
One-Round ID-Based Blind Signature Scheme
without ROS Assumption

Wei Gao1, Xueli Wang2, Guilin Wang3, and Fei Li4

1 College of Mathematics and Econometrics, Hunan University,
Changsha 410082, China
sdgaowei@yahoo.com.cn

2 School of Mathematics Science, South China Normal University,
Guangzhou 510631, China
wangxuyuyan@yahoo.com.cn

3 Institute for Infocomm Research,21 Heng Mui Keng Terrace,
Singapore 119613

glwang@i2r.a-star.edu.sg
4 School of Mathematics and Information Sciences, Guangzhou University,

Guangzhou 510006, China
miss lifei@yahoo.com.cn

Abstract. In this paper, we propose a new ID-based blind signature
scheme based on bilinear pairings from scratch (i.e. without using ex-
isting ID-based signature schemes, and without using existing computa-
tional assumptions). First, the round complexity of our ID-based blind
signature scheme is optimal. Namely, each interactive signature genera-
tion requires the requesting user and the signer to transmit only one mes-
sage each. Second, the proposed scheme is provably secure against generic
parallel attack without using the ROS assumption. Indeed, the security
of the proposed scheme is based on a new formalized assumption called
one-more bilinear Diffie-Hellman Inversion (1m-BDHI) assumption.

1 Introduction

In 1984, Shamir [26] introduced the concept of identity-based (simply ID-based)
public key cryptosystems to simplify key management procedures in certificate-
based public key setting. ID-based cryptosystems have a property that a user’s
public key can be easily derived from his identity by a publicly available function,
while his private key can be calculated for him by a trusted authority, called
Private Key Generator (PKG). They enable any pair of users to communicate
securely without exchanging public key certificates, without keeping a public
key directory, and without using online service of a third party, as long as the
trusted PKG issues a private key to each user when he first joins the network.
So they can be a good alternative for certificate-based public key infrastructure,
especially when efficient key management and moderate security are required.

Bilinear pairings are the main tools to construct new ID-based cryptographic
primitives. In 2000, Joux [20] used the Weil pairing to construct a one-round tri-
partite Diffie-Hellman key agreement protocol. After Joux’s breakthrough, many



ID-based cryptographic schemes have been proposed using bilinear pairings [14].
In Crypto 2001, Boneh and Franklin [8] presented an ID-based encryption scheme
based on bilinear pairings which is the first fully functioning, efficient and prov-
ably secure ID-based encryption scheme. In Asiacrypt 2001, Boneh, Lynn and
Shacham [9] proposed a basic signature scheme using pairings which has the
shortest length among signature schemes in classical cryptography.

Blind signature, first introduced by Chaum [12] in Crypto’82, is a variant
of digital signature, which allows the user to get a signature without giving
the signer any information about the actual message or the resulting signature.
Formally, blindness means that the signer’s view and the resulting signature are
statistically independent, where the signer’s view is the set of all values that can
be gotten by the signer during the execution of the signature issuing protocol.
This blindness property plays a central role in applications such as electronic
voting and electronic cash systems.

Before the very recent generic results of Galindo et al. [18], three ID-based
blind signature (IDBS) schemes [28,29,16] based on bilinear pairings have been
proposed. However, for all these schemes, the security against one more signature
forgery under the generic parallel attack [22] requires that the following ROS-
problem is intractable[25,28,29,16]: find an overdetermined, solvable system of
linear equations modulo q with random inhomogenities (right sides). Unfortu-
nately, in Crypto 2002, Wagner [27] claimed that there is a subexponential time
algorithm to break the ROS-problem. To be resistant against this attack, the
size of q (security parameter) may need to be at least 1,600 bits long. In contrast,
for common cryptographic primitives based on bilinear parings such as [9,8], the
size of q is only about 160 bits. Since even the slightly larger security parameter
will result in the dramatically larger amount of computation, all these existing
schemes can not be efficiently implemented, and hence be of little interest in
practice. In fact, until the very recent generic results of Galindo et al. [18], it
remains an open problem to construct an ID-based blind signature scheme whose
security does not depend on the ROS assumption.

On the other hand, all of the aforementioned ID-based blind signature schemes
require three moves (essentially 2 rounds since these protocols have the signer
go first which typically is a server). Of course, round complexity is the most
important efficiency factor for an ID-based blind signature scheme, especially
when it is applied in the applications such as E-voting, E-cash. And one-round
is the optimal bound of round complexity. In fact, there are only four PKI-
based blind signature schemes [12,7,21,15] with an optimal two-move signature
generation protocol. However, there exists no ID-based signature scheme with
two-move signature generation protocol. On one hand, since almost all ID-based
signature schemes are constructed by using the proof of knowledge paradigm
[5], it seems difficult to extend them into ID-based blind signature schemes with
optimal round complexity [28,29,16,24]. On the other hand, the ID-based blind
signature schemes constructed by Galindo et al.[18] need at least 4 moves (See
Section 6 of our paper).



Our contribution. In this paper, we propose a new ID-based blind signature
scheme based on bilinear pairings from scrach (new computational assumptions,
new basic ID-based signature scheme, in addition to the new blind signature
scheme). In more details, our contribution is as follows. (1) The round com-
plexity is optimal. Namely, each interactive signature generation requires the
requesting user and the signer to transmit only one message each. (2) The prov-
able security against generic parallel attack doesn’t depend on the difficulty
of ROS-problem (See the following Definition 4). (3) To prove its security, we
propose a new plausible computational assumption, namely, one-more bilinear
Diffie-Hellman Inversion assumption (1m-BDHI, for short). This new assump-
tion may be of independent interest, since other recently proposed computation
assumptions in one-more flavor, such as one-more-RSA-inversion [3], one-more
CDH [7], one-more discrete logarithm [4], have found many applications in prov-
able security for blind signatures [3,7], transitive signatures [4], identification
protocols [2] and so on. (4) The underlying ID-based signature scheme may be
of independent interest, since it avoids using the proof of knowledge paradigm
and has a loose algebraic structure which already allows the efficient extension
to blind signatures. Additionally, we will show some advantages of our ID-based
blind signature scheme over the generic construction due to Galindo et al. [18].
For example, we will show that the generic ID-based blind signature scheme of
Galindo et al. does not completely solve the key management problem.

2 Preliminaries

In this section, we present the definitions of bilinear pairings and some relative
assumptions.

Definition 1. Let G1 and G2 be groups of prime order q and let P be a generator
of G1. The map e : G1×G1 → G2 is said to be an bilinear paring if the following
three conditions hold: (i) e is bilinear, i.e. e(aP, bP ) = e(P, P )ab for all a, b ∈ Zq;
(ii) e is non-degenerate, i.e. e(P, P ) 6= 1; (iii) e is efficiently computable. Such
a group G1 is called a bilinear group.

Note that throughout this paper, without special descriptions, the groups
G1,G2, the prime order q, the generator P of G1 and the bilinear pairing e are
as defined in the above definition. Next, we review the following problems with
respect to (G1,G2, e, P, q):

– Computational Diffie-Hellman (CDH) Problem: Given random P, aP, bP ∈
G1, output abP ∈ G1, where a, b ∈R Zq.

– Bilinear Diffie-Hellman (BDH) Problem [8]: Given random P, aP, bP, cP ∈
G1, output e(P, P )abc, where a, b, c ∈R Zq.

– Generalized Tate Inversion (GTI) Problem [20]: Given h ∈ G2, find a
pair (S, T ) ∈ G1 such that e(S, T ) = h, where e : G1×G1 → G2 denotes the
Tate pairing.



– Modified Generalized Bilinear Inversion (MGBI)[1]: Given h ∈ G2

and the generator P ∈ G1, find a point S ∈ G1 such that e(P, S) = h, where
e denotes the bilinear pairing.

Based on the above problems, we propose a new computational problem:

Definition 2 (Bilinear Diffie-Hellman Inversion (BDHI) Problem). Given
three random elements aP, bP, cP ∈ G1, compute two elements S, T ∈ G1 such
that e(S, T ) = e(P, P )abc. Accordingly, the Bilinear Diffie-Hellman Inversion
(BDHI) assumption states that: there is no PPT algorithm that can solve the
BDHI problem with non-negligible probability.

It is obvious that the BDH problem can be solved if the BDHI problem can be
solved. And it is also obvious that the BDHI problem can solved if the CDH
problem can be solved. So BDHI assumption is somewhere between CDH as-
sumption and BDH assumption. That is, BDHI assumption is weaker than BDH
assumption, but stronger than CDH assumption.

Furthermore, we propose another new computational assumption called one-
more bilinear Diffie-Hellman Inversion (1m-BDHI) assumption. In fact, there
exist many computational assumptions in the one-more flavor, such as One-more-
RSA-inversion [3], one-more CDH [7], one more discrete logarithm [4]. These one-
more assumptions can be used to prove security of many cryptographic schemes,
such as the GQ identification scheme [2], blind signature schemes [4,7], transitive
signatures [3].

Definition 3 (1m-BDHI Assumption). Let e : G1 ×G1 → G2 be a bilinear
pairing, where G1 and G2 be groups of prime order q and P be a generator of
G1. Let x, y be random elements in Zq and let X = xP, Y = yP . The adversary
A is given (e,G1,G2, q, P,X, Y ) and has access to two oracles.

– The first one is a target oracle T O that, each time it is invoked (it takes no
inputs), returns a random point from G1.

– The second one is the helper oracle HO which given Z ∈ G1, returns S, T ∈
G1 such that e(S, T ) = e(Y, Z)x. Additionally, this help oracle HO returns
an auxiliary information piece R which can be used to check whether the
equation e(S, T ) = e(Y, Z)x holds. An example of the form of (R, S, T ) used
in this paper is given in the following remark.

We say that A wins if its output is a sequence of points S1, T1, . . . , Sn, Tn ∈ G1

satisfying e(S1, T1) = e(Y, Z1)x, . . . , e(Sn, Tn) = e(Y, Zn)x, where all different
Z1, . . . , Zn are obtained from A’s target oracle and the number of queries made
by A to its helper oracle HO, is strictly less than n. The 1m-BDHI advantage of
A, denoted Adv1m−BDHI

A (k), is the probability that A wins, taken over the coins
used in the generation of (e,G1,GT , q, P, X, Y ), the coins of A, and the coins
used by the target oracle across its invocations. We say that the one-more BDHI
problem is hard if the function Adv1m−BDHI

A (k) is negligible for all polynomial-
time adversaries A.

Remark 1. In this paper, a valid answer (R, S, T ) of the helper oracle HO should
satisfy:



e(R, S) = e(xP, yP ), e(R, Z) = e(P, T ).

Indeed, suppose that R = rP . Then the above two equations imply the following
equations respectively:

S = r−1xyP, T = rZ.

So we have e(S, T ) = e(yP, Z)x.

Finally, we describe the ROS-problem.

Definition 4 (ROS-Problem [25]). Given an oracle random function F :
Zl

q → Zq, find coefficients ak,i ∈ Zq and a solvable system of l + 1 distinct
equations (1) in the unknowns c1, c2, . . . , cl over Zq:

ak,1c1 + . . . + ak,lcl = F (ak,1, . . . , ak,l), for k = 1, 2, . . . , t. (1)

Accordingly, the ROS assumption states that: there is no PPT algorithm that
can solve the ROS problem with non-negligible probability.

As Schnorr states, the intractability of the ROS-problem is “a palausible but
novel complexity assumption”. At Crypto 2002, D. Wagner [27] claimed that
he can break ROS-problem with subexponential time. As argued in [28], to be
resistant against this new attack, q may need to be at least 1600 bits long.

3 Frameworks of ID-based Blind Signatures

Definition 5. An identity-based blind signature scheme IDBS can be described
as a collection of the following four algorithms (or protocols):

– Setup. This algorithm is run by the trusted party called PKG on input a se-
curity parameter, and generates the public parameters params of the scheme
and a master secret. PKG publishes params and keeps the master secret to
itself.

– Extract. Given an identity ID, the master secret and params, this algorithm
generates the private key DID of ID.

– Issue. The signer blindly issues a signature for the user by this protocol, which
is often divided into three sub-protocols or algorithms (Blind,BSign,Unblind):
• Blind. Given the message m and a random string r, it outputs the blinded

message m′ and sends it the signer. In this process, the user sometimes
needs the interactive help from the signer.

• BSign. Given the blinded message m′ and the signer’s private signing key
DID as the input, it outputs a blind signature σ′ and sends it to the user.
This procedure may be an interactive sub-protocol between the user and
the signer.

• Unblind. Given a signature σ′ and the previous used random string r, it
outputs the unblinded signature σ.



– Verify. Given a signature σ, a message m, an identity ID and params, this
algorithm outputs 1 if σ is a valid signature on m for identity ID, or 0
otherwise.

The security of an ID-based blind signature scheme consists of two require-
ments: the blindness property and the unforgeability of additional signatures.
We say a blind signature scheme is secure if it satisfies these two requirements.

Definition 6 (Blindness). Let A be a probabilistic polynomial-time adversary
which plays the role of the signer, U0 and U1 be two honest users. U0 and U1

engage in the blind signature issuing protocol with A on messages mb and m1−b,
and output signatures σb and σ1−b, respectively, where b ∈ {0, 1} is a random
bit chosen uniformly. (m0,m1, σb, σ1−b) are sent to A and then A outputs b′ ∈
{0, 1}. For all such A, U0 and U1, for any constant c, and for sufficiently large
n,

|Pr[b = b′]− 1/2| < n−c.

To define unforgeability, let us introduce the following game among the ad-
versary A which plays the role of the user, and the challenger C which plays the
role of the honest signer.

– Setup. The challenger C takes a security parameter 1k and runs the algorithm
Setup to generate common public parameters params and also the master
secret key s. C sends params to A.

– Queries. The adversary A can perform a polynomially bounded number of
queries in a concurrent and interleaving way as follows.
• Hash function query. If the security is analyzed in the random oracle

model [6], C computes the values of the hash functions for the requested
input and sends the values to A.

• Extract query. A chooses an identity ID and sends it to C. C computes
Extract(ID) = DID and sends the result to A.

• Issue query. A chooses an identity ID, a plaintext m. To blindly obtain
a signature on m with respect to ID, A engages in the blind signature
issuing protocol with C in a concurrent and interleaving way.

– Forgery.A wins the game ifA outputs n valid signatures (m1, σ1), . . . , (mn, σn)
with respect to the identity ID∗ such that
• mi 6= mj for any pair (i, j), where i 6= j i, j ∈ {1, . . . , n}.
• n is strictly larger than the number of the executions (with respect to

the identity ID∗) of the protocol Issue between C and A.
• A has not made an extract query on the identity ID∗.

The advantage Advunforge
IDBS of A is defined as the probability that it wins the

above game, taken over the coin tosses made by C,A, Setup. In the above attack
model, A is called one-more forger under parallel chosen message and ID attacks.



Definition 7 (Unforgeability). An adversary A (t, qE , qS , ε)-breaks an ID-
based blind signature scheme, if (1) A runs in time at most t, (2) A queries
private keys for at most qE identities and execute at most qS times the blind
signature issuing protocol, (3) Advunforge

IDBS is at least ε. We say an ID-based blind
signature scheme is (t, qE , qS , ε)-secure against one-more forgery under parallel
chosen message and ID attacks if no adversary A (t, qE , qS , ε)-breaks the scheme.

Remark 2. In the forgery step of the above attack game, if (mi, σi) 6= (mj , σj)
instead of mi 6= mj holds for message-signature pairs output by the adversary,
then we get the definition of the strong unforgeability of blind signature schemes.
As mentioned in [10], for the main application of blind signatures, i.e., electronic
cash, unforgeability (rather than strong unforgeability) suffices.

In fact, the above forger A against ID-based blind signatures is the natural
analogy of the one-more forger under parallel attack [13] which is the most
powerful attack for blind signatures. Unfortunately, before our schemes, there
is no ID-based blind signature scheme based on bilinear pairings which can be
proved secure in this model.

4 Construction

Our proposed scheme is described as follows:

– Setup. The Private Key Generator (PKG) generates parameters and master
keys as follows:
• generates groups G1 and G2 of prime order q with bilinear pairing e :
G1 ×G1 → G2;

• chooses an arbitrary generator P ∈ G1;
• picks a random s ∈ Zq and sets Ppub = sP ;
• chooses cryptographic hash functions H1,H2 : {0, 1}∗ → G1. The PKG’s

public parameter is params = (G1,G2, e, q, P, Ppub,H1,H2); its master
secret is s ∈ Zq.

– Extract. The signer with identity ID receives the value DID = sQID from
the PKG as its private key, where QID = H1(ID) ∈ G1.

– Issue.
• Blind. The user randomly chooses a number r1 ∈ Zq as the blinding

factor, computes P ′m = r1H2(m) and sends it to the signer.
• BSign. The signer sends back (A′, B′, C ′), where A′ = xIDP ′m, B′ =

x−1
IDDID, C ′ = xIDP, xID

R←− Zq.
• Unblind. First, the user verifies the blind signature (A′, B′, C ′) by check-

ing whehter
e(A′, P ) = e(P ′m, C ′), e(QID, Ppub) = e(B′, C ′).

Next, the user selects a random number r2 ∈ Zq and computes the
signature as (A,B, C), where A = r2r

−1
1 A′, B = r−1

2 B′, C = r2C
′.

– Verify. Let (A,B, C) be the signature on the message m and Pm = H2(m).
The verifier checks that:



e(A,P ) = e(Pm, C), e(QID, Ppub) = e(B,C).

Correctness. If an entity with identity ID blindly issues a signature σ = (A,B, C)
on a message m to a user as described in the Issue protocol above, it is easy to
see that σ will be accepted by a verifier:

e(A,P ) = e(r2r
−1
1 A′, P ) = (r2r

−1
1 xIDP ′m, P )

= e(r2r
−1
1 xIDr1Pm, P )

= e(r2xIDPm, P ) = e(Pm, r2xIDP )
= e(Pm, r2C

′)
= e(Pm, C),

e(B,C) = e(r−1
2 B′, r2C

′)
= e(B′, C ′)
= e(x−1

IDDID, xIDP )
= e(DID, P ) = e(QID, sP )
= e(QID, Ppub).

Similarly, we can see that the blind signature generated by the honest signer in
Bsign must be accepted by the user in the step Unblind.

5 Security

First, we claim that our scheme has the blindness property. This is obvious since
the signer receives only random elements in G1 which are independent of the
outputs of the user.

Theorem 1 The proposed ID-based blind signature scheme is blind.

Proof. The blindness property will be proved according to Definition 6. We
assume that when the signature σb = (Ab, Bb, Cb) on the message mb (resp.
σ1−b = (A1−b, B1−b, C1−b) on m1−b) is generated, the user U0 (resp. U1) sends
P ′mb

(resp. P ′m1−b
) to the adversary A which then returns the blinded signature

σ′b = (A′b, B
′
b, C

′
b) (resp. σ′1−b = (A′1−b, B

′
1−b, C

′
1−b)).

For σb, if we can prove that there exist two integers r′1, r
′
2 ∈ Zq such that

P ′m1−b
= r′1H2(mb), Ab = r′2r

′−1
1 A′1−b, Bb = r′−1

2 B′
1−b, Cb = r′2C

′
1−b,

then it is obtained that for the adversary, σb may be linked to the process relative
to the messages (P ′m1−b

, A′1−b, B
′
1−b, C

′
1−b) and the user U1. In other words, the

adversary A can not determine which of the two user generated the signature
σb.

In fact, since (Ab, Bb, Cb) and (A′1−b, B
′
1−b, C

′
1−b) are valid, we have

e(Ab, P ) = e(Pmb
, Cb), e(QID, Ppub) = e(Bb, Cb);



e(A′1−b, P ) = e(P ′m1−b
, C ′1−b), e(QID, Ppub) = e(B′

1−b, C
′
1−b).

Let cb, c
′
1−b ∈ Zq be integers satisfying Cb = cbP , C ′1−b = c′1−bP respectively.

By the bilinear property of the pairing, then we have

Ab = cbPmb
, Bb = c−1

b sQID;

A′1−b = c′1−bP
′
m1−b

, B′
1−b = c′−1

1−bsQID.

Let r′1, r′2 be integers satisfying Cb = r′2C
′
1−b (i.e. r′2 = cbc

′−1
1−b mod q) and

P ′m1−b
= r′1Pmb

(= r′1H2(mb)) respectively , then they also satisfy

Ab = r′2r
′−1
1 A′1−b, Bb = r′−1

2 B′
1−b.

ut
Next, we analyze the unforgeability of our scheme as follows. Here note that

it is obvious that our blind signature scheme is not strongly unforgeable (see
Remark 2 in Section 3). Instead, we will prove that its security satisfies the
standard definition given in Section 3. As in [11], the proof is divided into two
steps.

Consider the following variant of the attacking game for unforgeability in
Section 3. First we fix an identity ID∗. In Setup Step, C gives to A system
parameters together with ID∗, and in Step Forgery,Amust output the given ID∗

(together with n pairs (mi, σi)) as its final result. If no polynomial time algorithm
A has non-negligible advantage in this game, we say that the blind signature
scheme is secure against one-more forgery under parallel chosen message and
given ID attacks. The first step of our proof is to reduce the problem to this
case.

Lemma 1 For our scheme, if there is a one-more forger A0 under a parallel
chosen message and ID attack with running time t0 and advantage ε0, then
there is a one-more forger A1 under a parallel chosen message and given ID
attack, which has running time t1 ≤ t0 and advantage ε1 ≥ ε0(1− 1

q )/qH1 , where
qH1 is the maximum number of queries to H1 asked by A0. In addition, the
numbers of queries to hash functions, Extract, and Issue asked by A1 are the
same as those of A0.

Proof. Without any loss of generality, we can assume that for any ID, A0 queries
H1(ID) and Extract(ID) at most once. Let the fixed identity for A1 be ID∗.
Our algorithm A1 is as follows:

– Choose r ∈ {1, . . . , qH1} randomly. Denote by IDi the input of the i-th
query to H1 asked by A0. Let ID′

i be ID∗ if i = r, and IDi otherwise.
Define H ′

1(IDi),Extract′(IDi), Issue′(IDi,m) to be H1(ID′
i), Extract(ID′

i),
Issue(ID′

i,m), respectively.
– Run A0 with the given system parameters. A1 responds to A0’s queries to

H1, H2, Extract, and Issue by evaluating H ′
1,H2, Extract′, and Issue′, respec-

tively. Let the output of A0 be n valid signatures (m1, σ1), . . . , (mn, σn) with
respect to IDout, where n is strictly larger than the number of executions of
the Issue’ protocol.



– If IDout = ID∗, then output n valid signatures (m1, σ1), . . . , (mn, σn) to-
gether with the corresponding identity ID∗. Otherwise output fail.

Since the distributions produced by H ′
1,Extract′, and Issue′ are indistinguishable

from those produced by H1,Extract, and Issue of our scheme, A0 learns nothing
from query results, and hence

Pr[A0 succeeds] ≥ ε0.

Since H1 is a random oracle, if A0 has not made the the query H ′
1(IDout), the

probability that the A0’s output is valid is negligible. Explicitly,

Pr[IDout = IDi for some i|A0 succeeds] ≥ 1− 1
q .

Since r is independently and randomly chosen, we have

Pr[IDout = IDr = ID∗|IDout = IDi for some i] ≥ 1
qH1

Combining these,

Pr[A1 succeeds] ≥ ε0(1− 1
q ) 1

qH1

as desired. ut

Lemma 2 For our scheme, if there is a one-more forger A under a parallel
chosen message and given ID attack with running time t1 and advantage ε1,
then there is an adversary B attacking the one-more BDHI problem, which has
running time t2 ≤ t1 + 4cG1(qH1 + qH2 + qS + qE) and advantage ε2 ≥ ε1, where
cG1 is a constant that depends on G1, and qH1 , qH2 , qE , qS are the numbers of
queries to the hash functions H1,H2, Extract, and Issue asked by A1 respectively.

Proof. Suppose that A is a one-more forger against our scheme under a parallel
chosen message and given ID attack. We describe the algorithm B which will
simulate the challenger for A in order to solve the one-more BDHI problem.
The adversary B is given (e,G1,G2, q, P,X, Y ), the target oracle and the helper
oracle. B simulates the challenger and interacts with forger A as follows.

– Setup. B first provides A with the public parameter (e,G1,G2, q, P, Ppub)
and the fixed identity ID∗, where Ppub = X.

– H1-queries. To respond to these queries, B maintains a list of tuples (IDi,
H1(IDi), ri) as explained below. We refer to this list as H1-list. The list is
initially empty. When A queries the oracle H1 at an identity IDi, B responds
as follows.
• If the query IDi appears on the H1-list in a tuple (IDi,H1(IDi), ri) (or

(IDi,H1(IDi), ∗)), then B responds with H1(IDi).
• If IDi = ID∗, B sets H1(IDi) = Y and sends it to A. Additionally, B

appends the tuple (IDi,H1(IDi), ∗) to the H1-list.
• If IDi 6= ID∗, B randomly selects ri ∈ Zq and sends H1(IDi) = riP to
A. Additionally, B appends the tuple (IDi,H1(IDi), ri) to the H1-list.



Since H1 is a random oracle, A obtains no information on H1(ID) before he
queries the H1-oracle on ID. So, without loss of generality, we assume that
A has already queried the H1 oracle on an identity ID before he makes the
issue query or extract query with respect to the ID.

– H2-queries. When given the new query mj , that is distinct from the previous
hash queries, B obtains a point Zj ∈ G as the hash value H2(mj) from its
target oracle T O and sends it to A.

– Extract queries. Suppose that A makes an extract query on the identity
IDi 6= ID∗. Let (IDi,H1(IDi), ri) be the tuple on the H1-list containing
IDi. B answers this query by sends to A DIDi = riX. By assuming X = xP
for some unknown x, it is obvious that DIDi

= xH1(IDi) = riX, since
H1(IDi) = riP .

– Issue queries. Assume that A chooses the identity IDi and the plaintext mi

and wants to blindly obtain the signature on mi with respect to the identity
IDi. Note that the signer has only one move in the Issue protocol. Let P ′mi

be the blinded message that A sends to B. B answer this query as follows.
• If IDi 6= ID∗, B computes the private key DIDi = riX, where (IDi,

H1(IDi), ri) is the corresponding tuple on the H1-list. Then B uses the
private key DIDi

to compute the corresponding blinded signature as in
BSign.

• If IDi = ID∗, B sends P ′mi
to its helper oracleHO. Let (Ri, Si, Ti) be the

corresponding answer. B sets the blinded signature as (A′i, B
′
i, C

′
i), where

A′ = Ti, B
′
i = Si, C

′
i = Ri. It is obvious that this simulated signature is

valid (see remark 1 in Section 2 and the algorithm Verifiy in Section 4).
– Outputs. At last,A outputs a list of message-signature pairs ((m1, (A1, B1, C1)),

. . ., (mn, (An, Bn, Cn)) with respect to the identity ID∗, where n is strictly
larger than the number of executions of the protocol Issue with respect to the
identity ID∗, and hence strictly larger than the number of queries made by B
to its helper oracleHO. B outputs A1, B1, A2, B2, . . . , An, Bn. Here note that
a valid signature (Ai, Bi, Ci) satisfies e(Ai, Bi) = e(H1(ID∗),H2(mi))x =
(Y, H2(mi))x (see remark 1 in Section 2), and H2(mi) is obtained from the
target oracle. So the one-more BDHI problem is solved by B.

It is easy to see that the view of A in the simulated experiment is indistinguish-
able from its view in the real experiment, and that B is successful only if A
is successful. Thus, the probability ε2 that B succeeds is at least the probabil-
ity ε1 that A succeeds. Algorithm B’s running time is the same as A’s running
time plus the time it takes to respond to qH1 H1-hash queries, qH2 H2-hash
queries, qE extract queries and qS signature issue queries. Each query requires
at most four exponentiations (corresponding to issue queries for IDi 6= ID∗) in
G1 which we assume takes time cG1 . Hence, the total running time t2 is at most
t1 +4cG1(qH1 + qH2 + qS + qE) as required. This completes the proof of Theorem
1. ut

Combing the above lemmas, we obtain the following theorem:



Theorem 2 If the one-more BDHI assumption is true in the group G1, then
the proposed ID-based blind signature scheme is secure against one-more forgery
under parallel chosen message and ID attacks in the random oracle model.

6 ID-based Blind Signatures: A Comparison

In this section, we give an efficiency comparison of ID-based blind signatures
(ID-BS) (see Table 1). The purpose is to show the advantages of our scheme
compared with existing solutions. Namely, as we claim before, the proposed
scheme is the first one-round ID-base blind signature scheme, which is secure
against generic parallel attack without relying on the intractability of ROS-
problem.

As the main computational overheads, we only consider modular exponentia-
tions (denote by E), scalar multiplications (denote by M), and bilinear mappings
(denote by e). Since simultaneous exponentiations can be efficiently carried out
by means of an exponent array, for simplicity we treat the cost for ax1

1 ax2
2 or

ax1
1 ax2

2 ax3
3 as just one single exponentiation. To count the computational costs

of the signer, user and verifier in the above deduced ID-BS schemes, we assume
the PKG use a similar underlying signature to issue certificates for signers. That
is, the PKG uses Schnorr signature in the ID-based blind Schnorr signature,
the RSA signature with a full domain hash in the ID-based Chaum and CKW
blind signature schemes [12,10], and the BLS short signature in the ID-based
Boldyreva, KZ, and Okamoto blind signature schemes [7,21,23]. For the generic
scheme proposed by Fishlin [15], there are no concrete values since his scheme re-
lies on general NIZK to prove the correctness of a ciphertext. About the security
model, we mainly consider the following aspects: (1) whether a scheme is se-
cure in the random oracle model (ROM) or standard model (SM); (2) whether a
scheme needs common reference string (CRS); (3) whether a scheme relies on the
intractability of ROS problem; and (4) what are the computational assumptions
required.

First of all, we remark that the first four schemes (including our construction)
in Table 1 are explicitly ID-BS schemes, while all other schemes are deduced from



the certificate-based generic construction [18], which is an extension of the result
given in [5]. Here, note that due to the usage of certificates in Galindo et al.’s
approach, the round complexity, the communication complexity and the signa-
ture size are also increased in all deduced ID-BS schemes. For example, though
the standard blind signature schemes in [12,7,15] are round-optimal (i.e., they
are one-round or 2-moves solutions), the correspond ID-based blind signatures
become 4-move schemes. Compared with efficient ID-based blind signatures de-
duced from [12,7], our scheme is round-optimal (i.e. two moves rather than 4
moves) and has shorter signatures (without using a certificate to binding a ran-
dom public key with each signer).

Secondly, we remark that the four schemes (ZK02,ZK03,HCW05,Schnorr)
are not provably secure against one-more forgery. Furthermore, their security
needs the ROS assumption which results in the loss of practical efficiency, since
to guarantee the security one has to select q as large as 1600 bits. In contrast, the
security of our scheme is based on the one-more BDHI assumption which is one-
more version of the BDHI assumption. And the BDHI assumption is weaker than
the well-known bilinear Diffie-Hellman assumption. In the existing literature [8],
it is believed that the 160-bit q can ensure the difficulty of the BDH problem
on the bilinear group G1 of order q. In the full paper of [3], the one-more-RSA-
inversion problem and its analogues are fully discussed. It is trivial to extend the
results of [3] to the case of one-more-BDHI problem. As argued in [3], although
the one-more BDHI assumption is stronger than the relative BDHI assumption,
it seems feasible to believe that the 160-bit q is enough to ensure the difficulty of
the 1m-BDHI problem on the bilinear group G1 of order q. Of course, our scheme
based on 160-bit q-order bilinear groups will be dramatically efficient than the
previous analogues [28,29,16] based on 1600-bit q-order bilinear groups.

Thirdly, we remark that the last four schemes are all provably secure in the
standard model but need common reference strings. At the same time, those
schemes are not much efficient, since in the blind signature issuing protocols
some kinds of ZK proofs are involved.

At last, we remark that the overload of the PKG of our scheme is much more
light than that of the generic ID-based blind signatures due to Galindo et al. [18].
As we all know, one of the main motivations of ID-based cryptography is to solve
the problem of the burdensome key management in PKI-based cryptography.
However, for Galindo et al.’s generic construction, to ensure blindness, the PKG
should guarantee that one identity can not get more than one private keys.
So, like the CA (certificate authority) in PKI-based cryptography, PKG has
to face the key management problem: he must cautiously store all the private
keys issued to the identities. In contrast, what the PKG in our scheme need to
do is to keep his master private key secret. In this sense, we say that Galindo
et al. [18] may forget one of the most important tasks (key management) of ID-
based cryptography, when they constructed the generic ID-based blind signature
scheme.

Based on the above discussion, we conclude that the proposed scheme is
the first one-round ID-based blind signature, which is provably secure against



generic parallel attack without relying on the ROS problem and any set-up
assumptions, in the the random oracle model. Compared with ID-based blind
scheme deduced from Galindo et al.’s generic approach, which can be secure
in the stand model, our solution is much more efficient in all aspects of round
complexity, computational complexity, signature size and the overload of PKG.

Additionally, as stated in [18], the ID-based framework (the algorithms of
Setup and Private Key Extraction) due to Galindo et al. can not support ID-
based encryption scheme. However, it is the ID-based encryption scheme due to
Boneh and Franklin that revives ID-based cryptography [8]. Of course, the prac-
tical application of the ID-based signature schemes with additional properties
[18]under so limited ID-based framework will not be very exiting. In contrast,
our ID-based blind signature scheme is completely compatible with all ID-based
cryptographic primitives from bilinear pairings including ID-based encryption
scheme in [8].

7 Other Considerations

First, the new formalized 1m-BDHI assumption may be of independent interest,
since other recently proposed computation assumptions in one-more flavor, such
as One-more-RSA-inversion [3], one-more CDH [7], one-more discrete logarithm
[4], have found many applications in provable security for blind signatures [3,7],
transitive signatures [4], identification protocols [2] and so on.

Second, the underlying ID-based signature scheme may be of independent
interest, since it avoids to use the proof of knowledge paradigm and has a loose
algebraic structure which already allows the efficient extension to blind signa-
tures. In fact, the underlying ID-based signature scheme is not strongly un-
forgeable, but satisfy the well-known standard definition of unforgeability. How-
ever, a non-strongly unforgeable signature may have other advantages over the
strongly unforgeable one. For example, in [17], the authors constructed the first
constant-length ID-based aggregate signature scheme based on an non-strongly
unforgeable ID-based signature scheme.

8 Conclusion

In this paper, we proposed a new ID-based blind signature scheme based on bilin-
ear pairings. More specifically, the proposed scheme has been proved to be secure
in the random oracle model, under the one-more bilinear Diffie-Hellman inver-
sion (1m-BDHI) assumption. To the best of our knowledge, our ID-base blind
signature scheme is the first one with optimal round-complexity. In addition,
we argued that our scheme is a practical identity-based blind signature scheme
from bilinear pairings, compared existing solutions [25,26,15], which are actually
inefficient and rely on the difficulty of ROS-problem. We specially showed the
advantages of our ID-based blind signature schemes over Galindo et al.’s generic
construction in terms of the PKG’s overload and the compatibility, which are
among the most important reasons for the revival of ID-based cryptography.
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