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Abstract. The recent collision attacks on the MD hash function family
do not depend on the constants used in the function, but rather on
its structure (i.e., changing the constants will not affect the differential
analysis based attacks). Thus, is seems that the role of constants in
maintaining security and preventing these attacks is unclear, at best, for
this case and in particular fixing or varying the constants will not matter
for these analyses.

In this work we present a methodological investigation into the case of
block-cipher based PGV hash functions family, and investigate the im-
portance of constants in securing these designs. To this end we consider
the twelve variants of the PGV family that yield secure hash in the
generic ideal cipher case (as was shown by Black, Rogaway and Shrimp-
ton), but consider them under concrete instantiation. To investigate the
role of constant in the key derivation procedure we just ignore the con-
stants. In this more uniform setting we further consider a very regular
cipher, namely AES modified to have Mixcolumn also in the last round
(which should still be a strong cipher). Analyzing this modified-AES
based hashing, we show that with about 16% probability we can find
collisions with complexity 2*° (much smaller than the birthday attack
complexity 2%%).

While we do not claim to break the AES based version, this nevertheless
shows that constants in block cipher have an important role in resisting
collision attack (in particular there is a need to vary the constant). It
also shows that (in the symmetric modified version) merely the concrete
AES structure does not guarantee the security of AES-based hash func-
tion (shown secure under the ideal cipher model). This is undesirable
and non-robust, because this means that even though a block cipher
has complicated structures in its round function and its key scheduling
algorithm, we can not have a confidence about the security of hash func-
tions based solely on it (note that there are several block ciphers such
as IDEA, 3-key triple DES which do not use any constants). Given the
above methodological findings, we suggest new AES-based hash func-
tion constructions (essentially modified PGV) which can be generalized



to any block cipher. The functions inherit the security under the ideal ci-
pher model on the one hand, while, on the other hand, concretely assure
in their structure that the weakness exhibited herein is dealt with.
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1 Introduction.

Nowadays, the need to understand and design secure hash functions is of high
priority, which became clear due to the attacks by Wang and her coauthors
[16-21]. We need to protect against these attacks, have robust design possibly
resisting unknown attacks, and design secure simple hash functions to be used
potentially in low power device environment. Till now there have been numerous
concrete analyses on MD4-style hash functions [16-21]. On the other hand, in
case of block cipher based hash function, several papers focus only on generic
security analysis, i.e., when the underlying block cipher is the ideal block cipher
[2,9] or pseudorandom [8,7, 4].

Recall that there is always a gap between generic analysis and the confidence
we have about the security of concrete block cipher based hash functions. This
paper, therefore, takes a first step into concrete security of practical block ci-
pher based hash function. It is a step towards designing simple and secure hash
functions whose security can be based on the underlying iterated block cipher
structure. Note, for example, that recently RC4-hash, based on RC4 stream
cipher, was suggested [3].

We show that the bare AES structure (slightly modified) does not guarantee
the security of AES-based hash function (in a structure that is generically secure)
and, in fact, that the security of AES-based hash functions depend on constants
used in its key scheduling algorithm. This may be undesirable since a robust de-
sign should remain secure as constant change. This exhibits a difference between
MD4-style hash functions and AES-style block cipher based hash function (as
far as known attacks are concerned), because the (in)security of MD4-style hash
functions does not depend on constants but merely on their structures. Thus,
a very complicated cipher may not be secure due to lack of constants when
employed in a hash function scheme, a fact that has to be considered in hash
functions design.

In light of the above concrete unveiled issues, we contribute an initial step
in block-cipher based hash function design as well and propose two kinds of
simple modifications. These involve adding round keys and modified operations
in the PGV constructions which prevent the attacker exhibited in this paper from
finding collisions of modified AES-based hash functions. These modifications
show the possibility of designing simple hash functions which has repetitions of
a structure due to regular cipher structure, yet are not broken by our method
which takes advantage of the cipher’s repetitious structure.

The rest of the paper is organized as following. In Section 2 we give a descrip-
tion of AES and introduce constructions of block cipher based hash functions.



The security of a modified AES-based hash function is analyzed in Section 3.
Then in Section 4 we suggest two modifications of block cipher based hash func-
tions. We conclude in Section 5.

2 Preliminaries.

We first describe the AES algorithm [1] and block-cipher based hash function
constructions.

2.1 AES Algorithm.

This paper focuses on AES-128 whose key size is 128-bit and message block
size is 128-bit. S is S-box and M is MixColumn matrix operation. KSA is Key
Scheduling Algorithm. Let |z| be the bit-length of x. Here, kg = k and Rot-
Byte(aq||az||as]|as)=(az||as||as||a1) such that |a;|=8. SubByte(ai||az||as|las) =
(S(a1)]|S(a2)]|S(as3)||S(a4)). {Rcony, - - - , Rconio}={0x01000000, 0x02000000,: - -,
0x1b000000, 0x36000000}. And M is defined as follows.

02010103
03 020101
M(a0||a2||a3||a4) = (a0||a2||a3||a4) 01 0302 01

010103 02

In matrix operation, each column of the matrix and (ag||az||as||as) are described
in 0 ~ 3 degree polynomial with coefficients in GF(28) which is also described
in 0 ~ 7 degree polynomial with coefficients in GF(2). For the addition and the
multiplication, two irreducible polynomials, 28 +2* + 2% + 2 4+ 1 and 2* + 1, are
used for each modulo operation.

AES128(k, m) = ¢

KSA(k)=ko|[k1|| - - - || k1o, |k:|=128.
y=m @ ko = yollyall - lyas, |yi|=S.
for r=1to 9
t= SubByte(y) = to||t1||t2||t3||t4|| s ||t15 fOI‘ ti = S(yl)
v = ShiftRow(t) = to[ts|[t10][t15|[tal[te|[t1al[ts][ts][trs [t2][t7|[tr2] [t1|[t6|[t11.
w = MixColumn(v) = M(wol| - - - [|v3)[[M(val| - - - [[v7)[[M(vs]] - - - [[v11) [[M(v12]] - - - [|v1s).
y=w®D ky,.

t = ByteSub(y).
v = ShiftRow(t).
c=v® k.

Fig. 1. AES-128 Algorithm. k is the master key and m is any plaintext and c is the
corresponding ciphertext to m.
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Fig. 2. Key Scheduling Algorithm of AES-128.
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dO|ef |aa|fb|43|4d|33|85|45| {9 |02| 7f|50| 3c | 9f |a8
51|a3|40|8f|92|9d|38|f5 |bc|b6|da|21 (10| ff |3 |d2
cd|0c|13|ec|5f|97|44(17|c4|aT|Te|3d|64|5d|19|73
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70(3e|b5(66(48(03|f6 |0e|61|35|57|b9|86|c1|1d|9e
el|f8]98]|11({69|d9|8e|94(9b|1e|87|e9|ce|55|28|df
8c|al|89|0b|bf|e6|42|68(41{99|2d| 0f|b0|54 |bb|16

——lo||o|T| oo ulbs|wlv—lo

Table 1. S-box of AES. For example, S(53)=ed.



2.2 Constructions of Block-Cipher based Hash Functions.

There are numerous known constructions of hash functions based on underlying
block ciphers. Among them, PGV constructions are perhaps the most known.
These family was designed in 1993 by Preneel, Govaerts and Vandewalle [10] who
considered 64 block cipher based hash functions. In 2002, Black, Rogaway and
Shrimpton [2] proved that 20 of 64 PGV-hash functions are collision resistant in
case of using fixed initial value and assuming that the underlying block cipher
is a random block cipher (i.e., a generic analysis). Among the 20 constructions,
12 constructions (indexed by f1 ~ fi2) are secure against the free-start collision
attack but fis ~ foo are not secure against the free-start collision attack [2].
Recall that given a compression function f, We say that (h;—1,m;) and (h,_;,m})
are a free-start collision pair when f(h;,_1,m;) = f(hi_;,m}) and (hj—1,m;) #
(h;—l ) ml)'

%

3 Collision Attacks on a Modified AES-based Hash
Functions

In this section, we describe a slightly modified AES, AES*.

3.1 A Slightly Modified AES : AES*

We ignore constants in the key scheduling algorithm of AES and add Mixcolumn
operation to the last round. We call this algorithm AES*. The basic goal is to
have a very regular structure, and both factors contribute to it. We explain the
reason why a-priori AES* seems to be secure against any collision attack.

CoNSTANTS. Known collision attacks such as Dobbertin’s attack and Wang’s
attack are applied against hash functions regardless of the values of constants
in these functions design (i.e., the attack will work with any constant). Thus,
constants seem not to help the hash functions to be secure against known col-
lision attack. In fact, the attacks mentioned above depends on and exploit the
structures of the hash functions rather than the value of constants in their design.

For example, the general structures of MD4/5 [12,13], HAVAL [22], RIPEMD
[11] and SHA-0/1 [14,15] are very similar. We call them MD4-style hash func-
tions. Since MD4 was analyzed by Dobbertin [5] and then Wang, all MD4-style
hash functions were eventually analyzed. (RIPEMD consists of two parallel algo-
rithms which are same except constants.) On the other hands, there is no attack
on RIPEMD-128/160 [6] which consists of two parallel algorithms which have
different message reordering, different boolean functions, different shift rotations
and different constant at each step. Given the state of the methodology of at-
tacks, we can easily say that the security against any of the avialable collision
attacks does not depend inherently on constants but rather on weaknesses of the
structure of the hash functions. Thus, and this is very natural, we can method-
ologically deduce as a design principle that hash function should be secure from



their structural viewpoint (and adversarial modification of constants should not
reduce their strength).

ADDING MIXCOLUMN. The reason why there is no Mixcolumn operation in last
round of AES is that the encryption and the decryption of AES would be similar
in structure. This simplifies implementations in general, and allows the same
basic components to be reused in hardware implementations. However, any block
cipher based hash function uses only the encryption process, so we do not care
about the decryption operation in this case. Also, we certainly hope that adding
Mixcolumn does not really reduce the security of AES as a block cipher.

3.2 Collision Attacks on AES*-based Hash Functions

In this subsection, we describe collision attacks on AES*-based hash functions.
These attacks show that the structure of AES (by itself) cannot guarantee the
security of AES-based hash functions. It further demonstrates that the constants
of the key scheduling algorithm of AES have an important role in making the
hash functions secure.

Our attack consists of three parts: analysis of the key scheduling algorithm,
analysis of the round transformation and analysis of the constructions of block
cipher based hash function in [2]. Note that our attack method can not be used
to attack properly modified MD4-style hash functions (i.e., such functions with-
out the constants).

Analysis of The Key Scheduling Algorithm of AES*

Fig 3 shows the key scheduling algorithm of AES*. We want to find the value
of k;_1 and k; such that k;_1 = k;. It is easy to find the value. With S-box of
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SubByte |-

>
>

A

Y

>
>

ki =| a b’ c d

Fig. 3. Key Scheduling Algorithm of AES*-128.

table 1, we can know that the value is (0x00000000, 0x00000000, 0x00000000,
0x52525252). We call this 128-bit value ‘a’.



Analysis of Round Transformation of AES*

Each round transformation consists of SubByte, ShiftRow, MixColumn and adding
roundkey. We define the i-th round transformation by Round;(k;, y) where k;
is the ¢-th round key and y is the input. Then we want to find y’s such that
Round;(a, y)=y in complexity smaller than the birthday attack complexity. We
denote y as (yol[y1|ly2|| - - - [|y15) where |y;|=8 and denote a as (ao||a1|az][ - - - ||a15)
where |a;|=8. Round;(a, y)=y can be described in detail as following:
(4o ® aollyr ® a1||ly2 @ az||ys @ as)=M(S(yo)| S
(ya © aallys @ as||ye © aellyr ® a7)=M(S(ya)|| S
(
(

| |

| |
ys @ as||yo @ aol|y10 ® aiol|y11 @ a11)=M(S(ys)||S(y13)|/S(y2)||S(y7))
) ) |S(y11))

Y5)[IS(y10)

S(
S()y9)||5(y14)

L. (y15))
2. (y3))
3. | )
4. (y12 ® a12||y13 © a13]|y1a © arally1s © a15)=M(S(y12)[|S(y1)[|S(ys
Now we try to compute the complexity of finding y’s satisfying the above
four equations. In case of the first equation, we expect 224 solutions because g
is used in both of its sides. So, with expected complexity 232, we get 224 so-
lutions. Then, for each solution of the first equation, since y3 and y5 are fixed
already in the first equation and y4 is used in both sides of the second equation,
the complexity of finding solutions of second equation is 224 and we expect 2%
such solutions. Thus, we get 232 solutions satisfying the first and the second
equations with complexity 248, Then, for each solution among the 232 solutions
satisfying the first, the second and the third equations, since ys, y7, y9 and y1g
are fixed already and yg is used in both sides, the complexity of finding solutions
of the second equation is 2'¢ and we expect 278 solutions (i.e. one in 28). So we
get 224 solutions satisfying the first, second and third equations with complexity
248 Then, for each solution among the 224 solutions, since y2, y7, yo and y1o are
fixed already and yg is used in both sides, the complexity of finding solutions of
the second equation is 28 and we expect 2724 solutions. So on average we get
one solution satisfying first, second, third and forth equations with complexity
232, Therefore, the total complexity is about 249 (~ 2324-2184.2184.232)

Next, we try to compute roughly the probability that there exist at least two
y’s. We expect one y on average, because y is 128-bit and we do the exhaus-
tive search of 2128 candidates of y. If we assume that this follows the binomial
distribution, then the average is 1 and the standard deviation is v/1 — 2~128(=
/2128 .2-128 . (1 — 2-128)). Thus, we can deduce that there exist at least two
y’s with about 16% probability according to the standard normal distribution
table. We denote such two y’s as y and y'.

Analysis of AES*-based hash functions in [2]

Through previous subsections, with about 16% probability we can get (a, a ®y)
and (a, a®y’) such that AEST,(a, a ® y)=y and AES].5(a, a®y')=y’ in Fig 4
because for each i-th round Round;(a, y)=y and Round;(a,y’ )=y’ and AES}.4(a,
b)=Roundjg(a, - - - Rounds(a, Roundz(a, Round; (a,a @ b))) - - - ). Fig 5 shows that



the above two pairs can be applied to twelve PGV constructions (f1; ~ fi2) in
order to get free-start collisions. Especially, in the case of fi ~ fy, if the initial
value is a, we can get collisions of AES*-based hash functions. In the case of
fiz ~ fo0, Fig 6 shows that the above two pairs are useless even for getting
free-start collisions. This shows that we can not deduce that f; ~ fi2 are no
worse constructions than fi3 ~ fao only by reasoning that fi ~ fio are free-
start collision resistant generically, i.e., when the underlying block cipher is the
ideal block cipher.

ad®y a®y
¥ ¥

-} AEShs Y  a—p AESL, Y

Fig. 4. Two Undesirable Properties of AES*-128.

4 Suggestion of New Block Cipher based Hash Functions

Here, we give preliminary design suggestion for kinds of modifications that pre-
vent the attacker described above from finding a collision on block ciphers, re-
lying the security on the functions’ structures. These modifications may help
designing simple and secure hash functions (especially for low power device en-
vironments such as RFID and sensor network) because we may be able to use
a small fixed component repeatedly and also we can simplify the key scheduling
part of block cipher for designing block cipher based hash functions. The idea is
that the modification will retain the generic security analysis while coping with
attacks based on the exploitation of the XOR function for accelerating collision
finding (as demonstrated above).

Modification of Adding round key in Block Cipher

Block ciphers such as AES use only shift rotations and XOR operation except
S-box. This may cause us to have y @ y and 3’ @ y’ outputting the same value
while y # y’. Thus, we suggest that the addition operation and XOR operation
are used in an alternate fashion, rather than using only XOR operation.

Modification of the PGV constructions

The PGV constructions use only the XOR operation. We thus comment that
from the point of view of the attack, it may be wise to change the XOR operation
into the addition operation. After modification the functions’ generic security can
be proved in the same way as in [2].

We believe that modifications to structures as above, which contribute to
having more robust designs in general, are interesting area of research.
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Fig. 5. Twelve PGV Constructions f1 ~ fi2. The box is AES*-128. Here, we consider
only y. We can apply 3’ in the same way.
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5 Conclusion

Nowadays, we need to design secure hash functions (secure against attacks like
Wang’s, and robust in general). This means we need to understand some ba-
sic design principles on major methods for constructing robust hash functions.
This paper contributes methodologically to such general understanding. We also
need to design very light hash function if we want function suitable to mod-
ern environments. The paper’s overall goal was to give some new insight into
designing hash function based on block ciphers. The paper further attempts to
show that care is needed and that, possibly, there may be concrete weaknesses
in the combination of the cipher structure and the hashing iteration. The paper,
in fact, suggests that we employ carefully block ciphers when we construct hash
functions based on them, especially if we want robust protection based on the
overall structure (rather than protection based on specific constants employed).
Unfortunately, the AES structure when slightly modified does not guarantee the
security of AES-based hash function which actually depends on the choice of
constants in the key scheduling algorithm. We believe that the work as a whole
may lead to better understanding of design principles and that the two kinds of
modifications of hash function suggested in this paper help designing simple and
secure hash functions.
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