New Technique for Solving Sparse Equation Systems

Havard Raddum and Igor Semaev

Department of Informatics, University of Bergen, N-5020 Bergen, Norway

Abstract. Most of the recent cryptanalysis on symmetric key ciphers have focused on alge-
braic attacks. The cipher being attacked is represented as a non-linear equation system, and
various techniques (Buchberger, F4/F5 XL, XSL) can be tried in order to solve the system,
thus breaking the cipher. The success of these attacks has been limited so far. In this paper we
take a different approach to the problem of solving non-linear equation systems, and propose
a new method for solving them. Our method differs from the others in that the equations are
not represented as multivariate polynomials, and that the core of the algorithm for finding the
solution can be seen as message-passing on a graph. Bounds on the complexities for the main
algorithms are presented and they compare favorably with the known bounds. The methods
have also been tested on reduced-round versions of DES with good results. This paper was
posted on ECRYPT’s STVL website on January 16th 2006.

Keywords: sparse algebraic equations, block ciphers, algebraic attacks, DES.

1 Introduction

Most of the cryptanalysis done on symmetric key ciphers in the last few years has been
focused on algebraic attacks. Much of this interest comes from the fact that the AES can
be described as a system of quadratic equations, and that solving this system breaks the
cipher [1].

One important feature algebraic attacks have is the fact that you only need very few
known plaintexts in order to set up an equation system describing the cipher and deter-
mining the key uniquely. This makes these attacks more realistic and threatening than
differential or linear attacks that typically require enormous amounts of known or chosen
plaintexts.

Strategies for solving non-linear equation systems have been described [2-4] and some
have been developed into cryptanalytic attacks [1, 5, 6]. Other work has described interesting
algebraic properties found in the AES, but without any actual attacks [7,8|. There has
been some debate over the efficiency of the XSL-attack on the AES, and some papers have
appeared [9,10] indicating it is not as good as claimed by the authors.

One of the problems this field of research has encountered is the difficulty of producing
good examples of algebraic attacks carried out in practice. The time and memory require-
ments of running some of the proposed attacks rapidly grows out of the bounds set by a
typical workstation [11]. This means we lack firm proof of how the attacks work in practice,
except for very small examples.

In this paper a new method for solving non-linear systems of equations is introduced. Our
approach differs a lot from earlier work in that equations are not represented as polynomials.
Equations are represented as lists of bit-strings, where each string is a value assignment of
variables that satisfies the equation.

We have used reduced-round versions of DES to test our methods. The results show that
our techniques easily solves the system coming from four rounds of DES, and that both five
and six rounds of DES can be broken faster than exhaustive search. While breaking six
rounds of DES is not very interesting in itself, this work gives an example of a successful
algebraic attack against something that looks like a real-world cipher.

It will also become apparent that, on a normal workstation, the new method we are
proposing is able to solve systems that are probably out of reach by known methods. For
example, a system consisting of equations of degree five and 1080 variables describing four
rounds of DES with 16 known plaintext /ciphertext blocks is solved in 25 minutes on a PC.

2 Representing equations and running the Agreeing algorithm

Throughout the paper we will only consider equations where the variables have values in
GF(2). Let X be a set of Boolean variables of size n. A system of m Boolean equations

fl(Xl):()a"-7fm(Xm):0 (1)

is considered, where f; = f;(X;) is a Boolean function in variables X; which is a subset of
X of size k;. We assume k; < k for some k.

Definition 1. A configuration for an equation f;(X;) = 0 is an assignment of values to
the variables X; that satisfies f; = 0.

The variables in X; are fixed in some order, and a configuration for f; will be represented
as a bit-string of length k;. The bit in a specific position in the configuration has the value for
the variable in the same position in X;. We will not work with the equations as multivariate
polynomials, but instead identify an equation f;(X;) = 0 with the ordered set of variables
X;, and a list L; of all configurations for f;. This object is the basic building block for our
methods, so we give it a name.

Definition 2. A symbol S = (X, L) consists of an ordered set of variables X = X (S) and
a list L = L(S) of configurations for X.

We expect each f; to have approximately 2¥~1 configurations. Producing and storing
the list L; thus requires k to be relatively small, for each ¢ we must be able to run through
all 2% bit-strings of length k; to determine which are configurations and which are not.
When we say our system should be sparse we mean that k is relatively small.

We now proceed to describe the core algorithm for solving the system of equations.
Every solution of the system can be represented as an n-bit string, where each bit contains
the value for one of the variables in X. Each equation in the system has to be satisfied with
the solution, so for any symbol S, concatenating bits from the solution into a string for the
variables X (S) will produce a configuration found on L(S).

Our idea is to delete configurations that can not be part of a solution from the configu-
ration lists in the symbols. If we are able to remove all wrong configurations we can simply
read the values of the remaining configurations in the various L(S;) to get a solution of the
system, at least when it is unique.

Definition 3. Let Y C X. A configuration for X is said to cover a configuration for Y if
the two are equal for all variables in Y.

Let two symbols S; and S; be given. Let X;; = X (5;) N X(S;) and L;; be the set of all
configurations for X;; covered by at least one configuration on L(S;). Similarly, let Lj; be
the set of all configurations for X;; covered by some configuration on L(S;). We say that
S; and S; agree if L;; = Lj;. In case when they do not agree we apply a procedure called
agreeing. That is, we delete from L(S;) and L(S;) all configurations that do not cover any
configuration on L;; N Lj; and get lists L] and L;. None of the configurations deleted from
L(S;) and L(S;) could be part of a full solution, since it would be impossible to satisfy both
S; and S; with them. The symbols S} = (X(5;), ;) and S} = (X(S;), L) agree now, and
we replace S; with S; and S; with S7.

The Agreeing algorithm works by repeatedly finding two indices ¢ and j such that S;
and S; disagree, and apply the agreeing procedure to L(S;) and L(S;). When running the
Agreeing algorithm we often run into situations where S; and S; agree, but S; and S
disagree. After deleting some configurations from S; to make it agree with Sy, it may well
be that S; and S; disagree. In other words, applying the agreeing procedure to one pair of
symbols may cause disagreement in other pairs. If there is enough overlap among the various
X, we will get a chain-reaction of deletions of configurations that will actually remove all
configurations except for those that are part of a full solution.

On the other hand, all pairs of symbols may agree before a solution can be seen. If
the amount of readily available information in the system is below some critical mass, the
chain-reaction of pairwise agreeings will die out before enough deletions have occurred. What
typically happens for the reduced-round DES systems (that in all likelihood have unique
solutions) is that deletions occur in the beginning of the Agreeing algorithm, but that the
symbols are put into an agreeing state while there still are a lot of configurations left in the
symbols, see Section 4 for a detailed description of the Agreeing algorithm’s output and its
complexity. The next section deals with strategies for overcoming this problem.

Running the Agreeing algorithm may be seen as message-passing on a graph. The nodes
in the graph will be all the symbols S, ..., .S, together with the symbols
Sij = (Xij, Lij N Lj;) that have a non-empty X;;. There will be edges from each S;; to S;

and S;. If a configuration ¢ on L; does not cover any configuration on L(S;;), we can think
of S;; sending a message over the edge to S; telling the symbol to delete c. The Agreeing
algorithm will continue as long as there are messages to be sent in the graph.

3 Trying to force the solution to emerge

When the symbols are already in an agreeing state, the Agreeing algorithm will not do
anything. In this case it is necessary to do something to make the Agreeing algorithm start
again. We have examined two different strategies for getting out of an agreeing state.

3.1 Splitting

The first of the methods for re-starting the Agreeing algorithm we have called Splitting, and
is quite simple. When the graph reaches an agreeing state with no visible solution what we
do is the following: We focus on one symbol S, and split L(S) in two parts, L; and L.
We then replace L(S) with Ly or Lo and start the Agreeing algorithm again. The correct
configuration for S (assuming unique solution) is found on either L; or Lo, so what we are
basically doing is guessing on which part that contains this configuration. If it becomes clear
that the guess was wrong, we will run the Agreeing algorithm with the other list instead.

For the DES systems, guessing only once is not enough help for the Agreeing algorithm
to solve the system. In general, the symbols will again come to an agreeing state with
no apparent solution after the first guess. Then we need to guess again, run the Agreeing
algorithm once more, and so on. Each time we guess, we are guessing one bit of information,
since the correct configuration is found on either L; or Ly. One can see that guessing on
the values of a set of variables for restarting the Agreeing algorithm is a particular case of
splitting.

When will it become clear that a guess was wrong? When we make a wrong guess
somewhere, we are deleting the correct configuration from a symbol’s configuration list,
making it impossible to find a solution. What happens, possibly after making more guesses,
is that the Agreeing algorithm deletes all configurations in some L(S). When this happens
we will backtrack to the last guess made, and try the other possibility. If this also turns out
to be a dead end, we will backtrack to the guess before that, and try the other possibility
from that point, etc.

What we are doing is going through a binary search tree, looking for the solution of the
system. When we follow the branch of the tree corresponding to the correct guesses we find
a solution. The leaves of this tree will be the point where we either find a solution, or the
points where some L(S) becomes empty. The leaves will be at somewhat varying depths,
and the complexity of this approach will be exponential in the average depth of the tree.

3.2 Gluing

The other main strategy for making the Agreeing algorithm start again is called Gluing.
With this method we do not do any guessing, but instead merge two symbols into one,
thereby bringing their joint information about the solution into the open.

Let symbols S; and S; be given. We put Z = X (5;) U X (S;) and X;; = X(S;) N X(S5;)
and define a list L of configurations for Z. The list L consists of all configurations (a, b, c),
where b is a configuration for Xj;, (a,b) € L(S;), and (b,c) € L(S;). In other words, L
consists of all configurations that cover one configuration on L(S;) and one configuration
on L(S;). The symbol S = (Z,L) = S; o S; is the result of gluing the symbols S; and S,
and the configuration corresponding to the solution of the system is found on L.

When our symbols reach an agreeing state, we can glue together symbols to create new
equations. When gluing S and T together we discard S and T, since all information in them
are contained in So7. When we have glued together several pairs of symbols the new set of
symbols will in general not be in an agreeing state, so we can start the Agreeing algorithm
again.

The price to pay when gluing together symbols is longer configuration lists. Assum-
ing S and T agree, the number of configurations in S o T" will be at least as big as
max{|L(S)|,|L(T)|}, and may be as big as |L(S)| - |[L(T)|. In practice we have to set a
threshold and only glue together symbols that produce configuration lists with size below
this threshold. This means we may run into cases where we can not afford any symbols to
be glued.

When computer constraints make it too costly to perform gluing, we have considered
partial gluing. For two symbols (X;, L;) and (X}, L;), we choose Y; C X; and Y; C X;. Next
we make L and L;- by projecting all configurations on L; onto Y; and all configurations on
Lj onto Yj. In general, |L}| < |L;| and |L| < |L;| since different configurations for X; and
X; may be equal when projected onto ¥; and Y;. If Y; and Y; were chosen carefully we may
glue the symbols (Y3, ;) and (Y}, L)) and cause disagreement with some other symbols.

Two difficult issues concerning partial gluing is how to choose Y; and Y; in an optimal
way, and how to ensure that the new symbol coming from partial gluing is actually bringing
us closer to solving the system. One strategy for choosing Y-subsets has been tried, but
so far we do not have any results to report about partial gluing. We only mention partial
gluing as a topic for future research.

4 Complexity Issues

In this Section we will look at what the output of the Agreeing algorithm is, and what its
running time is. We then compare the Agreeing-Gluing algorithm with known approaches
for solving sparse Boolean systems of equations.

Given the set of symbols S; = (X;, L;), 1

< i < m related to the initial system of
equations (1), we consider a set of subsymbols (X;, U;)

C (X, L;) meaning that U; C L; for

all 1 <¢ < m. The latter set of subsymbols is called a maximal agreed set of subsymbols if
the symbols (X;, U;) pairwise agree and for any sets U/

Ui CU; C L,
with U; C U] for at least one ¢, the set of subsymbols (X;,U/), 1 <1i < m does not agree.

Proposition 1. 1. The mazimal agreed set of subsymbols is unique.

2. The output of the Agreeing algorithm is the maximal agreed set of subsymbols for the
initial set of symbols.

3. The running time of the Agreeing algorithm is bounded by O(k?>m>2%%) bit operations
with memory requirements O(m2) bits.

Proof: Assume there are two maximal agreed sets of subsymbols: (X;,U;), 1 <i < m and
(X;,U]), 1 <i<m. Then one constructs a new set of subsymbols (X;,U; UU}), 1 <i < m.
The latter subsymbols pairwise agree. That is only possible when U; = U/, 1 <i < m. The
first statement is proved.

To prove the second statement, let (X;,U;), 1 < i < m be the output of the Agreeing
algorithm and

(X3, Us) € (X3, U;) € (X5, Li)

for some set of symbols (X;,U/), 1 <i < m which pairwise agree. The intermediate stage of
the Agreeing algorithm is a set of subsymbols (X;, L)) C (X;, L;). Let this be the stage just
before deleting any of the configurations in U} \ U;, 1 <i < m. Then (X;,U}) C (X;, L)),
1 <4 < m. The Agreeing algorithm now deletes some a € U/ \ U;. This means there is a
symbol (X, L;) such that L;- does not contain any configuration that covers the projection of
aon X;; = X;NX;. Then U J/ does not contain any configuration that covers the projection
of a on Xj; either, so (X;,U;) and (Xj;,U;) do not agree. This implies U; = U; for all
1 <4 <'m and proves the statement.
To prove the last statement one sees that

m

> Ll < m2F.

=1

To find a pair of symbols S; = (X;, L}) and S; = (X}, L;), which do not agree, one should
try at most m(m — 1)/2 pairs at any stage of the Agreeing algorithm. If such a pair exists
> . |L;| should be decreased by at least 1, otherwise the algorithm terminates. Finding the
configurations to remove from L] and L takes O(k2F) steps because common configurations
in L;j, L;i (see the definition of the agreeing procedure) may be found by a sorting algo-
rithm. So on the whole the complexity is O(km?322¥) operations with binary k-strings. The
statement on the memory requirements is obvious. This finishes the proof of the Proposition.

Proposition 1 implies that for a fixed k the Agreeing algorithm has a polynomial be-

havior and its result does not depend on a particular way of pairwise agreeings. However,

it generally fails to find a solution. Thus the Agreeing algorithm should be combined with
some other techniques as splitting or gluing.

The gluing is by itself able to solve any system of sparse Boolean equations. Really, one
applies gluing to construct the set of all solutions for the subsystem of equations

fl(Xl):07"'7ft(Xt):07 (2)

in variables X (t) = X; U ... U X; subsequently for ¢ = 1,...,m. We call this the Gluing
algorithm. In another paper we prove

Theorem 1. Let natural numbers m and ki, ..., kn < k be given and the subsets of vari-
ables X1,..., Xm C X and Boolean functions fi,..., fm be chosen uniformly and indepen-
dently of each other. Then the mathematical expectation of the complexity of the Gluing
algorithm is

O((2¢" 4 €)™ + poly(n)m) (3)
bit operations as k is fized and n tends to infinity. Here
In 2 1 1-271
="~ (28 =) In(———),
1-27%

€ is any fized positive real number and poly(n) is a polynomial in n.

We do not prove Theorem 1 here for lack of space. We will give a heuristic estimation on
the complexity of the Gluing algorithm instead. We consider the symbols

(X(@),Ur), (X¢g1, Leg1), - - -y (Xom, L) after t — 1 applications of gluing. Here Uy is a set of
configurations for X (¢), solutions to the subsystem of equations (2) of the initial system. Let
¢ be the size of X (t). One sees that the size of the set U; is about 2! because adding a
new independent equation reduces the number of solutions by one half on the average. One
considers the number r; as the number of filled boxes when particles are randomly allocated
in n boxes by complexes of k particles. From [14], pp. 211-213 we know that the expected
number of empty boxes is n(1—k/n)t, so r, is approximately n—n(1—k/n)t ~ n(1—e /")
for a bounded k and n tending to infinity. It implies that U; is of size approximately

26(t/n)n
where 6(h) = 1 — e~ — h. One finds that h = Ink/k is the only extremum of this function

in the interval 0 < h and 6(Ink/k) = 1 —Ink/k — 1/k is the maximum of d(h) in this
interval. So the running time of the algorithm is estimated at

O((Ql—lnk/k—l/k+€)n —|—p0ly(n)m)

on the average. One can check that this heuristic bound is even lesser than (3) at least for
k up to 20, but to be at the right side one should prefer (3). Let k; = ...k, = k. Then

we are able to prove that the probability that the complexity of the Gluing algorithm is
bounded by O(c"), where ¢ < 2€7, is tending to 0 as n tends to infinity. In this sense the
bound (3) is optimal.

In the above formulation the Gluing algorithm requires as much memory as its running
time, but there is a variant, called Gluingl, taking the same running time to terminate and
only using O(m2*) bits of memory. Even a slightly faster way of gluing(Gluing2) is possible.
To this end one applies the Gluing algorithm to find all solutions for the first ¢y equations in
(1), and then one separately finds all solutions for the next ¢y equations for some parameter
to. After that one glues these two symbols to get all solutions for the first 2ty equations.
Then one proceeds as in the basic Gluing algorithm. With the above heuristic argument g
should be hgn, where hy is the only solution to the equation §(h) = §(2h). We always get a
better bound than that of the basic Gluing algorithm and similarly the heuristic estimation
is lesser that the mathematically proven one. We will not go further into details on the
Gluing2 algorithm here.

The estimation (3) is also a bound on the complexity of the combined Agreeing-Gluing
algorithm, where we run the Agreeing algorithm between some of the gluings. This is at least
as efficient as the plain Gluing algorithm. The experiments described in the next section
show that it is much more efficient, but its asymptotic running time remains unknown. For
this reason we will use (3) as an upper bound in order to compare the Agreeing-Gluing
algorithm with known approaches to solve systems of sparse Boolean equations.

Worst case estimations for (1) come from the k-SAT problem analysis. k-SAT is a
problem to determine, given a conjunctive normal form F' with n variables and such that
each clause of F' contains at most k literals, whether or not there is a satisfying assignment
for F. These two problems are polynomial-time equivalent. Let

fl@r,... @) =0 (4)
be any Boolean equation in k& Boolean variables. Let (ai1,...,a1%),..., and (as1,...,ask)
be all binary vectors such that f(a;,...,a;) = 1. The vector (by,...,b) is a solution to

4) if and only if it is a satisfying assignment for the conjunctive normal form
g g
Fr=(z{"V...Vai*)A A (2 VooV o),

where we denote

“ x, ifa=0,
€T =
z, ifa=1,

that is 2% = 0 if and only if z = a. Given the system of equations (1) one constructs a
conjunctive normal form F which is a conjunction of F,. One now sees that (by,...,by,) is
a solution to (1) if and only if this vector is a satisfying assignment for F. Obviously, any
k-SAT problem may be represented by a system of k-sparse Boolean equations.

k-SAT (for k& > 3) is one of the classical NP-complete problems and there is a vast
reference list on this problem. Recently there has been a large effort to design deterministic
and randomized exact algorithms for k-SAT. These efforts resulted in a number of deep and
powerful techniques for solving SAT efficiently. Nice examples of such techniques are the
Davis-Putnam algorithm, Shoning Local Search and Random Walks. SAT on n variables
can be trivially solved in time O(2") by trying all possible assignments, but constructing
an O(c") algorithm for ¢ < 2 is a long standing open problem. However, for small values of
k there are much faster algorithms for k-SAT with ¢ = ¢; < 2, see the survey article [13].
Such bounds are worst case estimations to the problem of solving equations (1).

The estimations of the Gluingl and Gluing2 algorithms compare favorably with the
above worst case bounds at least for small k£ as one sees from the data tabulated below:

the worst case| Gluingl,| Gluing2,
the average|the average

c3 1.324 1.262 1.238
c4 1.474 1.355 1.326
Ccs 1.569 1.425 1.393
6 1.637 1.479 1.446

The constant ¢y, is given such that the algorithm runs in time O(c}).

In the case of n Boolean equations of algebraic degree d in n variables defining a so-
called s%mi—regular system, the popular Grobner Basis algorithm gets the complexity of
O((azn)) ~ 22H(@a)n bt operations, where H(cyg) denotes the binary entropy function.
The numbers oy are explicitly given in [12], e.g. as ~ 0.09, a3 ~ 0.15, and ay =~ 0.2. For
d = 2, one gets the bound O(1.7™) by guessing a number of variables before the Grébner
Basis algorithm (or XI) application, see [15]. But for d > 3 the value 22(®a)" exceeds the
cost of the brute force algorithm and guessing any number of variables does not help. It
is clear that, although the algebraic degrees of random equations in (1) are bounded by &,
the probability that a considerable part of them are of algebraic degree 2 or linear is very
low. When &k < 4 we are however able to replace the equation f;(X;) = 0 by an equation
of algebraic degree < 2, though with loosing some information on the final solution. Then
we apply the Grobner Basis algorithm. But the above estimations imply that our Agreeing-
Gluing algorithm still gives a better bound in this case. So it looks plausible that the latter
has generally a better behavior than the former.

5 Experiments

The ideas described have been tested on equation systems representing reduced-round ver-
sions of DES. The equation systems have been created using two parameters; r, the number
of rounds and ntxt, the number of known plaintext/ciphertext pairs used. The number of

equations and variables in a system, m and n, is then given by:
n =56 + 32 - ntxt - (r — 2) m =32 r-ntxt.

The exact construction of the systems is given in Appendix A.

Some choices regarding the implementation of the splitting and gluing methods had to
be made. The strategies implemented were as follows.

Splitting: Each time we need to split, we need to select one symbol whose configuration
list should be cut in half. Some experimenting was done, and we found that always doing
the splitting in the symbol that already has the smallest number of possible configurations,
was most efficient. We could not see that it mattered much how the splitting of the chosen
configuration list was done, so it was simply done by putting every other configuration on
L1 and the rest on Ls.

Gluing: A threshold ¢ is initialized to 64 (chosen because of the specific nature of the
DES systems). We then run the following pseudo-code:

while system not solved:
while progress is made:
- run Agreeing algorithm.
- glue all pairs of symbols giving
new symbols with #configurations< ¢.
t:=2t.

Increasing the threshold ¢ only when necessary is a dynamic way of finding how large
configuration lists we must accept for the Agreeing-Gluing algorithm to work.

5.1 Three rounds

Not surprisingly, three rounds of DES is very easy to solve with the methods described.
With ntxt > 2, the Agreeing algorithm is able to do the job alone (in about one second),
no splitting or gluing is necessary.

With ntat = 1, a little help from the splitting or gluing methods are needed. We tested
the methods four times each, with a different plaintext/ciphertext pair each time. The
average depth of the search tree using the splitting method was 8.2. The average size of the
largest configuration list using the gluing method was 647.

5.2 Four rounds

Table 1 summarizes the results from testing our methods on systems coming from four
rounds of DES. Each entry in the table is computed as an average of four different tests,
each time with different sets of plaintext/ciphertext pairs.

We see that increasing ntxt reduces the complexities for the splitting and gluing meth-
ods. Here we also find the system referred to in the introduction; for ntxt = 16 and r = 4
we get an equation system with 1080 variables and 2048 non-linear equations.

ntxt| 1 2 |1 4] 8 |16
splitting - depth of tree[19.2{16.4(12.2| 9.3 (8.7
gluing - largest conf. list[222-8[220-9] 218 [915-3[915

Table 1. Complexities for solving systems from four rounds of DES.

5.3 Five and six rounds

For five and six rounds, we ran out of memory (1 GB) before the Agreeing-Gluing algorithm
had found a solution, so we do not have any results using this method. All we can say is
that when ntzt = 8, the size of the largest configuration list becomes larger than 224,

The splitting method is also very costly to do in practice, but here we can estimate
the depth of the search tree without having to wait until the actual solution is found. Our
implementation of the splitting method ran until 1024 leaves had been visited in the search
tree, and computed the average depth of the tree based on this. We believe this gives a
quite accurate result. The depth of the leaves does not vary a lot, and when monitoring the
program traversing the tree, the different depths of leaves appear to be evenly distributed.
Table 2 contains the results. Again, each entry is an average of four different tests using
different plaintext/ciphertext pairs. For r = 6 and ntxt > 4 our program consumed too
much memory to run.

ntxt| 1 2 4 8
five rounds|27.6|26.8(25.8(23.7
six rounds|37.2(37.2| - -

Table 2. Depth of search trees using splitting method.

6 Conclusions

In this paper we have presented some new techniques for attacking the problem of solving
sparse systems of non-linear equations. The complexities for the Gluing algorithm compares
very favorably to known approaches, and the experiments done indicate the methods in

this paper are more efficient than classical methods using multivariate polynomials for
representing the equations.

The techniques presented here are new, so there is still a lot of work to be done in
this direction. One topic for future research is to find out whether partial gluing gives
substantial improvements compared to regular gluing. Another is to find out if our methods
can be combined with other techniques to make stronger algorithms. Of course, the Agreeing
algorithm with its catalysts should also be tried on systems from other block or stream
ciphers, especially the AES.

We hope the new methods for solving sparse systems of equations will be taken into the
toolbox together with the others and developed further.

References

1. N. Courtois, J. Pieprzyk. Cryptanalysis of Block Ciphers with Overdefined Systems of Equations ASI-
ACRYPT 2002, LNCS 2501, pp. 267 — 287, 2002.
2. A. Shamir, J. Patarin, N. Courtois, A. Klimov. Efficient Algorithms for Solving Overdefined Systems
of Multivariate Polynomial Equations, EUROCRYPT 2000, LNCS 1807, pp. 392 — 407, 2000.
3. J.-C. Faugere. A new efficient algorithm for computing Grobner bases (F4), Journal of Pure and Applied
Algebra, Volume 139, Issues 1 - 3, pp. 61 — 88, June 1999.
4. J.-C. Faugere. A new efficient algorithm for computing Grobner bases without reduction to zero (F5),
Proceedings of ISSAC '02, pp. 75 — 83, ACM Press, July 2002.
5. N. Courtois, W. Meier. Algebraic Attacks on Stream Ciphers with Linear Feedback, EUROCRYPT
2003, LNCS 2656, pp. 345 — 359, 2003.
6. N. Courtois. The Security of Hidden Field Equations (HFE), CT-RSA 2001, LNCS 2020, pp. 266 —
281, 2001.
7. N. Ferguson, R. Schroeppel, D. Whiting. A Simple Algebraic Representation of Rijndael, Selected Areas
in Cryptography 2001, LNCS 2259, pp. 103 — 111, 2001.
8. M. Robshaw, S. Murphy. Essential Algebraic Structures within the AES, CRYPTO 2002, LNCS 2442,
pp. 1 — 16, 2002.
9. C. Cid. Some Algebraic Aspects of the Advanced Encryption Standard, 4th AES Conference, LNCS
3373, pp. 58 — 66, 2005.
10. C. Diem. The XL-Algorithm and a Conjecture from Commutative Algebra, ASTACRYPT 2004, LNCS
3329, pp. 323 — 337, 2004.
11. C. Cid, S. Murphy, M. Robshaw. Small Scale Variants of the AES, FSE 2005, LNCS 3557, pp. 145 —
162, 2005.
12. M.Bardet, J.-C.Faugére, and B.Salvy, Complexity of Grébner basis computation for semi-regqular overde-
termined sequences over Fy with solutions in F>, Research report RR-5049, INRIA, 2003.
13. K. Iwama, Worst-Case Upper Bounds for kSAT, The Bulletin of the EATCS, (82), 2004, pp. 61 — 71.
14. F.Kolchin,A.Sevast’yanov, and V.Chistyakov, Random allocations, John Wiley & Sons, 1978.
15. B.-Y. Yang, J-M. Chen, and N.Courtois, On asymptotic security estimates in XL and Grébner bases-
related algebraic cryptanalysis, in ICICS 2004, LNCS 3269, Springer, pp. 401 — 413, 2004.

Appendix A - Constructing equation system from DES

Here we describe how we made the equation system representing the DES algorithm. All
bits going into the round function in round ¢, except for the first and last rounds which

have plaintext and ciphertext bits as input, are variables V(). The rest of the variables are
the 56 key bits. This is illustrated in the figure below, together with the round function.

pR

K1

T

g

y

J

v =R

; ST

v Pl <*<i>ev(i)

5]

vO=cR The DES round function.

T

KI’
F

B
o1

-

C

Each bit in the output of a DES S-box can be expressed as a function of its six inputs, and
so defines an equation. The four equations coming from the same S-box share all variables
input to the S-box, so it is natural to glue these equations together immediately. Doing this,
we get one equation for each S-box in every round. The general form of the equation from
S-box j in round 1 is

‘/j(l 1) oy V'j(“rl) — SJ[‘/J(Z) oy K;]’

where Vj(ifl) and Vj(Hl) are two four-bit strings and Vj(i) and KJZ are two six-bit strings.

K; are the six bits of round key i going into S-box j, determined by the key schedule. The
bits in V]-(i_l) and V]-(Hl) are taken from the input to the previous and the next round.
Determined by the permutation P in the output of the round function, they represent the

)

output of S-box j in round 4. Vj(Z are the six bits of expanded input to round ¢ going into
S-box j.

When the equation comes from an S-box in one of the two first or the two last rounds,
some of the V()-values will be constants from the plaintext or the ciphertext. Adding up
the number of bits in the general equation we see that no equation contains more than 20
variables. In the second and the second to last round, the equations contain 16 variables
each since Vj(l) and Vj(r) comes from the plaintext and ciphertext. In the first and the last
round the equations contain only 10 variables each.

The general equation defines a four-bit condition to be satisfied. If an equation contains
a variables, only 2974 of the 2% configurations will satisfy the equation, so the largest
configuration lists in the system will contain 26 configurations.

The description above is using only one plaintext/ciphertext pair, but can easily be
extended. To build a system using several plaintext/ciphertext pairs, the V@) _variables will

have to be different for each plaintext/ciphertext pair used, but the key variables remain
the same across all equations.

