees a valid opening (z,r) of ¢, it can generate the valid
opening (z +1,7) of ¢.

27

5.2 How can protocols be composed

This section provides a brief taxonomy of the different types of protocol composition operations
considered in the literature, namely the various ways of combining together protocols in a single
system. Taking another point of view, these operations naturally correspond to different ways of
de-composing a complex system into separate pieces, which we would like to view as individual
“protocols.”

We first list some salient parameters for composition operations. Next we discuss some well-
studied settings in terms of these parameters. Finally, we show how all these settings can be cast
as special cases of a single, general composition operation.

Timing coordination: This parameter refers to the possible ways in which the messages of the
individual executions can interleave with each other. Salient options include:

Sequential composition: Here no two messages of different protocol executions may inter-
leave. That is, when ordering the events of sending and receiving of messages in the
system along a common time axis, then all the events related to each protocol execution
must form an uninterrupted sequence.

Enforcing global sequentiality requires each party to locally coordinate the different
executions in terms of the timing of message sending. It also requires some level of
global coordination among the parties, to guarantee that no party “gets ahead of the
pack” and starts sending messages of a new execution before other parties completed
prior executions.

Non-concurrent composition: This is a somewhat more general variant that allows “nest-
ing” of protocol executions, as long as there is no “interleaving” of messages. That is,
assume some message of execution e; was delivered, and at a later point a message of
execution ey was delivered. Then, once another message of execution e; is delivered,
messages of execution ey can no longer be delivered. Also here, guaranteeing global
non-interleaving requires global coordination.

Parallel composition: Here it is assumed that the messages in each protocol execution are
naturally associated with “rounds”, where a “round ¢ message” is sent only in response
to receiving a “round ¢ — 1 message”. The composed execution of a given set of protocol
executions allows any interleaving of protocol messages, as long as all the “round ¢
messages” of all the executions are delivered before any “round i+1 message” is delivered.
While this composition method is also quite restrictive and requires global timing coor-
dination among the executions, it is natural in synchronous systems where messages are
naturally associated with rounds.

Concurrent composition: Here any interleaving of messages from different protocol exe-
cutions is allowed. Clearly, concurrent composition allows both sequential and parallel
composition as special cases. It also allows many other special types of interleaving,
such as the common case where various executions wait for an external global event to
proceed. Concurrent composition is very powerful in that it requires no timing coor-
dination among the various executions. Indeed, the timing of events may of course be
adversarially coordinated.

We note that the level of timing coordination between executions is in principle unrelated to
the synchrony guarantees of the underlying communication network. For instance, different

28

executions can be composed concurrently and “asynchronously” even when each execution is
synchronous within itself. Also, sequential or non-concurrent composition can be sometimes
guaranteed even in a completely asynchronous communication network.

Input coordination: This parameter refers to the possible relations between the input values to
the various protocol executions. We distinguish three variants:

Same input: Here each party has the same input value for all the executions. Taking the
role of a party in a protocol as part of its input, this means that each party has the
same role in all the executions it participates in. Still, different executions may include
different parties. (A somewhat more restrictive case is where the same set of parties
participate in all executions.)

Fixed inputs: Here the inputs to different executions can be arbitrarily different from each
other. In particular, a party may have different roles in different executions. (For
instance a party may be a receiver in one execution of a commitment protocol, and a
committer in a different execution.) Still, all inputs, including the set of participants in
each execution, are fixed in advance before the execution of the composed system starts.

Adaptively chosen inputs: Here each input to each party in each execution can be deter-
mined adaptively based on the current state of the composed system. This is of course
the most general setting of this parameter, and includes the above two settings as spe-
cial cases. Variants of this setting depend on the amount of information available to
the entities that choose the inputs; for instance, the inputs of a given party may be
determined only based on the information available to that party, or alternatively based
on the current global state of the system.

Protocol coordination: This parameter refers to the possible relations between the programs, or
codes, executed in different executions. We distinguish two main cases:

Self composition: Here all executions run the same program. A closely related case is
where different executions may run different programs, but the set of programs is fixed
and known in advance. (Indeed, running a fixed number of programs is equivalent to
running a single program that multiplexes between the many programs depending on
the input.)

General composition: Here a given execution of a protocol may be running alongside arbi-
trary other protocols (i.e., programs) that may not be known in advance. Furthermore,
these programs may be determined adaptively, depending on the protocol in question
and potentially even on the current state of the composed system. This is indeed a
highly adversarial setting. Still, it seems to adequately model the situation in open and
unregulated networks such as the global Internet.

State coordination: This parameter refers to the amount and type of information that is shared
among different executions. We distinguish the following cases:

Independent states: This is the “classic” case of protocol composition where different ex-
ecutions have no shared state. That is, The local variables of each execution within
each participant are seen only by that execution. Also, the random choices made within
each execution are independent from those in other executions. (Of course, different
executions can still have related inputs.)

29

Joint state: Here some variables or random choices may be visible to multiple protocol
executions. One salient example of such a setting is a protocol where the same secret
signing key for a signature scheme is used in multiple protocol executions (say, for
generating multiple session keys). Another example is a “common random string”,
namely a public string that is drawn from some distribution and is assumed to be globally
available in the system. Here the “joint part” is typically modeled as a “subroutine
protocol” that takes input from and provides output to multiple protocol executions.
We note that, although this type of composition is somewhat non-traditional, without
it it would not be possible to de-compose such systems into smaller components — such
as a single exchange of a key in a key-exchange protocol.

Number of executions: This parameter determines the number of protocol executions that run
together in the composed system. It is crucial, in the sense that, for most settings of the rest
of the parameters and for each i, it is possible to construct protocols that “compose securely”
as long as at most ¢ executions run together, but break as soon as the system involves 7 + 1
executions. Three salient settings are:

Fixed number of executions: Here the number of executions is fixed in advance. In par-
ticular, it is does not depend on the input, nor on a security parameter.

Bounded number of executions: The maximum number of executions may depend on
public information, such as the security parameter or some global input, but is known
when designing the protocol. In particular, the complexity of the protocol may depend
on this bound.

Unbounded number of executions: The number of executions is chosen adversarially in
an adaptive way, and is limited only by the runtime of the adversary. In particular, it
may depend on the execution, and remain unknown to all or some of the parties.

Some studied settings. Almost any combination of the above parameters yields a meaningful
setting for the study of security-preserving protocol composition. Yet, some settings have been
the focus of much dedicated study, both in the context of specific primitives such as key-exchange,
zero-knowledge or commitment, and in more general contexts. We briefly mention some of these
settings. (For sake of conciseness and brevity, we do not expand here on the specific contributions
of the works mentioned below, nor on the notions of security that are obtained in each of these
settings.)

Perhaps the simplest setting to consider is that of sequential self-composition with same input.
This setting is studied in the context of zero-knowledge in [G094] and general function evaluation in
[B91]. In the case of parallel and concurrent composition, it was demonstrated in Section 5.1 that
zero-knowledge is not preserved under same-input self-composition of even two executions [GK89,
F91]. Still, protocols that remain zero-knowledge in this setting exist [G094]. This primitive case
of concurrent composition is generalized in a number of directions. One direction is that of multiple
concurrent instances, while keeping the restriction to same input. Obtaining zero-knowledge in this
case, especially when the number of executions is unbounded and not known a priori, turns out to
be a non-trivial problem that requires new protocol techniques [F91, DNS98, RK99, PRS02].

Another extension is to the case of concurrent self-composition when parties can have differ-
ent inputs in different executions. The case of two copies and fized inputs, studied in [DDNOO]
and its many follow-up papers, brings about the concern of malleability, or input independence.
Generalizing to adaptively chosen inputs and a bounded number of concurrent instances, or else

30

to fixed inputs and an unbounded number of sessions, requires yet another set of techniques (e.g.
[PRO3, P04, PRO5a, PROSD]), while a general solution for the case of adaptively chosen inputs and
an unbounded number of instances requires either some initial set-up [L04] or some relaxation of
the notion of security [BSO5].

So far, we discussed the case of self-composition. General composition was first studied in
the non-concurrent case, where it was shown to preserve some general ideal-model based notions
of security for function evaluation [MR91, c00]. Notions of ideal-model based security that are
preserved under concurrent general composition were subsequently developed, e.g. [DM00, PWOO,
pwO01, c01, MRST06]. Methods for arguing about composition with joint state were developed in
the context of general composition, e.g. [CRO3, CDPWOT].

Universal composition. Next we describe a single composition operation (namely, a way of
combining several protocols into a single protocol) that can be used to express all the settings
discussed above. Having such a generic composition operation is convenient in that composability
properties proven with respect to this operation apply to all settings. Furthermore, this specific
operation seems to closely correspond to the structure of actual protocols. It also meshes nicely
with the trusted party paradigm (we’ll see this in the next section).

The composition operation, which we call universal composition, is a natural extension of the
“subroutine composition” operation on sequential algorithms to distributed protocols. That is,
let p be a protocol (i.e., a set of instructions for the participants), where the instructions of each
party include an instruction to provide input to some “subroutine program,” denoted ¢, as well as
instructions on what to do when the subroutine program ¢ generates output. (Using the formalism
of Section 3.1, the system contains I'TIs running the code p, alongside I'TIs running the code ¢; the
ITIs running p write in the input tapes of ITIs running ¢, and the I'TIs running ¢ write on the
subroutine output tapes of ITIs running p.)

Let m be another protocol. Then the composed protocol, denoted p”/ ¢ is the protocol where
the code of each party is the same as that of p, with the exception that the instance of ¢ is replaced
by an instance of w. That is, each instruction to provide input to ¢ is replaced by an instruction
to provide the same input to m, and the instructions to be carried out upon receipt of an output
from ¢ are now carried out upon receipt of an output from 7. It is stressed that the replacement is
done separately within each party running p. In particular, an execution of p”/ ¢ involves an entire
distributed instance of protocol 7, where the different parties of this instance exchange messages
among themselves.

The case where p uses multiple (potentially unboundedly many) instances of ¢ is defined anal-
ogously. That is, each instance of ¢ is replaced by an instance of 7. It is assumed that protocol
p has some mechanism to distinguish among the various instances of ¢; this mechanism remains
the same with respect to distinguishing among the instances of w. While in principle there is no
need to specify a particular mechanism, for sake of concreteness we assume that p associates a
unique session identifier (SID) with each instance of ¢, where the SID is included in all inputs to
and outputs from this instance. Then the composed protocol p”/ ¢ keeps the same SIDs as in p.

Now, the various settings described above for protocol composition can be captured via different
codes for the “high-level protocol”, p. For instance, concurrent self composition with same input
is captured by the protocol p that simply runs multiple instances of its subroutine ¢ on the same
input, and outputs whatever these subroutines output. To capture fixed or adaptively chosen inputs
modify p accordingly, to obtain the inputs for the various instances in advance or during the course
of the execution. General composition is captured by allowing p to be arbitrary.

31

Sequential self composition in a synchronous execution setting is captured by the protocol p that
runs multiple instances of its subroutine ¢, one after the other in a sequential way, either with the
same input or with different inputs, as may be the case, and outputs whatever these subroutines
output. To capture parallel composition, p runs all instances of ¢ together and in each round
delivers all the current messages of all instances. in lockstep. Non-concurrent general composition
allows p to be arbitrary, as long as all parties start and end each instance of ¢ at the same global
round, and only messages of this instance of ¢ are sent while this instance is active.

Finally, we note that the above description of universal composition treats the protocol ¢ merely
as a formal “placeholder” in the description of protocol p. Yet, as seen in the next section, protocol
¢ can have a central role in specifying the security properties required from protocol composition.

5.3 Security preserving composition

So far, we have treated the security requirements from cryptographic protocols under composition
in an informal way. That is, we have expressed the desire to have protocols that “maintain their
security properties” when run alongside other protocols. We have also observed, in Section 5.1,
that some desirable security properties may no longer hold in such settings. How can we formalize
the security requirements from protocols under composition?

One way, of course, is to list a set of specific properties that we would like to guarantee, and
demonstrate that these properties hold. For instance, for protocols that evaluate some function
of the inputs of the parties, we can require that correctness is preserved, in the sense that in
all instances the outputs of the parties agrees with the value of the function at their inputs. If
the evaluated function is probabilistic then we can also require that the randomness used in each
execution is in some sense “independent” of the randomness used in other executions. We can also
require that secrecy of certain values is preserved even in the composed system. (An example of a
setting where such a specific requirement is made is that of concurrent zero-knowledge, mentioned
above.) An additional specific requirement is that of input independence, or non-malleability,
namely that the outputs of a protocol execution will not depend in “illegitimate ways” on secret
inputs to another execution.

However, in the spirit of Section 2, we prefer to make a single, unified security requirement
that would imply all of the specific requirements mentioned above, as well as other potential
requirements. And, again, in the spirit of Section 2, we use the ideal-model paradigm to do so.

Recall that, by this paradigm, a protocol 7 is considered a secure implementation for a given
task if it behaves in essentially the same way as an ideal protocol ¢ for that task, where the ideal
protocol instructs all parties to privately hand their inputs to a trusted party which computes the
desired outputs and hands them back to the parties. Furthermore, the requirement “m behaves
in essentially the same way as ¢” is formalized to mean “m emulates ¢” as in Definition 2. The
compositionality requirement we make is analogous: Consider a task that is represented via an ideal
protocol ¢, and let m be a protocol that uses (potentially multiple instances of) ¢. We say that =
implements the task in a composable way with respect to m, if 7 continues to behave essentially
the same when the instances of ¢ are replaced by instances of w. In the language of universal
composition and emulation, we want that the protocol p”/ ¢ will emulate the original protocol p.

Definition 4 Protocol m emulates an ideal protocol ¢ with p-composable security if it holds that
p™? emulates p.

We observe that the notion of composable security indeed guarantees all the compositionality
requirements listed above. Indeed, when p makes subroutine calls to the various instances of the

32

ideal protocol ¢, it is guaranteed that each instance of ¢ returns a correct function value, regardless
of the activity in the rest of the system. The definition of emulation guarantees that p continues
to exhibit essentially the same behavior when the instances of ¢ are replaced with instances of
. Similarly, since the trusted parties operate independently of each other, their outputs are
computed using independent random choices. Also, the secrecy of data in each individual execution
is guaranteed regardless of the rest of the system. Input independence is guaranteed since each
party has to explicitly provide its inputs to each instance of ¢, based only on its legitimate outputs
from the various instances of ¢. Again, the definition of emulation guarantees that p continues to
exhibit essentially the same behavior when the instances of ¢ are replaced with instances of 7.

The above line of reasoning considers a single “calling protocol”, p. Secure composability with
respect to different types of composition operations are captured by considering the corresponding
classes of the calling protocol, as described in Section 5.2.

One potential shortcoming of Definition 4 is that the notion of emulation, as defined so far,
does not necessarily imply composable security. This means that Definition 4 does not necessarily
guarantee that security is preserved under “iterated composition”. That is, the fact that 7 emulates
¢ with p-composable security does not necessarily imply that p”/ ¢ emulates p with p'-composable
security for an arbitrary p' (or even for p’ = p). See more discussion on this point in Section 7.

6 The composability properties of basic security

Intuitively, the trusted-party definitional paradigm as formalized in Section 4 appears to be “inher-
ently compositional”. In particular, the notion of protocol emulation seems to almost immediately
guarantee — at least in spirit — that no external process will be able to distinguish between the
emulating protocol and the emulated one. Thus it seems natural to expect that basic security will
imply p-composable security with respect to any polytime protocol p. That is, it is natural to
expect that if protocol 7 realizes an ideal functionality F with basic security (as in Definition 3),
then p”/ ¢ would emulate p for any polytime protocol p.

It turns out that this this intuition can indeed be formalized for some types of composition,
namely non-concurrent general composition. However, as soon as the non-concurrency condition is
violated this intuition is incorrect. Details follow.

Recall that in non-concurrent composition it is guaranteed that no two protocol instances run
concurrently with each other, except for simple nesting (see Section 5.2). More precisely, say that a
protocol p is non-concurrent if any execution of p™, with any subroutine protocol 7, has the following
property: Order all messages sent in the system along a single time axis, and Let e; and ez be two
protocol executions where the first message of e; was sent before the first message of es. Then, once
the first ex-message is sent, no e;-messages are sent until the last es message is delivered. Then we
have:

Theorem 5 ([c00]) Let m and ¢ be protocols such that m emulates ¢ as in Definition 3. Then,
emulates ¢ with p-composable security for any non-concurrent protocol p.

Proof idea. We very briefly sketch the main idea behind the proof. For simplicity we concentrate
on the case where p uses only a single instance of ¢. Since no two instances of ¢ run concurrently,
it is straightforward to extend the proof to the case where p uses multiple instances of ¢.

Let A be an adversary that interacts with parties running p™. We need to construct an adversary
A,, such that no environment & will be able to tell whether it is interacting with p™ /P and A or

33

with p and A,. The idea is to construct A, in two steps: First “cut out” of A a real-life adversary,
denoted A, that operates against protocol 7 as a stand-alone protocol. The fact that m emulates
¢ guarantees that there exist an adversary (“simulator”) Ag, such that no environment can tell
whether it is interacting with 7 and A; or with ¢ and Ag. Next, construct A, out of A and Ay.

We sketch the above steps. Essentially, A, represents the “segment” of A that interacts with
protocol w. That is, A, expects to receive in its input (coming from the environment &) a configu-
ration of A, and simulates a run of A starting from this configuration. Once the execution of this
instance of 7 has completed, A, outputs the current configuration of the simulated A.

Adversary A, is essentially the adversary A, where the segment that interacts with 7 is replaced
by the simulator Ag. That is, A, starts by invoking a copy of A and following A’s instructions, up
to the point where the first message of m is sent. At this point, 4 expects to interact with 7, whereas
A, interacts with ¢. To continue running A, adversary A, runs Ay, with input that describes the
current state of A. The interaction between A4 and ¢ is emulated by A,, using A,’s own access to
¢. Recall that the output of Ay is a (simulated) internal state of A at the completion of protocol .
Once protocol 7 completes its execution and the parties return to running p, adversary A, returns
to running A (starting from the state in A,’s output) and follows the instructions of A.

The validity of the construction is demonstrated by reduction: Assume that there is an envi-
ronment & that distinguishes between an interaction with p and A,, and an interaction with Pl
and A. Then one constructs an environment, £, that distinguishes between an interaction with ¢
and Ay, and an interaction with 7 and A,. Essentially, & runs £, where the interaction between
&, p, and the segment of A that does not interact with the subroutine, is simulated internally. The
interaction with the subroutine (either m or ¢) and its adversary (either A, or Ag) is taken to be
the interaction with the actual external protocol and adversary.

Finally, it is shown that the view of £, when simulated by environment &, that interacts with
adversary A, and parties running 7, is distributed identically to the view of £ that interacts with
adversary A and parties running p™/?. Similarly, the view of £, when simulated by environment
& that interacts with adversary A4 and parties running ¢, is distributed identically to the view of
& that interacts with adversary A and parties running p. (These two equivalences are essentially
standard bisimulation arguments from the distributed systems community.) It is stressed that the
bisimulation is exact and the distributions over the views are identical. Consequently, the “loss in
security” incurred by the theorem is zero.

Basic security under concurrent composition. Can these composability results be extended
to concurrent protocol composition? It turns out that the answer is strongly negative. In fact, we
have already seen a counter-example: As argued in Section 3.3, the set of protocols that realize
T the zero-knowledge function with relation R, roughly corresponds to a class of zero-knowledge
protocols for the language Lg. Furthermore, as seen in section 5.1, it is possible to construct zero-
knowledge protocols (for any given language) where running even two instances of the protocol in
parallel allows the verifier to extract the entire witness. Indeed, this example can be easily extended
to come up with a protocol 7 and a relation R such that 7 realizes f£, but p”/ ¢ does not emulate
pfé{K where p is the protocol that runs two instances of its subroutine concurrently, on the same
input. Similarly, it can be demonstrated that basic security does not guarantee non-malleability.
Further discussion on why this is the case appears in the next section.

34

7 Universally Composable Security

In spite of the intuitive appeal and expressive power of the basic notion of security developed in
Sections 3 and 4, we have seen in Section 6 that this notion provides only limited compositionality
guarantees: As soon as protocols are allowed to run concurrently — as they often do in actual
composed systems — no security guarantees are given. Furthermore, we have seen examples where
security breaks down completely.

Universally Composable (UC) security is a strengthening of the basic notion of security, that
comes to address the issue of preserving security under concurrent composition. The goal is to have
a notion of security that guarantees security under all commonplace types of protocol composition,
and in particular the ones described in Section 5.2. This should be done without losing on the
intuitive appeal and expressive power, and with as mild as possible additional requirements from
protocols.* This section is organized as follows. Section 7.1 presents and motivates the notion of
UC security and its relation to the basic notion from previous sections. Section 7.3 very briefly
presents the known results regarding the realizability of this notion. Finally, Section 7.3.2 touches
upon directions for relaxing UC security while retaining some of its security and composability
guarantees.

7.1 The definition

Why does the basic definition of security from Sections 3 and 4 fail to guarantee security under
concurrent composition? When reviewing the definition in an attempt to answer this question, one
notices that the model of protocol execution as defined there allows the environment, which models
the “external world”, to exchange information with the adversary, which models a coordinated
attack against a single protocol execution, only once at the beginning of the execution, where
the environment provides information to the adversary, and once at the end, where the adversary
provides output to the environment. In a way, this modeling treats an execution of a protocol
as an “atomic step,” where there is no “information flow” between the protocol execution and
the external environment during the protocol execution. (Some protocols may indeed allow the
adversary and environment to exchange additional information via the inputs and outputs to the
parties, but such exchanges are protocol-dependent and cannot be used in general arguments on
the model.)

This modeling is indeed appropriate in a system where only a single protocol execution is
active at any given point in time. However, it seems insufficient for capturing the often “circular”
information flow among protocol executions that run concurrently. In particular, it fails to capture
situations such as the ones described in Section 5.1, where an attacker uses information gathered
in one execution in order to extract information in another execution, and then uses the extracted
information back in the first execution.

UC security is aimed at correcting this shortcoming of the basic definition. The idea is to modify
the model of protocol execution so as to allow the environment and the adversary to interact freely
throughout the course of the computation. That is, whenever the environment is activated, it is
allowed to provide input not only to the parties running the protocol, but also to the adversary.

“The term universally composable security might be somewhat confusing, given that the term universal composition
was used to denote a specific composition operation. In particular, several different definitions of security are known
to be “universally composable”, in the sense that they support a universal composition theorem such as Theorem
7 below. We thus use the acronym “UC security” to refer to the specific notion discussed here. (The duplicate
terminology can be somewhat justified by Proposition 8 below, which implies that UC security is in a sense a
minimal extension of basic security that is preserved under universal composition.)

35

Similarly, whenever the adversary is activated, it can provide output to the environment. This
means that the environment and the adversary can communicate before and after each activation
of a party running the protocol; in other words, the “atomic unit” of uninterrupted execution is
now a single activation of a party, rather than an entire execution of a protocol. As seen below,
this change to the model turns out to suffice for proving general composability. It also changes the
set of acceptable protocols in a radical way.

Another, more technical modification of the model from Section 4 is to add more structure
to the communication model in order to facilitate the distinction between protocol instances in a
composite system. A more detailed description follows.

The system model. We use the system model from Section 4.1, with one change. To facilitate
the distinction among different protocol executions in a system, we assume that the identity of
each party (i.e., the contents of the identity tape) consists of two fields: a session ID (SID) and a
party ID (PID). The SID is used to specify the “session”, or “protocol instance” to which the ITI
“belongs”, and is joint to all the ITIs in a session. The PID distinguishes the I'TT from other I'TIs
in that protocol instance. It can also be used to associate an I'TI with a “cluster” of ITIs, such as
the cluster of procedures running on a single physical computer. An instance of a protocol © with
SID s in a certain configuration of a system is now defined to be the set of I'TIs that have code 7
and SID s.

Remark: The above modeling of the SID is only one out of many possible ways for representing
and distinguishing among protocol instances in a composite system. Still, the fact that all ITIs in a
protocol instance have the same SID, which is determined by the invoking I'TI, seems like a natural
choice. In particular, it is easy to realize (say, by letting the party which initiates an instance to
determine the SID and communicate it to all other participants). It also often facilitates the design
and analysis of protocols, by providing to the participants a common value that is unique to the
instance.

The protocol execution experiment. The protocol execution experiment is the same as the
one in Section 4.2, with the following two modifications. First, as mentioned above, we allow the
environment to provide inputs to the adversary at any time. Similarly, we allow the adversary to
provide outputs to the environment at any time.

Second, recall that in the model of Section 4.2 all parties (ITIs) invoked by the environment
must run the same protocol (ITM). Furthermore, all the parties were treated as participating in
a single protocol instance. In the present model, unless explicitly restricted, the environment can
in principle invoke multiple protocol instances, by giving different SIDs to different parties. To
keep in the spirit of a single instance, we require that all the parties invoked by the environment
participate in the same protocol instance, namely they all have the same SID. (The value of the
SID is of course chosen by the environment.)

Analogously to the notation EXECy 4 ¢ from Section 4.2, let UC-EXEC; 4 ¢(z) denote the random
variable describing the output of environment £ when interacting with adversary A and protocol 7
on input z (for £) in the present model. UC-EXEC; 4,¢ denotes the ensemble {UC-EXECy, 4.¢(7) }pefo,1}+ -

Restricting the environment to run only a single protocol instance significantly simplifies the
model and the analysis of protocols. On the down side, it comes at the price of some restrictions
on the class of protocols which can be composed in a secure way. See more discussion in Section
7.2.

36

The ideal process. The ideal process remains the same as the one in Section 4.2, with the
following exception: We restrict attention to ideal functionalities F where an instance ignores
inputs that do not specify its SID. (Recall that the SID of an instance is determined by the ITI
that called this instance for the first time.) Similarly, we assume that F includes its SID in all of
its outputs. We note that this restriction is not essential; its purpose is to simplify the modeling
and analysis of protocols.

Protocol emulation. The notion of protocol emulation and realizing functionalities is the same
as in Section 4.2, except that it relates to the present execution experiments:

Definition 6 UC protocol emulation and realization A protocol 1 UC-emulates protocol ¢ if for any
PT adversary A there exists a PT adversary S such that for all PT environments £ that output
only one bit:

UC-EXECy s ¢ R UC-EXECy, 4 ¢

A protocol m UC-realizes an ideal functionality F if m UC-emulates the ideal protocol for F.

7.2 Composability

The main attraction in UC security is that it guarantees composable security with respect to
almost any PT calling protocol. That is, we restrict the way a protocol receives inputs from and
provides output to the surrounding system in the following natural way: We assume that the only
component of the “subroutine protocol” that receives inputs from the outside and provides outputs
to the outside is the “top-level program”. More precisely, recall that an I'TI P is called a subroutine
of an ITI P’ if P takes input from P’ or provides output to P’; P is a subsidiary of P’ if it a
subroutine of P’ or of a subsidiary of P’. Say that an ITM = is subroutine respecting if any ITI
P running the code 7 has the property that all subsidiaries of P are subroutines only of P or of
subsidiaries of P. A protocol is subroutine respecting if it is subroutine respecting as an [ITM. We
have:

Theorem 7 Let m and ¢ be subroutine-respecting PT protocols such that m UC-emulates ¢. Then
p™? UC-emulates p for any PT protocol p.

Historical note. Theorem 7 was first proven in [Pw00, pw01] for the case where p invokes
a single instance of the subroutine protocol ¢. (These proofs are set in their formalism, which
has several technical differences from the one presented here.) The case where p may invoke
an unbounded number of instances of ¢ was first proven in [C01] in a model similar to the one
presented here, and subsequently re-proven in a number of different models, e.g. [BPW04, DKMRO5,
K06, CKLP06)].

Proof idea. At high level, the proof of Theorem 7 follows the same steps as the proof of Theorem
5, with the exception that here protocol p may call multiple instances of ¢, where these instances run
concurrently. Consequently, the adversary A, that interacts with protocol p concurrently invokes
multiple instances of the simulator A, where each instance of Ay interacts with a single instance of
¢. In order to be able to carry out the overall interaction with p and the environment in a globally
consistent manner, A, uses the fact that each instance of A4 outputs the necessary information
after each activation. This allows A, to use information generated in one instance of Ay as input

37

to another instance of Ag. (Recall that in the case of basic security Ay is required to generate
output only at the end of the execution; such a guarantee would not suffice for the present case.)
As in the proof of Theorem 5, the proof of validity of A, proceeds by reduction to the validity of
Ag. The main difference from Theorem 5 is that here there are multiple instances of a subroutine
protocol (either ¢ or 7), running concurrently. Thus, we need to demonstrate that no environment
can tell the difference between the case where all instances of ¢ are replaced by 7 and the case
where none of the instances of ¢ are replaced by 7. This is done via a standard hybrid argument,
namely by considering multiple hybrid executions where in each execution one more instance of
¢ is replaced by m. An environment that distinguishes between two consecutive instances is now
translated into an environment that contradicts the validity of A,. We omit further details.

7.2.1 Discussion

To interpret Theorem 7 recall that, for any given calling protocol p, the fact that p”/ ¢ UC-emulates
p implies that replacing the instances of ¢ by instances of m does not change the behavior of p
with respect to PT adversaries in a noticeable way; in particular, it does not introduce any new
vulnerabilities to p™?¢. Furthermore, recall that any of the composition scenarios mentioned in
Section 5.2 (with the exception of joint-state composition, discussed below) can be captured as
universal composition with some set of calling protocols. Thus, Theorem 7 guarantees security-
preserving composition in any of these scenarios. Some additional aspects of the theorem are
discussed next.

Modular protocol analysis. The fact that Theorem 7 puts very few restrictions on the calling
protocol p makes it conducive to carrying out the plan from the preamble of Section 4.3 in a way
that meshes naturally with the structure of common protocols. That is, the theorem allows de-
composing protocols to many simple subroutines, analyzing each subroutine separately, and then
deducing the security of the overall protocol from the security of the subroutines. In particular,
the partitioning to subroutines can be nested in an arbitrary way. This is a powerful methodology,
especially given the fact that rigorous analysis of even simple cryptographic protocols tends to be
dauntingly complex.

Enabling sound symbolic and automated analysis. Another advantage of Theorem 7 is
that it allows to “abstract away” cryptographic imperfections such as computational bounds and
error probabilities, while maintaining soundness of the abstractions. This enables applying auto-
mated proof tools that require symbolic representations of protocols (as in, say, [DY83]) and cannot
directly handle asymptotic modeling and cryptographic imperfections. To do that, first devise
functionalities that capture in an ideal way the security properties of the cryptographic primitives
(say, encryption in the case of [DY83]) used in the analyzed system. Next, re-write the protocols to
be analyzed in a symbolic, non-asymptotic model that corresponds to having access to the devised
ideal functionalities. Now, one can apply an automated tool to the symbolic representation of the
protocol. Finally, use the UC theorem to deduce that, if the cryptographic protocols in use UC-
realize the devised ideal functionalities, then the overall system enjoys the same properties proven
for the abstract version. Some works that take this approach include [BJp02, BPW03, CHO4, SB+06].

Two things should be kept in mind, however, when taking this approach. First, for the analysis
to be of value, one has to make sure that the asserted abstract security properties have meaningful
translations to concrete security properties of concrete protocols. Second, the complexity of auto-
mated analysis tools grows very rapidly as a function of the number of messages and sessions in

38

the analyzed system (see e.g. the undecidability and NP-completeness results in [EG82, DLMS99)).
Consequently, a viable instantiation of the above approach would need to break down protocols
to simple subroutines and analyze each subroutine separately as a single session. Here the UC
theorem is once again a crucial enabler.

Representing communication models. Another use of Theorem 7 is for modular representa-
tion of various communication models within the basic model of computation described above. That
is, to capture a given communication model, simply devise an ideal functionality F that guarantees
the abstractions provided by that model. Now, designing protocols in that model is translated to
designing protocols that run in the basic model and make calls to F. In order to further simplify
the code of F, one can allow for multiple instances of F to run concurrently, where each instance
deals with a single use of the underlying model (say, a single sending of a message in the case of
an authenticated communication abstraction). Here we do not necessarily intend to realize F in
an algorithmic way; rather, F merely serves as a functional description of the desired abstraction.
Still, in some cases the same ideal functionality can be used both as the basis for a communication
model and as a target to be realized by cryptographic protocols. Some communication models that
have been captured this way include authenticated communication, secure communication, and
synchronous communication (see e.g. [c01, 2005 revision]).

Composition with joint state. The restriction to subroutine-respecting protocols, made in
Theorem 7, excludes the case of composition with joint state, namely in the case where parties in
two or more protocol instances have access to the same instance of some subroutine program. We
currently have two alternative methods to deal with this situation. A first method is to explicitly
model the subroutine as an entity that interacts with multiple protocol instances (even arbitrary
ones). This in turn requires working with a strong variant of UC security, called generalized UC,
which allows capturing such subroutines and the protocols that use them. See details in [cCDPWO0T7].

A second option is to demonstrate that all the protocols that use the joint subroutine do so via
an interface that satisfies a certain condition. Essentially, this condition requires that the interface
looks like the interface of multiple independent instances of a simpler procedure. In this case, one
can again demonstrate a security-preserving composition result similar to Theorem 7. See details
in [CRO3].

Some equivalent variants. Finally, we note that several variants of Definition 6 turn out to be
equivalent to the present formulation. First, allowing the environment to output an arbitrarily long
string, or alternatively restricting the environment to deterministic computation do not change the
definition. Also, restricting the adversary A to only forward messages from the environment to
the parties and back results in a definition that is equivalent to the present formulation. Similarly,
restricting the adversary S to have only black-box access to A results in an equivalent definition.
Finally, letting the simulator depend on the environment results in an equivalent definition. We
remark that most equivalences hold also in other formalisms (see e.g. [Psw00]). However, the last
equivalence does not hold in other formalisms, where entities are required to be polynomial in a
global security parameter rather than in the length of local inputs [HUO5].

7.3 Feasibility and relaxations

We very briefly survey the feasibility results regarding UC-realizing ideal functionalities. As we’ll
see, in spite of the apparent syntactic similarity with basic security (Section 4.4), UC security is

39

in general a considerably more restrictive notion. In particular, some far-reaching impossibility
results exist. Consequently, several relaxations and work-arounds have been proposed. We will
briefly survey these as well.

Encryption, signing, and secure communication. We start with some positive results. It
turns out that for the basic tasks of encryption, digital signatures, and other tasks associated
with secure communication, there are universally composable formulations that are realizable by
known and natural protocols. In fact, in some cases the UC definitions are closely related, or even
equivalent, to standard definitions (which use some special-purpose formulations).

Two salient examples are the ideal public-key encryption functionality, Fpxs, and the ideal sig-
nature functionality, Fg¢, which capture the basic requirements of encryption and signature in an
abstract and unconditional way. UC-realizing Fpip (for non-adaptive party corruptions) is essen-
tially equivalent to the standard notion of security against chosen ciphertext attacks [DDN0O, RS91].
UC-realizing Fs, is essentially equivalent to the standard notion of existential unforgeability against
chosen message attacks [GMRi88].

Another class of examples are functionalities related to the task of obtaining secure communica-
tion. These include the key-exchange functionality from Section 4.3, as well as ideal functionalities
capturing authenticated and secure communication sessions, entity authentication, and related
tasks. All of these functionalities can be UC-realized by simple and known protocols. For instance,
see the modeling of certified mail in [PSWO00a] or secure channels in [PWO01, ck02]. In addition,
both the ISO 9798-3 key-exchange protocol and IKEv2 (the revised key exchange protocol of the
IPSEC standard) UC-realize the ideal key-exchange functionality [cK02, CK02a).

General feasibility. Can the general feasibility results for basic security assuming authenticated
communication (see Section 4.4) be carried over to UC security? When the majority of the parties
are honest (i.e., they are guaranteed to follow the protocol), the answer is positive. In fact, some
known protocols for general secure function evaluation turn out to be universally composable. For
instance, the [BGW88] protocol (both with and without the simplification of [GRRI8]), together
with encrypting each message using non-committing encryption [CFGN96], is universally compos-
able as long as less than a third of the parties are corrupted, and authenticated and synchronous
communication is available. Using [RB89], any corrupted minority is tolerable. Asynchronous com-
munication can be handled using the techniques of [BCG93, BKR94]. Note that here some of the
participants may be “helpers” (e.g., dedicated servers) that have no local inputs or outputs; they
only participate in order to let other parties obtain their outputs in a secure way.

However, things are different when honest majority of the parties is not guaranteed, and in
particular in the case where only two parties participate in the protocol and either one of the
parties may be corrupted. First, one of the most common proof-techniques for cryptographic
protocols, namely black-box simulation with rewinding of the adversary, does not in general work
in the present framework. The reason for that is that in the present framework the ideal adversary
has to interact directly with the environment which cannot be “rewound”. (Indeed, it can be argued
that the meaningfulness of black-box simulation with rewinding in a concurrent execution setting
is questionable.)

Furthermore, in the UC framework many interesting functionalities cannot be realized at all
by plain protocols. (A plain protocol uses no ideal functionality other than the authenticated
communication functionality.) For one, the ideal commitment functionality from Section 4.3 cannot
be UC-realized by plain two-party protocols [CF01]. Similar impossibility results hold for the ideal

40

coin tossing functionality, the ideal Zero-Knowledge functionality, and the ideal Oblivious Transfer
functionality [CO1]. These results extend to unrealizability by plain protocols of almost all “non-
trivial” deterministic two-party functions and many probabilistic two-party functions [CKL03], and
to impossibility of realizing any “ideal commitment functionality”, namely any functionality that
satisfies the basic correctness, binding and secrecy properties of commitment in a perfect way
[DDMRS06]. These results apply also to multi-party extensions of these primitives, whenever the
honest parties are not in majority.

Three main approaches for circumventing these impossibility results have been considered in
the literature. The first approach is simply to try to formulate more relazed ideal functionalities,
that will be easier to realize, but will still capture the security requirements of the desired task.
This is a task-specific and delicate endeavor. Some works that take this approach are [ck02, PSO5];
a salient characteristic of these relaxations are that security is guaranteed only in a computational
sense even in the ideal process.

A second approach is to assume that the parties have access to some trusted set-up. A third
approach is to relaz the UC-emulation requirement. These approaches are described in Sections
7.3.1 and 7.3.2, respectively.

7.3.1 Adding set-up assumptions

It turns out that general feasibility can be regained when some trusted set-up is assumed. One such
trusted set-up assumption, called the key registration (KR) model, assumes that there exists a trusted
“registration authority” where parties can register public keys associated with their identities, while
demonstrating that they have access to the corresponding secret keys. (Alternatively, parties can let
the authority choose public keys for them; here the corresponding secret keys need not be revealed,
even to the “owners” of the public keys.) Then, parties can query the authority for a party identity
and obtain the registered public key for that identity. Practically any ideal functionality can be
UC-realized by interactive protocols in the key registration model, under standard computational
hardness assumptions. Furthermore, the protocols remain secure even in the presence of arbitrary
other protocols that use the same public keys.

Taking a short detour, it is interesting to compare this set-up assumption to the set-up assump-
tions needed for guaranteeing authenticated communication. To obtain authenticated communica-
tion (namely, to UC-realize an ideal functionality that provides an authenticated communication
service), it is necessary and sufficient to have access to an ideal functionality that allows parties
to register public keys that will be associated with their identities, without having to disclose the
secret keys to the registration authority. This set-up is structurally similar to the key registration
set-up, except that the trust put in the registration authority is considerably milder.

An alternative set-up assumption, called the common random string (CRS) model, is that all
parties have access to a string that is guaranteed to be taken from a predetermined distribution,
typically the uniform distribution. Furthermore, it is assumed that the string was “ideally gener-
ated” in the sense that no set of participants have any “side information” on the common string
(such as the preimage of the string according to some one-way function). This assumption is at-
tractive in that it can be realized by physical processes that minimize the trust that participants
need to put in external authorities. Also, it does not require parties to explicitly register before
participating in the computation. However, here the general feasibility results are weaker, in the
sense that the protocols are not (and, in fact, provably cannot be) shown secure in the presence of
arbitrary other protocols that use the same common string. Instead, security is shown only when
all protocols that use the common string do so using a very specific interface.

41

Yet another alternative set-up assumption, called the timing model, is of a somewhat different
flavor: It assumes that there is a bound on the delay of messages delivered in the network, as
well as on the mutual discrepancy in local time measurements, and that these bounds are known
to all parties. Here too it is possible to realize any ideal functionality, under standard hardness
assumptions [LPT04].

Historically, general feasibility results were first demonstrated in the CRS model [cL0s02]. The
overall structure of that protocol is the same as in [GMWS87], as sketched in Section 4.4. The
main difference is in the zero-knowledge and coin-tossing components, which are very different. In
particular, the new components (based partly on the UC commitment protocol in [CF01]) allow for
simulation “without rewinding”, using the CRS set-up. Protocols in the KR model again use the
same structure. For non-adaptive party corruptions, it was observed that the [cLOS02] protocols
can be modified to work in the KR model [BCNP04]. For adaptive party corruptions some new
protocols have been developed [cDPWOT].

Can we characterize which functionalities are realizable without set-up? or only given authen-
ticated communication? Alternatively, can we characterize the set-up functionalities that suffice
for realizing a given task? Some limited answers to the former question, for the case of evaluating
a pre-determined function of the parties’ inputs, and for the case of functionalities aimed at guar-
anteeing secure commitment, are known [CKL0O3, DDMRS06]. Otherwise, these are interesting open
questions.

7.3.2 Relaxing UC security

In light of the restrictiveness of UC-emulation, and in particular given the above impossibility
results regarding realizing UC-realizing functionalities without initial set-up, it is natural to look
for alternative notions of security, that will still provide some general security and composability
guarantees while being easier to realize.

This question is highlighted by the fact that UC-emulation appears to be overly strong with
respect to the notion of composable security (Definition 4). That is, Theorem 7 states that p”/ ¢
UC-emulates p, where Definition 4 only requires that p™¢ emulates p according to the basic notion
of emulation, namely Definition 2. On the one hand, this extra strength is useful, in that it
guarantees that security is preserved even after multiple applications of the universal composition
operation. On the other hand, though, this extra strength raises the question of whether there is
a less demanding variant of UC-emulation that would still satisfy Definition 4.

It turns out, however, that the answer to this question is negative. That is, it can be seen that
any notion of emulation that satisfies Definition 4 with respect to any calling protocol p implies
UC-emulation. That is:

Proposition 8 Assume that protocol @ emulates protocol ¢ with p-composable security for any
subroutine-respecting protocol p. Then m UC-emulates ¢.

The idea here is that an arbitrary calling protocol p can essentially mimic any interactive
environment &, even in the basic setting where the external environment cannot interact with
the adversary during the execution. This holds even though p™ is only required to emulate p?
according to the basic notion, since the instructions of p can require the adversary to provide “on-
line” information in the same way that £ expects to have in the UC modeling. We omit further
details.

Proposition 8 can be interpreted as stating that UC-security is in some sense a “minimal”
requirement that guarantees both composability and basic security. It also means that the extra

42

strength in the conclusion of Theorem 7 comes without any additional requirements from the
protocol. (Some closely related results appear in [L03, LO4].)

Still, some relaxed variants of UC-emulation have been proposed and shown to be preserved
under universal composition with arbitrary protocols [ps04, BsO5, MmY06]. By Proposition 8,
these variants necessarily provide security guarantees that are weaker than basic security. Still,
the provided guarantees are often meaningful. In addition, it was demonstrated that these notions
allow realizing any ideal functionality given only authenticated communication, under general (but
stronger than usual) hardness assumptions.

Essentially, the way in which these notions weaken the security requirement is by allowing the
“simulator” to run in super-polynomial time 7". This means that meaningful security is guaranteed
only when the following two conditions are met. First, the ideal functionality should be such that
security is guaranteed even against adversaries running in time 7'. This condition is met by most
common formulations of ideal functionalities; in fact, most common formulations provide “perfect”
security, even against computationally unbounded ideal-model adversaries.

The second condition is a bit more subtle: Recall that the definition only guarantees that
the environment, or the calling protocol, cannot tell whether it is interacting with the emulating
protocol 7 and adversary A (which may be PT), or with the emulated protocol and adversary S,
which may run in time 7. Thus, security is meaningful only when the the calling protocol itself
withstands adversaries that run in time 7. To exemplify this point, we note that it is possible
to construct protocols that are secure according to this notion, and yet completely “break down”
under self-composition of only two instances.

8 Conclusion

This tutorial addressed the challenges associated with rigorously modeling cryptographic proto-
cols and capturing their security properties. Particular stress was put on guaranteeing security in
settings where protocols are composed with each other in a number of ways. We have reviewed
a general definitional approach, the trusted party paradigm. We saw two formalizations of this
approach: A basic formalization, that is easier to satisfy but provides only limited secure com-
posability guarantees, and a more advanced formalization that is considerably more restrictive in
general, but provides very strong secure composability guarantees.

When looking back at the covered material, one thing becomes very clear: It is far from obvious
what is “the right” way to capture and formalize security properties of cryptographic protocols.
In fact, there probably is no single good way to do so, and different formalisms have incomparable
strengths. Furthermore, seemingly small differences in the formalisms result in drastic differences
— both in the meaningfulness (e.g. in the behavior under protocol composition), and also in the
restrictiveness, namely in the ability to assert security of natural protocols.

One consequence of this fact is that finding viable notions of security for cryptographic pro-
tocols remains an intriguing and lively research area. Another consequence is that appropriately
formulating the security requirements of a given cryptographic task can be a delicate challenge in
itself. In fact, this is often the “hard part” of the security analysis, more so than actually asserting
that a given protocol satisfies the formulated property in the devised model.

Acknowledgments. My thinking and understanding of cryptographic protocols has been shaped
over the years by discussions with many insightful researchers, too numerous to mention here.
I thank you all. Oded Goldreich and Hugo Krawczyk were particularly influential, with often

43

conflicting (complementary?) views of the field. I'm also grateful to the editor, Sergio Rajsbaum,
for his effective blend of flexibility and persistence and to Shai Halevi, Ralf Kiisters, and Birgit
Pfitzmann for helpful remarks.

References

[BJP02] M. Backes, C. Jacobi, B. Pfitzmann. Deriving Cryptographically Sound Implementations
Using Composition and Formally Verified Bisimulation. In proceedings of Formal Methods
Europe (FME) 2002, pp. 310-329.

[BPW03] M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with
nested operations. In 10th ACM conference on computer and communications security
(CCS), 2003. Extended version at the eprint archive, http://eprint.iacr.org/2003/015/.

[BPW04] M. Backes, B. Pfitzmann, and M. Waidner. A general composition theorem for secure
reactive systems. In Ist Theory of Cryptography Conference (TCC), LNCS 2951 pp. 336
354, Feb. 2004.

[Bt05] B. Barak, R. Canetti, Y. Lindell, R. Pass and T. Rabin. Secure Computation Without
Authentication. In Crypto’05, 2005.

[BCNPO4] B. Barak, R. Canetti, J. B. Nielsen, R. Pass. Universally Composable Protocols with
Relaxed Set-Up Assumptions. 45th FOCS, pp. 186-195. 2004.

[BsO5] B. Barak and A. Sahai, How To Play Almost Any Mental Game Over the Net - Concurrent
Composition via Super-Polynomial Simulation. 46th FOCS, 2005.

[B91] D. Beaver. Secure Multi-party Protocols and Zero-Knowledge Proof Systems Tolerating a
Faulty Minority. J. Cryptology, (1991) 4: 75-122.

[BH92] D. Beaver and S. Haber. Cryptographic protocols provably secure against dynamic adver-
saries. In FEurocrypt 92, LNCS No. 658, 1992, pages 307-323.

[BR93] M. Bellare and P. Rogaway. Entity authentication and key distribution. CRYPTO93,
LNCS. 773, pp. 232-249, 1994.

[BcG93] M. Ben-Or, R. Canetti and O. Goldreich. Asynchronous Secure Computation. 25th Sym-
posium on Theory of Computing (STOC), 1993, pp. 52-61. Longer version appears in TR
#755, CS dept., Technion, 1992.

[BGW88] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. 20th Symposium on Theory of
Computing (STOC), ACM, 1988, pp. 1-10.

[BKR94] M. Ben-Or, B. Kelmer and T. Rabin. Asynchronous Secure Computations with Optimal
Resilience. 13th PODC, 1994, pp. 183-192.

[B82] M. Blum. Coin flipping by telephone. IEEE Spring COMPCOM, pp. 133-137, Feb. 1982.

[Bcc88] G. Brassard, D. Chaum and C. Crépeau. Minimum Disclosure Proofs of Knowledge. JCSS,
Vol. 37, No. 2, pages 156189, 1988.

44

[c95] R. Canetti. Studies in Secure Multi-party Computation and Applications.Ph.D. Thesis,
Weizmann Institute, Israel, 1995.

[c00] R. Canetti. Security and composition of multi-party cryptographic protocols. J. Cryptology,
Vol. 13, No. 1, winter 2000.

[c01] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Extended abstract in 42nd FOCS, 2001. A revised version (2005) is available at IACR Eprint
Archive, eprint.iacr.org/2000/067/ and at the ECCC archive, http://eccc.uni-trier.de/eccc-
reports/2001/TR01-016/.

[c+06] R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and R. Segala. Task-
Structured Probabilistic I/O Automata. In Workshop on discrete event systems (WODES),
2006.

[c4+06a] R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and R. Segala. Time-
Bounded Task-PIOAs: A Framework for Analyzing Security Protocols. In 20th symposium
on distributed computing (DISC), 2006.

[cDPWOT7] R. Canetti, Y. Dodis, R. Pass and S. Walfish. Universally Composable Security with
Pre-Existing Setup. 4th theory of Cryptology Conference (TCC), 2007.

[cFGN96] R. Canetti, U. Feige, O. Goldreich and M. Naor. Adaptively Secure Computation. 28th
Symposium on Theory of Computing (STOC), ACM, 1996. Fuller version in MIT-LCS-TR
682, 1996.

[cFO1] R. Canetti and M. Fischlin. Universally Composable Commitments. Crypto ’01, 2001.

[cHO4] R. Canetti and J. Herzog. Universally Composable Symbolic Analysis of Cryptographic
Protocols (The case of encryption-based mutual authentication and key-exchange). Eprint
archive, http://eprint.iacr.org/2004/334. Extended Abstract at 3rd TCC, 2006.

[cK02] R. Canetti and H. Krawczyk. Universally Composable Key Exchange and Secure
Channels . Eurocrypt '02, pages 337-351, 2002. LNCS No. 2332. Extended version at
http://eprint.iacr.org/2002/059.

[cK02a] R. Canetti and H. Krawczyk. Security Analysis of IKE’s Signature-based Key-Exchange
Protocol. Crypto 02, 2002. Extended version at http://eprint.iacr.org/2002/120.

[CKLO3] R. Canetti, E. Kushilevitz, Y. Lindell. On the Limitations of Universally Composable Two-
Party Computation without Set-up Assumptions. EUROCRYPT 2003, pp. 68-86, 2003.
Extended version at the eprint archive, eprint.iacr.org/2004/116.

[cLos02] R. Canetti, Y. Lindell, R. Ostrovsky, A. Sahai. Universally composable two-party and
multi-party secure computation. 34th STOC, pp. 494-503, 2002.

[CRO3] R. Canetti and T. Rabin. Universal Composition with Joint State. Crypto’03, 2003.

[ccp88] D. Chaum, C. Crepeau, and I. Damgaard. Multi-party Unconditionally Secure Protocols.
In Proc. 20th Annual Symp. on the Theory of Computing (STOC), pages 11-19, ACM,
1988.

45

[CKLP06] L. Cheung, D. Kaynar, N. Lynch, O. Pereira. Compositional Security for Task-PIOAs.
Manuscript, 2006.

[cGKS95] B. Chor, O. Goldreich, E. Kushilevitz, M. Sudan. Private Information Retrieval. 36th
FOCS, 1995, pp. 41-50.

[DDMRS06] A. Datta, A. Derek, J. C. Mitchell, A. Ramanathan and A. Scedrov. Games and the
Impossibility of Realizable Ideal Functionality. 3rd theory of Cryptology Conference (TCC),
2006.

[DKMRO5] A. Datta, R. Kiisters, J. C. Mitchell and A. Ramanathan. On the Relationships between
Notions of Simulation-based Security. 2nd theory of Cryptology Conference (TCC), 2005.

[DMOO] Y. Dodis and S. Micali. Secure Computation. CRYPTO ’00, 2000.

[DDNOO] D. Dolev. C. Dwork and M. Naor. Non-malleable cryptography. SIAM. J. Computing,
Vol. 30, No. 2, 2000, pp. 391-437. Preliminary version in 23rd Symposium on Theory of
Computing (STOC), 1991.

[DY83] D. Dolev and A. Yao. On the security of public-key protocols. IEEE Transactions on Infor-
mation Theory, 2(29), 1983.

[DLMS99] N.A. Durgin, P.D. Lincoln, J.C. Mitchell and A. Scedrov. Undecidability of bounded
security protocols. Workshop on Formal Methods and Security Protocols (FMSP), 1999.:w

[DNS98] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. In 30th STOC, pages
409-418, 1998.

[EG82] S. Even and Oded Goldreich. On the Security of Multi-Party Ping-Pong Protocols. 24th
FOCS, 1983.

[F91] U. Feige. Ph.D. thesis, Weizmann Institute of Science, 1991.

[GRRI8] R. Gennaro, M. Rabin and T Rabin. Simplified VSS and Fast-track Multiparty Compu-
tations with Applications to Threshold Cryptography, 17th PODC, 1998, pp. 101-112.

[G01] O. Goldreich. Foundations of Cryptography (Vol. 1). Cambridge Press, 2001.
[¢04] O. Goldreich. Foundations of Cryptography (Vol. 2). Cambridge Press, 2004.

[Gk89] O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof Systems.
SIAM. J. Computing, Vol. 25, No. 1, 1996.

[aMwW8T7] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game. 19th Sympo-
sium on Theory of Computing (STOC), 1987, pp. 218-229.

[G094] O. Goldreich and Y. Oren. Definitions and properties of Zero-Knowledge proof systems. J.
Cryptology, Vol. 7, No. 1, 1994, pp. 1-32.

[GLI0] S. Goldwasser, and L. Levin. Fair Computation of General Functions in Presence of Immoral
Majority. CRYPTO ’90, LNCS 537, 1990.

[aM84] S. Goldwasser and S. Micali. Probabilistic encryption. JCSS, Vol. 28, No 2, April 1984, pp.
270-299.

46

[GMRa89] S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof
Systems. STAM Journal on Comput., Vol. 18, No. 1, 1989, pp. 186-208.

[GMRi88] S. Goldwasser, S. Micali, and R.L. Rivest. A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. STAM J. Comput., April 1988, pages 281-308.

[EM00] M. Hirt and U. Maurer. Complete characterization of adversaries tolerable in secure multi-
party computation. J. Cryptology, Vol 13, No. 1, 2000, pp. 31-60. Preliminary version in
16th Symp. on Principles of Distributed Computing (PODC), ACM, 1997, pp. 25-34.

[H85] C. A. R. Hoare. Communicating Sequential Processes. International Series in Computer
Science, Prentice Hall, 1985.

[HU05] D. Hofheinz and D. Unruh. Comparing Two Notions of Simulatability. 2nd theory of Cryp-
tology Conference (TCC), pp. 86-103, 2005.

[1psEc| The IPSec working group of the IETF. See http://www.ietf.org/html.charters/ipsec-
charter.html

[KLRO6] E. Kushilevitz, Y. Lindell and T. Rabin. Information-Theoretically Secure Protocols and
Security Under Composition. 38th STOC, pages 109-118, 2006.

[KO6] R. Kiisters. Simulation based security with inexhaustible interactive Turing machines. 19th
CSFW, 2006.

[LO3] Y. Lindell. General Composition and Universal Composability in Secure Multi-Party Com-
putation. 43rd FOCS, pp. 394-403. 2003.

[LO4] Y. Lindell. Lower Bounds for Concurrent Self Composition. 1st Theory of Cryptology Con-
ference (TCC), pp. 203-222. 2004.

[LLRO2] Y. Lindell, A. Lysyanskaya and T. Rabin. On the composition of authenticated Byzantine
agreement. 34th STOC, 2002.

[LpT04] Y. Lindell, M. Prabhakaran, Y. Tauman. Concurrent General Composition of Secure Pro-
tocols in the Timing Model. Manuscript, 2004.

[LMMS98] P. Lincoln, J. Mitchell, M. Mitchell, A. Scedrov. A Probabilistic Poly-time Framework
for Protocol Analysis. 5th ACM Conf. on Computer and Communication Security, 1998, pp.
112-121.

[LT89] N. Lynch and M. R. Tuttle. An introduction to input/output automata. CWIQuarterly,
2(3):219-246, September 1989.

[Lsv03] N. Lynch, R. Segala and F. Vaandrager. Compositionality for Probabilistic Automata. 14th
CONCUR, LNCS vol. 2761, pages 208-221, 2003. Fuller version appears in MIT Technical
Report MIT-LCS-TR-907.

[MMYO06] T. Malkin, R. Moriarty and N. Yakovenko. Generalized Environmental Security from
Number Theoretic Assumptions. 3rd Theory of Cryptology Conference (TCC), 2006, pp.
343-359.

47

[MMsS03] P. Mateus, J. C. Mitchell and A. Scedrov. Composition of Cryptographic Protocols in a
Probabilistic Polynomial-Time Process Calculus. 14th CONCUR, pp. 323-345. 2003.

[MRI1] S. Micali and P. Rogaway. Secure Computation. unpublished manuscript, 1992. Preliminary
version in CRYPTO 91, LNCS 576, 1991.

[M89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[M99] R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge University
Press, 1999.

[MMS98] J. Mitchell, M. Mitchell, A. Scedrov. A Linguistic Characterization of Bounded Oracle
Computation and Probabilistic Polynomial Time. 39th FOCS, 1998, pp. 725-734.

[MRST06] John C. Mitchell, Ajith Ramanathan, Andre Scedrov, Vanessa Teague. A probabilistic
polynomial-time process calculus for the analysis of cryptographic protocols. Theor. Com-
put. Sci. 353(1-3): 118-164 (2006). Preliminary version in LICS’01.

[P04] R. Pass. Bounded-concurrent secure multi-party computation with a dishonest majority.
36th STOC, pp. 232-241. 2004.

[PRO3] R. Pass, A. Rosen. Bounded-Concurrent Secure Two-Party Computation in a Constant
Number of Rounds. 44th FOCS, 2003

[PRO5a] R. Pass, A. Rosen. New and improved constructions of non-malleable cryptographic pro-
tocols. STOC, pp. 533-542, 2005.

[PRO5b] R. Pass, A. Rosen. Concurrent and Non-Malleable Commitments. FOCS, 2005.

[P91] T.P. Pedersen: Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing.
CRYPTO 1991: 129-140

[Pw94] B. Pfitzmann and M. Waidner. A general framework for formal notions of secure sys-
tems. Hildesheimer Informatik-Berichte 11/94, Universitat Hildesheim, 1994. Available at
http://www.semper.org/sirene/lit.

[Psw00] B. Pfitzmann, M. Schunter and M. Waidner. Secure Reactive Systems. IBM Research
Report RZ 3206 (#93252), IBM Research, Zurich, May 2000.

[Psw00a] B. Pfitzmann, M. Schunter and M. Waidner. Provably Secure Certified Mail. IBM Re-
search Report RZ 3207 (#93253), IBM Research, Zurich, August 2000.

[Pw00] B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure reactive
systems. 7th ACM Conf. on Computer and Communication Security (CCS), 2000, pp. 245-
254.

[Pw01] B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its applica-
tion to secure message transmission. IEEE Symposium on Security and Privacy, May 2001.
Preliminary version in http://eprint.iacr.org/2000/066 and IBM Research Report RZ 3304
(#93350), IBM Research, Zurich, December 2000.

[PRS02] M. Prabhakaran, A. Rosen, A. Sahai. Concurrent Zero Knowledge with Logarithmic
Round-Complexity. 43rd FOCS, 2002: 366-375

48

[Ps04] M. Prabhakaran, A. Sahai. New notions of security: achieving universal composability with-
out trusted setup. 36th STOC, pp. 242-251. 2004.

[PsO5] M. Prabhakaran, A. Sahai. Relaxing Environmental Security: Monitored Functionalities
and Client-Server Computation. 2nd Theory of Cryptology Conference (TCC), 2005.

[RB89] T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multi-party Protocols with Honest
Majority. 21st Symposium on Theory of Computing (STOC), 1989, pp. 73-85.

[RS91] C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge and chosen
ciphertext attack. CRYPTO 91, 1991.

[RK99] R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge Proofs.
In Eurocrypt99, LNCS 1592, pages 415-413.

[sB+06] C. Sprenger, M. Backes, D. Basin, B. Pfitzmann and M. Waidner. Cryptographically
Sound Theorem Proving. 19th Computer Security Foundations Workshop (CSFW), 2006.

[Y82A] A. Yao. Protocols for Secure Computation. In 23rd Annual Symp. on Foundations of
Computer Science (FOCS), pages 160-164. 1982.

[Y86] A. Yao, How to generate and exchange secrets, In 27th Annual Symp. on Foundations of
Computer Science (FOCS), pages 162-167. 1986.

A Trusted-party based security: A mini survey

This section briefly surveys some works that are directly relevant to the development of the trusted-
party paradigm as a method for defining security of protocols. (Indeed, this is only a fraction of
the body of work on modeling cryptographic protocols and asserting security properties.) More
detailed surveys on this topic can be found in [c00, c01]. Also, some of these works have already
been mentioned earlier and are not re-addressed here.

Two works that essentially “laid out the field” of general security definitions for cryptographic
protocols are the work of Yao [Y82A], which expressed for the first time the need for a general “uni-
fied” framework for expressing the security requirements of cryptographic tasks and for analyzing
cryptographic protocols; and the work of Goldreich, Micali and Wigderson [GMW87], which put
forth the approach of defining security via comparison with an ideal process involving a trusted
party (albeit in a very informal way).

The first rigorous definitional framework is that of Goldwasser and Levin [GL90]. It was followed
shortly by the frameworks of Micali and Rogaway [MR91] and Beaver [B91]. In particular, the notion
of “reducibility” in [MR91] directly underlies the notion of protocol composition in many subsequent
works, including the notion of universal composition as descried here. Beaver’s framework is the
first to directly formalize the idea of comparing a run of a protocol to an ideal process. Still, the
[MRI1, B91] formalisms only address security in restricted settings; in particular, they do not deal
with computational issues.

All the work mentioned above concentrate on synchronous communication and the task of
secure function evaluation. An extension to asynchronous communication networks is formulated
in [BCGY3]. A system model and notion of security for reactive functionalities is sketched in
Pfitzmann and Waidner [PW94].

49

Canetti [c95] provides the first ideal-process based definition of computational security against
resource bounded adversaries. [C00] strengthens the framework of [€95] to handle secure com-
position. In particular, security of protocols in that framework is shown to be preserved under
non-concurrent universal composition. This work also contains sketches on how to strengthen the
definition to support concurrent composition. A closely related formulation appears in [G04].

The framework of Hirt and Maurer [HM00] give a rigorous treatment of the case of reactive
functionalities. Dodis and Micali [DMO0O] build on the definition of Micali and Rogaway [MR91]
for unconditionally secure function evaluation, and prove that their notion of security is preserved
under a general concurrent composition operation similar to universal composition. However, their
definition involve notions that make sense only in settings where the communication is ideally
private; thus this definition does not apply to the common setting where the adversary has access
to the communication between honest parties.

The framework of Pfitzmann, Schunter and Waidner [Psw00, pw00] is the first to rigorously
address concurrent universal composition in a computational setting. They define security for re-
active functionalities in a synchronous setting and prove that security is preserved when a single
instance of a subroutine protocol is composed concurrently with the calling protocol. An exten-
sion of the [Psw00, Pw00] framework and notion (called reactive simulatability) to asynchronous
networks appears in [PW01].

Universal composability in its full generality was first considered in [c01], which addressed the
case of unbounded number of concurrently composed protocols. This work also demonstrated how
the security requirements of a number of commonplace and seemingly unrelated cryptographic tasks
can be captured via the trusted-party paradigm in the devised model.

A process calculus for representing probabilistic polynomial time interacting processes is de-
veloped in [LMMS98, MRST06]. In [MMS03] the notion of protocol emulation and realizing an
ideal functionality is formalized in this model, and shown to be preserved under universal com-
position with any calling protocol. Other models that define emulation-based security include
[DKMRO5, K06, c+06a].

At very high level, the notions of security in [Pw01, c01, MMs03, DKMRO5, K06] are similar.
However, the underlying system models differ in a number of respects, which significantly affect
the expressibility and generality of the respective models, namely the range of real-life situations
and concerns that can be captured by the respective formalisms. They also differ in their simplicity
and ease of use. In addition, the models provide different degrees of abstraction and different tools
for arguing about security properties. We leave a more detailed comparison out of scope.

Finally, we note that the above notions of security leave little room for non-determinism in pro-
tocol description and run-time scheduling. This is a natural choice, since non-determinism that is
resolved arbitrarily at run-time seems inherently incompatible with security against computation-
ally bounded adversaries. However, such modeling does not allow utilizing the traditional analytical
advantages of non-determinism in modeling of distributed protocols. First steps towards incorpo-
rating in the model non-determinism that’s resolved at runtime are taken in [c406, c+06a]; the
main idea here is to allow some parts of the protocol execution to be determined arbitrarily after
all the algorithmic components are fixed.

50

