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Abstrat. In this paper, we revisit the variant of the self-shrinking gen-

erator(SSG) proposed by Chang et al. at ICISC 2006. This variant, whih

we all SSG-XOR was laimed to have better ryptographi properties

than SSG in a pratial setting. But we show that SSG-XOR has no

advantage over SSG from the viewpoint of pratial ryptanalysis.
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1 Introdution

The self-shrinking generator (SSG) is a well-known keystream generator pro-

posed by Meier and Sta�elbah [4℄. SSG requires only one LFSR, whih generates

a binary sequene a = (a

i

)

i�0

in the usual way. For eah bit pair (a

2i

; a

2i+1

), if

a

2i

= 1, SSG outputs a

2i+1

as a keystream bit, otherwise no output is produed.

Until now, several methods have been proposed for attaking SSG [5, 3, 2,

6℄. The designers of SSG have also desribed two kinds of simple attaks alled

exhaustive searh and entropy attak whose time omplexity is O(2

0:79L

) and

O(2

0:75L

) respetively, where L is a length of the underlying LFSR [4℄. The

time omplexity was redued to O(2

0:695L

) in [5℄. In [3℄ the BDD-attak was

proposed, it requires O(2

0:656L

) time omplexity from d2:41Le bits keystream.

However the memory requirement for the BDD-attak is infeasible. This attak

was improved in [2℄. The advantage of the HJ attak [2℄ over the BDD-attak

is to have the almost same time omplexity with only O(L

2

) memory from L-

bit keystream. Reently a new guess-and-determine attak was proposed [6℄. It

requires O(2

0:556L

) time with memory O(L

2

) from O(2

0:161L

)-bit keystream for

L � 100 and requires O(2

0:571L

) time with memory O(L

2

) from O(2

0:194L

)-bit

keystream for L < 100.

The variant of SSG (denoted by SSG-XOR) was proposed by Chang et al.

[1℄ to improve some ryptographi properties of SSG. It has a similar stru-

ture to SSG, but it handles 4-tuple of onseutive bits produed by the un-

derlying LFSR to produe two keystream bits in a lump. For eah 4-tuple

(a

4i

; a

4i+1

; a

4i+2

; a

4i+3

), SSG-XOR outputs two bits a

4i+2

and a

4i+3

if a

4i

�

a

4i+1

= 1, and disards otherwise. The following Figure 1 lari�es the di�erene

between SSG and SSG-XOR.
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Fig. 1. SSG and SSG-XOR

The authors of [1℄ analyzed the seurity of SSG-XOR by applying the existing

attaks for SSG and laimed that SSG-XOR is more seure than SSG against

attaks using short keystream sequenes suh as entropy attak [4℄ or the BDD-

attak [3℄.

In this paper, however, we show that the seurity of SSG-XOR against several

attaks using short keystream sequenes an be dereased signi�antly. First, we

re-analyze the seurity of SSG-XOR against exhaustive searh attak, entropy

attak and the BDD-attak. And then we investigate the seurity of SSG-XOR

against the HJ attak and the guess-and-determine attak. Our analysis shows

that SSG-XOR has no advantage over SSG from the viewpoint of the seurity.

In Table 1, we ompare with the omplexity of several attaks for SSG and

SSG-XOR. (Note that we ignore some polynomial fators in Table 1.)

Table 1. Comparison of omplexity of several attaks for SSG and SSG-XOR

SSG SSG-XOR

Time Memory Data Time Memory Data

Exhaus. searh [4℄ O(2

0:79L

) { { O(2

0:774L

) { {

Entropy attak [4℄ O(2

0:75L

) { { O(2

0:667L

) { {

BDD-attak [3℄ O(2

0:656L

) infeasible d2:41Le O(2

0:631L

) infeasible d2:21Le

HJ attak [2℄ O(2

0:66L

) O(L

2

) L O(2

0:5L

) O(L

2

) L

G & D attak [6℄ O(2

0:556L

) O(L

2

) O(2

0:161L

) O(2

0:384L

) O(L

2

) O(2

0:111L

)
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2 Seurity Analysis

Although the designers of SSG-XOR analyzed the seurity against several at-

taks whih have been mounted to the original SSG, the analysis would not be

suÆient. So we re-analyze the resistane against possible attaks.

2.1 Exhaustive searh and entropy attak

These attaks were desribed in the paper proposing SSG [4℄ to reonstrut the

initial state with only a few keystream bits. The �rst attak is alled exhaustive

searh. The initial state of SSG may be reonstruted with omplexity 2

0:79L

by the exhaustive searh attak. Let z = (z

0

; z

1

; : : : ; z

i

; : : :) be a known short

keystream of SSG-XOR. The designer of SSG-XOR laimed that the exhaustive

searh attak requires 2

0:8305L

steps sine there are 10 possibilities to generate

eah (z

2j

; z

2j+1

). However, given a keystream z, it is not neessary to guess a

4i

and a

4i+1

of the underlying LFSR output sequene a, independently. Instead,

we only guess one bit information whether a

4i

� a

4i+1

is equal to 1 or not.

This way, we will reonstrut an initial state that is no neessarily equal to the

original initial state, but it is equivalent in a sense that it will reate z. From

this point of view, there exist �ve possibilities rather than ten for a 3-tuple

(a

4i

� a

4i+1

; a

4i+2

; a

4i+3

) of a. So we an estimate that there exist

5

L=3�1

� 5

L=3

= 2

((log

2

5)=3)L

= 2

0:774L

possible initial states of the LFSR.

The seond attak is alled entropy attak. For SSG, the entropy per bit is

3/4 so an exhaustive searh among all di�erent ases in the order of probability

would require 2

0:75L

steps. For SSG-XOR, the designers laimed the the entropy

attak requires 2

0:8305L

steps. However, for eah (z

2j

; z

2j+1

) there are 5 di�erent

possibilities (a

4i

� a

4i+1

; a

4i+2

; a

4i+3

), namely (1; z

2j

; z

2j+1

), (0; 0; 0), (0; 0; 1),

(0; 1; 0), and (0; 1; 1). The probability for (1; z

2j

; z

2j+1

) is 1/2 and the probability

for the others is 1/8. Thus the entropy of 3-tuple is

H = �(1=2) log

2

(1=2)� 4 � (1=8) log

2

(1=8) = 2:

Therefore, the entropy per bit is 2/3 so the omplexity of the attak for SSG-

XOR would be 2

0:667L

.

2.2 BDD-attak

For the BDD-attak [3℄, the required length of onseutive keystream bits is

dÆ

�1

Le and the time omplexity is L

O(1)

2

((1�Æ)=(1+Æ))L

, where  and Æ are

de�ned as follows:

{  is the maximal ratio of the length of the keystream z to the length of the

output sequene a of the underlying LFSR.
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{ Æ is the information rate (per bit) whih would be revealed about the output

sequene a of the underlying LFSR from the keystream z.

For SSG, Æ � 0:2075 and  = 0:5. Thus the BDD-attak for SSG an ompute

the initial state with d2:41Le onseutive keystream bits in time L

O(1)

2

0:6563L

.

The designers of SSG-XOR laimed that the BDD-attak for SSG-XOR an

reonstrut the initial state from the d2:95Le onseutive keystream bits in time

L

O(1)

2

0:7101L

.

Now we re-analyze the seurity against the BDD-attak for SSG-XOR. We

an also set  = 0:5 for SSG-XOR. For a �xed m, let p(m) be the probability

that the shrinking result of a randomly hosen bitstream from f0; 1g

m

is a pre�x

of the given keystream. If hosen bitstreams are uniformly distributed in f0; 1g

m

,

there are p(m)2

m

possible z's suh that the shrinking result of z is a pre�x of z.

Note that p(m) an be supposed to behave as p(m) = 2

�Æm

.

On the other hand, we observe that for all m with m � 0 mod 4 and all

keystreams z, there are exatly 5

m=3

bitstreams z 2 f0; 1g

m

suh that the

shrinking result of z is a pre�x of z. Hene, we obtain an information rate

Æ = 1 � (log

2

5)=3 � 0:226 for SSG-XOR by evaluating the relation 2

(1�Æ)m

=

5

m=3

. So the required length of onseutive output bits is d2:21Le and the time

omplexity is L

O(1)

2

0:6313L

.

2.3 HJ attak

Eah known keystream bit gives, by default, a few equations in the initial state.

Assume that we know 2N keystream bits

z

0

; z

1

; : : : ; z

2N�1

: (1)

In the ase of SSG-XOR, eah known keystream bit pair (z

2i

; z

2i+1

) will give us

three equations for some j:

a

4j

� a

4j+1

= 1; a

4j+2

= z

2i

; a

4j+3

= z

2i+1

:

Additionally, we only know that the observed keystream sequene (1) orre-

sponds to the output sequene of the underlying LFSR

a

0

; �a

0

; z

0

; z

1

; X

0

; a

1

; �a

1

; z

2

; z

3

; X

1

; : : : ; X

N�2

; a

N�1

; �a

N�1

; z

2N�2

; z

2N�1

;

where �a

i

= 1�a

i

and eah X

i

orresponds to a sequene of zero or more 4-tuples

in f(0; 0; �; �); (1; 1; �; �)g. For eah of these 4-tuples that we guess orretly, we

will get one more equation sine the �rst two bits have the same bit parity. The

total number of equations available is thus 3N + k where k is the number of

4-tuples disarded. To get a omplete system of equations in the (equivalent)

initial state bits we require that N = d(L� k)=3e. The probability that in total

k 4-tuples are disarded is, for eah possible assumption,

2

�N�k+1

:
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The number of ways to disard k 4-tuples in a total of N � 1 gaps is given by

 

N � 2 + k

k

!

:

We start by testing the ase when 0 bits are disarded, then the ase when 2

bits has been disarded, et. The probability that we guess orretly within

k

max

X

k=0

 

N � 2 + k

k

!

guesses is

k

max

X

k=0

 

N � 2 + k

k

!

2

�N�k+1

:

By �xing the probability of suess to 0.5, we alulate the omplexity of the at-

tak for some di�erent LFSR lengths. In Table 2, we an see that the omplexity

is approximately O(2

0:5L

).

Table 2. The Complexity of the Attak for some LFSR Lengths

LFSR length Complexity k

max

128 2

61:3

34

256 2

125:4

67

512 2

253:7

132

1024 2

510:5

262

2.4 Guess-and-determine attak

The guess-and-determine attak for SSG was reently proposed in Asiarypt

2006 [6℄. The proposed attak an restore the initial state with time omplexity

O(2

0:556L

) and memory omplexity O(L

2

) from O(2

0:161L

) keystream bits when

L � 100. It utilizes the fat that the two deimated sequenes fa

2i

g and fa

2i+1

g

share the feedbak polynomial as that of the sequene fa

i

g whih is a binary

maximal length sequene produed by a LFSR of length L and di�er by a shift

value 2

L�1

. This approah an be applied to SSG-XOR immediately.

Let f(x) = 1+

1

x+� � �+

L�1

x

L�1

+x

L

be the primitive feedbak polynomial

of the LFSR for the SSG-XOR, i.e. for eah i � 0, a

i+L

=

P

L

j=1



j

a

i+L�j

where



L

= 1. Then the reiproal of f(x) is x

L

+ 

1

x

L�1

+ � � � + 

L�1

x + 1 whih is
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denoted by f

�

(x). It is easy to show that eah a

i

orresponds to x

i

mod f

�

(x)

from the reurrene relation.

x

i+L

=

L

X

j=1



j

x

i+L�j

mod f

�

(x):

By squaring (or exponentiating by 2

k

) the above formula, we an show that the

deimated sequene fa

2i

g (or fa

2

k

i

g) shares the feedbak polynomial with the

original sequene fa

i

g. Thus one we know any onseutive L-bit sequene of

the deimated sequene, we an immediately ompute the next sequenes using

the given reurrene relation. However other deimated sequenes (for example

fa

3i

g) would not share the feedbak polynomial.

Lemma 1. Let a = fa

0

; a

1

; � � � g be a binary maximal length sequene produed

by a LFSR of length L. Let s

(0)

= fa

4j

g, s

(1)

= fa

4j+1

g, s

(2)

= fa

4j+2

g, and

s

(3)

= fa

4j+3

g be deimated sequenes of a. Then they share the feedbak polyno-

mial with the sequene a and the shift value between s

(i)

and s

(i+1)

for i = 0; 1; 2

is 2

L�2

.

Proof. As mentioned before, eah deimated sequene s

(i)

= fs

(i)

j

g shares the

feedbak polynomial with the original sequene a. Thus they di�ers eah other

by only some shift. Our lemma suÆes to note that

s

(i)

j+2

L�2

= a

4(j+2

L�2

)+i

= a

4j+2

L

+i

= a

4j+(i+1)+(2

L

�1)

= s

(i+1)

j

:

ut

We de�ne polynomials h

i

(x) for i = 1; 2; 3 as follows.

h

1

(x) =

L�1

X

i=0

h

1;i

x

i

; h

2

(x) =

L�1

X

i=0

h

2;i

x

i

; h

3

(x) =

L�1

X

i=0

h

3;i

x

i

;

suh that h

1

(x) � x

2

L�2

mod f

�

(x), h

2

(x) � x

2

L�1

mod f

�

(x), and h

3

(x) �

x

3�2

L�2

mod f

�

(x). Then we have

a

4i+1

=

L�1

X

j=0

h

1;j

a

4(i+j)

; a

4i+2

=

L�1

X

j=0

h

2;j

a

4(i+j)

; a

4i+3

=

L�1

X

j=0

h

3;j

a

4(i+j)

:

Now we are ready to attak SSG-XOR. Let fz

i

g

N�1

i=0

be the keystream of

SSG-XOR. We �rst set A = (a

0

; a

4

; � � � ; a

4(L�1)

) with L variables. It is enough to

�nd these unknowns for attaking SSG-XOR. Instead of guessing the unknowns

diretly, we guess an l-bit length segment guess = (g

0

; g

1

; � � � ; g

l�1

) for (a

0

�

a

1

; a

4

� a

5

; � � � ; a

4(l�1)

� a

4(l�1)+1

). Let H

w

(�) be the Hamming weight of the

orresponding vetor. Then from the guessed segment guess, we an obtain l +
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2H

w

(guess) linear equations with L variables as follows.

a

4i

� a

4i+1

= a

4i

�

L�1

X

j=0

h

1;j

a

4(i+j)

= g

i

; for 0 � i < l;

a

4i+2

=

L�1

X

j=0

h

2;j

a

4(i+j)

= z

2(

P

i

j=0

g

j

)�2

; for g

i

= 1

a

4i+3

=

L�1

X

j=0

h

3;j

a

4(i+j)

= z

2(

P

i

j=0

g

j

)�1

; for g

i

= 1:

If we an solve the above system of linear equations, we an reover the

initial state of the SSG-XOR. In order to solve the system, we have to get linear

equations as many as possible. We observe that the more 1 in the guessed segment

guess, the more linear equations an be obtained. To mount eÆient attak, we

just searh over those possible guess satisfying the following ondition instead of

exhaustively searhing over all the possible value.

H

w

(guess) � d�le;

where � (0:5 � � � 1) is a parameter to be determined later.

By the argument in [6℄, the obtained equations in the above proess are al-

most linearly independent. Thus we have O(l+ 2�l) linearly independent equa-

tions with L variables. In order to solve the system of equations, we let

O(l + 2�l) = L =) l = O

�

1

1 + 2�

L

�

:

The attak proeeds as follows.

1. For eah guessed segment guess satisfying that H

w

(guess) � d�le for a given

parameter �, derive linear expressions on the L variables without �lling the

onstant terms (keystream bits) as explained above and store them in matrix

U .

(a) For eah 0 � j � N � 1� (l + 2d�le), make (by �lling onstant terms)

the system of linear equations with the linear expression U using the

keystream bits starting from z

j

.

(b) Solve the linear system U , �nd the andidate initial state, and hek the

andidate state is orret by running SSG-XOR with the state and om-

paring the generated stream with the (original) keystream bits fz

i

g

N�1

i=j

.

() If the above test sueeds, we �nd the initial state (or an equivalent

state). Thus stop this proess and output the state as a solution.

(d) If the above test fails, repeat the proess from the step (a) with inre-

menting j.

2. If we ould not �nd the initial state with the segment guess, we hoose

another guess at random and try again from the �rst step 1.
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Now we determine the length N of keystream bits in order to sueed the

above attak. Our searh spae is H = fguess j d�le � H

w

(guess) � l; and g

0

=

1g, thus the ardinality of H is

jH j =

l�1

X

i=d�le�1

�

l � 1

i

�

:

For eah l-bit guessed segment guess, we will tryN�L times to �nd an equivalent

state. To sueed the attak, we have to �nd at least one math pair between the

guess set H and the initial state derived from the keystream segments involved

in eah N � L trials. Thus the length N should satisfy

(N � L) � jH j � 2

l�1

=) N = O

�

2

1��

1+2�

L

�

;

where jH j = 2

�l

and � is a parameter determined by �.

Sine for eah guessed segment guess we have to try at most N � L times,

the total time omplexity of the attak in worst ase is

O(L

3

)O(N � L)O(2

�l

) = O

�

L

3

� 2

1

1+2�

L

�

;

where O(L

3

) fator reets the omplexity of solving a system of linear equations

of size L.

Theorem 1. The guess-and-determine attak for SSG-XOR has time omplex-

ity O

�

L

3

� 2

1

1+2�

L

�

, memory omplexity O(L

2

) and data omplexity O

�

2

1��

1+2�

L

�

,

where L is the length of the underlying LFSR of SSG-XOR, 0:5 � � � 1, and �

is a parameter determined by �.

Now we give omparison result in the following table between SSG and SSG-

XOR ignoring the polynomial fator L

3

.

Table 3. The asymptoti time, memory, and data omplexity to attak SSG and SSG-

XOR when L � 100

SSG SSG-XOR

� � Time Memory Data Time Memory Data

0.5 0.99 O(2

0:667L

) O(L

2

) O(2

0:007L

) O(2

0:5L

) O(L

2

) O(2

0:005L

)

0.8 0.71 O(2

0:556L

) O(L

2

) O(2

0:161L

) O(2

0:384L

) O(L

2

) O(2

0:111L

)

1.0 0.00 O(2

0:5L

) O(L

2

) O(2

0:5L

) O(2

0:333L

) O(L

2

) O(2

0:333L

)
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Experiments We made several experimental results in C language on a gen-

eral PC to hek the validity of our attak. For example, we hoose an LFSR's

feedbak polynomial of length 30 as follows.

f(x) = x

30

+ x

27

+ x

23

+ x

22

+ x

17

+ x

16

+ x

14

+ x

11

+ x

3

+ x+ 1:

We note that f(x) is a primitive polynomial, thus the generated sequene would

have a maximal length. Then h

1

(x), h

2

(x), and h

3

(x) modulo the reiproal

f

�

(x) an be obtained as follows.

h

1

(x) = x

2

28

mod f

�

(x)

= x

28

+ x

26

+ x

21

+ x

20

+ x

15

+ x

11

+ x

9

+ x

8

+ x

7

+ x

6

+ x

4

+ x

2

+ 1

h

2

(x) = x

2

29

mod f

�

(x)

= x

29

+ x

28

+ x

28

+ x

27

+ x

21

+ x

17

+ x

16

+ x

15

+ x

14

+ x

13

+ x

12

+ x

11

+ x

8

+ x

7

+ x

4

h

3

(x) = x

3�2

28

mod f

�

(x)

= x

27

+ x

24

+ x

23

+ x

17

+ x

14

+ x

11

+ x

10

+ x

6

+ x

5

+ x

3

For a random hosen initial state, our attak reovers the initial state or an

equivalent state in a minute from 200 bits keystream.

3 Conlusion

In this paper, we investigated the seurity aspets for a variant of self-shrinking

generator alled SSG-XOR whih was proposed at ICISC 2006. The author of

SSG-XOR alleged that SSG-XOR is more seure than the original SSG in a

sense that the omplexity of attaks for SSG-XOR is higher than that of SSG.

However we showed that the seurity of SSG-XOR does not reah that of SSG.
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