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Abstra
t. In this paper, we revisit the variant of the self-shrinking gen-

erator(SSG) proposed by Chang et al. at ICISC 2006. This variant, whi
h

we 
all SSG-XOR was 
laimed to have better 
ryptographi
 properties

than SSG in a pra
ti
al setting. But we show that SSG-XOR has no

advantage over SSG from the viewpoint of pra
ti
al 
ryptanalysis.
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1 Introdu
tion

The self-shrinking generator (SSG) is a well-known keystream generator pro-

posed by Meier and Sta�elba
h [4℄. SSG requires only one LFSR, whi
h generates

a binary sequen
e a = (a

i

)

i�0

in the usual way. For ea
h bit pair (a

2i

; a

2i+1

), if

a

2i

= 1, SSG outputs a

2i+1

as a keystream bit, otherwise no output is produ
ed.

Until now, several methods have been proposed for atta
king SSG [5, 3, 2,

6℄. The designers of SSG have also des
ribed two kinds of simple atta
ks 
alled

exhaustive sear
h and entropy atta
k whose time 
omplexity is O(2

0:79L

) and

O(2

0:75L

) respe
tively, where L is a length of the underlying LFSR [4℄. The

time 
omplexity was redu
ed to O(2

0:695L

) in [5℄. In [3℄ the BDD-atta
k was

proposed, it requires O(2

0:656L

) time 
omplexity from d2:41Le bits keystream.

However the memory requirement for the BDD-atta
k is infeasible. This atta
k

was improved in [2℄. The advantage of the HJ atta
k [2℄ over the BDD-atta
k

is to have the almost same time 
omplexity with only O(L

2

) memory from L-

bit keystream. Re
ently a new guess-and-determine atta
k was proposed [6℄. It

requires O(2

0:556L

) time with memory O(L

2

) from O(2

0:161L

)-bit keystream for

L � 100 and requires O(2

0:571L

) time with memory O(L

2

) from O(2

0:194L

)-bit

keystream for L < 100.

The variant of SSG (denoted by SSG-XOR) was proposed by Chang et al.

[1℄ to improve some 
ryptographi
 properties of SSG. It has a similar stru
-

ture to SSG, but it handles 4-tuple of 
onse
utive bits produ
ed by the un-

derlying LFSR to produ
e two keystream bits in a lump. For ea
h 4-tuple

(a

4i

; a

4i+1

; a

4i+2

; a

4i+3

), SSG-XOR outputs two bits a

4i+2

and a

4i+3

if a

4i

�

a

4i+1

= 1, and dis
ards otherwise. The following Figure 1 
lari�es the di�eren
e

between SSG and SSG-XOR.
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Fig. 1. SSG and SSG-XOR

The authors of [1℄ analyzed the se
urity of SSG-XOR by applying the existing

atta
ks for SSG and 
laimed that SSG-XOR is more se
ure than SSG against

atta
ks using short keystream sequen
es su
h as entropy atta
k [4℄ or the BDD-

atta
k [3℄.

In this paper, however, we show that the se
urity of SSG-XOR against several

atta
ks using short keystream sequen
es 
an be de
reased signi�
antly. First, we

re-analyze the se
urity of SSG-XOR against exhaustive sear
h atta
k, entropy

atta
k and the BDD-atta
k. And then we investigate the se
urity of SSG-XOR

against the HJ atta
k and the guess-and-determine atta
k. Our analysis shows

that SSG-XOR has no advantage over SSG from the viewpoint of the se
urity.

In Table 1, we 
ompare with the 
omplexity of several atta
ks for SSG and

SSG-XOR. (Note that we ignore some polynomial fa
tors in Table 1.)

Table 1. Comparison of 
omplexity of several atta
ks for SSG and SSG-XOR

SSG SSG-XOR

Time Memory Data Time Memory Data

Exhaus. sear
h [4℄ O(2

0:79L

) { { O(2

0:774L

) { {

Entropy atta
k [4℄ O(2

0:75L

) { { O(2

0:667L

) { {

BDD-atta
k [3℄ O(2

0:656L

) infeasible d2:41Le O(2

0:631L

) infeasible d2:21Le

HJ atta
k [2℄ O(2

0:66L

) O(L

2

) L O(2

0:5L

) O(L

2

) L

G & D atta
k [6℄ O(2

0:556L

) O(L

2

) O(2

0:161L

) O(2

0:384L

) O(L

2

) O(2

0:111L

)
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2 Se
urity Analysis

Although the designers of SSG-XOR analyzed the se
urity against several at-

ta
ks whi
h have been mounted to the original SSG, the analysis would not be

suÆ
ient. So we re-analyze the resistan
e against possible atta
ks.

2.1 Exhaustive sear
h and entropy atta
k

These atta
ks were des
ribed in the paper proposing SSG [4℄ to re
onstru
t the

initial state with only a few keystream bits. The �rst atta
k is 
alled exhaustive

sear
h. The initial state of SSG may be re
onstru
ted with 
omplexity 2

0:79L

by the exhaustive sear
h atta
k. Let z = (z

0

; z

1

; : : : ; z

i

; : : :) be a known short

keystream of SSG-XOR. The designer of SSG-XOR 
laimed that the exhaustive

sear
h atta
k requires 2

0:8305L

steps sin
e there are 10 possibilities to generate

ea
h (z

2j

; z

2j+1

). However, given a keystream z, it is not ne
essary to guess a

4i

and a

4i+1

of the underlying LFSR output sequen
e a, independently. Instead,

we only guess one bit information whether a

4i

� a

4i+1

is equal to 1 or not.

This way, we will re
onstru
t an initial state that is no ne
essarily equal to the

original initial state, but it is equivalent in a sense that it will 
reate z. From

this point of view, there exist �ve possibilities rather than ten for a 3-tuple

(a

4i

� a

4i+1

; a

4i+2

; a

4i+3

) of a. So we 
an estimate that there exist

5

L=3�1

� 5

L=3

= 2

((log

2

5)=3)L

= 2

0:774L

possible initial states of the LFSR.

The se
ond atta
k is 
alled entropy atta
k. For SSG, the entropy per bit is

3/4 so an exhaustive sear
h among all di�erent 
ases in the order of probability

would require 2

0:75L

steps. For SSG-XOR, the designers 
laimed the the entropy

atta
k requires 2

0:8305L

steps. However, for ea
h (z

2j

; z

2j+1

) there are 5 di�erent

possibilities (a

4i

� a

4i+1

; a

4i+2

; a

4i+3

), namely (1; z

2j

; z

2j+1

), (0; 0; 0), (0; 0; 1),

(0; 1; 0), and (0; 1; 1). The probability for (1; z

2j

; z

2j+1

) is 1/2 and the probability

for the others is 1/8. Thus the entropy of 3-tuple is

H = �(1=2) log

2

(1=2)� 4 � (1=8) log

2

(1=8) = 2:

Therefore, the entropy per bit is 2/3 so the 
omplexity of the atta
k for SSG-

XOR would be 2

0:667L

.

2.2 BDD-atta
k

For the BDD-atta
k [3℄, the required length of 
onse
utive keystream bits is

d
Æ

�1

Le and the time 
omplexity is L

O(1)

2

((1�Æ)=(1+Æ))L

, where 
 and Æ are

de�ned as follows:

{ 
 is the maximal ratio of the length of the keystream z to the length of the

output sequen
e a of the underlying LFSR.
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{ Æ is the information rate (per bit) whi
h would be revealed about the output

sequen
e a of the underlying LFSR from the keystream z.

For SSG, Æ � 0:2075 and 
 = 0:5. Thus the BDD-atta
k for SSG 
an 
ompute

the initial state with d2:41Le 
onse
utive keystream bits in time L

O(1)

2

0:6563L

.

The designers of SSG-XOR 
laimed that the BDD-atta
k for SSG-XOR 
an

re
onstru
t the initial state from the d2:95Le 
onse
utive keystream bits in time

L

O(1)

2

0:7101L

.

Now we re-analyze the se
urity against the BDD-atta
k for SSG-XOR. We


an also set 
 = 0:5 for SSG-XOR. For a �xed m, let p(m) be the probability

that the shrinking result of a randomly 
hosen bitstream from f0; 1g

m

is a pre�x

of the given keystream. If 
hosen bitstreams are uniformly distributed in f0; 1g

m

,

there are p(m)2

m

possible z's su
h that the shrinking result of z is a pre�x of z.

Note that p(m) 
an be supposed to behave as p(m) = 2

�Æm

.

On the other hand, we observe that for all m with m � 0 mod 4 and all

keystreams z, there are exa
tly 5

m=3

bitstreams z 2 f0; 1g

m

su
h that the

shrinking result of z is a pre�x of z. Hen
e, we obtain an information rate

Æ = 1 � (log

2

5)=3 � 0:226 for SSG-XOR by evaluating the relation 2

(1�Æ)m

=

5

m=3

. So the required length of 
onse
utive output bits is d2:21Le and the time


omplexity is L

O(1)

2

0:6313L

.

2.3 HJ atta
k

Ea
h known keystream bit gives, by default, a few equations in the initial state.

Assume that we know 2N keystream bits

z

0

; z

1

; : : : ; z

2N�1

: (1)

In the 
ase of SSG-XOR, ea
h known keystream bit pair (z

2i

; z

2i+1

) will give us

three equations for some j:

a

4j

� a

4j+1

= 1; a

4j+2

= z

2i

; a

4j+3

= z

2i+1

:

Additionally, we only know that the observed keystream sequen
e (1) 
orre-

sponds to the output sequen
e of the underlying LFSR

a

0

; �a

0

; z

0

; z

1

; X

0

; a

1

; �a

1

; z

2

; z

3

; X

1

; : : : ; X

N�2

; a

N�1

; �a

N�1

; z

2N�2

; z

2N�1

;

where �a

i

= 1�a

i

and ea
h X

i


orresponds to a sequen
e of zero or more 4-tuples

in f(0; 0; �; �); (1; 1; �; �)g. For ea
h of these 4-tuples that we guess 
orre
tly, we

will get one more equation sin
e the �rst two bits have the same bit parity. The

total number of equations available is thus 3N + k where k is the number of

4-tuples dis
arded. To get a 
omplete system of equations in the (equivalent)

initial state bits we require that N = d(L� k)=3e. The probability that in total

k 4-tuples are dis
arded is, for ea
h possible assumption,

2

�N�k+1

:
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The number of ways to dis
ard k 4-tuples in a total of N � 1 gaps is given by

 

N � 2 + k

k

!

:

We start by testing the 
ase when 0 bits are dis
arded, then the 
ase when 2

bits has been dis
arded, et
. The probability that we guess 
orre
tly within

k

max

X

k=0

 

N � 2 + k

k

!

guesses is

k

max

X

k=0

 

N � 2 + k

k

!

2

�N�k+1

:

By �xing the probability of su

ess to 0.5, we 
al
ulate the 
omplexity of the at-

ta
k for some di�erent LFSR lengths. In Table 2, we 
an see that the 
omplexity

is approximately O(2

0:5L

).

Table 2. The Complexity of the Atta
k for some LFSR Lengths

LFSR length Complexity k

max

128 2

61:3

34

256 2

125:4

67

512 2

253:7

132

1024 2

510:5

262

2.4 Guess-and-determine atta
k

The guess-and-determine atta
k for SSG was re
ently proposed in Asia
rypt

2006 [6℄. The proposed atta
k 
an restore the initial state with time 
omplexity

O(2

0:556L

) and memory 
omplexity O(L

2

) from O(2

0:161L

) keystream bits when

L � 100. It utilizes the fa
t that the two de
imated sequen
es fa

2i

g and fa

2i+1

g

share the feedba
k polynomial as that of the sequen
e fa

i

g whi
h is a binary

maximal length sequen
e produ
ed by a LFSR of length L and di�er by a shift

value 2

L�1

. This approa
h 
an be applied to SSG-XOR immediately.

Let f(x) = 1+


1

x+� � �+


L�1

x

L�1

+x

L

be the primitive feedba
k polynomial

of the LFSR for the SSG-XOR, i.e. for ea
h i � 0, a

i+L

=

P

L

j=1




j

a

i+L�j

where




L

= 1. Then the re
ipro
al of f(x) is x

L

+ 


1

x

L�1

+ � � � + 


L�1

x + 1 whi
h is
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denoted by f

�

(x). It is easy to show that ea
h a

i


orresponds to x

i

mod f

�

(x)

from the re
urren
e relation.

x

i+L

=

L

X

j=1




j

x

i+L�j

mod f

�

(x):

By squaring (or exponentiating by 2

k

) the above formula, we 
an show that the

de
imated sequen
e fa

2i

g (or fa

2

k

i

g) shares the feedba
k polynomial with the

original sequen
e fa

i

g. Thus on
e we know any 
onse
utive L-bit sequen
e of

the de
imated sequen
e, we 
an immediately 
ompute the next sequen
es using

the given re
urren
e relation. However other de
imated sequen
es (for example

fa

3i

g) would not share the feedba
k polynomial.

Lemma 1. Let a = fa

0

; a

1

; � � � g be a binary maximal length sequen
e produ
ed

by a LFSR of length L. Let s

(0)

= fa

4j

g, s

(1)

= fa

4j+1

g, s

(2)

= fa

4j+2

g, and

s

(3)

= fa

4j+3

g be de
imated sequen
es of a. Then they share the feedba
k polyno-

mial with the sequen
e a and the shift value between s

(i)

and s

(i+1)

for i = 0; 1; 2

is 2

L�2

.

Proof. As mentioned before, ea
h de
imated sequen
e s

(i)

= fs

(i)

j

g shares the

feedba
k polynomial with the original sequen
e a. Thus they di�ers ea
h other

by only some shift. Our lemma suÆ
es to note that

s

(i)

j+2

L�2

= a

4(j+2

L�2

)+i

= a

4j+2

L

+i

= a

4j+(i+1)+(2

L

�1)

= s

(i+1)

j

:

ut

We de�ne polynomials h

i

(x) for i = 1; 2; 3 as follows.

h

1

(x) =

L�1

X

i=0

h

1;i

x

i

; h

2

(x) =

L�1

X

i=0

h

2;i

x

i

; h

3

(x) =

L�1

X

i=0

h

3;i

x

i

;

su
h that h

1

(x) � x

2

L�2

mod f

�

(x), h

2

(x) � x

2

L�1

mod f

�

(x), and h

3

(x) �

x

3�2

L�2

mod f

�

(x). Then we have

a

4i+1

=

L�1

X

j=0

h

1;j

a

4(i+j)

; a

4i+2

=

L�1

X

j=0

h

2;j

a

4(i+j)

; a

4i+3

=

L�1

X

j=0

h

3;j

a

4(i+j)

:

Now we are ready to atta
k SSG-XOR. Let fz

i

g

N�1

i=0

be the keystream of

SSG-XOR. We �rst set A = (a

0

; a

4

; � � � ; a

4(L�1)

) with L variables. It is enough to

�nd these unknowns for atta
king SSG-XOR. Instead of guessing the unknowns

dire
tly, we guess an l-bit length segment guess = (g

0

; g

1

; � � � ; g

l�1

) for (a

0

�

a

1

; a

4

� a

5

; � � � ; a

4(l�1)

� a

4(l�1)+1

). Let H

w

(�) be the Hamming weight of the


orresponding ve
tor. Then from the guessed segment guess, we 
an obtain l +
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2H

w

(guess) linear equations with L variables as follows.

a

4i

� a

4i+1

= a

4i

�

L�1

X

j=0

h

1;j

a

4(i+j)

= g

i

; for 0 � i < l;

a

4i+2

=

L�1

X

j=0

h

2;j

a

4(i+j)

= z

2(

P

i

j=0

g

j

)�2

; for g

i

= 1

a

4i+3

=

L�1

X

j=0

h

3;j

a

4(i+j)

= z

2(

P

i

j=0

g

j

)�1

; for g

i

= 1:

If we 
an solve the above system of linear equations, we 
an re
over the

initial state of the SSG-XOR. In order to solve the system, we have to get linear

equations as many as possible. We observe that the more 1 in the guessed segment

guess, the more linear equations 
an be obtained. To mount eÆ
ient atta
k, we

just sear
h over those possible guess satisfying the following 
ondition instead of

exhaustively sear
hing over all the possible value.

H

w

(guess) � d�le;

where � (0:5 � � � 1) is a parameter to be determined later.

By the argument in [6℄, the obtained equations in the above pro
ess are al-

most linearly independent. Thus we have O(l+ 2�l) linearly independent equa-

tions with L variables. In order to solve the system of equations, we let

O(l + 2�l) = L =) l = O

�

1

1 + 2�

L

�

:

The atta
k pro
eeds as follows.

1. For ea
h guessed segment guess satisfying that H

w

(guess) � d�le for a given

parameter �, derive linear expressions on the L variables without �lling the


onstant terms (keystream bits) as explained above and store them in matrix

U .

(a) For ea
h 0 � j � N � 1� (l + 2d�le), make (by �lling 
onstant terms)

the system of linear equations with the linear expression U using the

keystream bits starting from z

j

.

(b) Solve the linear system U , �nd the 
andidate initial state, and 
he
k the


andidate state is 
orre
t by running SSG-XOR with the state and 
om-

paring the generated stream with the (original) keystream bits fz

i

g

N�1

i=j

.

(
) If the above test su

eeds, we �nd the initial state (or an equivalent

state). Thus stop this pro
ess and output the state as a solution.

(d) If the above test fails, repeat the pro
ess from the step (a) with in
re-

menting j.

2. If we 
ould not �nd the initial state with the segment guess, we 
hoose

another guess at random and try again from the �rst step 1.
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Now we determine the length N of keystream bits in order to su

eed the

above atta
k. Our sear
h spa
e is H = fguess j d�le � H

w

(guess) � l; and g

0

=

1g, thus the 
ardinality of H is

jH j =

l�1

X

i=d�le�1

�

l � 1

i

�

:

For ea
h l-bit guessed segment guess, we will tryN�L times to �nd an equivalent

state. To su

eed the atta
k, we have to �nd at least one mat
h pair between the

guess set H and the initial state derived from the keystream segments involved

in ea
h N � L trials. Thus the length N should satisfy

(N � L) � jH j � 2

l�1

=) N = O

�

2

1��

1+2�

L

�

;

where jH j = 2

�l

and � is a parameter determined by �.

Sin
e for ea
h guessed segment guess we have to try at most N � L times,

the total time 
omplexity of the atta
k in worst 
ase is

O(L

3

)O(N � L)O(2

�l

) = O

�

L

3

� 2

1

1+2�

L

�

;

where O(L

3

) fa
tor re
e
ts the 
omplexity of solving a system of linear equations

of size L.

Theorem 1. The guess-and-determine atta
k for SSG-XOR has time 
omplex-

ity O

�

L

3

� 2

1

1+2�

L

�

, memory 
omplexity O(L

2

) and data 
omplexity O

�

2

1��

1+2�

L

�

,

where L is the length of the underlying LFSR of SSG-XOR, 0:5 � � � 1, and �

is a parameter determined by �.

Now we give 
omparison result in the following table between SSG and SSG-

XOR ignoring the polynomial fa
tor L

3

.

Table 3. The asymptoti
 time, memory, and data 
omplexity to atta
k SSG and SSG-

XOR when L � 100

SSG SSG-XOR

� � Time Memory Data Time Memory Data

0.5 0.99 O(2

0:667L

) O(L

2

) O(2

0:007L

) O(2

0:5L

) O(L

2

) O(2

0:005L

)

0.8 0.71 O(2

0:556L

) O(L

2

) O(2

0:161L

) O(2

0:384L

) O(L

2

) O(2

0:111L

)

1.0 0.00 O(2

0:5L

) O(L

2

) O(2

0:5L

) O(2

0:333L

) O(L

2

) O(2

0:333L

)
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Experiments We made several experimental results in C language on a gen-

eral PC to 
he
k the validity of our atta
k. For example, we 
hoose an LFSR's

feedba
k polynomial of length 30 as follows.

f(x) = x

30

+ x

27

+ x

23

+ x

22

+ x

17

+ x

16

+ x

14

+ x

11

+ x

3

+ x+ 1:

We note that f(x) is a primitive polynomial, thus the generated sequen
e would

have a maximal length. Then h

1

(x), h

2

(x), and h

3

(x) modulo the re
ipro
al

f

�

(x) 
an be obtained as follows.

h

1

(x) = x

2

28

mod f

�

(x)

= x

28

+ x

26

+ x

21

+ x

20

+ x

15

+ x

11

+ x

9

+ x

8

+ x

7

+ x

6

+ x

4

+ x

2

+ 1

h

2

(x) = x

2

29

mod f

�

(x)

= x

29

+ x

28

+ x

28

+ x

27

+ x

21

+ x

17

+ x

16

+ x

15

+ x

14

+ x

13

+ x

12

+ x

11

+ x

8

+ x

7

+ x

4

h

3

(x) = x

3�2

28

mod f

�

(x)

= x

27

+ x

24

+ x

23

+ x

17

+ x

14

+ x

11

+ x

10

+ x

6

+ x

5

+ x

3

For a random 
hosen initial state, our atta
k re
overs the initial state or an

equivalent state in a minute from 200 bits keystream.

3 Con
lusion

In this paper, we investigated the se
urity aspe
ts for a variant of self-shrinking

generator 
alled SSG-XOR whi
h was proposed at ICISC 2006. The author of

SSG-XOR alleged that SSG-XOR is more se
ure than the original SSG in a

sense that the 
omplexity of atta
ks for SSG-XOR is higher than that of SSG.

However we showed that the se
urity of SSG-XOR does not rea
h that of SSG.
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