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Abstract. We use the Bateman-Horn conjecture to study the order of the set
of Fq-rational points of primitive subgroups that arise in torus-based cryptog-
raphy. We provide computational evidence to support the heuristics and make
some suggestions regarding parameter selection for torus-based cryptography.

1. Background

1.1. Algebraic Tori and Primitive Subgroups. Let L/K be a finite and sep-
arable field extension with [L : K] = n. Let Gm be the multiplicative algebraic
group defined by the following property: Over any field F , the set of F -rational
points of Gm, denoted Gm(F ), is the multiplicative group F× of nonzero elements
of the field F . The Weil restriction of scalars of Gm from L down to K, denoted
ResL/KGm, enjoys the following property:

(ResL/KGm)(K) ∼= Gm(L) = L×,

where the equality comes from the definition of Gm. In other words the set of K-
rational points of ResL/KGm is isomorphic to L×. The algebraic group ResL/KGm

is a non-trivial example of an algebraic torus defined over K; that is, an algebraic
group T defined over K that over some finite extension field is isomorphic to (Gm)d,
where d is the dimension of T .

For any field F with K ⊂ F ( L, let NL/F : L −→ F denote the usual norm map
defined by NL/F (α) =

∏
σ∈Gal(L/F ) σ(α). Associated with each norm map NL/F

there exists a map NL/F : ResL/KGm −→ ResF/KGm such that the following
diagram commutes.

L× F×
NL/F

//

(ResL/KGm)(K)

L×

∼=
²²

(ResL/KGm)(K) (ResF/KGm)(K)
NL/F

// (ResF/KGm)(K)

F×

∼=
²²

Finally, we define the primitive subgroup of the algebraic group ResL/KGm as
the intersection

Tn =
⋂

K⊂F(L

kerNL/F .
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It follows that the K-rational points of Tn can be characterized as follows:

Tn(K) ∼= {α ∈ L× | NL/F (α) = 1, for all F with K ⊂ F ( L}.
It can be shown that Tn is a ϕ(n)-dimensional algebraic torus, where ϕ is the Euler
totient function. See [9] for more about the Weil restriction of scalars, algebraic
tori, and their related properties.

In this paper, we will be exclusively interested in the case where K is the finite
field Fq with q elements, where q is a prime power pr for some prime p and positive
integer r. Since L is a degree n extension of K, it follows that L = Fqn . From these
choices we see that

Tn(Fq) ∼= {α ∈ F×qn | NFqn/F
qd

(α) = 1, for all divisors d of n with d 6= n}.

1.2. Primitive Subgroups in Cryptography. The group Tn(Fq) has recently
been studied for its usefulness in cryptographic schemes such as Diffie-Hellman key
exchange and ElGamal encryption and authentication where the underlying discrete
logarithm problem is assumed to be difficult. The following theorem, proved in
[2, 5], lists some properties of Tn(Fq) that make it attractive for use in cryptography.

Theorem 1. If α ∈ Tn(Fq) is an element of prime order not dividing n, then α
does not lie in a proper subfield of Fqn . Moreover, Tn(Fq) ∼= Gq,n, where

Gq,n = {α ∈ F×qn | αΦn(q) = 1}
and Φn(x) is the nth cyclotomic polynomial in the variable x.

This theorem states that Tn(Fq) is isomorphic to the cyclic subgroup of F×qn of
order Φn(q), a group which is not contained in any proper subfield of Fqn . As
such, Tn(Fq) is isomorphic to the “cryptographically strongest” subgroup of F×qn

in the sense that an attacker will not be able to successfully use an index calculus
algorithm for computing discrete logarithms in Fqd if d is a proper divisor of n. If we
choose q such that log2 qn ≈ 1024 (for 1024-bit RSA security) and Φn(q) is divisible
by a prime with at least 160 bits (so as to thwart “square root” attacks such as the
Pollard Rho algorithm for computing discrete logarithms), then it would seem that
Tn(Fq) is a group that can be used to build secure cryptographic schemes.

In addition to the security-related properties, there is another property that
makes Tn(Fq) a particularly attractive group to work with for certain choices of n,
as described in the following theorem proved in [9].

Theorem 2. The torus Tn is rational if n is a prime power or the product of two
prime powers.

This theorem says that since Tn is ϕ(n)-dimensional, if n is a prime power or a
product of two prime powers, then Tn is birationally isomorphic to Aϕ(n). As such,
most of Tn(Fq) can be compactly represented with ϕ(n)-tuples of elements of Fq,
as opposed to the n-tuples of elements of Fq that are usually needed to represent
elements of Fqn . It follows that if we use Tn(Fq) instead of Fqn , data transmissions
will be more efficient by a factor of n/ϕ(n).

Clearly we would like to choose n so as to maximize n/ϕ(n). Since we may as
well take n to be squarefree, this leaves us with only two optimal choices for which
we are guaranteed that Tn is rational; namely, n = 2, 6. Indeed, cryptographic
schemes have been built in these groups; see [7, 4, 5]. It has been conjectured in [9]
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that Tn is rational for all positive integers n. If this were so, then other interesting
cases would be n = 30, 210, etc.

Though we do not know if Tn is rational for all positive integers n, we do have
to following result, also from [9].

Theorem 3. The torus Tn is stably rational for all positive integers n.

In other words, for each positive integer n, there exists some positive integer c
such that Tn × Ac is rational. Currently the best known constructions use c = 2
when n = 30, and c = 22 when n = 210; see [8].

1.3. Order of Tn(Fq). Recall that #Tn(Fq) = Φn(q). If Φn(q) is divisible only by
small primes, then it will be easy to compute discrete logarithms in Tn(Fq) using
the Chinese Remainder Theorem-based Pohlig-Hellman algorithm. To avoid this
attack and the Pollard Rho attack mentioned previously, we will need to choose n
and q so that Φn(q) is divisible by a prime with at least 160 bits. Recently an index
calculus attack that works directly in Tn(Fq) for n = 2, 6 has been proposed [3],
though it is not applicable in the case where q is a prime. Therefore we will mainly
be interested in the case where both q and Φn(q) are sufficiently large primes,
though we will begin with the more general case of q = pr for prime p and positive
integer r.

Let N be a positive integer and define

Pr,n(N) = #{m | 2 ≤ m ≤ N , m and Φn(mr) are primes of Z}.
This quantity counts the number of primes p ∈ [2, N ] such that Φn(q) is also
prime, where q = pr and r and n are fixed. Each of these leads to a potentially
cryptographically useful group Tn(Fq), though, again, we are ultimately interested
in the case r = 1. In the sequel we will study the asymptotic behavior of Pr,n(N)
as N −→∞, restricting our attention to the case where n is the squarefree product
of the first few primes. We will provide supporting computational evidence to go
along with the heuristics, and also recommend some choices of n and q that result
in schemes that provide security against all known attacks.

2. The Bateman-Horn Conjecture

2.1. Statement of the Conjecture. We begin our study of Pr,n(N) by stating
a conjecture of Bateman and Horn from [1]. Let f1, . . . , fk be distinct, irreducible
polynomials in Z[x] with positive leading coefficients. Define f =

∏k
i=1 fi and

(2.1) S(f) = {f(m) | m ∈ Z},
and further suppose that no prime divides every element of S(f). For each positive
integer N define

Q(f1, . . . , fk;N) = #{m | 2 ≤ m ≤ N , f1(m), . . . , fk(m) are all primes of Z}.
The following conjecture describes the asymptotic behavior of Q(f1, . . . , fk;N) as
N −→∞.

Bateman-Horn Conjecture. Let f1, . . . , fk and f be as above, di = deg fi, P be
the set of primes of Z, ω(p) = #{x | 1 ≤ x ≤ p, f(x) ≡ 0 (mod p)}, and define

(2.2) C(f1, . . . , fk) =
∏

p∈P

(
1− ω(p)

p

) (
1− 1

p

)−k

.
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Then

(2.3) Q(f1, . . . , fk; N) ∼ C(f1, . . . , fk)
d1 · · · dk

∫ N

2

(lnx)−k dx, as N −→∞.

Note that the Bateman-Horn conjecture reduces to the Prime Number Theorem
if k = 1, f1 = x, and to Dirichlet’s Theorem on primes in an arithmetic progression
if k = 1, f1 = a + bx, and gcd (a, b) = 1. If k = 2, f1 = x, and f2 = x + 2, then we
have the Twin Prime Conjecture. See [1] for a heuristic argument supporting (2.3)
and a proof that the infinite product in (2.2) converges. Though the supporting
computational evidence is overwhelming, there is unfortunately no proof of the
Bateman-Horn conjecture. Nonetheless, we will use this conjecture to study the
asymptotic behavior of Pr,n(N) as N −→ ∞, and provide computational evidence
to support our findings.

2.2. Bateman-Horn and #Tn(Fq). In order to use the Bateman-Horn conjecture
in our study of Pr,n(N), it is most natural to choose the polynomials f1 = x and
f2 = Φn(xr). These distinct polynomials obviously both have positive leading
coefficient. If it happens that Φn(xr) is irreducible and no prime divides every
element of the set S(f) as defined in (2.1) with f = f1 · f2 = x · Φn(xr), then the
Bateman-Horn conjecture yields

(2.4) Pr,n(N) = Q(x, Φn(xr); N) ∼ C(x, Φn(xr))
r · ϕ(n)

∫ N

2

(ln x)−2 dx, as N −→∞.

We must now study the set S(f) and the factorization of Φn(xr).
We begin with r = 1. In this case f2 = Φn(x) is an irreducible polynomial and

f = x · Φn(x). A well known fact about cyclotomic polynomials states that:

Φn(1) =

{
ρ, if n is a power of some prime ρ;
1, otherwise.

Recall that we are assuming that n is the squarefree product of the first few primes,
and thus we will have f(1) = 1 except when n = 2. Excluding this exceptional case
we see that no prime divides every element of the set S(f).

Now if n = 2, then f2 = Φ2(x) = x + 1, hence f = x(x + 1). Clearly then the
prime 2 divides every element of the set S(f). In particular we conclude that for
n = 6, 30, 210, etc., the necessary conditions on f1 = x and f2 = Φn(x) for the use
of the Bateman-Horn conjecture are satisfied.

The case r > 1 is somewhat more complicated. First we must determine whether
or not Φn(xr) is irreducible. Two additional well known facts about cyclotomic
polynomials are as follows. If ρ is a prime which does not divide n, then

Φn(xρ) = Φn(x) · Φρn(x).

In particular, if ρ is a prime dividing r but not n, then define d = r/ρ and substitute
in xd for x in the above identity to see that

Φn(xr) = Φn(xd) · Φρn(xd),

from which it follows that Φn(xr) is reducible. On the other hand, if every prime
dividing r also divides n, then

Φn(xr) = Φrn(x),
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an irreducible polynomial. From this and the property of Φn(1) stated above, we
conclude that in order to use the Bateman-Horn conjecture in the case r > 1, it
must be that every prime dividing r also divides n.

Suppose we have fixed suitable r and n such that every prime dividing r also
divides n. We would like to have many choices for a prime p such that Φn(q) is
prime, where q = pr. From what we have seen above, we can use the Bateman-Horn
conjecture to estimate the number of choices for p. We now provide some compu-
tational evidence that this is indeed the case, and provide suggested parameters to
construct secure torus-based cryptographic schemes.

3. Computations

3.1. Computational Evidence for Bateman-Horn. We have seen that the
Bateman-Horn conjecture tells us nothing about the case n = 2, and so we will
present computational evidence for the next few cases n = 6, 30 with r = 1, 2. Re-
call that f1 = x and f2 = Φn(xr), and so d1 = deg f1 = 1 and d2 = deg f2 = r ·ϕ(n).
First we made a rough approximation of C(x, Φn(xr)) using the primes up to 215

and found:

C(x, Φn(xr))
r · ϕ(n)

≈





0.7605, if n = 6, r = 1;
1.1086, if n = 6, r = 2;
0.6909, if n = 30, r = 1;
0.4335, if n = 30, r = 2.

For simplicity we replaced the integral in the approximation provided by (2.4)
with a sum. For each combination of n = 6, 30 and r = 1, 2, we computed the value
of Pr,n(N) and the Bateman-Horn prediction BHr,n(N) for log2 N = 1, 2, . . . , 30.
Our results, summarized in Tables 1 and 2, reconfirm that the Bateman-Horn
conjecture gives very good estimates, even for relatively small values of N .

3.2. Suggested Parameters for Tn(Fq). As was previously mentioned, for the
choices n = 6, 30, 210, any prime p such that Φn(p) is also prime leads to a group
Tn(Fp) that is resistant to all known discrete logarithm attacks, provided that the
following two conditions hold:

(3.1) log2 pn ≥ 1024,

(3.2) log2 Φn(p) ≥ 160.

Since Φn(p) ≈ pϕ(n) for large p, it follows that for n = 6, 30, 210, condition (3.1) will
imply condition (3.2). Following the construction in [6], we identified the smallest
ten primes p satisfying condition (3.1) with n = 6, p ≡ 2, 6, 7, 11 (mod 13), and
Φ6(p) prime. In the interest of conserving space, each of these primes is represented
as a sum p6 + v, where

p6 = 2375 668 978 229 576 954 621 987 172 734 316 848 349 556 051 596 973

is the smallest prime found, and v and p6 + v (mod 13) are given in Table 3.
We also identified small primes suitable for use with schemes based on the con-

jectured rationality of T30 and T210. Table 4 lists the ten smallest such primes for
each case.
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log2 N P1,6(N) BH1,6(N) P2,6(N) BH2,6(N)
1 1 2 1 2
2 2 3 2 4
3 3 4 3 5
4 4 4 4 7
5 4 6 6 8
6 4 7 8 11
7 6 10 10 14
8 10 13 13 19
9 14 19 21 27
10 22 28 36 40
11 40 42 58 62
12 63 67 94 97
13 100 108 158 157
14 186 178 267 260
15 298 301 453 439
16 500 515 752 751
17 885 894 1296 1304
18 1593 1568 2288 2285
19 2821 2774 4071 4043
20 4959 4945 7175 7208
21 8882 8874 12911 12937
22 16107 16021 23472 23355
23 29212 29075 42455 42384
24 52860 53013 77636 77278
25 97233 97067 142105 141496
26 178915 178412 260834 260075
27 329527 329076 480729 479703
28 609106 608926 889056 887647
29 1129888 1130102 1650290 1647378
30 2103603 2103096 3072103 3065736

Table 1. Pr,6(N) and BHr,6(N) for r = 1, 2 and log2 N = 1, 2, . . . , 30.

log2 N P1,30(N) BH1,30(N) P2,30(N) BH2,30(N)
1 1 1 0 1
2 1 2 1 1
3 2 3 1 2
4 2 4 2 3
5 4 5 2 3
6 6 7 2 4
7 8 9 2 6
8 12 12 4 8
9 18 17 7 11
10 24 25 11 16
11 39 38 20 24
12 54 61 33 38
13 87 98 58 61
14 155 162 97 102
15 291 273 163 172
16 481 468 289 294
17 801 812 514 510
18 1396 1424 922 894
19 2473 2520 1581 1581
20 4463 4492 2818 2819
21 8144 8062 5068 5059
22 14769 14555 9229 9132
23 26724 26414 16967 16574
24 48298 48161 30501 30218
25 88313 88183 55587 55330
26 162218 162084 102108 101698
27 299335 298960 187870 187580
28 553937 553198 348182 347100
29 1027727 1026676 645942 644180
30 1915117 1910623 1201156 1198806

Table 2. Pr,30(N) and BHr,30(N) for r = 1, 2 and log2 N = 1, 2, . . . , 30.
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v p6 + v (mod 13)
0 7

2418 7
94458 7
202674 11
208584 6
245964 11
248430 7
257820 11
273840 2
344976 2

Table 3. Good primes for T6(Fp).

n = 30 primes n = 210 primes
18 843 310 259 43
18 843 311 363 73
18 843 311 771 409
18 843 314 339 653
18 843 314 821 757
18 843 317 303 1013
18 843 317 483 1153
18 843 318 833 1601
18 843 319 667 2027
18 843 323 479 2153

Table 4. Good primes for T30(Fp) and T210(Fp).
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