
New Te
hnique for Solving Sparse Equation Systems

Håvard Raddum and Igor Semaev

Department of Informati
s, University of Bergen, N-5020 Bergen, Norway

Abstra
t. Most of the re
ent
ryptanalysis on symmetri
 key
iphers have fo
used on alge-

brai
 atta
ks. The
ipher being atta
ked is represented as a non-linear equation system, and

various te
hniques (Bu
hberger, F4/F5, XL, XSL)
an be tried in order to solve the system,

thus breaking the
ipher. The su

ess of these atta
ks has been limited so far. In this paper we

take a di�erent approa
h to the problem of solving non-linear equation systems, and propose

a new method for solving them. Our method di�ers from the others in that the equations are

not represented as multivariate polynomials, and that the
ore of the algorithm for �nding the

solution
an be seen as message-passing on a graph. Bounds on the
omplexities for the main

algorithms are presented and they
ompare favorably with the known bounds. The methods

have also been tested on redu
ed-round versions of DES with good results. This paper was

posted on ECRYPT's STVL website on January 16th 2006.

Keywords: sparse algebrai
 equations, blo
k
iphers, algebrai
 atta
ks, DES.

1 Introdu
tion

Most of the
ryptanalysis done on symmetri
 key
iphers in the last few years has been

fo
used on algebrai
 atta
ks. Mu
h of this interest
omes from the fa
t that the AES
an

be des
ribed as a system of quadrati
 equations, and that solving this system breaks the

ipher [1℄.

One important feature algebrai
 atta
ks have is the fa
t that you only need very few

known plaintexts in order to set up an equation system des
ribing the
ipher and deter-

mining the key uniquely. This makes these atta
ks more realisti
 and threatening than

di�erential or linear atta
ks that typi
ally require enormous amounts of known or
hosen

plaintexts.

Strategies for solving non-linear equation systems have been des
ribed [2�4℄ and some

have been developed into
ryptanalyti
 atta
ks [1, 5, 6℄. Other work has des
ribed interesting

algebrai
 properties found in the AES, but without any a
tual atta
ks [7, 8℄. There has

been some debate over the e�
ien
y of the XSL-atta
k on the AES, and some papers have

appeared [9, 10℄ indi
ating it is not as good as
laimed by the authors.

One of the problems this �eld of resear
h has en
ountered is the di�
ulty of produ
ing

good examples of algebrai
 atta
ks
arried out in pra
ti
e. The time and memory require-

ments of running some of the proposed atta
ks rapidly grows out of the bounds set by a

typi
al workstation [11℄. This means we la
k �rm proof of how the atta
ks work in pra
ti
e,

ex
ept for very small examples.

In this paper a new method for solving non-linear systems of equations is introdu
ed. Our

approa
h di�ers a lot from earlier work in that equations are not represented as polynomials.

Equations are represented as lists of bit-strings, where ea
h string is a value assignment of

variables that satis�es the equation.

We have used redu
ed-round versions of DES to test our methods. The results show that

our te
hniques easily solves the system
oming from four rounds of DES, and that both �ve

and six rounds of DES
an be broken faster than exhaustive sear
h. While breaking six

rounds of DES is not very interesting in itself, this work gives an example of a su

essful

algebrai
 atta
k against something that looks like a real-world
ipher.

It will also be
ome apparent that, on a normal workstation, the new method we are

proposing is able to solve systems that are probably out of rea
h by known methods. For

example, a system
onsisting of equations of degree �ve and 1080 variables des
ribing four

rounds of DES with 16 known plaintext/
iphertext blo
ks is solved in 25 minutes on a PC.

2 Representing equations and running the Agreeing algorithm

Throughout the paper we will only
onsider equations where the variables have values in

GF (2). Let X be a set of Boolean variables of size n. A system of m Boolean equations

f1(X1) = 0, . . . , fm(Xm) = 0 (1)

is
onsidered, where fi = fi(Xi) is a Boolean fun
tion in variables Xi whi
h is a subset of

X of size ki. We assume ki ≤ k for some k.

De�nition 1. A
on�guration for an equation fi(Xi) = 0 is an assignment of values to

the variables Xi that satis�es fi = 0.

The variables in Xi are �xed in some order, and a
on�guration for fi will be represented

as a bit-string of length ki. The bit in a spe
i�
 position in the
on�guration has the value for

the variable in the same position in Xi. We will not work with the equations as multivariate

polynomials, but instead identify an equation fi(Xi) = 0 with the ordered set of variables

Xi, and a list Li of all
on�gurations for fi. This obje
t is the basi
 building blo
k for our

methods, so we give it a name.

De�nition 2. A symbol S = (X,L)
onsists of an ordered set of variables X = X(S) and
a list L = L(S) of
on�gurations for X.

We expe
t ea
h fi to have approximately 2ki−1

on�gurations. Produ
ing and storing

the list Li thus requires k to be relatively small, for ea
h i we must be able to run through

all 2ki
bit-strings of length ki to determine whi
h are
on�gurations and whi
h are not.

When we say our system should be sparse we mean that k is relatively small.

We now pro
eed to des
ribe the
ore algorithm for solving the system of equations.

Every solution of the system
an be represented as an n-bit string, where ea
h bit
ontains

the value for one of the variables in X. Ea
h equation in the system has to be satis�ed with

the solution, so for any symbol S,
on
atenating bits from the solution into a string for the

variables X(S) will produ
e a
on�guration found on L(S).

Our idea is to delete
on�gurations that
an not be part of a solution from the
on�gu-

ration lists in the symbols. If we are able to remove all wrong
on�gurations we
an simply

read the values of the remaining
on�gurations in the various L(Si) to get a solution of the

system, at least when it is unique.

De�nition 3. Let Y ⊆ X. A
on�guration for X is said to
over a
on�guration for Y if

the two are equal for all variables in Y .

Let two symbols Si and Sj be given. Let Xij = X(Si) ∩X(Sj) and Lij be the set of all

on�gurations for Xij
overed by at least one
on�guration on L(Si). Similarly, let Lji be

the set of all
on�gurations for Xij
overed by some
on�guration on L(Sj). We say that

Si and Sj agree if Lij = Lji. In
ase when they do not agree we apply a pro
edure
alled

agreeing. That is, we delete from L(Si) and L(Sj) all
on�gurations that do not
over any

on�guration on Lij ∩ Lji and get lists L′

i and L′

j . None of the
on�gurations deleted from

L(Si) and L(Sj)
ould be part of a full solution, sin
e it would be impossible to satisfy both

Si and Sj with them. The symbols S′

i = (X(Si), L
′

i) and S′

j = (X(Sj), L
′

j) agree now, and

we repla
e Si with S′

i and Sj with S′

j .

The Agreeing algorithm works by repeatedly �nding two indi
es i and j su
h that Si

and Sj disagree, and apply the agreeing pro
edure to L(Si) and L(Sj). When running the

Agreeing algorithm we often run into situations where Si and Sj agree, but Sj and Sk

disagree. After deleting some
on�gurations from Sj to make it agree with Sk, it may well

be that Si and Sj disagree. In other words, applying the agreeing pro
edure to one pair of

symbols may
ause disagreement in other pairs. If there is enough overlap among the various

Xi we will get a
hain-rea
tion of deletions of
on�gurations that will a
tually remove all

on�gurations ex
ept for those that are part of a full solution.

On the other hand, all pairs of symbols may agree before a solution
an be seen. If

the amount of readily available information in the system is below some
riti
al mass, the

hain-rea
tion of pairwise agreeings will die out before enough deletions have o

urred. What

typi
ally happens for the redu
ed-round DES systems (that in all likelihood have unique

solutions) is that deletions o

ur in the beginning of the Agreeing algorithm, but that the

symbols are put into an agreeing state while there still are a lot of
on�gurations left in the

symbols, see Se
tion 4 for a detailed des
ription of the Agreeing algorithm's output and its

omplexity. The next se
tion deals with strategies for over
oming this problem.

Running the Agreeing algorithm may be seen as message-passing on a graph. The nodes

in the graph will be all the symbols S1, . . . , Sm together with the symbols

Sij = (Xij , Lij ∩ Lji) that have a non-empty Xij . There will be edges from ea
h Sij to Si

and Sj. If a
on�guration c on Li does not
over any
on�guration on L(Sij), we
an think

of Sij sending a message over the edge to Si telling the symbol to delete c. The Agreeing

algorithm will
ontinue as long as there are messages to be sent in the graph.

3 Trying to for
e the solution to emerge

When the symbols are already in an agreeing state, the Agreeing algorithm will not do

anything. In this
ase it is ne
essary to do something to make the Agreeing algorithm start

again. We have examined two di�erent strategies for getting out of an agreeing state.

3.1 Splitting

The �rst of the methods for re-starting the Agreeing algorithm we have
alled Splitting, and

is quite simple. When the graph rea
hes an agreeing state with no visible solution what we

do is the following: We fo
us on one symbol S, and split L(S) in two parts, L1 and L2.

We then repla
e L(S) with L1 or L2 and start the Agreeing algorithm again. The
orre
t

on�guration for S (assuming unique solution) is found on either L1 or L2, so what we are

basi
ally doing is guessing on whi
h part that
ontains this
on�guration. If it be
omes
lear

that the guess was wrong, we will run the Agreeing algorithm with the other list instead.

For the DES systems, guessing only on
e is not enough help for the Agreeing algorithm

to solve the system. In general, the symbols will again
ome to an agreeing state with

no apparent solution after the �rst guess. Then we need to guess again, run the Agreeing

algorithm on
e more, and so on. Ea
h time we guess, we are guessing one bit of information,

sin
e the
orre
t
on�guration is found on either L1 or L2. One
an see that guessing on

the values of a set of variables for restarting the Agreeing algorithm is a parti
ular
ase of

splitting.

When will it be
ome
lear that a guess was wrong? When we make a wrong guess

somewhere, we are deleting the
orre
t
on�guration from a symbol's
on�guration list,

making it impossible to �nd a solution. What happens, possibly after making more guesses,

is that the Agreeing algorithm deletes all
on�gurations in some L(S). When this happens

we will ba
ktra
k to the last guess made, and try the other possibility. If this also turns out

to be a dead end, we will ba
ktra
k to the guess before that, and try the other possibility

from that point, et
.

What we are doing is going through a binary sear
h tree, looking for the solution of the

system. When we follow the bran
h of the tree
orresponding to the
orre
t guesses we �nd

a solution. The leaves of this tree will be the point where we either �nd a solution, or the

points where some L(S) be
omes empty. The leaves will be at somewhat varying depths,

and the
omplexity of this approa
h will be exponential in the average depth of the tree.

3.2 Gluing

The other main strategy for making the Agreeing algorithm start again is
alled Gluing.

With this method we do not do any guessing, but instead merge two symbols into one,

thereby bringing their joint information about the solution into the open.

Let symbols Si and Sj be given. We put Z = X(Si) ∪ X(Sj) and Xij = X(Si) ∩ X(Sj)
and de�ne a list L of
on�gurations for Z. The list L
onsists of all
on�gurations (a, b, c),
where b is a
on�guration for Xij , (a, b) ∈ L(Si), and (b, c) ∈ L(Sj). In other words, L

onsists of all
on�gurations that
over one
on�guration on L(Si) and one
on�guration

on L(Sj). The symbol S = (Z,L) = Si ◦ Sj is the result of gluing the symbols Si and Sj,

and the
on�guration
orresponding to the solution of the system is found on L.
When our symbols rea
h an agreeing state, we
an glue together symbols to
reate new

equations. When gluing S and T together we dis
ard S and T , sin
e all information in them

are
ontained in S ◦T . When we have glued together several pairs of symbols the new set of

symbols will in general not be in an agreeing state, so we
an start the Agreeing algorithm

again.

The pri
e to pay when gluing together symbols is longer
on�guration lists. Assum-

ing S and T agree, the number of
on�gurations in S ◦ T will be at least as big as

max{|L(S)|, |L(T)|}, and may be as big as |L(S)| · |L(T)|. In pra
ti
e we have to set a

threshold and only glue together symbols that produ
e
on�guration lists with size below

this threshold. This means we may run into
ases where we
an not a�ord any symbols to

be glued.

When
omputer
onstraints make it too
ostly to perform gluing, we have
onsidered

partial gluing. For two symbols (Xi, Li) and (Xj , Lj), we
hoose Yi ⊆ Xi and Yj ⊆ Xj . Next

we make L′

i and L′

j by proje
ting all
on�gurations on Li onto Yi and all
on�gurations on

Lj onto Yj . In general, |L′

i| < |Li| and |L′

j| < |Lj | sin
e di�erent
on�gurations for Xi and

Xj may be equal when proje
ted onto Yi and Yj . If Yi and Yj were
hosen
arefully we may

glue the symbols (Yi, L
′

i) and (Yj , L
′

j) and
ause disagreement with some other symbols.

Two di�
ult issues
on
erning partial gluing is how to
hoose Yi and Yj in an optimal

way, and how to ensure that the new symbol
oming from partial gluing is a
tually bringing

us
loser to solving the system. One strategy for
hoosing Y -subsets has been tried, but

so far we do not have any results to report about partial gluing. We only mention partial

gluing as a topi
 for future resear
h.

4 Complexity Issues

In this Se
tion we will look at what the output of the Agreeing algorithm is, and what its

running time is. We then
ompare the Agreeing-Gluing algorithm with known approa
hes

for solving sparse Boolean systems of equations.

Given the set of symbols Si = (Xi, Li), 1 ≤ i ≤ m related to the initial system of

equations (1), we
onsider a set of subsymbols (Xi, Ui) ⊆ (Xi, Li) meaning that Ui ⊆ Li for

all 1 ≤ i ≤ m. The latter set of subsymbols is
alled a maximal agreed set of subsymbols if

the symbols (Xi, Ui) pairwise agree and for any sets U ′

i

Ui ⊆ U ′

i ⊆ Li,

with Ui ⊂ U ′

i for at least one i, the set of subsymbols (Xi, U
′

i), 1 ≤ i ≤ m does not agree.

Proposition 1. 1. The maximal agreed set of subsymbols is unique.

2. The output of the Agreeing algorithm is the maximal agreed set of subsymbols for the

initial set of symbols.

3. The running time of the Agreeing algorithm is bounded by O(k2m322k) bit operations

with memory requirements O(m2k) bits.

Proof: Assume there are two maximal agreed sets of subsymbols: (Xi, Ui), 1 ≤ i ≤ m and

(Xi, U
′

i), 1 ≤ i ≤ m. Then one
onstru
ts a new set of subsymbols (Xi, Ui ∪U ′

i), 1 ≤ i ≤ m.

The latter subsymbols pairwise agree. That is only possible when Ui = U ′

i , 1 ≤ i ≤ m. The

�rst statement is proved.

To prove the se
ond statement, let (Xi, Ui), 1 ≤ i ≤ m be the output of the Agreeing

algorithm and

(Xi, Ui) ⊆ (Xi, U
′

i) ⊆ (Xi, Li)

for some set of symbols (Xi, U
′

i), 1 ≤ i ≤ m whi
h pairwise agree. The intermediate stage of

the Agreeing algorithm is a set of subsymbols (Xi, L
′

i) ⊆ (Xi, Li). Let this be the stage just
before deleting any of the
on�gurations in U ′

i \ Ui, 1 ≤ i ≤ m. Then (Xi, U
′

i) ⊆ (Xi, L
′

i),
1 ≤ i ≤ m. The Agreeing algorithm now deletes some a ∈ U ′

i \ Ui. This means there is a

symbol (Xj , L
′

j) su
h that L′

j does not
ontain any
on�guration that
overs the proje
tion of

a on Xij = Xi ∩Xj . Then U ′

j does not
ontain any
on�guration that
overs the proje
tion

of a on Xij either, so (Xi, U
′

i) and (Xj , U
′

j) do not agree. This implies U ′

i = Ui for all

1 ≤ i ≤ m and proves the statement.

To prove the last statement one sees that

m
∑

i=1

|Li| ≤ m2k.

To �nd a pair of symbols Si = (Xi, L
′

i) and Sj = (Xj , L
′

j), whi
h do not agree, one should

try at most m(m − 1)/2 pairs at any stage of the Agreeing algorithm. If su
h a pair exists

∑

i |Li| should be de
reased by at least 1, otherwise the algorithm terminates. Finding the

on�gurations to remove from L′

i and L′

j takes O(k2k) steps be
ause
ommon
on�gurations

in L′

ij, L
′

ji (see the de�nition of the agreeing pro
edure) may be found by a sorting algo-

rithm. So on the whole the
omplexity is O(km322k) operations with binary k-strings. The
statement on the memory requirements is obvious. This �nishes the proof of the Proposition.

Proposition 1 implies that for a �xed k the Agreeing algorithm has a polynomial be-

havior and its result does not depend on a parti
ular way of pairwise agreeings. However,

it generally fails to �nd a solution. Thus the Agreeing algorithm should be
ombined with

some other te
hniques as splitting or gluing.

The gluing is by itself able to solve any system of sparse Boolean equations. Really, one

applies gluing to
onstru
t the set of all solutions for the subsystem of equations

f1(X1) = 0, . . . , ft(Xt) = 0, (2)

in variables X(t) = X1 ∪ . . . ∪ Xt subsequently for t = 1, . . . ,m. We
all this the Gluing

algorithm. In another paper we prove

Theorem 1. Let natural numbers m and k1, . . . , km ≤ k be given and the subsets of vari-

ables X1, . . . ,Xm ⊂ X and Boolean fun
tions f1, . . . , fm be
hosen uniformly and indepen-

dently of ea
h other. Then the mathemati
al expe
tation of the
omplexity of the Gluing

algorithm is

O((2eγ0 + ǫ)n + poly(n)m) (3)

bit operations as k is �xed and n tends to in�nity. Here

γ0 = −
ln 2

k
− (2

1

k − 1) ln(
1 − 2−1

1 − 2−
1

k

),

ǫ is any �xed positive real number and poly(n) is a polynomial in n.

We do not prove Theorem 1 here for la
k of spa
e. We will give a heuristi
 estimation on

the
omplexity of the Gluing algorithm instead. We
onsider the symbols

(X(t), Ut), (Xt+1, Lt+1), . . . , (Xm, Lm) after t − 1 appli
ations of gluing. Here Ut is a set of

on�gurations for X(t), solutions to the subsystem of equations (2) of the initial system. Let

rt be the size of X(t). One sees that the size of the set Ut is about 2rt−t
be
ause adding a

new independent equation redu
es the number of solutions by one half on the average. One

onsiders the number rt as the number of �lled boxes when parti
les are randomly allo
ated

in n boxes by
omplexes of k parti
les. From [14℄, pp. 211-213 we know that the expe
ted

number of empty boxes is n(1−k/n)t, so rt is approximately n−n(1−k/n)t ≈ n(1−e−tk/n)
for a bounded k and n tending to in�nity. It implies that Ut is of size approximately

2δ(t/n)n,

where δ(h) = 1− e−hk − h. One �nds that h = ln k/k is the only extremum of this fun
tion

in the interval 0 < h and δ(ln k/k) = 1 − ln k/k − 1/k is the maximum of δ(h) in this

interval. So the running time of the algorithm is estimated at

O((21−ln k/k−1/k + ǫ)n + poly(n)m)

on the average. One
an
he
k that this heuristi
 bound is even lesser than (3) at least for

k up to 20, but to be at the right side one should prefer (3). Let k1 = . . . km = k. Then

we are able to prove that the probability that the
omplexity of the Gluing algorithm is

bounded by O(cn), where c < 2eγ0
, is tending to 0 as n tends to in�nity. In this sense the

bound (3) is optimal.

In the above formulation the Gluing algorithm requires as mu
h memory as its running

time, but there is a variant,
alled Gluing1, taking the same running time to terminate and

only using O(m2k) bits of memory. Even a slightly faster way of gluing(Gluing2) is possible.

To this end one applies the Gluing algorithm to �nd all solutions for the �rst t0 equations in
(1), and then one separately �nds all solutions for the next t0 equations for some parameter

t0. After that one glues these two symbols to get all solutions for the �rst 2t0 equations.

Then one pro
eeds as in the basi
 Gluing algorithm. With the above heuristi
 argument t0
should be h0n, where h0 is the only solution to the equation δ(h) = δ(2h). We always get a

better bound than that of the basi
 Gluing algorithm and similarly the heuristi
 estimation

is lesser that the mathemati
ally proven one. We will not go further into details on the

Gluing2 algorithm here.

The estimation (3) is also a bound on the
omplexity of the
ombined Agreeing-Gluing

algorithm, where we run the Agreeing algorithm between some of the gluings. This is at least

as e�
ient as the plain Gluing algorithm. The experiments des
ribed in the next se
tion

show that it is mu
h more e�
ient, but its asymptoti
 running time remains unknown. For

this reason we will use (3) as an upper bound in order to
ompare the Agreeing-Gluing

algorithm with known approa
hes to solve systems of sparse Boolean equations.

Worst
ase estimations for (1)
ome from the k-SAT problem analysis. k-SAT is a

problem to determine, given a
onjun
tive normal form F with n variables and su
h that

ea
h
lause of F
ontains at most k literals, whether or not there is a satisfying assignment

for F . These two problems are polynomial-time equivalent. Let

f(x1, . . . , xk) = 0 (4)

be any Boolean equation in k Boolean variables. Let (a11, . . . , a1k), . . . , and (as1, . . . , ask)
be all binary ve
tors su
h that f(ai1, . . . , aik) = 1. The ve
tor (b1, . . . , bk) is a solution to

(4) if and only if it is a satisfying assignment for the
onjun
tive normal form

Ff = (xa11

1 ∨ . . . ∨ xa1k

k) ∧ . . . ∧ (xas1

1 ∨ . . . ∨ xask

k),

where we denote

xa =

{

x, if a = 0,

x̄, if a = 1,

that is xa = 0 if and only if x = a. Given the system of equations (1) one
onstru
ts a

onjun
tive normal form F whi
h is a
onjun
tion of Ffi
. One now sees that (b1, . . . , bn) is

a solution to (1) if and only if this ve
tor is a satisfying assignment for F . Obviously, any

k-SAT problem may be represented by a system of k-sparse Boolean equations.

k-SAT (for k ≥ 3) is one of the
lassi
al NP-
omplete problems and there is a vast

referen
e list on this problem. Re
ently there has been a large e�ort to design deterministi

and randomized exa
t algorithms for k-SAT. These e�orts resulted in a number of deep and

powerful te
hniques for solving SAT e�
iently. Ni
e examples of su
h te
hniques are the

Davis-Putnam algorithm, Shöning Lo
al Sear
h and Random Walks. SAT on n variables

an be trivially solved in time O(2n) by trying all possible assignments, but
onstru
ting

an O(cn) algorithm for c < 2 is a long standing open problem. However, for small values of

k there are mu
h faster algorithms for k-SAT with c = ck < 2, see the survey arti
le [13℄.

Su
h bounds are worst
ase estimations to the problem of solving equations (1).

The estimations of the Gluing1 and Gluing2 algorithms
ompare favorably with the

above worst
ase bounds at least for small k as one sees from the data tabulated below:

the worst
ase Gluing1, Gluing2,

the average the average

c3 1.324 1.262 1.238

c4 1.474 1.355 1.326

c5 1.569 1.425 1.393

c6 1.637 1.479 1.446

.

The
onstant ck is given su
h that the algorithm runs in time O(cn
k).

In the
ase of n Boolean equations of algebrai
 degree d in n variables de�ning a so-

alled semi-regular system, the popular Gröbner Basis algorithm gets the
omplexity of

O(
(n
αdn

)2
) ∼ 22H(αd)n

bit operations, where H(αd) denotes the binary entropy fun
tion.

The numbers αd are expli
itly given in [12℄, e.g. α2 ≈ 0.09, α3 ≈ 0.15, and α4 ≈ 0.2. For
d = 2, one gets the bound O(1.7n) by guessing a number of variables before the Gröbner

Basis algorithm (or XL) appli
ation, see [15℄. But for d ≥ 3 the value 22H(αd)n
ex
eeds the

ost of the brute for
e algorithm and guessing any number of variables does not help. It

is
lear that, although the algebrai
 degrees of random equations in (1) are bounded by k,
the probability that a
onsiderable part of them are of algebrai
 degree 2 or linear is very

low. When k ≤ 4 we are however able to repla
e the equation fi(Xi) = 0 by an equation

of algebrai
 degree ≤ 2, though with loosing some information on the �nal solution. Then

we apply the Gröbner Basis algorithm. But the above estimations imply that our Agreeing-

Gluing algorithm still gives a better bound in this
ase. So it looks plausible that the latter

has generally a better behavior than the former.

5 Experiments

The ideas des
ribed have been tested on equation systems representing redu
ed-round ver-

sions of DES. The equation systems have been
reated using two parameters; r, the number
of rounds and ntxt, the number of known plaintext/
iphertext pairs used. The number of

equations and variables in a system, m and n, is then given by:

n = 56 + 32 · ntxt · (r − 2) m = 32 · r · ntxt.

The exa
t
onstru
tion of the systems is given in Appendix A.

Some
hoi
es regarding the implementation of the splitting and gluing methods had to

be made. The strategies implemented were as follows.

Splitting: Ea
h time we need to split, we need to sele
t one symbol whose
on�guration

list should be
ut in half. Some experimenting was done, and we found that always doing

the splitting in the symbol that already has the smallest number of possible
on�gurations,

was most e�
ient. We
ould not see that it mattered mu
h how the splitting of the
hosen

on�guration list was done, so it was simply done by putting every other
on�guration on

L1 and the rest on L2.

Gluing: A threshold t is initialized to 64 (
hosen be
ause of the spe
i�
 nature of the

DES systems). We then run the following pseudo-
ode:

while system not solved:

while progress is made:

- run Agreeing algorithm.

- glue all pairs of symbols giving

new symbols with #
on�gurations≤ t.
t := 2t.

In
reasing the threshold t only when ne
essary is a dynami
 way of �nding how large

on�guration lists we must a

ept for the Agreeing-Gluing algorithm to work.

5.1 Three rounds

Not surprisingly, three rounds of DES is very easy to solve with the methods des
ribed.

With ntxt ≥ 2, the Agreeing algorithm is able to do the job alone (in about one se
ond),

no splitting or gluing is ne
essary.

With ntxt = 1, a little help from the splitting or gluing methods are needed. We tested

the methods four times ea
h, with a di�erent plaintext/
iphertext pair ea
h time. The

average depth of the sear
h tree using the splitting method was 8.2. The average size of the
largest
on�guration list using the gluing method was 647.

5.2 Four rounds

Table 1 summarizes the results from testing our methods on systems
oming from four

rounds of DES. Ea
h entry in the table is
omputed as an average of four di�erent tests,

ea
h time with di�erent sets of plaintext/
iphertext pairs.

We see that in
reasing ntxt redu
es the
omplexities for the splitting and gluing meth-

ods. Here we also �nd the system referred to in the introdu
tion; for ntxt = 16 and r = 4
we get an equation system with 1080 variables and 2048 non-linear equations.

ntxt 1 2 4 8 16

splitting - depth of tree 19.2 16.4 12.2 9.3 8.7

gluing - largest
onf. list 2
22.8

2
20.9

2
18

2
15.3

2
15

Table 1. Complexities for solving systems from four rounds of DES.

5.3 Five and six rounds

For �ve and six rounds, we ran out of memory (1 GB) before the Agreeing-Gluing algorithm

had found a solution, so we do not have any results using this method. All we
an say is

that when ntxt = 8, the size of the largest
on�guration list be
omes larger than 224
.

The splitting method is also very
ostly to do in pra
ti
e, but here we
an estimate

the depth of the sear
h tree without having to wait until the a
tual solution is found. Our

implementation of the splitting method ran until 1024 leaves had been visited in the sear
h

tree, and
omputed the average depth of the tree based on this. We believe this gives a

quite a

urate result. The depth of the leaves does not vary a lot, and when monitoring the

program traversing the tree, the di�erent depths of leaves appear to be evenly distributed.

Table 2
ontains the results. Again, ea
h entry is an average of four di�erent tests using

di�erent plaintext/
iphertext pairs. For r = 6 and ntxt ≥ 4 our program
onsumed too

mu
h memory to run.

ntxt 1 2 4 8

�ve rounds 27.6 26.8 25.8 23.7

six rounds 37.2 37.2 - -

Table 2. Depth of sear
h trees using splitting method.

6 Con
lusions

In this paper we have presented some new te
hniques for atta
king the problem of solving

sparse systems of non-linear equations. The
omplexities for the Gluing algorithm
ompares

very favorably to known approa
hes, and the experiments done indi
ate the methods in

this paper are more e�
ient than
lassi
al methods using multivariate polynomials for

representing the equations.

The te
hniques presented here are new, so there is still a lot of work to be done in

this dire
tion. One topi
 for future resear
h is to �nd out whether partial gluing gives

substantial improvements
ompared to regular gluing. Another is to �nd out if our methods

an be
ombined with other te
hniques to make stronger algorithms. Of
ourse, the Agreeing

algorithm with its
atalysts should also be tried on systems from other blo
k or stream

iphers, espe
ially the AES.

We hope the new methods for solving sparse systems of equations will be taken into the

toolbox together with the others and developed further.

Referen
es

1. N. Courtois, J. Pieprzyk. Cryptanalysis of Blo
k Ciphers with Overde�ned Systems of Equations ASI-

ACRYPT 2002, LNCS 2501, pp. 267 � 287, 2002.

2. A. Shamir, J. Patarin, N. Courtois, A. Klimov. E�
ient Algorithms for Solving Overde�ned Systems

of Multivariate Polynomial Equations, EUROCRYPT 2000, LNCS 1807, pp. 392 � 407, 2000.

3. J.-C. Faugère. A new e�
ient algorithm for
omputing Gröbner bases (F4), Journal of Pure and Applied

Algebra, Volume 139, Issues 1 - 3, pp. 61 � 88, June 1999.

4. J.-C. Faugere. A new e�
ient algorithm for
omputing Gröbner bases without redu
tion to zero (F5),

Pro
eedings of ISSAC '02, pp. 75 � 83, ACM Press, July 2002.

5. N. Courtois, W. Meier. Algebrai
 Atta
ks on Stream Ciphers with Linear Feedba
k, EUROCRYPT

2003, LNCS 2656, pp. 345 � 359, 2003.

6. N. Courtois. The Se
urity of Hidden Field Equations (HFE), CT-RSA 2001, LNCS 2020, pp. 266 �

281, 2001.

7. N. Ferguson, R. S
hroeppel, D. Whiting. A Simple Algebrai
 Representation of Rijndael, Sele
ted Areas

in Cryptography 2001, LNCS 2259, pp. 103 � 111, 2001.

8. M. Robshaw, S. Murphy. Essential Algebrai
 Stru
tures within the AES, CRYPTO 2002, LNCS 2442,

pp. 1 � 16, 2002.

9. C. Cid. Some Algebrai
 Aspe
ts of the Advan
ed En
ryption Standard, 4th AES Conferen
e, LNCS

3373, pp. 58 � 66, 2005.

10. C. Diem. The XL-Algorithm and a Conje
ture from Commutative Algebra, ASIACRYPT 2004, LNCS

3329, pp. 323 � 337, 2004.

11. C. Cid, S. Murphy, M. Robshaw. Small S
ale Variants of the AES, FSE 2005, LNCS 3557, pp. 145 �

162, 2005.

12. M.Bardet, J.-C.Faugére, and B.Salvy, Complexity of Gröbner basis
omputation for semi-regular overde-

termined sequen
es over F2 with solutions in F2, Resear
h report RR-5049, INRIA, 2003.

13. K. Iwama, Worst-Case Upper Bounds for kSAT, The Bulletin of the EATCS, (82), 2004, pp. 61 � 71.

14. F.Kol
hin,A.Sevast'yanov, and V.Chistyakov, Random allo
ations, John Wiley & Sons, 1978.

15. B.-Y. Yang, J-M. Chen, and N.Courtois, On asymptoti
 se
urity estimates in XL and Gröbner bases-

related algebrai

ryptanalysis, in ICICS 2004, LNCS 3269, Springer, pp. 401 � 413, 2004.

Appendix A - Constru
ting equation system from DES

Here we des
ribe how we made the equation system representing the DES algorithm. All

bits going into the round fun
tion in round i, ex
ept for the �rst and last rounds whi
h

have plaintext and
iphertext bits as input, are variables V (i)
. The rest of the variables are

the 56 key bits. This is illustrated in the �gure below, together with the round fun
tion.

F

K

F

K

F

K

P

S1

S8

E

Ki

S j

1

2

r

=P

=C

R

R

P

C

P

CL

L

R

R

(i)

The DES round function.

(1)

(2)

(r)

V

V

V V

Ea
h bit in the output of a DES S-box
an be expressed as a fun
tion of its six inputs, and

so de�nes an equation. The four equations
oming from the same S-box share all variables

input to the S-box, so it is natural to glue these equations together immediately. Doing this,

we get one equation for ea
h S-box in every round. The general form of the equation from

S-box j in round i is

V
(i−1)
j ⊕ V

(i+1)
j = Sj[V

(i)
j ⊕ Ki

j],

where V
(i−1)
j and V

(i+1)
j are two four-bit strings and V

(i)
j and Ki

j are two six-bit strings.

Ki
j are the six bits of round key i going into S-box j, determined by the key s
hedule. The

bits in V
(i−1)
j and V

(i+1)
j are taken from the input to the previous and the next round.

Determined by the permutation P in the output of the round fun
tion, they represent the

output of S-box j in round i. V
(i)
j are the six bits of expanded input to round i going into

S-box j.

When the equation
omes from an S-box in one of the two �rst or the two last rounds,

some of the V (·)
-values will be
onstants from the plaintext or the
iphertext. Adding up

the number of bits in the general equation we see that no equation
ontains more than 20
variables. In the se
ond and the se
ond to last round, the equations
ontain 16 variables

ea
h sin
e V
(1)
j and V

(r)
j
omes from the plaintext and
iphertext. In the �rst and the last

round the equations
ontain only 10 variables ea
h.

The general equation de�nes a four-bit
ondition to be satis�ed. If an equation
ontains

a variables, only 2a−4
of the 2a

on�gurations will satisfy the equation, so the largest

on�guration lists in the system will
ontain 216

on�gurations.

The des
ription above is using only one plaintext/
iphertext pair, but
an easily be

extended. To build a system using several plaintext/
iphertext pairs, the V (i)
-variables will

have to be di�erent for ea
h plaintext/
iphertext pair used, but the key variables remain

the same a
ross all equations.

