Countermeasures for the Simple Branch
Prediction Analysis

Giovanni Agosta and Gerardo Pelosi
Dipartimento di Elettronica e Informazione
Politecnico di Milano
{agosta,pelosi}@elet.polimi.it

December 21, 2006

Abstract

Branch Prediction Analysis has been proposed as an attack method
to obtain key bits from a cryptographic application. In this report, we
put forth several solutions to avoid or prevent this attack. The reported
countermeasures require only minimal hardware support that is commonly
available in modern superscalar processors.

1 Introduction

In [1, 2] Aciicmez et al. propose an attack method that exploits the Branch
Target Buffer (BTB) [3] as a log of the branching choices performed by a cryp-
tographic primitive. Basically, the idea is that, by performing the same branch
repeatedly, a spy process can force the cryptographic process to always have
mispredicted branches. Therefore, the cryptographic process causes the BTB
to be modified when the attacked branch is taken, and left to the attacker’s
branch target address when the attacked branch is not taken. This attack, be-
ing based on a log of the branching choices that is visible to all processes, can
allow an unprivileged spy process to quickly infer the key used by the cryp-
tographic process, since the attacker can read this log by simply measuring
the time needed to perform its own branches: longer times correspond to mis-
predicted branches, i.e. to branches taken in the cryptographic process, while
shorter times correspond to not taken branches. With respect to other timing
attacks, this technique is immune to countermeasures such as branch balanc-
ing and blinding, since it does not measure computation times in the attacked
process.



2 Proposed Countermeasures

Several simple hardware and/or software techniques can actually be employed
to block the attack described in [1, 2]. Obviously, a simple and effective solution
would be to allow sensitive processes to disable the access to the BTB unit. This,
however, requires a new generation of processors, which, for general purpose
chips is probably too long a time. Therefore, we propose a set of software and
compiler techniques to address the vulnerability while no appropriate hardware
countermeasure is available.

First of all, most modern processors have predicated instructions. These can
be used to remove some sensitive branches, by converting them into instructions
belonging to a single control flow. For example, the following code:

if(a){b=c+d;}
could be replaced by:

cmpi rl, r2, O
add r3, r4, r5
select r2, r3, ri

where the select operation assigns to the destination register 72 the value of
r3 if rl is not zero. For the other instructions, the first operand is always
the destination. Modern instruction sets such as the ARM and TA64 are fully
predicated, so there would be no need for an explicit conditional assignement,
so that only two instructions would be needed.

This solution is attractive, because it does not affect the performances in
processors that exhibit a sufficient degree of instruction-level parallelism (ILP)
— actually, it can even improve the performances. However, it can only be
applied to a reduced number of branches, since it can cause a significant growth
of the code issued in each execution path.

If predicated instructions are not available in the target ISA, the code can
still be rewritten to avoid branching, at least when the bodies of the then and
else parts of the branch are small enough. An example of such technique is as
follows:

if(a){b=cod}

becomes:
Athen = (a! = 0) x OxfIfET;

aeise = (@ == 0) x Ox{H;
r=cdPd;
b=b& acise + T & Qihen;

Sometimes, however, even this technique can be impractical, since the bodies
of the then and else parts may be large enough, or contain instructions with side
effects (e.g., stores in memory). In this case, a third technique can be employed
to ensure that the side channel attack on the BTB fails. The BTB attack is



based on the fact that there is a conditional branch in the code — therefore, an
effective way to block it is to remove all conditional branches from the sensitive
code, and replace them with indirect branches, as in the following example:

bz r1, label
<then part>
jmp end
label:
<else part>
end:

where r1 contains the result of the condition expression (let us assume it can
only be 0 or 1). The branch instruction is replaced by the following code:

add r2, r3, ril
1d r4, 0(r2)
jmpl r4

where the addresses of the then and else code fragments are stored in memory
at locations pointed by 73 and 73+ 1, and jmpl is an indirect branch reading the
address from a register. The new code snippet loads the target address from the
correct position and always perform an indirect branch, regardless of whether
the condition is true or false — there is no fallthrough between contiguous basic
blocks. The attacker process makes it so that the branch is always mispredicted,
so it will always find its own branches to be mispredicted as well — the BTB will
not contain useful information anymore.

This last technique can always be applied, and it can be applied by means of
a simple compiler pass that replaces the generation of direct branches with ap-
propriate indirect branches, at a minimal added cost (one load, one add and the
jump will always be taken). Moreover, the same technique could be applied on
existing compiled code, since it works directly on the assembler code when the
position of the basic blocks in memory is already known. Indirect branches are
available in most architectures, including x86, TA64, MIPS and ARM, making
the technique widely applicable.

The attack in [1, 2] was proposed as an attack against the implementations
of the RSA cryptosystem, using the OpenSSL implementation as a test case. In
the OpenSSL case, it would be possible to use the predication or if-elimination
techniques, but other implementations or other cryptosystems might still be
vulnerable. Moreover, in closed source cryptosystems, it is impossible to ascer-
tain that a suitable design has been employed an implementation of our last
proposed technique as a dynamic or link-time optimization may still be used to
make the code safe.

3 Concluding Remarks

In this report, we put forth several solutions to avoid or prevent the side channel
attack on the BTB proposed in [1, 2]. The reported countermeasures can be



easily implemented by retargeting the compiler, once the target architecture is
known, or as a link-time or dynamic code optimization.

References

[1] Onur Aciicmez, Cetin Kaya Koc, and Jean-Pierre Seifert. On the power
of simple branch prediction analysis. Cryptology ePrint Archive, Report
2006/351, 2006. http://eprint.iacr.org/.

[2] Onur Aciicmez, Jean-Pierre Seifert, and Cetin Kaya Koc. Predicting secret
keys via branch prediction. Cryptology ePrint Archive, Report 2006/288,
2006. http://eprint.iacr.org/.

[3] Bradley D. Hoyt, Glenn J. Hinton, Andrew F. Glew, and Subramanian
Natarajan. Branch target buffer for dynamically predicting branch instruc-
tion outcomes using a predicted branch history. US Patent 08/509331, In-
ternation Class GO6F 9/38, 1996.



