
Efficient Dynamic k-Times Anonymous
Authentication

Lan Nguyen

CSIRO ICT Centre, Australia
WinMagic, Canada

Lan.Nguyen@winmagic.com

Abstract. In k-times anonymous authentication (k-TAA) schemes,
members of a group can be anonymously authenticated to access applica-
tions for a bounded number of times determined by application providers.
Dynamic k-TAA allows application providers to independently grant or
revoke group members from accessing their applications. Dynamic k-
TAA can be applied in several scenarios, such as k-show anonymous cre-
dentials, digital rights management, anonymous trial of Internet services,
e-voting, e-coupons etc. This paper proposes the first provably secure dy-
namic k-TAA scheme, where authentication costs do not depend on k.
This efficiency is achieved by using a technique called “efficient provable
e-tag”, proposed in [11], which could be applicable to other e-tag sys-
tems.
Keywords: privacy, anonymity, dynamic k-times anonymous authenti-
cation, k-show anonymous credentials, e-tag.

1 Introduction

In a k-times anonymous authentication system [13], participants include a group
manager (GM), some application providers (AP) and many users. The GM reg-
isters users into the group and each AP independently announces the number
of times a group member can access her application. A group member can be
anonymously authenticated by APs within their allowed numbers of times and
without contacting the GM. No one, even the GM or APs, is able to identify
honest users or link two authentication executions of the same user while anyone
can trace dishonest users. No party, even the GM, can successfully impersonate
an honest user in an authentication execution.

However, k-TAA schemes are inflexible in the sense that the GM decides
on the group membership and APs do not have any control over giving users
access permission to their services. APs are passive and their role is limited to
announcing the number of times a user can access their applications. In practice,
APs want to select their user groups and grant or revoke access to users inde-
pendently. For example, the AP may prefer to give access to users with good
profile, or the AP may need to put an expiry date on users’ access. Dynamic
k-TAA [12] was introduced to provide these properties. In dynamic k-TAA, APs
have more control over granting and revoking access to their services, and less

2 Lan Nguyen

trust and computation from the GM is required. Dynamic k-TAA allows APs
to restrict access to their services based on not only the number of times but
also other factors such as expiry date and so can be used in much wider range
of realistic scenarios.

A primitive close to k-TAA is Privacy-Protecting Coupon (PPC) system
[6, 11], which consists of an Initialisation algorithm and 2 protocols, Issue and
Redeem. There is a vendor and many users. The vendor can issue a k-redeemable
coupon to a user such that the user can unlinkably redeem the coupon for exactly
k times. There could be another algorithm, Terminate, which allows the vendor
to terminate coupons. Compared to k-TAA, PPC does not allow traceability of
malicious users and the vendor acts as the group manager and a single application
provider.

Applications of k-TAA can be found in digital rights management (DRM).
For example, k-TAA can be used to provide pay-per-use anonymous access to
online digital content, such as music, movies, interactive games, betting and
gambling, that are supplied by different application providers. A user can buy
credits to download hundreds of songs or movies over a year at a discount price.
Another example is trial browsing [13], where each provider allows members of
a group, such as XXX community, to anonymously and freely browse content
such as movies or music on trial. The provider also wants to limit the number
of times that a user can access the service on trial and users, who try to go over
the prescribed quota, must be identified.

The non-interactive counterpart of k-TAA is k-times anonymous signatures
(i.e. tracing-by-linking signatures [15]), where a group member can anonymously
sign messages on behalf of the group for k times. k-times anonymous signa-
tures can be used to construct k-show anonymous credential systems [15], where
credential-issuing organizations can limit the number of times a user can show
her credentials. k-times anonymous signature can be applied to e-voting with
limitation on the number of votes per user. It can be used to transfer e-cash: the
cash owner sends an one-time anonymous signature on the cash to the receiver.
It can also be directly used to construct an e-coupon scheme [13].

In previous k-TAA schemes, the authentication procedure has computation
and communication costs linearly depending on the bound k. If an application
provider sets k to be a large number, the authentication procedure becomes
expensive. For example, a music web site may sell e-vouchers each of which can
be used to anonymously download 10000 songs within a year. Then each user
has to run the same expensive authentication protocol for each downloaded song.
If there are many users in the group, the authentication cost multiplies by the
number of users. So, the open problem is to construct k-TAA schemes where the
computation and communication costs in the authentication procedure do not
depend on k.

1.1 Our contribution

We propose the first dynamic k-TAA scheme with constant authentication costs,
extended from the NS05 scheme [12], and prove its security. It can be used to

Efficient Dynamic k-Times Anonymous Authentication 3

construct the first k-show anonymous credential system with constant costs. It
can be converted to a k-TAA scheme using the approach in [12]. It is also possible
to construct a combined scheme, where some of the APs have the dynamic
property and other APs do not. Section 4.3 details efficiency comparison with
previous k-TAA schemes [13, 12].

Our scheme still uses tag as in the TFS04 [13] and NS05 [12] schemes. In
these schemes, the GM issues some secret key to each user. An AP with bound
k provides a set of k tag bases. For each authentication, the user uses his secret
key and a tag base to computes a value, called a tag, and sends it to the verifier
with a zero-knowledge proof that the tag is correctly computed and the user is
a group member. If the user attempts to access more than k times, he has to
use a tag base twice and his identity will be revealed. The problem with these
constructions is that the proof that the tag is correctly computed from one of
the k tag bases requires a proof of knowledge of one of k elements and its cost
linearly depends on k. Our objective is to remove this dependency.

We use a methodology, called “efficient provable e-tag”, which was first pro-
posed in [11] for a PPC system. An ordinary k-TAA scheme with constant costs
[14] also uses this method.

In this method, each AP with bound k uses its secret key to issue k signatures
on k random messages and these message-signature tuples are used as tag bases.
Then the proof of knowledge of one of k elements is replaced by a proof of
knowledge of a message-signature tuple. However, using our message-signature
tuples with the function to compute tags from tag bases as in [13, 12] will result
in a “cut and choose” zero-knowledge proof. So we use another function similar
to the verifiable random function proposed in [7] that is used for the efficient
compact e-cash scheme in [5]. We also need a different way for the GM to issue
member secret and public keys to users.

The organization of the paper is as follows. We give the background in section
2 and present the model of dynamic k-TAA in section 3. Section 4 provides
technical description of the proposed dynamic k-TAA scheme.

2 Preliminaries

We follow notation in [12, 13] and use some complexity assumptions, including
Strong Diffie-Hellman (SDH), Decisional Bilinear Diffie-Hellman Inversion (DB-
DHI) and Computational Bilinear Diffie-Hellman Inversion 2 (CBDHI2). The
notation and assumptions are provided in Appendix A.

2.1 Bilinear groups

Let G1, G2 and GT be multiplicative cyclic groups of prime order p. Suppose P1

and P2 are generators of G1 and G2 respectively, and there is an isomorphism
ψ : G2 → G1 such that ψ(P2) = P1. A function e : G1 ×G2 → GT is said to be
a bilinear pairing if it satisfies the following properties:

1. Bilinearity: e(P a, Qb) = e(P,Q)ab for all P ∈ G1, Q ∈ G2 and a, b ∈ Zp.

4 Lan Nguyen

2. Non-degeneracy: e(P1, P2) 6= 1.
3. Computability: e(P,Q) is efficiently computed, ∀P ∈ G1, Q ∈ G2.

For simplicity, hereafter, we set G1 = G2 = G and P1 = P2 but the proposed
scheme can be easily modified for G1 6= G2. We define a Bilinear Pairing Instance
Generator as a PPT algorithm G that takes 1κ and returns a random tuple
t = (p,G,GT , e, P) of bilinear pairing parameters where p is of size κ.

2.2 General BB Signatures

This is a generalization of the Boneh-Boyen signature scheme [1], which is un-
forgeable under a weak chosen message attack if the SDH assumption holds. It
allows generation of a single signature for two random messages and an efficient
knowledge proof of the signature and messages without revealing anything about
the signature and messages.

Key Generating. Suppose (p,G,GT , e, Q) is a bilinear pairing tuple. Generate
random H ′ ← G and s′ ← Z∗p and obtain Q′pub = Qs′ . The public key is
(Q,H ′, Q′pub) and the secret key is s′.

Signing. For messages t ∈ Z∗p and ť ∈ Zp \ {−s′}, output the signature R =
(QtH ′)1/(s′+ť).

Verifying. For a public key (Q,H ′, Q′
pub), messages t ∈ Z∗p and ť ∈ Zp \ {−s′},

and a signature R ∈ G, verify that e(R, QťQ′
pub) = e(QtH ′, Q).

2.3 CL-SDH Signatures

This is a variant of the Camenisch-Lysyanskaya signature scheme [4] using the
SDH assumption. Note that, as shown in [11], there is an efficient protocol be-
tween a user and a signer to generate a CL-SDH signature for the user’s message
without the signer learning anything about the message; and there is an efficient
zero-knowledge proof of knowledge of a CL-SDH message-signature pair.

Key Generating. Suppose (p,G,GT , e, P) is a bilinear pairing tuple. Generate
random P0,H

′ ← G and γ ← Z∗p and obtain Ppub = P γ . The public key is
(P, P0,H

′, Ppub) and the secret key is γ.

Signing. For message x ∈ Z∗p, generate random v ← Zp and a ← Zp \ {−γ} and
compute S = (P xH ′vP0)1/(γ+a). The signature is (a, S, v).

Verifying. For a public key (P, P0,H
′, Ppub), a message x ∈ Z∗p, and a signature

(a, S, v), verify that e(S, P aPpub) = e(P xH ′vP0, P).

3 Model

This section revises the formal model for dynamic k-TAA [13, 12].

Efficient Dynamic k-Times Anonymous Authentication 5

3.1 Procedures

A dynamic k-TAA system is specified as a tuple of PT algorithms (GKg, AKg,
JoinU , JoinM , Bound, Grant, Revoke, AuthenU , AuthenP , Trace), operated by a
group manager (GM), application providers (AP) and users. Each AP V has a
public authentication log LOGV , an access group AGV of users who are allowed
to access its application, and some public information PIV . The algorithms are
described as follows.
GKg: The GM runs this setup PPT algorithm on input 1l to obtain a group
public key gpk and the GM’s secret key gsk.
AKg: An AP V runs this PPT algorithm on input a group public key gpk to
obtain a pair of AP public key and secret key (apkV , askV).
JoinU , JoinM : This joining protocol allows the GM to register a user into the
group. Both of the interactive algorithms JoinU (the user) and JoinM (the GM)
take as input the group public key gpk and JoinM is also given the GM’s secret
key gsk. JoinM returns either accept or reject. If it is accept, JoinU outputs a
pair of member public key and secret key (mpki, mski).
Bound: An AP V uses this bound announcement PPT algorithm to announce
the number of times a user in its access group can use its application. It takes as
input gpk, apkV and askV and outputs the upper bound k and some information
which is published with the AP’s identity IDV .
Grant: An AP V runs this algorithm to grant a group member access to its
application. The AP adds the member to its access group AGV and updates his
public information PIV . From PIV , the member can obtain an access key mak.
Revoke: This algorithm allows an AP to revoke a group member from accessing
its application. It removes the member from the AP’s access group and updates
its public information.
AuthenU , AuthenP : This authentication protocol, between a user (AuthenU) and
an AP V (AuthenP), allows the AP to authenticate the user for accessing its ap-
plication. The protocol input is all of the AP and group’s public information, and
AuthenU ’s private input includes the user’s keys mpk, msk and mak. AuthenP

returns accept, if the user is in the AP’s access group and has been authenticated
by the AP less than k times, or reject otherwise. The authentication transcript
is added to the log LOGV .
Trace: Anyone can run this public tracing PPT algorithm to trace a malicious
user. It takes as input all group public information and an authentication log
and outputs a user identity, GM or NONE, which respectively mean “the user
attempts to access more than the announced bound”, “the GM published infor-
mation maliciously”, and “there is no malicious entity recorded in this log”.

3.2 Correctness and Security Requirements

Brief descriptions of oraclesOLIST ,OQUERY ,OJOIN−U ,OAUTH−U ,OJOIN−GM ,
OAUTH−AP , OGRAN−AP , OREV O−AP and OCORR−AP are provided in Ap-

6 Lan Nguyen

pendix B. The correctness condition and security requirements for dynamic k-
TAA are summarized as follows and full description can be found in [13, 12].
Correctness: It requires that an honest member who is in the access group of an
honest AP and has performed the authentication protocol with the AP for less
than the allowed number of times, is successfully authenticated by the AP.
Anonymity: Intuitively, it means that given two honest group members i0 and i1,
who are in the access group of an AP, it is computationally hard to distinguish
between authentication executions, which are performed by the AP and one of
the two members. In the experiment, the adversary is allowed to collude with
the GM, all APs, and all users except target users i0 and i1, and to query
oracles OLIST , OJOIN−U , OAUTH−U and OQUERY . The adversary is allowed
to make only one query to OQUERY on input i0, i1 and an AP whose access
group contains i0 and i1. On receiving such a query, OQUERY makes either i0 or
i1 to execute the authentication protocol with the AP and outputs the protocol
transcript. Each of the users i0 and i1 must be authenticated by the AP within k
times. The anonymity condition holds if the probability that the adversary can
correctly guess the user identity used in OQUERY ’s authentication execution is
negligibly better than a random guess.

This anonymity definition is general enough to capture desirable privacy
properties. For example, if the adversary can link authentication executions of
the same user with different APs with non-negligible probability, then the adver-
sary can break the anonymity experiment with non-negligible probability. In the
experiment, the adversary can use OAUTH−U to trigger authentication execu-
tions between i0 or i1 with different APs. When OQUERY generates a challenged
authentication execution, the adversary can link it to the executions generated
by OAUTH−U with non-negligible probability. As the adversary knows the user
identity of each execution generated by OAUTH−U , it can tell the user identity
of the challenged authentication execution with non-negligible probability.
Detectability: It loosely means that if a subgroup of corrupted members have
performed the authentication procedure with the same honest AP for more than
the total allowed number of times, then the public tracing algorithm using the
AP’s authentication log outputs NONE with negligible probability. The experi-
ment has two stages and the adversary is allowed to corrupt all users. In the first
stage, the adversary can query OLIST , OJOIN−GM , OAUTH−AP , OGRAN−AP ,
OREV O−AP and OCORR−AP . Then all authentication logs of all APs are emp-
tied. In the second stage, the adversary continues the experiment, but without
access to the revoking oracle OREV O−AP . The adversary wins if he can be suc-
cessfully authenticated by an honest AP V with access bound k for more than
k × #AGV times, where #AGV is the number of members in the AP’s access
group. The detectability condition requires that the probability that the adver-
sary wins is negligible.
Exculpability for users: It intuitively means that the tracing algorithm does not
output the identity of an honest user even if other users, the GM and all APs
are corrupted. In the experiment, the adversary, who wants to frame an hon-
est user i, is allowed to corrupt all entities except the user i and can access

Efficient Dynamic k-Times Anonymous Authentication 7

OLIST , OJOIN−U , and OAUTH−U . The adversary must authenticate user i us-
ing OAUTH−U within the allowable numbers of times set by the APs. If the
adversary succeeds in computing an authentication log, with which the public
tracing algorithm outputs i, the adversary wins. The exculpability condition for
users requires that the probability that the adversary wins is negligible.

Exculpability for the GM: Loosely speaking, it means that the tracing algorithm
does not output the honest GM even if all users and all APs are corrupted. In
the experiment, the adversary wants to frame the honest GM and he is allowed
to corrupt all users and all APs and access OLIST and OJOIN−GM . If the adver-
sary succeeds in computing an authentication log, with which the public tracing
algorithm outputs GM, the adversary wins. The exculpability condition for the
GM requires that the probability that the adversary wins is negligible.

4 Dynamic k-TAA with constant authentication costs

4.1 Overview

Section 1.1 has already given the general intuition of the approach “efficient
provable e-tag”, which substantially improves efficiency of our scheme over the
NS05 and TFS04 schemes [12, 13]. We now provide an outline of this scheme
and note where this scheme is similar to NS05. In the GKg algorithm, a bilinear
pairing tuple (p,G,GT , e, P) is generated, the GM’s secret key is a CL-SDH
secret key γ ← Z∗p and the group public key includes the corresponding CL-SDH
public key (P, P0, H

′, Ppub) and a value Φ ← GT .
As noted in section 2.3, there is an efficient protocol between a user and a

signer to generate a CL-SDH signature for the user’s secret message x without
the signer learning anything about the message. This protocol underlies the
joining protocol (JoinU , JoinM), where the user also has to publish his identity
and β = Φ1/x in the identification list LIST that allows tracing of malicious users
in the Trace algorithm. At the end of the joining protocol, the user obtains a
CL-SDH signature (a, S, v) for a message x, where v is also the user’s random
secret. The user’s member secret key is (x, v) and his member public key is
(a, S, β). As also noted in section 2.3, there is an efficient zero-knowledge proof
of knowledge of a CL-SDH message-signature pair (by proving the knowledge
of (a, S, v) and x such that e(S, P aPpub) = e(P xH ′vP0, P)). The user can be
anonymously authenticated as a group member by using this proof, as shown in
the authentication protocol.

In the AKg algorithm, an AP’s public-secret key pair includes a general BB
public key (Q,H ′, Q′

pub) and the corresponding BB secret key is s′. The Bound
algorithm, for a bound k, generates k random message couples (t1, ť1), ..., (tk, ťk)
and k corresponding general BB signatures R1, ..., Rk. The AP publishes k tag
bases (t1, ť1, R1), ..., (tk, ťk, Rk) to be used for up to k times user access to the
AP’s service (each tag base is a general BB message-signature triplet).

In the authentication protocol between the AP and a group member with
key pair ((x, v), (a, S, β)), the user obtains a random l from the AP, chooses a

8 Lan Nguyen

tag base (ti, ťi, Ri) and sends back a tag (Γ, Γ̌) = (F (x, ti), F̌ (x, ťi, l)), where F
and F̌ are two functions. The user also shows the AP a zero-knowledge proof
Proof2 which proves four properties: (i) the user is a group member (by proving
knowledge of a CL-SDH message-signature pair (x, (a, S, v))); (ii) the user knows
a general BB message-signature triplet (ti, ťi, Ri) (without revealing the triplet);
(iii) (Γ, Γ̌) is correctly computed from l, x, (ti, ťi), F and F̌ (that means (Γ, Γ̌) =
(F (x, ti), F̌ (x, ťi, l))); and (iv) the AP has granted access to the user. Part (iv)
is the same as in NS05 and we will talk about it afterwards. This protocol differs
from NS05’s authentication protocol with the construction of F and F̌ and parts
(i), (ii) and (iii).

In the authentication protocols of TFS04 and NS05, the proof that one of
the k announced tag bases has been used to compute the tag requires a proof of
knowledge of one of k elements and its cost linearly depends on k. In our authen-
tication protocol, that proof of knowledge of one of k tag bases is replaced by
the proof of knowledge of a general BB message-signature triplet. Therefore, our
authentication cost does not depend on k. The general BB signatures prevents
the user from forging a new tag base without colluding the AP.

Similar to NS05, if the user uses the same tag base to compute another tag
(Γ ′, Γ̌ ′), anyone can find these from the AP’s authentication log (since Γ = Γ ′)
and use it to compute β = (Γ̌ /Γ̌ ′)1/(l−l′), which is part of the user’s public key
(F̌ must be designed to allow this computation). However, if the member does
not use the same tag base twice, his anonymity is protected (F and F̌ must
be designed to allow this anonymity). The cost of checking if Γ has already
appeared in the AP’s authentication log is the same as in TFS04 and NS05, and
is trivial if tags are orderly indexed by Γ , so we ignore that cost in claiming the
‘constant’ property.

F and F̌ must be designed so that: tags are not linkable; the property (iii) can
be efficiently proved; and if a user uses the same tag base twice, his public key
is computable from the two tags (β = (Γ̌ /Γ̌ ′)1/(l−l′)). We construct these two
functions as (Γ, Γ̌) = (Φ1/(x+ti), Φ(lx+lťi+x)/(x2+xťi)). This tag construction is
different from [13, 12] and developed from a recently proposed verifiable random
function [7] using bilinear pairings. It possesses a precious feature of having both
key x and tag base ti, ťi in the exponents of Φ1/(x+ti) and Φ(lx+lťi+x)/(x2+xťi).
This feature allows the user’s zero-knowledge proof Proof2 in the authentication
protocol to avoid the cut-and-choose method.

Now, we talk about the property (iv) and the Grant and Revoke algorithms,
which are quite the same as in NS05. We also use dynamic accumulators to
provide the dynamic property, which means the AP grants access to or revokes
access from users. Each AP has a public key/secret key pair ((Q,Qpub), s), where
Qpub = Qs. To grant access to a member with a public key (a, S, β), the AP ac-
cumulates the value a of the public key into an accumulated value V ← V s+a,
and the member obtains the old accumulated value as the witness W . The mem-
ber shows that the AP has granted access to him by proving the knowledge of
(a,W) such that e(W,QaQpub) = e(V,Q). To revoke access from the member,
the AP computes a new accumulated value V ← V 1/(s+a).

Efficient Dynamic k-Times Anonymous Authentication 9

Similar to NS05, there is a Public Inspection algorithm (Appendix C) exe-
cutable by anyone to check if the APs perform the Bound, Grant and Revoke
algorithms correctly.

4.2 Description

GKg.
On input 1κ, the Bilinear Pairing Instance Generator returns (p,G,GT , e, P).
Generate P0, P1, P2,H,H ′ ← G, γ ← Z∗p and Φ ← GT , and let Ppub = P γ .
The GM’s secret key is a CL-SDH secret key gsk = γ. The group public key
gpk consists of the corresponding CL-SDH group public key (P, P0,H

′, Ppub)
and values Φ,H,P1, P2. The identification list LIST of group members is initially
empty.

AKg.
An AP V generates Q ← G, s, s′ ← Z∗p and computes Qpub = Qs, Q′pub = Qs′ .
The public and secret keys for the AP are apk = (Q,Qpub, Q

′
pub) and ask =

(s, s′), respectively. They form a general BB key pair ((Q,H ′, Q′
pub), s

′). Then,
same as NS05 [12], AP maintains an authentication log LOG, an accumulated
value, which is published and updated after granting or revoking a member, and
a public archive ARC (as the other public information PI in the formal model),
which is a list of 3-tuples. The first component of the tuple is an element in the
public key of a member, who was granted or revoked from accessing the AP. The
second component is a single bit indicating whether the member was granted
(1) or revoked (0). The third component is the accumulated value after granting
or revoking the member. Initially, the accumulated value is set to V0 ← G and
LOG and ARC are empty.

JoinU , JoinM .
This protocol allows the GM to generate a CL-SDH signature (a, S, v) for the
user’s secret x without learning anything about (x, v). The user also publishes
β = Φ1/x. A user Ui can join the group as follows.

1. User Ui chooses x, v′ ← Z∗p, computes β = Φ1/x and a commitment C =
P xH ′v′ of x and adds (i, β) to the identification list LIST. The user then
sends β and C to the GM with a standard non-interactive zero-knowledge
proof Proof1 = PK{(x, v′) : C = P xH ′v′ ∧ Φ = βx}.

2. The GM verifies that (i, β) is an element of LIST and the proof is valid.
The GM then generates a ← Zp different from all corresponding previously
generated values and ṽ ← Z∗p, computes S = (CH ′ṽP0)1/(γ+a), and sends
(S, a, ṽ) to user Ui.

3. User Ui computes v = v′ + ṽ and confirms that equation e(S, P aPpub) =
e(P xH ′vP0, P) is satisfied. The new member Ui’s secret key is msk = (x, v),
and his public key is mpk = (a, S, β).

Bound.
An AP publishes his identity ID and a number k as the bound. Let (tj , ťj) =

10 Lan Nguyen

HZ∗p×Z∗p(ID, k, j) for j = 1, ..., k. The AP computes general BB signatures Rj =
(Qtj H ′)1/(s′+ťj) for j = 1, ..., k and publishes (t1, ť1, R1), ..., (tk, ťk, Rk). We call
(tj , ťj , Rj) the jth tag base of the AP.

The Public Inspection algorithm (Appendix C) can be run by anyone to
check if the APs perform the Bound, Grant and Revoke algorithms correctly. So
it is negligible that the APs can generate tag bases maliciously, for example, two
APs setting the same tj .

Grant.
This is the same as in NS05. An AP grants access to a user Ui with public key
mpk = (a, ·, ·) as follows. Suppose there are j tuples in the AP’s ARC and the
AP’s current accumulated value is Vj . The AP computes a new accumulated
value Vj+1 = V s+a

j and adds (a, 1, Vj+1) to his ARC. From the AP’s ARC, the
user Ui forms his access key mak = (j + 1,W), where W = Vj , and keeps a
counter d, which is initially set to 0.

Revoke.
This is the same as in NS05. An AP revokes access from a user Ui with public
key mpk = (a, ·, ·) as follows. Suppose there are j tuples in the AP’s ARC and
the AP’s current accumulated value is Vj . The AP computes a new accumulated
value Vj+1 = V

1/(s+a)
j , and adds (a, 0, Vj+1) to ARC.

AuthenU , AuthenP .
The difference from NS05’s authentication protocol lies in the second step, which
is also the most important step of the protocol. In this step, the tag computation
and Proof2 are completely different from those in NS05. An AP (ID, k), whose
public key and current accumulated value are apk = (Q,Qpub, Q

′
pub) and V

respectively, authenticates a user U with public and secret keys mpk = (a, S, β)
and msk = (x, v), respectively, as follows.

1. U increases counter d. If d > k, then U sends ⊥ to the AP and stops.
Otherwise, U runs the algorithm Update (Appendix C) to update his access
key mak = (j,W). The AP then sends a random integer l ← Z∗p to U .

2. U chooses an unused tag base (tι, ťι, Rι), computes tag (Γ, Γ̌) = (Φ1/(x+tι),

Φ(lx+lťι+x)/(x2+xťι)), and sends (Γ, Γ̌) to the AP with a proof
Proof2 = PK{(tι, ťι, Rι, a, S, x, v,W) : Γ = Φ1/(x+tι) ∧
Γ̌ = Φ(lx+lťι+x)/(x2+xťι) ∧ e(S, P aPpub) = e(P xH ′vP0, P) ∧ e(W,QaQpub) =
e(V, Q) ∧ e(Rι, Q

ťιQ′pub) = e(QtιH ′, Q)} (Proof2 is described below).
3. If the proof is valid and if Γ is different from all corresponding tags in the

AP’s LOG, the AP adds tuple (Γ, Γ̌ , l) and the proof to LOG, and outputs
accept. If the proof is valid and Γ is already written in LOG, the AP adds
tuple (Γ, Γ̌ , l) and the proof to the LOG, outputs (detect,LOG) and stops. If
the proof is invalid, the AP outputs reject and stops.

Proof2.
Let U1 = SHr1 ; U2 = WHr2 ; U3 = RιH

r3 where r1, r2, r3 ← Zp, then Proof2

Efficient Dynamic k-Times Anonymous Authentication 11

is equivalent to a proof of knowledge of (tι, ťι, a, x, v, r1, r2, r3) such that

Γ x+tι = Φ; Γ̌ (x+ťι)xΦ−lx−lťι−x = 1;
e(U1, P)ae(H,P)−r1ae(H, Ppub)−r1e(P, P)−xe(H ′, P)−v

= e(U1, Ppub)−1e(P0, P);
e(U2, Q)ae(H, Q)−r2ae(H, Qpub)−r2 = e(U2, Qpub)−1e(V, Q);

e(U3, Q)ťιe(H,Q)−r3 ťιe(H, Q′pub)
−r3e(Q,Q)−tι = e(U3, Q

′
pub)

−1e(H ′, Q)

Most of the pairing operations in this proof can be pre-computed. The member
M computes the proof as follows.

1. Generate r1, r2, r3, k1, ..., k18 ← Zp and compute
U1 = SHr1 ; U2 = WHr2 ; U3 = RιH

r3 ;
U4 = P r1

1 P r2
2 Hr4 ; U5 = P r3

1 Hr5 ; U6 = P x+ťι
1 Hr6 ;

T1 = P k1
1 P k2

2 Hk4 ; T2 = P k7
1 P k8

2 Hk9U−k10
4 ; T3 = P k3

1 Hk5 ;
T4 = P k11

1 Hk12U−k13
5 ; T5 = P k14+k13

1 Hk6 ; T6 = P k15
1 Hk16U−k14

6 ;
Π1 = Γ k14+k17 ; Π2 = Γ̌ k15Φ−lk14−lk13−k14 ;
Π3 = e(U1, P)k10e(H, P)−k7e(H, Ppub)−k1e(P, P)−k14e(H ′, P)−k18 ;
Π4 = e(U2, Q)k10e(H, Q)−k8e(H, Qpub)−k2 ;
Π5 = e(U3, Q)k13e(H, Q)−k11e(H, Q′

pub)
−k3e(Q,Q)−k17

2. Compute c = HZp(P ||Ppub||P0||H||H ′||P1||P2||Φ||Q||Qpub||Q′
pub||ID||k||l||

V ||U1||...||U6||T1||...||T6||Π1||...||Π5)
3. Compute in Zp: s1 = k1 + cr1; s2 = k2 + cr2; s3 = k3 + cr3; s4 = k4 + cr4;

s5 = k5 + cr5; s6 = k6 + cr6; s7 = k7 + cr1a; s8 = k8 + cr2a; s9 = k9 + cr4a;
s10 = k10 + ca; s11 = k11 + cr3ťι; s12 = k12 + cr5ťι; s13 = k13 + cťι; s14 =
k14+cx; s15 = k15+c(x+ ťι)x; s16 = k16+cr6x; s17 = k17+ctι; s18 = k18+cv

4. Output (U1, ..., U6, c, s1, ..., s18)

Verification of Proof2b. Checking the following equation
c

?= HZp(P ||Ppub||P0||H||H ′||P1||P2||Φ||Q||Qpub||Q′
pub||ID||k||l||V ||U1||...||U6||

P s1
1 P s2

2 Hs4U−c
4 ||P s7

1 P s8
2 Hs9U−s10

4 ||P s3
1 Hs5U−c

5 ||P s11
1 Hs12U−s13

5 ||
P s14+s13

1 Hs6U−c
6 ||P s15

1 Hs16U−s14
6 ||Γ s14+s17Φ−c||Γ̌ s15Φ−ls14−ls13−s14 ||

e(U1, P)s10e(H, P)−s7e(H, Ppub)−s1e(P, P)−s14e(H ′, P)−s18e(U1, Ppub)c

e(P0, P)−c||e(U2, Q)s10e(H, Q)−s8e(H, Qpub)−s2e(U2, Qpub)ce(V, Q)−c||
e(U3, Q)s13e(H,Q)−s11e(H, Q′

pub)
−s3e(Q,Q)−s17e(U3, Q

′
pub)

ce(H ′, Q)−c.

Trace.
This algorithm is almost the same as in NS05. The identity of a malicious user
can be traced from an AP’s LOG as follows.

1. Look for two entries (Γ, Γ̌ , l, P roof) and (Γ ′, Γ̌ ′, l′, P roof ′) in the LOG, such
that Γ = Γ ′ and l 6= l′, and that Proof and Proof ′ are valid. If no such
entry can be found, output NONE.

2. Compute β = (Γ̌ /Γ̌ ′)1/(l−l′) =
(Φ(lx+lťι+x)/(x2+xťι)/Φ(l′x+l′ ť′ι+x)/(x2+xť′ι))1/(l−l′) = Φ1/x, and look for a pair
(i, β) from the LIST. Output member identity i, or if no such (i, β) can be
found conclude that the GM has deleted some data from LIST, and output
GM.

12 Lan Nguyen

4.3 Comparison

Apart from providing the same desirable properties of the NS05 and TFS04
schemes, a significant advantage of our scheme is that its authentication costs do
not depend on k or any parameter. Its only tradeoff is that the Bound algorithm
needs to compute {R1, ..., Rk} for the tag bases. However, each AP needs to run
the Bound algorithm only once whereas the authentication protocol is executed
by all granted members for k times. So the tradeoff is very trivial compared to
the advantage.

We have the following comparison on the number of exponentiations (EX),
scalar multiplications (SM), pairings (PA) and transmitted bytes in the authen-
tication protocol. For the communication comparison, we use the parameters in
[12]. The TFS04 scheme has ν = 1024, ε = µ = κ = 160. For other schemes, p
is a 160-bit prime, GT is a subgroup of a finite field of size approximately 21024

and GT elements can be compressed by a factor of three using techniques in [9].
Most of the pairings can be pre-computed. The user can compute e(U1, P)k10 by
pre-computing e(S, P) and e(H, P) and computing e(S, P)k10e(H,P)k10r1 (this
way removes pairing computation but increases the number of exponentiations).
It is similar for e(U2, Q)k10 and e(U3, Q)k13 . Note that the TFS04 scheme does
not provide the dynamic property and does not have the Update algorithm. That
algorithm is the same for NS05 and our scheme. It is not needed if NS05 and
our scheme are modified to remove the dynamic property. So we do not count
the cost of the Update algorithm in the comparison table. Besides, the number
of bytes sent by a user in the NS05 scheme we computed (60 k+ 408) is different
from that in [12] (60 k+ 304).

TFS04 NS05 Our scheme
Computation by AP (17+8k)EXs (15+8k)EXs 21EXs+

+8SMs+4PAs 20SMs+6PAs
Computation by User (28+8k)EXs (21+8k)EXs 22EXs+

+12SMs 27SMs
Bytes sent by AP 40 20 20
Bytes sent by User 60 k+ 1617 60 k+ 408 585
Dynamic No Yes Yes

4.4 Security

Security of our scheme is stated in Theorem 1, which is proved in Appendix D.

Theorem 1. In the random oracle model, the dynamic k-TAA scheme provides:
(i) Correctness; (ii) Anonymity under the Decisional Bilinear Diffie-Hellman
Inversion assumption; (iii) Detectability under the Strong Diffie-Hellman as-
sumption; (iv) Exculpability for users under the Computational Bilinear Diffie-
Hellman Inversion 2 assumption; (v) Exculpability for the GM under the Strong
Diffie-Hellman assumption.

Efficient Dynamic k-Times Anonymous Authentication 13

References

1. D. Boneh and X. Boyen. Short Signatures Without Random Oracles. EURO-
CRYPT 2004, Springer-Verlag, LNCS 3027, pp. 56-73.

2. D. Boneh and X. Boyen. Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. EUROCRYPT 2004, Springer-Verlag, LNCS 3027, pp.
223-238.

3. J. Camenisch, and A. Lysyanskaya. Dynamic Accumulators and Application to
Efficient Revocation of Anonymous Credentials. CRYPTO 2002, Springer-Verlag,
LNCS 2442, pp. 61-76.

4. J. Camenisch and A. Lysyanskaya. A Signature Scheme with Efficient Protocols.
SCN 2002, Springer-Verlag, LNCS 2576.

5. J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact E-Cash. EURO-
CRYPT 2005, Springer-Verlag, LNCS 3494, pp. 302-321, 2005.

6. L. Chen, M. Enzmann, A. Sadeghi, M. Schneider, and M. Steiner. A Privacy-
Protecting Coupon System. Financial Cryptography 2005, Springer-Verlag, LNCS
3570, pp. 93-109.

7. Y. Dodis and A. Yampolskiy. A Verifiable Random Function with Short Proofs and
Keys. Public Key Cryptography 2005, Springer-Verlag, LNCS 3386, pp. 416-431.

8. A. Fiat, and A. Shamir. How to prove yourself: practical solutions to identification
and signature problems. CRYPTO 1986, Springer-Verlag, LNCS 263, pp. 186-194.

9. R. Granger, D. Page, and M. Stam. A Comparison of CEILIDH and XTR. Algo-
rithmic Number Theory, 6th International Symposium, ANTS-VI, pages 235-249.
Springer, June 2004.

10. A. Kiayias, and Moti Yung. Group Signatures: Provable Security, Efficient Con-
structions and Anonymity from Trapdoor-Holders. Cryptology ePrint Archive: Re-
port 2004/076.

11. Lan Nguyen. Privacy-Protecting Coupon System Revisited. Financial Cryptogra-
phy Conference (FC) 2006, LNCS, Springer, 2006.

12. L. Nguyen and R. Safavi-Naini. Dynamic k-Times Anonymous Authentication.
Applied Cryptography and Network Security (ACNS) 2005, Springer-Verlag, LNCS
3531, 2005.

13. I. Teranisi, J. Furukawa, and K. Sako. k-Times Anonymous Authentication. ASI-
ACRYPT 2004, Springer-Verlag, LNCS 3329, pp. 308-322, 2004.

14. I. Teranishi and K. Sako. k-Times Anonymous Authentication with a Constant
Proving Cost. Public Key Cryptography 2006, Springer-Verlag, LNCS 3958, pp.
525-542, 2006.

15. V. Wei. Tracing-by-Linking Group Signatures. Information Security Conference
(ISC) 2005, Springer-Verlag, LNCS 3650, pp. 149-163, 2005.

A Preliminaries

A.1 Notation

For a function f : N → R+, if for every positive number α, there exists a
positive integer κ0 such that for every integer κ > κ0, it holds that f(κ) < κ−α,
then f is said to be negligible. Let PT denote polynomial-time, PPT denote
probabilistic PT and DPT denote deterministic PT. For a PT algorithm A(·),
“x ← A(·)” denotes an output from the algorithm. For a set X, “x ← X”

14 Lan Nguyen

denotes an element uniformly chosen from X, and #X denotes the number
of elements in X. Let “Pr[Procedures|Predicate]” denote the probability that
Predicate is true after executing the Procedures, HX denote a hash function
from the set of all finite binary strings {0, 1}∗ onto the set X, and PK{x : R(x)}
denote a proof of knowledge of x that satisfies the relation R(x). An adversary
is modelled by an interactive Turing machine, which interacts with some oracles.
Each oracle performs operations and produces outputs required by queries from
the adversary. An entity is corrupted if the adversary has the entity’s secret keys
and completely controls the entity’s actions. We define 1/0 to be 0.

A.2 Complexity assumptions

q-Strong Diffie-Hellman (q-SDH) Assumption [1]. For every PPT algorithm A, the

following function Adv
q-SDH
A (κ) is negligible.

Adv
q-SDH
A (κ) = Pr[(A(t, P, P s, . . . , P (sq)) = (c, P 1/(s+c))) ∧ (c ∈ Zp)]

where t = (p,G,GT , e, P) ← G(1κ) and s ← Z∗p.
The assumption informally means that there is no PPT algorithm that can

compute a pair (c, P 1/(s+c)), where c ∈ Zp, from a tuple (P, P s, . . . , P (sq)), where
s ← Z∗p.
Decisional Bilinear Diffie-Hellman Inversion (DBDHI) Assumption [2]. For every
PPT algorithm A, the following function AdvDBDHI

A (κ) is negligible.

AdvDBDHI
A (κ) = |Pr[A(t, P, P s, . . . , P (sq), e(P, P)1/s) = 1]

−Pr[A(t, P, P s, . . . , P (sq), Γ) = 1]|
where t = (p,G,GT , e, P) ← G(1κ), Γ ← G∗T and s ← Z∗p.

Intuitively the DBDHI assumption [2] states that there is no PPT algorithm
that can distinguish between a tuple (P, P s, . . . , P (sq), e(P, P)1/s) and a tuple
(P, P s, . . . , P (sq), Γ), where Γ ← G∗T and s ← Z∗p. We define the Computational
Bilinear Diffie-Hellman Inversion 2 assumption, which holds if either DBDHI or
SDH holds.
Computational Bilinear Diffie-Hellman Inversion 2 (CBDHI2) Assumption. For every
PPT algorithm A, the following function AdvCBDHI2

A (κ) is negligible.

AdvCBDHI2
A (κ) = Pr[A(t, P, P s, . . . , P (sq), e(P, P)1/s) = s]

where t = (p,G,GT , e, P) ← G(1κ) and s ← Z∗p.

B Oracles

The adversary has access to a number of oracles and can query them according
to the brief description below, to learn about the system and increase his success
chance in the attacks. Their formal definitions can be found in [13, 12].

Efficient Dynamic k-Times Anonymous Authentication 15

OLIST : Suppose there is an identification list LIST of user identity/public-
key pairs, this oracle maintains correct correspondence between user identities
and user public keys. Any party can query the oracle to view a user’s public key.
A user or his colluder can request the oracle to record the user’s identity and
public key to LIST. The GM or his colluder can request the oracle to delete data
from LIST.

OQUERY : It is only used once in the definition for anonymity requirement
to give the adversary a challenged authentication transcript. Identities of an
AP and two honest users, who are in the AP’s access group and have not been
authenticated by the AP more than the limit, are given to the oracle. It then
randomly chooses one of the two identities, executes the authentication proto-
col between the chosen identity and the AP, and outputs the transcript of the
protocol.

Given a user identity,OJOIN−GM performs the (JoinU , JoinM) protocol as ex-
ecuted by the honest GM and the user. Given an honest user’s identity,OJOIN−U

performs the (JoinU , JoinM) protocol between the GM and the user. Given an
honest AP’s identity and a user identity, OAUTH−AP makes the AP to execute
the authentication protocol with the user. Given an honest user’s identity and an
AP identity, OAUTH−U makes the user to perform the authentication protocol
with the AP. OGRAN−AP takes as input an honest AP’s identity and a group
member’s identity and the AP executes the Grant algorithm to grant access to
the user. OREV O−AP takes as input an honest AP’s identity and a member of
the AP’s access group and the AP executes the Revoke algorithm to revoke the
user’s access right. OCORR−AP corrupts an AP specified in its input.

C Update and Public Inspection

Update.
This algorithm is the same as in NS05. Suppose the AP’s ARC currently has
n tuples, the member M with the public key (a, ·, ·) and the access key (j, Wj)
computes a new access key as follows.

for (k = j + 1; k + +; k ≤ n) do
retrieve from ARC the kth tuple (u, b, Vk);
if b = 1, then Wk = Vk−1W

u−a
k−1

else Wk = (Wk−1/Vk)1/(u−a) end if;
end for;
return (n,Wn);

Public Inspection.
Not only checking Grant and Revoke as in NS05, this algorithm also checks the
Bound algorithm. Any party can run this algorithm to assure the correctness
of an AP’s tag bases and public archive ARC. With such an algorithm, we can
assume that tag bases are always correctly issued and ARC is always correctly
updated. For each tag base (tj , ťj , Rj) of an AP ID with bound k, any party can

16 Lan Nguyen

verify if (tj , ťj)
?= HZ∗p×Z∗p(ID, k, j) and e(Rj , Q

ťj Q′pub)
?= e(Qtj H ′, Q). After a

change on ARC, any party can retrieve the new tuple (u, b, Vk). If (b = 1) then
he checks if e(Vk−1, Q

aQpub)
?= e(Vk, Q); otherwise, he checks if e(Vk, QaQpub)

?=
e(Vk−1, Q).

D Security Proofs

For Theorem 1, as part (i) can easily be proved by checking equations, we only
provide proofs for parts (ii), (iii), (iv) and (v). Due to space limitation, we omit
the proof that Proof2 is non-interactive zero-knowledge, which is standard.

D.1 Proof of Theorem 1 (ii)

Suppose there exists a PPT adversaryA breaking the Anonymity property of our
scheme, we show a PPT adversary B that can break the DBDHI assumption.
Let t = (p,G,GT , e, P ′) ← G(1κ) and a tuple α = (P ′, P ′w, . . . , P ′(w

q), Λ) be
uniformly chosen from either S0 = {(P ′, P ′w, . . . , P ′(w

q), e(P ′, P ′)1/w)|w ← Z∗p}
or S1 = {(P ′, P ′w, . . . , P ′(w

q), Λ)|w ← Z∗p, Λ ← G∗T }. B’s challenge is to guess
whether α is chosen from S0 or S1. B interacts with A as follows.

B randomly chooses a bit b ← {0, 1} and let b′ be the other bit. B gener-
ates different δ0, δ̌0, δ1, δ̌1, ..., δq−1, δ̌q−1 ← Z∗p and sets xb = w − δ0 (without
knowing xb). Let F = xb(xb + δ̌0)

∏q−1
i=1 (xb + δi)(xb + δ̌i), then it can be pre-

sented as a polynomial F =
∑2q

i=0 Aiw
i, where A0, ..., A2q are computable from

δ0, δ̌0, δ1, δ̌1, ..., δq−1, δ̌q−1 and A0 6= 0. Therefore, B can compute Φ = e(P ′, P ′)F ,
βb = Φ1/xb , Θ̌0 = Φ1/(xb+δ̌0), Θi = Φ1/(xb+δi) and Θ̌i = Φ1/(xb+δ̌i), i = 1, ..., q−1
from (P ′, P ′w, . . . , P ′(w

q)). Given l, B can also compute
Φ(lxb+lδ̌i+xb)/(x2

b+xbδ̌i) = βl
bΘ̌i for i = 0, ..., q − 1. Let Θ0 = e(P ′, P ′)

P2q
i=1 Aiw

i−1

ΛA0 , if Λ = e(P ′, P ′)1/w then Θ0 = Φ1/(xb+δ0).
B selects P, P0, P1, P2,H,H ′ ← G, γ ← Z∗p, and computes Ppub = P γ . B

provides A the group public key gpk = (P, P0,H
′, Ppub, Φ,H, P1, P2) and the

group secret key gsk = γ. B creates a number of users including two target users
i0 and i1 that will be sent to OQUERY later.

At any time, A can create a new AP by generating apk, ask, an initial
accumulated value, LOG and ARC as described in the AKg algorithm. Because
A determines the AP’s identity to be sent to OQUERY , it can create more APs
without detriment to its attack. Therefore, let ζ be the upper bound on the
number of APs, we can assume A always creates ζ APs. B randomly picks
m ← Z∗ζ . Suppose the mth AP IDm has bound km, B randomly picks jm ← Z∗km

.
B simulates oracles accessible by A as follows.

– Random oracle HZ∗p×Z∗p : This oracle is queried in the Bound algorithm. If the
query is (IDm, km, jm), the oracles returns (t = δ0, ť = δ̌0). Otherwise, on
the ith query, the oracle returns (t = δi, ť = δ̌i).

Efficient Dynamic k-Times Anonymous Authentication 17

– OLIST : This oracle operates as in the definition of OLIST , with regard to
an identification list LIST of user identity/public-key pairs. A can query the
oracle to view a user’s public key. A can request the oracle to record the
identity and public key of a user, who is not i0 or i1, to LIST. A can request
the oracle to delete data from LIST.

– OJOIN−U : A just needs to query this oracle to register i0 and i1 to the
group, as A can collude other users and the GM.
If A asks the oracle to register ib, B chooses Cb ← G, computes βb = Φ1/xb

and adds (ib, βb) to LIST. B (the oracle) then returns βb and Cb to A (the
GM) with a simulation of the standard non-interactive zero-knowledge proof
Proof1 = PK{(xb, v

′
b) : Cb = P xbH ′v′b ∧ Φ = βxb

b }. The GM follows the
Join protocol’s description and sends back (Sb, ab, ṽb). B then checks that
e(Sb, P

abPpub) = e(CbH
′ṽbP0, P) and sets ib’s public key as (ab, Sb, βb) (ib’s

secret key (xb, vb = v′b + ṽb) is unknown).
If A asks the oracle to register ib′ , B chooses xb′ , v

′
b′ ← Z∗p, computes βb′ =

Φ1/xb′ and follows the Join protocol’s description so that (ib′ , βb′) is added
to LIST, ib′ ’s public key is (ab′ , Sb′ , βb′) and ib′ ’s secret key is (xb′ , vb′).

– OAUTH−U : A just needs to query this oracle to authenticate i0 and i1, as A
can collude other users, the APs and the GM.
If ib is queried to be authenticated by an AP (ID, k), whose public key and
current accumulated value are apk = (Q,Qpub, Q

′
pub) and V respectively, and

ib’s counter d for this AP is not greater than k, B runs the algorithm Update
to update his access key mak = (j, Wb). On receiving a random integer l ←
Z∗p from the AP, B chooses a unused tag base (tι, ťι, Rι), where (tι, ťι) is differ-
ent from (δ0, δ̌0), computes tag (Γ, Γ̌) = (Φ1/(xb+tι), Φ(lxb+lťι+xb)/(x2

b+xb ťι)),
and sends (Γ, Γ̌) to the AP with a simulation of the proof Proof2, which
can be done by using the simulator in the proof for Proof2’s zero-knowledge
property and resetting the random oracle. A and B perform the rest of the
authentication protocol as specified in Section 4.2.
If ib′ is queried to be authenticated by an AP, as B knows ib′ ’s secret key, A
and B can simulate the authentication protocol as specified in Section 4.2.

– OQUERY : If the queried AP is not IDm, B fails and exits. Otherwise, as m is
randomly chosen, the probability that the queried AP is IDm is at least 1/ζ.
In this case, suppose the AP IDm has public key apk = (Q,Qpub, Q

′
pub) and

current accumulated value V , and ib’s counter d for this AP is not greater
than k. B runs the algorithm Update to update his access key mak = (j,Wb).
On receiving a random integer l ← Z∗p from the AP, B chooses the tag base
(tι = δ0, ťι = δ̌0, Rι), computes tag (Γ, Γ̌) = (Θ0, Φ

(lxb+lťι+xb)/(x2
b+xb ťι)),

and sends (Γ, Γ̌) to the AP with a simulation of the proof Proof2, which
can be done by using the simulator in the proof for Proof2’s zero-knowledge
property and resetting the random oracle. The AP IDm and B perform the
rest of the authentication protocol as specified in Section 4.2. B then outputs
the transcript of the protocol.

From the transcript outputted by OQUERY , if A returns the bit b, then B
decides that the tuple α is chosen from S0. Otherwise, B decides that the tuple

18 Lan Nguyen

α is chosen from S1. Then if A can break the Anonymity property of the k-TAA
scheme, then B can break the DBDHI assumption.

D.2 Proof of Theorem 1 (iii)

Suppose there exists a PPT adversary A breaking the Detectability property of
our scheme, we show a PPT adversary B that can break the SDH assumption.
Let challenge = (R, Rz, . . . , Rzq

) be a tuple of the SDH assumption, where
z ← Z∗p, B’s challenge is to compute (c,R1/(z+c)), where c ∈ Zp.

As A can break Detectability, at the end of the experiment with non negli-
gible probability, A can be successfully authenticated by an honest AP V with
access bound k for more than k × #AGV times, where #AGV is the number
of members in the AP’s access group. As Proof2 is zero-knowledge, for each of
these successful authentication runs, A must have the knowledge of a tag base
(tι, ťι, Rι), a member public key (a, S), a member secret key (x, v) and a member
access key W . There are 3 possible cases:

– A member secret key (x, v) in V’s access group is used for authentication for
more than k times. As V provides only k tag bases, A must generate a new
valid tag base (t, ť, R) to use with (x, v). Following arguments (which can’t
be shown due to space limitation) similar to the proof of Lemma 2 in [12],
if A can generate a new valid tag base (t, ť, R), then the SDH assumption
does not hold.

– No member secret key in V’s access group is used for authentication for more
than k times and A can generate a new member key pair ((a, S, β), (x, v))
different from any member key pair of the whole group. Following arguments
(which can’t be shown due to space limitation) similar to the proof of Lemma
2 in [12], if this can be done, then the SDH assumption does not hold.

– No member secret key in V’s access group is used for authentication for
more than k times and A can generate a new member access key W for a
group member, who is not in V’s access group and has a member key pair
((a, S, β), (x, v)). In this case, B simulates the GM, the users, the APs and
randomly chooses an AP V with bound k and provides them to A. B then
runs the GKg algorithm to generate gpk = (P, P0,H

′, Ppub, Φ, H, P1, P2) and
gsk = γ and runs the AKg algorithm for all APs, except V. For V, B selects
f, s′ ← Z∗p, and set Q = R, Qpub = Rz, Q′

pub = Qs′ and V0 = Rf . The
initial accumulated value is V0 and V’s keys are ((Q,Qpub, Q

′
pub), (z, s′)),

where B does not know z. With these capabilities, B can easily provide A
access to simulations of the oracles OJOIN−GM , OAUTH−AP , OGRAN−AP ,
OREV O−AP and OCORR−AP , except when A uses OCORR−AP to corrupt V,
B fails and stops. Note that when A uses OGRAN−AP or OREV O−AP to ask
V to grant access to or revoke access from a user, B can always use the tuple
challenge to compute the new accumulated value, as long as the number of
users is less than q. As B randomly chooses V, with non-negligible probability,
A can be successfully authenticated by V for more than k×#AGV times and
generate a new member access key W for a group member, who is not in V’s

Efficient Dynamic k-Times Anonymous Authentication 19

access group and has a member key pair ((a, S, β), (x, v)). Suppose the public
keys of all members in AGID are {(ai, ·, ·)}m

i=1, then the current accumulated
value of the AP is V = Rf

Qm
i=1(ai+z), therefore W = Rf

Qm
i=1(ai+z)/(a+z).

From W and the tuple challenge, B can compute R1/(a+z) and thereby
break the SDH assumption.

D.3 Proof of Theorem 1 (iv)

We show that if there exists a PPT adversary A breaking Exculpability for users
in our scheme, then there exists a PPT adversary B breaking the Computational
Bilinear Diffie-Hellman Inversion 2 assumption. Let t = (p,G,GT , e, P ′) ←
G(1κ) and suppose that B is given a challenge α = (P ′, P ′w, . . . , P ′(w

q), e(P ′, P ′)1/w)
and B needs to compute w. B generates different δ0, δ̌0, δ1, δ̌1, ..., δq−1, δ̌q−1 ← Z∗p
and sets x = w− δ0. B simulates an instance of the dynamic k-TAA scheme and
the oracles in the same way as simulations in the experiment of Anonymity proof,
except that there is only one target user i and e(P ′, P ′)1/w is used instead of Λ.
So we omit the description of simulations.

If A can break Exculpability for users, then Trace outputs i at the end of the
experiment. That means there exist (Γ1, Γ̌1, l1, P roof) and
(Γ2, Γ̌2, l2, P roof ′) in the log of an AP such that Γ1 = Γ2, (Γ̌1/Γ̌2)1/(l1−l2) = β(=
Φ1/x) and Proof and Proof ′ are valid. As A can only use OAUTH−U within the
allowable numbers of times, not both (Γ1, Γ̌1, l1, P roof) and (Γ2, Γ̌2, l2, P roof ′)
is created by B using the oracle.

In the case neither of them was created by B using the oracle, as Proof2 is
zero-knowledge, A must have the knowledge of (x1, t1, ť1) and (x2, t2, ť2) such
that (Γ1, Γ̌1) = (Φ1/(x1+t1), Φ(l1x1+l1 ť1+x1)/(x2

1+x1 ť1)); (Γ2, Γ̌2) = (Φ1/(x2+t2),

Φ(l2x2+l2 ť2+x2)/(x2
2+x2 ť2)); Γ1 = Γ2 and Γ̌1/Γ̌2 = Φ(l1−l2)/x. By converting all

elements into exponents of Φ, one can compute x from x1, t1, ť1, l1, x2, t2, ť2, l2.
Therefore, w is computable. By similar arguments for the case when one of
(Γ1, Γ̌1, l1, P roof) or (Γ2, Γ̌2, l2, P roof ′) was created by B using the oracle, one
can also find w.

D.4 Proof of Theorem 1 (v)

Suppose a PPT adversary A can break Exculpability for the GM in our scheme,
we show that the SDH assumption does not hold. If Trace outputs GM at the end
of the experiment, there exist (Γ, Γ̌ , l, P roof) and (Γ ′, Γ̌ ′, l′, P roof ′) in the log
of an AP such that Γ = Γ ′, (Γ̌ /Γ̌ ′)1/(l−l′) /∈ LIST and Proof and Proof ′ are
valid. As Proof2 is zero-knowledge, A must have the knowledge of (t, ť, a, S, x, v)
and (t′, ť′, a′, S′, x′, v′) such that x+t = x′+t′. If t 6= t′, then with non-negligible
probability, either x or x′ is not issued in the Join protocol with the GM; so
a new valid member public key/secret key pair has been created without the
GM. If t = t′, then x = x′. But Φ1/x /∈ LIST , so x is not issued in the Join
protocol with the GM; so a new valid member public key/secret key pair has
also been created without the GM. Following arguments (which can’t be shown

20 Lan Nguyen

due to space limitation) similar to the proof of Lemma 2 in [12], if a new valid
member public key/secret key pair can be created without the GM, then the
SDH assumption does not hold.

