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Abstract

A new public key cryptosystem, called REESSE1+, was proposed. REESSE1 consists of two
primitive algorithms, a public key encryptio/decryption algorithm and a digital signature algorithm.
We give some analysis to REESSE1+, and show that the system is totally unsecure. We show how to
derive the private key from the public key. As the same time, we also show how to forge signatures
for any messages, given two valid signatures.
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1 Introduction

A public key cryptosystem, named REESSE1+, was recently proposed in [2]. It is a revised version
of REESSEL1 presented in [1] in 2003. There are two primitive algorithms associated with REESSE1+:
an encryption/decryption algorithm and a digital signature algorithm. Cryptoanalysis of REESSE1 was
shown in [4, 3]. The aim of this paper is to give an analysis of the newly revised version.

The new version has even longer key size than the old REESSEE1. The analysis of the impracti-
cal length of the private/public key, and the complexity of the encryption/decrytpion algorithm of the
REESSE1 was given in [4, 3].

In this paper, we show how that the REESSEE1+ encryption/decryption algorithm can be reduced to
the REESSEE1. We present algorithms to derive the private key from the public key. We also show how
to forge valid signatures for any message with the help of two valid signatures.

We will follow the original symbols used in [2].

2 REESSEL encryption/decryption algorithm and its analysis

2.1 The Original Description of Encryption/Decryption Algorithm

Key Generation e d, D, T, S are pairwise coprime integers.



The pairwise coprime sequentd, Ay, -+, An};

A prime numberM/ satisfyingM > 1" | A;;

Choose’ such thagced(d, M — 1) andord(d) = dDT;

W= ([T, A) ™" - (6795 mod M;

Computel(1),1(2), -+ ,l(n) € {i0 mod M —1,i=5,--- ,n+4},
ComputeC; = AW mod M,i=1,2,--- ,n.

Thepublic key is ({C1, Co, ..., Cp}, M) .

Theprivate key is ({ A1, Aa, ..., An}, {1(1),1(2), ..., 1(n)}, W,0) .

Encryption Suppose that’ = {b, bo, ..., b, } iS ann-bit plaintext to be encrypted. The corresponding
ciphertext isG; = [[™, ¥ mod M.

Decryption Given a ciphertext; = | J CZ” The decryption procedure works as follows.

steplLletG — GW° mod M;

step 2 Initialize the plaintext bit$, < 0for £k =1,2,...,n.
LetG «— G andi « 1.

step 3 If 4;|G, leth; = 1 andG < G/A;.
stepdi<=i+ 1.1f i <nandG # 1, then gotostep 3
step 5 If G # 1, then gotostep 1, otherwise end.

2.2 Simplified Description

We have some comments on the algorithms.

e The conditions imposed on the valued@fands serve for digital signature algorithm. Hence, we
can neglect these conditions in the encryption/decryption algorithms.

e To decrypt the ciphertex = [/, C% = WXisibill) . TT"_, A% mod M, the decryption
algorithm will try to eliminatel?2-i=1 %) However, the algorithm does not know the value of
Wiz bl 1t will try

D bil(i)5™" mod M — 1
i=1
time to eliminatelV9 Xi=1 %il()5" from the ciphertexty, each time multiplying with W9 .

Consequently, the decryption algorithm neédis' >~ | b;i(i) mod M — 1) modular multipli-
cations andnd ! Y1 | b;l(i) mod M — 1) divisions.

e Thevalued(1),i(2),---,l(n) € {i0 mod M —1,i=25,---,n+4}.

— Letl(k) =46 mod M—1.If i6 > M—1, the time complexityfnd = > | b;i(i) mod M — 1)
for decryption may turn out to be @#(M ), which is an exponential time algorithm.



— More precisely, it should require thﬂ?jﬁ i0 < M — 1, otherwise some plaintexts cannot

be recovered by decryption alg. in poly-time.

Consequently, the values 6f1),1(2),--- ,l(n) can be considered as a random permutation of
{54,66,---,(n+ 4)d}, to guarantee poly-time decryptions.

Now we give a simplified description of encryption/decryption algorithm of REESSEE+.
Key Generation e ChoosélV, § as before, le¥ = W mod M.

e Choose pairwise coprime sequerct, Aa, -, An};
e Choose a prime numb@r satisfyingM > [[;, A;;
e select{ f(1), f(2),---, f(n)} as arandom permutation 5,6, --- ,n + 4}.
e ComputeC; = A4;V/® mod M,i=1,2,--- ,n.

Thepublic key is ({C1, C, ...,Cr}, M) .

Theprivate key is ({ A1, Aa, ..., A}, {f(1), £(2),..., f(n)}, V).

Encryption the same as before.

Decryption Step 1 is replaced by «— GV~! mod M.

Remark. The simplified description is just REESSEL, the old version in [1].

3 Analysis of REESSE1+(REESSE1) Encrypion/Decryption Algorithm

3.1 Facts on Which the Attack Algorithms Based

Let Prime [i] denote theé-th prime number. TheRrime [1] = 2, Prime [2] =3, --- , etc.
Since{f(1), f(2),..., f(n)} is a random permutation b, 6, ..., n + 4}, there must exist triples
(i,7,k) suchthatf (i) + f(j) = f(k). The number of such triples is

1424+ (n—5) = (n—4)(n—5)/2.

More precisely, iff (k) = 10, there is one triple; iff (k) = 11, there is 2 triples, etc.
Whenf (i) + f(j) = f(k), we compute

Z=C;-Cj-Clt= A A A VORI = 4,0 A AL mod M.
Then, there must exists an intedesuch that

E_L+Ai.Aj
M A, A M

(1)



Suppose the continued fraction of ratimﬁlis determined by integeigg, a1, - - - , a;] with

Z L+ 1
2 .
M ’ ar + 1
1
at71+aflt
Let ’;—'Z be the rational determined by integéis, a1, - - - , a,] with
Do 1
— =ag + . (2)
Qv ay + 1
1
av—l“l‘%
Then ’;—8, %, e ’;—t} is the convergent sequence of continued fraction expansi#. of

Theorem 1 [5] Let « be a real number, and let/s be a rational withged(r, s) = 1 and|a — 7/s| <
1/2s%. Thenr/s is a convergent of the continued fraction expansion.of
From Eq.(1), we see th% < ﬁ. According to Theorem 1Aik must be a convergent &f/ M.
Let Aik is theu-th convergent, i.eq, = Ay andp, =1, i.e., {;—Z = Aik. Then we know that

Z Puti A Ay 1
M quy A M A\
. 2 ( 2Akz'Aj>
According to Theorem 1 and convergence of seque{%ge%, cee ’;—:}, we obtain that
A M M
g > — Ay 3
Bt =\ 24,4, ~ TF U\ 24,454, @)
Fact 1 If f(i) + f(j) = f(k),
Fact 1.1 there exists ay, such thatg, = A in {’;—g, %, e ’% , the convergent sequence of
continued fraction expansion € with Z = C;C;C;" mod M.

Fact 1.2 there is sharp increase from to ¢,+1 Sinceq,+1 > ,/2%%_.

Fact 1.3 Due to Fact 1.2, there is also a sharp increase #Qno a1, Sinceq,+1 = ay+1G, +
qv—1 forv=1,3,--- | t. Herea,s are items of/ /M determined by Eqg. (2).

Fact 2 If the tuple(i, j, k, Ax) satisfiesf (i) + f(j) = f(k), we call it avalid tuple. Otherwisenvalid
tuple.

Fact 2.1 There are totallyn — 5)(n — 4)/2 valid tuples.
Fact 2.2 If we classified the output tuplés, j, k£, A;) according to the value of(k), we have the
following distribution.



| (k) 10 [ 11 [ [n+4]
number of tuples| 1 2 - | n—=5
(i,7,k, Ax) tuple | tuples| --- | tuples

Table 1: distribution of tuple§i, j, k, Ax)

Fact 3 The maximal value ofd sequence is up bounded by

M

max{Ai, Ay, - A< ——————
x4z ' 1=} Prime [i]

Fact 4 Let integerm satisfies
m+1

I Prime [i] > p,
=1

but .
[ Prime [i] < p.
=1

Then

m
max  A;-Aj- AR < H Prime [i].
i7j7k€{1727"'7n} .
t=n—2

According to Eq. (3), we have

- M
Qut1 = Gu 211, _, Prime [i]’

3.2 Breaking RESSEE1+ Public Key Encryption/Decryption Cryptosystems

We break the public key encryption/decryption algorithm by deriving private key from the public key.
There are two algorithm&lgl. is to find valid tuples anélg2. to derive the private key.

Alg.1: Finding Valid Tuples.
Input the public key({C4, Cs, ...,Cp}, M);

Output tuples(i, j, k, Ag);

i=n—2

LetmaxA= — M
o=, Prime [4]

2. For(i=1,i<=n;i++)
For(j=1;j <=mn;j++)
For(k=1;k <=n;k+ +)
{Z2=0C;-C;- ¢ mod M;
Compute the convergent sequence of continued fractigfy 81, and get

{pom pt}
QO’ql’ ’CIt ’



The denominators of convergent items constitute sequgnces, . . ., ¢ };
For(l = 1;1 <=t;1+ +)
If((q - A < qi1))&& (g < maxA)
then{ Let A, = ¢;;
Output(i, j, k, Ag); }

We cannot give precise estimationsgf.; /¢, and the maximal value ol sequence. We us& as
a lower bound ofy,,+1 /¢, andmaxAas a up bound of the maximal value 4fsequence. However, these
two bounds are far from being tight. Consequenfllg. 1 output tuples more thafn — 4)(n — 5)/2,
among which are valid tupl@, j, k, Ax) with f(i) + f(j) = f(k) and invalid tuple withf (i) + f(j) #
f(k). However, all(in — 4)(n — 5)/2 valid tuple must be among the output of the algorithm.
Nevertheless, we will use the following properties to pick up(the 4)(n—5)/2 valid tuples and use
the properties of the valid tuples to determine the private{key, As,--- , A, }, V and{ fi, fo, -, fn}

Property 1 If (4,7, k, Ay) is a valid tuple, then
AA; = 005 ALCY mod M.
Property 2 If (i, j1, k1, Ak, ) and (i, ja, ko, Ay, ) are both valid,

A = ged (GO, ARG mod M, CiCA, Gyl mod M)
Ajl = CileAkl(CklAi)fl mod M
Aj, = CiCj AL (CrAi)™" mod M
Property 3 Among all the invalid tuples output b&lg. 1, there are at most two tuplés j, k, A;) and

(7,1, k, Ax) associated with an invalid,, whose value is not correct due to the invalidity of the
tuple (i, j, k, Ag).

Property 4 If all the valid tuples output byAlg. 1 are classified by the different value ¢fk), the
distribution of tuples is just like that in Table 1.

Property 5 If the two valid tuples(iy, j1, k1, Ak, ) and(iz, jo, ka, Ak, ) satisfy thatf (k1) + 1 = f(k2),
then
V =Ch, - A, - (Ch, - Ap,)™' mod M.

Alg.2. Picking up Valid Tuples to Derive Private Key.

Input tuples(i, j, k, Ax) output byAlg.1;

output ({Ay, Ag, ooy A}, {f (1), £(2), s f(m)}, V).

1. Classify all the tuplesi, j, k, Ax) according to the value ofy.
Count the number of tuples associated with and denoted the number By,



2. If there exists a uniquél;, such thatV, = [, then setf(k) =1+ 9.
Mark all the tuples associated witky, valid.

Mark other tuples associated Wiitvk, with :47g # Ay, invalid.

3. Among all the tuples,
Repeat

(1) search two valid tupleg, ji, k1, Ax, ) and(iz, j2, k2, Ak, ) such that; = iz or j; = jo;
Without loss of generality, we assume that i; = io.

(2) compute
A = ged (CiC ARGyl mod M, CiCiA, Gyl mod M)
Ajl = Ciclekl (CklAi)_l mod M
Aj2 = CZ'CJ'QA]Q (CkQAi)_l mod M
(2) Mark all the tuples associated withy, A;, , A;, valid.
Mark other tuples associated wiﬁ with E # A; invalid. Do the same t(/ﬁj:, ZJZ with
Ajy # Ajr, Ajy # Agy.
(3) Setf(i) = Ni+9, f(j1) = Nj; +9, f(j2) = Nj, +9.

Until all valid tuples are searched.

3. If there are still tuples with undetermined validity,

Repeat

(1) search a valid tupléiy, j1, k1, Ak, ) and an undetermined tup(é, j2, k2, Ag,) With i1 = iy
or j1 = J2;
Without loss of generality, we assume that i; = io.
) If
ged (Cicleklc,;ll mod M, CiCj,Ay,Cyl mod M) =1

then(iz, jo, k2, A, ) is invalid, Mark all the tuples associated with,, invalid.

Otherwise it is valid and set
A; = ged (CZleAle,;ll mod M, C;Cj,A,Cp} mod M) ,

Aj, = CiCj, Apy (Cry A)™1 mod M

Mark all the tuples associated with; valid.
Mark other tuples associated with with A; # A; invalid.

Until all the (n — 5)(n — 4)/2 valid tuples are marked.



3. Search a valid tupléi, j, k, Aj) satisfiesf (k) = 10 andi = j, then setf (i) = 5.

Search valid tupléi, j, k, Ay) satisfiesf (k) = 10 + ¢ (¢ is a positive integer) and(i) = 5, then
setf(j) =5+t.

4 Output all Ags, f(k)s, andV.

3.3 Example

Letn =10,V = 709863737651593824387533; M = 1640976313637848358971801;

fI1) =10, f[2] = 13, f[3] = 9, f[4] = 14, f[5] = 6,

fl6] =8, f[7] =7, f8] = 12, f[9] = 5, f[10] = 11;

A[1] =9, A[2] = 253, A[3] = 323, A[4] = 205, A[5] = 1369,

A[6] = 3481, A[7] = 4, A[8] = 2809, A[9] = 2263, A[10] = 49;

C[1] = 656980308978034175699516, C[2] = 529118527878261775263063,

C[3] = 1117492693060345271717610, C[4] = 1009005619984027518080917,
5] = 407140262259854747498280, C[6] = 919158732131835174270358,

[1]
3]
Cl5l
C[7] = 197336528727655645732846, C'[8] = 480167833213793003341972,
C[9] = 635798888164869683821836, C[10] = 651849566821592027079423,;
TheAlg.1 output 30 tuples.
We classify the 30 tuples according to the valueglg$ in Table 2.
Now we will useAlg.1 to pick up the 15 valid ones and derive the private key.

Ay Tuples(i, j, k)
Ay =205 (3,9,4) (5, 6, 4)(9, 3, 4)(6, 5, 4)(7, 7, 4)
Ao = 253 (5,7,2)(6,9,2)(7,5,2) (9,6, 2)
Ajg = 1894 (6,9, 10) (9, 6, 10)
Ag = 2809 (7,9,8)(9,7,8) (55,8
Ajg = 6957 (9,7,10) (7,9, 10)
As =3 (8,3,4)(3,8,4)
Ao =49 (9,5,10) (5,9, 10)
Ao = 53022327 (3,4,6) (4,3, 6)
Ag = 4471789987666990 (3,5,6)(5,3,6)
Ay = 152391460756 (7,8,4) (8,7, 4)
Ay = 16127 (7, 10, 3) (10, 7, 3)
A1 =9 9,9,1)
Ag = 1572955621791218 (5,5, 6)

Table 2: Distribution of tuple§i, j, k, Aj) by the algorithm

e A, = 205 must be correct, since only it has 5 tuples. Hence we knowfthigt= 14. The validity
of A4, = 205 invalid the rows for4, = 3 and A, = 152391460756.



e A, =253 must be correct, since only it has 4 tuples. Hef\@& = 13.

e Ag = 2809 must be correct, since only it has 3 tuples. Hefit®) = 12.

e RecoverV = Cy- Ay - (Coy - Ay)~! = 709863737651593824387533 mod M.

e From valid tupleg3,9,4, A4) and(6, 9,2, A3), we have
A3-Ag=C3-Co-Ay-Cpl =730949 mod M,
Ag-Ag=Cp-Co- Ay - Cyt = 7877503 mod M.

Then Ay = gcd (730949, 7877503) = 2263. Consequentlyds = 730949/2263 = 323 and
Ag = 7877503/2263 = 3481. This invalidates the rows fols = 4471789987666990 and
Ag = 1572955621791218 in the table.

e From the valid tuplé5, 6,4, A,), we have
As-Ag=C5-Cg- Ay - C; = 4765489 mod M.
As = 4765489 /A = 1369.
e From the valid tupl€5, 7,2, A5), we have
A5 A7 =C5-Cr- Ay - Cy' = 5475 mod M.
A7 = 5476/ A5 = 4.
e Now test whethe(9, 9, 1,9) is valid or not. If it is valid, then
AP=C3- A Ot =5121169 mod M.
Ag = 2263 impIiesAg = 5121169, hence itis valid andl; = 9.
e Now test whethe(9, 5, 10, 49) is valid or not. If it is valid, then
Ag- A5 =Cy-Cs- Ajg - Cpy = 3098047 mod M.

Ag = 2263 and A5 = 1369 implie Ag - A5 = 3098047. Hence it is valid andd1y = 49. This
invalidates the rows fod o = 4471789987666990, A19 = 6957 and A;p = 1894 in the table.

e The number of valid tuples in the valid rows in Table 1 shows thel) = 14, f(2) = 13,
F(8) =12, f(7) = 11, f(1) = 10.

e f(1) =10 and valid tuplg9, 9,1, A;) shows thatf (9) = 5.
From valid tuple(9, 5,10, A10)(5,9, 10, A1g), we know thatf (5) = 6;
From valid tuple(7, 9, 8, Ag), we know thatf(7) = 7.
From valid tuple(6, 9, 2, A,), we know thatf (6) = 8.
From valid tuple(3, 9,4, A,), we know thatf(3) = 9.

Now we totally recover the private k€Y A, Ao, ..., A, }, {f(1), f(2), ..., f(n)}, V) from the public key
({C1,C4,...,CL}, M).



4 REESSE1+ Digital Signature Algorithm and the Forging Algorithm

Let us review the parameters in the signature algorithm.

e d,D, T, S are pairwise coprime integers.

The pairwise coprime sequen€d;, Ay, - -, A, };

e Aprime numbetV/ satisfyingM > [["", A;, dDT|(M —1)andi|(M —1)fori=1,2,--- ,n+4;

Choose’ such thagced(d, M — 1) andord(d) = dDT;

W= (1, A) " - (a6 )Y mod M,
a=0" mod M, 3=60tUWS mod M,y =6"" mod M;

Computel(1),1(2),--- ,l(n) € {i0 mod M —1,i=5,--- ,n+4},
e ComputeC; = AW mod M,i=1,2,--- ,n.
Slgnlng key: {A17A27” : )An}a{llal27"' 7ln}7I/V757D7d;

Verification key: {C1,Ca,---,Cpn}, o, B,7;

4.1 Signing

Suppose thaf” is the message to be signed. Lketsh(-) be a proper one-way hash function.

The signer will use his signing keyA;}, {l;}, W, 6, D, d and public parameter®/ to sign message
F = (b1,be,- -+ ,by) in the following way.

Signing processgaccording to [1])

1. ComputeH = hash(F).
2. Lethy = S bil(i), Go = [, A%, whereb; = 1 — b;.
3. Pick @ such that

D|(6Q — W) (4)
dt((SQ)" —W") mod M —1 (5)

ComputeR such that) = (RGo)*HS mod M

4. U = (RWh=156+0)°" 104 M.
I

n—1
dt <(5 +1)SU + Z(aQ)”—H’L’W'L‘) mod M — 1, (6)

=0

goto 3.

10



Then the signature faF is Q, U.
SinceR = (Q/H)%G(jlé*%, we re-describe the signing algorithm as follows.
1. H = hash(F).
2. Choose)) satisfying
DI(6Q — W) ()
dt((SQ)™ —W™) mod M — 1 (8)

or
3. U = ((Q/H)SG 6~ s Whki—150(6+1) mod M. If U satisfies
0

n—1
d| ((5 +1)SU + Z(a@n—lﬂ‘wi) mod M —1, 9)

i=0
output(F, @, U), otherwise goto 2.
As was pointed by [2], the step 2 and 3 will repddime on average.

4.2 \erification

With the public key{C;}, a, 3,7 and the public parameters 7', M the verifier can verify whether
(F,Q,U) is valid or not.
Verification procesgaccording to [2])

1. ComputeH = hash(F), and letH = (b, be,- - ,by,) be a binary string of length.
2. Compute( = [, C” mod M.
3. ComputeX = (aHQ)*"" a@"T mod M,

Y = (GQTU—l)US BUTAT mod M.

4. if X =Y, accept(F,Q,U) as a valid signature; otherwise reject.

5 Forging Valid Signatures without the Signing Key

We show some basic facts about the signature scheme.
Fact 1 Any triple (F, @, U) is a valid signature triple, as long as Eq.(7) Eq.(8) and Eq.(9) are satisfied.
e For arandon@), Eq.(8) is satisfied with probabilityl — 1) /d.

Fact 2 For any valid signature tripleF, @, U), the signing par€) is not related to the messageand it
satisfies Eq.(7) and Eq.(8).
Fact 3 For any valid signature tripleF, @, U), the signing partU is uniquely determined by th@, F’
$6(6+1)—1/S
and the secret’——— )"
And U satisfies Eq.(9) with probability/d.

11



5.1 AboutFact3

A valid signature triplg F', @, U) implies
1 1 QT
U= ((Q/H)FGgl(S*?W’“*lé‘s(‘”l)) mod M,
whereF = (by, by, -+ ,by), H = hash(F) andGo = [, A% with b; = 1 — b;.
o Gy= H?:l A?T LetG; = H?:l Agl,
o LetG =[], 4; andG =[], C¥ mod M;
o We havel = GG, andG = GyW* mod M.

SinceR = (Q/H)Y5 - Gyt - 5~5 mod M,

U = (ka1—155<5+1>)QT5((Q/H)%Gald—%wkl—%é(“l))QT mod M

tl=

QT k QT
_ <(Q/H) GG(I;Wkl—l(Sa(aﬂ)—l/s) _ <(Q/H);G1Wl(55(5+1)—1/s> mod M
0G1

GW
A QT e e QT
1 G _ 1 \QT [ §900+1)-1/8
) <(Q/ 0 G US) = (@rm3c) (Gm mod M
s+ -1/s\ QT U
Hence we have{W) = @mTaeT mod M

5.2 The Forging Algorithm
From the above facts, we know that as long as we can find

e a()’ satisfying Eq.(7),

/
. (55541 —1/5\ QT
e and the secret mformano@%) ,

we can uniquely determinel@ with F’, Q' and the secret information, such that', @', U’) is a valid
signature with probabilityd — 1)/d>.

Now we show how to forge signatures for any messBgwithout the signer’s private key, but with
help of two valid signature tripléF, Q1,U1) and(Fs, Q2, Us).

Forging a signatur€)’, U’ for message™”’. Let I/ = (v, b5, --- ,b)).

Input Two valid signature$F;, Q1, Uy) and(Fa, Q2, Uz2) with Q1 # Qo.
Output A valid signature F’, Q',U").

(1) Compute@": Q' = Q1 +v(Q1 — Q2) = (v+ 1)Q1 — vQ2, wherew is an integer.

12



Q1T

S —-1/5 Q/T . SO (6 — .
(2) Evaluate (%) : From(Fy, Uy, Vi), we determine the secréf%) with

so@+n-1/5\ 47T U
—_— = —— mod M.
GW (Q1/H1)% " G)&T
. 5(0+1)—1/5\ @2T .
From(Fy, U, V3 ), we determine the secré%) with
so+n—-1/8\ @7 U
_— = —— mod M.
GW ((Q2/Hz)5™" Go)@2T

Then we have

so+n-1/5\ @7 506+ -1/8\ WFDAT £ c55i1y-1y8) ~o@2T
GW - GW GW

(3) ComputeU”: LetG' = [, €7 mod M.
ANQT / sisitr1/6\ QT
() U = ((Q’/H')%G/) (W) mod M.
Q/U/T m
(i) ComputeX’ = (aH’Q’_l) a@"T mod M,
e NU'S
Y= (GQTy ) gYUTHT mod M.
if X’ =Y’ output(F’,Q’,U’); otherwise goto (2).

Here we give a brief explanation for the validity of the forged signatétre@’, U’).

o Q' =Q1+v(Q1—Q2) = (v+1)Q1 — vQy satisfies Eq.(7);
From the validity of(F1, Q1,U;) and(Fz, Q2, Us), it follows that
D|(6Q1—W), D|(6Q2—W) = D|§(Q1—Q2) = D[vé(Q1—Q2) = D|év(Q1—Q2)+5Q1—W.
SinceV’ = v(Q1 — Q2) + Q1, it follows that

D|(6Q" — W).
On the other handy’ satisfies Eq.(8) with probability — 1/d.
e U’ is uniquely determined bg)’, F’, and it satisfies Eq.(9) with probability/d.
e Then(F’,Q’,U’) is valid signature with probabilityd — 1)/d?. Invalid triples(F’,Q’,U’) are
excluded by testing whethéf = Y holds. Consequently, on average the forging algorithm outputs

avalid signaturéF”, ', U’) by repeating step (2) and (3) abe#it/ (d—1) times. The computation
complexity of forging a valid signature corresponds the signing procedure of RESSEE1+.
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6 Conclusion

This paper gives some analysis of REESSE1+ public key algorithm. We point out that REESSE1+ is
not secure at all. The encryption scheme can be reduced to the old version REESSE1. Regarding to
REESSE1, we show that the private key can be derived from the public key. On the other hand, the
digital signature algorithm of REESSE1+ is not secure as well. Every one can make use of two known
valid signature to forge new signatures for any messages.
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