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Abstract. In this paper, we propose a new method for designing public
key cryptosystems based on general non-commutative rings. The key idea
of our proposal is that for a given non-commutative ring, we can define
polynomials and take them as the underlying work structure. By do-
ing so, it is easy to implement Diffie-Helman-like key exchange protocol.
And consequently, ElGamal-like cryptosystems can be derived immedi-
ately. Moreover, we show how to extend our method to non-commutative
groups (or semi-groups).

1 Introduction

1.1 Background of Public-Key Cryptography and Proposals Based
on Commutative Rings

Since the idea of public key cryptography (PKC) was introduced by Diffie
and Hellman [20] in 1976, many PKC schemes have been proposed and broken.
The trapdoor one-way functions play the key roles in the idea of PKC. Today,
most succusseful PKC schemes are based on the perceived difficulty of certain
problems in particular large finite commutative rings. For example, the diffi-
culty of solving the integer factoring problem (IFP) defined over the ring Z,
(where n is the product of two large primes) forms the ground of the basic RSA
cryptosystem [54] and its variants, such as Rabin-Williams [52,65,66] schemes,
LUC’s scheme[60], Cao’s schemes [13,15] and elliptic curve version of RSA like
KMOV [37]. The extended multi-dimension RSA cryptosystem [14], which can
efficiently resist low exponent attacks, is also defined over the commutative ring
Zn[x]. Another good case is that ElGamal-type PKC family, including the basic
ElGamal scheme [22], elliptic curve cryptosystem, DSS and McCurley scheme
[45], is based on the difficulty of solving the discrete logarithm problem (DLP)
defined over a finite field Z,, (where p is a large prime), of course a commutative
ring.

1.2 PKC Proposals Based on Generic Group Theory

The theoretical foundations for the above cyrptosystems lie in the intractabil-
ity of problems closer to number theory than group theory [42]. On quantum



computer, IFP and DLP, as well as DLP over elliptic curves (ECDLP), turned
out to be efficiently solved by algorithms due to Shor [56], Kitaev [34] and
Proos-Zalka [51]. Although practical quantum computers are as least 10 years
away, their potential weakness will soon create distrust in current cryptographic
methods [38].

As addressed in [38], in order to enrich cryptography as well as not to put all
eggs in one basket, there have been many attempts to develop alternative PKC
based on different kinds of problems [38]:

— In 1984, Wagner et al. [64] proposed an approach to design public-key cryp-
tosystems based on the undecidable word problem for groups and semi-
groups. In 2005, Birget et al. [7] pointed out that Wagner’s idea is actually
not based on word problem, but on another, generally easier, premise prob-
lem. And finally, Birget et al. proposed a new public-key cryptosystem which
is based on finitely presented groups with hard word problem.

— In 1999, Anshel et al. [2] proposed a compact algebraic key establishment
protocol. The foundation of their method lies in the difficulty of solving
equations over algebraic structures, in particular non-commutative groups
[2]. In their pioneering paper, they also suggested that braid groups maybe
are good alternative platforms for PKC.

— Subsequently, Ko et al. [36] firstly proposed new PKC by using braid groups
in 2000. The security foundation is that the conjugator search problem (CSP)
is intractable when the system parameters, such as braid index and the
canonical length of the working braids, are selected properly. After that, the
subject has met with a quick success [1,3,16,35,40,61,62]. However, from 2001
to 2003, repeated cryptanalytic success [17,31,32,33,39,46] also diminished
the initial optimism on the subject significantly [10]. Some authors even an-
nounced the premature death of the braid-based PKC [19]. Dehornoy’s paper
[19] gives a good survey on the state of the subject, and evidently signifi-
cant research is still needed to reach a definite conclusion on cryptographic
potential of braid groups [10].

— In 2001, Paeng et al. [49] also published a new PKC built on finite non-
abelian groups. Their method is based on the DLP in the inner automor-
phism group defined via the conjugate action. Their systems was later im-
proved to the so-called MOR systems [50].

— Meanwhile, Magliveras et al. [41] developed new approaches to design public
key cryptosystems using one-way functions and trapdoors in finite groups. It
is worth remarking that their method originates in group theory. Two public
key cryptosystems based on the difficulty of computing certain factorizations
in finite groups, have been introduced: MST1 and MST2. Subsequently, in
2002, Vasco et al. [63] demonstrated that, after a suitable generalization, the
factorization concepts used in MST1 and MST2 allow a uniform description
of several cryptographic primitives. Also, it turned out that a generalization
of MST2 can serve as a unifying framework for several proposed public key
cryptosystems, including the ElGamal public key system, the braid group
based system [36] and the MOR cryptosystem [50].



— In 2002, certain homomorphic cryptosystems were constructed for the first
time for non-abelian groups due to Grigoriev and Ponomarenko [29]. Shortly
afterwards, Grigoriev and Ponomarenko [30] extended their method to ar-
bitrary nonidentity finite groups based on the difficulty of the membership
problem for groups of integer matrices.

— Enlightened by the idea in the arithmetic key exchange [2], in 2004, Eick and
Kahrobaei [21] proposed a new cryptosystem based on polycyclic groups.
Polycyclic groups are a natural generalization of cyclic groups, but they
are much more complex in their structure than cyclic groups. Hence their
algorithmic theory is more difficult and thus it seems promising to investigate
classes of polycyclic groups as candidates to have a more substantial platform
perhaps more secure.

— In 2005, Shpilrain and Ushakov [57] suggested that R. Thompson’s group
maybe is a good platform for constructing public-key cryptosystems. In their
contribution, the key assumption is the intractability of the decomposition
problem, which is more general than the conjugator search problem, defined
over R. Thompson’s group, also a infinite non-abelian group given by finite
presentation.

Among the above cryptosystems, those based on generic algebraic systems,
especially non-commutative ones, attract more and more attentions. So far, most
cryptosystems using non-commutative algebraic systems are related to the dif-
ficulty of solving CSP over certain non-abelian groups. Although there are al-
gorithms for solving some wvariants of CSP in certain groups, such as braid
groups [8,9,23,26,28], none of them can solve CSP itself defined over general
non-abelian group in polynomial time with respect to the system parameters.
However, non-commutative is a double-edged sword: on the one hand, it makes
CSP meaningful; on the other hand, it brings some inconvenience for designing
PKC schemes, for example, in Diffie-Hellman-like key agreement protocol, we re-
quire that the operations executed by both of the participants are symmetrical
and commutable. How to utilize non-commutative and overcome its inconve-
nience is the key problem for developing PKC over non-commutative algebraic
systems.

1.3 Motivations and Organization

In this paper, we would like to propose a new method for designing public
key cryptosystems based on general non-commutative rings. The key idea of our
proposal is that for a given non-commutative ring, we can define polynomials
and take them as the underlying work structure. By doing so, it is much easy
to implement the Diffie-Helman-like key exchange protocol and consequently
ElGamal-like cryptosystems can also be derived immediately. In addition, in
[58], Shpilrain et al. gave siz criteria for choosing alternative non-commutative
group G as PKC platforms. The firth criteria is: It is easy to produce some pairs
(a,{ay,--- ,ar}) such that aa; = a;a,(i = 1,--- ; k). We find that our proposal
indeed provides a general way to produce pairs that meet Shpilrain’s firth criteria
for general non-commutative group G.



The rest of the paper is organized as follows. In Section 2, preliminaries on
security models are introduced; In Section 3, we survey necessary cryptographic
assumptions over non-commutative groups and then develop some new assump-
tions; In Section 4, we develop our method step by step: At first, we define
polynomial over an arbitrary non-commutative ring and prove necessary propo-
sitions that supports our later design; Then, we describe a Diffie-Hellman-like
key agreement protocol and two ElGamal cryptosystems based on new under-
lying structure and new developed assumptions; In Section 5, we extend our
method to non-commutative groups and non-commutative semi-groups. Mean-
while, concrete examples are provided to support our method in practice. Finally,
concluding remarks are made in Section 6.

2 Preliminaries

2.1 Notations

Throughout this paper, if « is a string then |z| denotes its length, and if S
is a set then |S| denotes its size. We denote by N the set of positive integers,
the integer k € N denotes the security parameter. We say a function (k) :
N — [0,1] is negligible if for all @ > 0, e(k) < 1/k® for all sufficiently large k
[43]. Assume that A is a probabilistic algorithm that runs in polynomial time
with respect to the security parameter k. Then we denote z «— A(z,y,---)
the operation of running A with inputs z,¥,--- and letting z be the output,
z — Az,y,--- ,01,03,---,) the operation of running A with inputs x,y, -
and access to oracles 01, Os,--- and letting z be the output.

2.2 Public Key Encryption

In this subsection, we recall the formal definition for public key encryption
schemes, together with the security notions.

Definition 1. A public key encryption scheme II = (KGen, Enc,Dec) con-
sists of the following three polynomial-time (in k) algorithms:

— The key generation algorithm — KGen: On input 1% (unary representation
of k), the algorithm KGen produces a pair (pk,sk) of matching public and
private keys. Algorithm KGen is probabilistic.

— The encryption algorithm — Enc: Given a message m and a public key pk,
Enc produces a ciphertext ¢ = I1(m) of m. This algorithm may be probabilis-
tic.

— The decryption algorithm — Dec: Given a ciphertext ¢ = I1(m) and the pri-
vate key sk. Dec(sk,c) gives back the plaintext m. This algorithm is neces-
sarily deterministic.

In addition, for every pair (pk, sk) generated by KGen(1%), and for every a,
algorithms Enc and Dec satisfy

Pr[Dec(sk, Enc(pk,m)) =m] =1



where the probability is taken over the internal coin tosses of algorithm Enc and
Dec.

ADVERSARIAL GOALS. The basic security notion required from a public key
encryption scheme is the one-wayness (OW), which roughly means that one
can’t recover the whole plaintext from a given ciphertext.

Definition 2 (One-Wayness). A public key encryption scheme IT = (KGen, Enc, Dec)
is said to be one-way if for all probabilistic polynomial time algorithms A, for
every a > 0 and sufficiently large k,

1
Pr[A(pk,c) = Dec(sk,c) =m] < T
where ¢ = I1(m) « Enc(pk,m), (pk, sk) «— KGen(1¥) and m is any message
in message space.

A stronger security notion for a public key encryption scheme is the so-
called semantic security (a.k.a. indistinguishability (IND) of encryption) [27].
This security notion requires computational impossibility to distinguish between
two messages chosen by an adversary, which one has been encrypted, with a
probability significantly better than 1/2.

Definition 3 (Semantic Security). A public key encryption scheme II =
(KGen, Enc, Dec) is said to be semantic security if for all probabilistic polyno-
mial time algorithms A, for every a > 0 and sufficiently large k,

1 1
PI‘[.A(pk,mo,ml,c) = m} < 5 + kia
where (mo,m1) is chosen by A, m «— {mo,m1}, ¢ = I(m) «— Enc(pk,m),
(pk, sk) — KGen(1%).

ADVERSARIAL MODELS. Currently, there are several types of attacks models for
public key encryption, namely the chosen-plaintext attack (CPA), non-adaptive
chosen-ciphertext attacks (CCAl) [47] and adaptive chosen-ciphertext attacks
(CCA2) [53]. In a CPA, an adversary can access an encryption oracle. This sce-
nario clearly cannot be avoided. In a CCA1, an adversary also can access a de-
cryption oracle before being given the challenge ciphertext. While in a CCA2, an
adversary can access a decryption oracle before and after being challenged; and
the only restriction for him is that he cannot feed the oracle with the challenge
ciphertext himself. This is the strongest known attack scenario.

Security levels are usually defined by pairing each goal (OW, IND) with an
attack model (CPA, CCA1 or CCA2); i.e., OW-CPA, OW-CCAL, OW-CCA2; IND-
CPA, IND-CCA1 and IND-CCA2. Among each security level, the following rela-
tions are satisfied.



OW-CPA «—— OW- +— OW-
CCA1 CCA2

T 7 T
IND-CPA «—— IND- «—— IND-
CCA1 CCA2

Definition 4 (OW-ATK). Let IT = (KGen, Enc, Dec) be a public key encryp-
tion scheme and let A = (A1, A2) be any probabilistic polynomial time algorithm.
For ATK € {CPA, CCA1, CCA2}, under sufficiently large k, let define

(pk, sk) «+ KGen(1%);
S — ./41 (pk:, 01)
¢ = Enc(pk,m) :
As(s,¢,02) =m

where s is A’s inner statement information, O1, Oa are oracles that A can access.
According to each attack, O1, Oy are defined as follows:

— If ATK = CPA then O1(.) =€ and Oz(.) = ¢;

— If ATK = CCAI then O1(.) = Ds(.) and Os(.) = ¢;
— If ATK = CCA2 then O1(.) = Dsi(.) and Os(.) = Dgi(.).

OW-ATK ._
Succy; " :=Pr

Here a limitation is that As is not allowed to make access to decryption oracle
with the challenge ¢ itself as a query. We say that II is (t,qp,€)-secure if for
every adversary A that runs at most in time t, achieving Succ%YvI}ATK(k) < €,
where qp is the query times on decryption oracle Dg(.).

Definition 5 (IND-ATK). Let IT = (KGen, Enc, Dec) be a public key encryp-
tion scheme and let A = (A1, As) be any probabilistic polynomial time algorithm.
For ATK € {CPA, CCA1, CCA2}, under sufficiently large k, let define

(pk, sk) «+ KGen(1%);
(mo,ma,s) — Ai(pk, O1)
b {0,1}; ¢ = Enc(pk, mp) :
Az(mg,my,s,¢,01) =b

where s is A’s inner statement information, O1, Os are oracles that A can access.
According to each attack, O, Oy are defined as follows:

— If ATK = CPA then O1(.) =€ and O3(.) = ¢;

— If ATK = CCAI then O1(.) = Ds(.) and Os(.) = €;
— If ATK = CCA2 then O1(.) = Dsx(.) and Os(.) = Dgi(.).

Adv 3T =2 x Pr

Here a limitation is that As is not allowed to make access to decryption oracle
with the challenge c itself as a query. We say that II is (t,qp,€)-secure if for
every adversary A that runs at most in time t, achieving Adv%%ATK(k‘) <€

where qp is the query times on decryption oracle Dg(.).



Remark 1. The above security notion is defined in the standard model. In the
random oracle model [5], one should think A = (Aj;, Az) is also allowed to make
access to random oracle Og. To date, the strongest security notion for public
key encryption is IND-CCA2!. In the standard model, the typical IND-CCA2
public key encryption scheme is Crame-Shoup scheme [18]; and the typical IND-
CCA2 public key encryption schemes in the random oracle model include OAEP
[6] and others [11,24,48]. Identity-based public key cryptography is a paradigm
introduced by Shamir to simplify key management and remove the necessity of
public key certificates [55]. To achieve this, the user’s public key should be an
information which can directly identify him in a non ambiguous way, such as e-
mail address, IP address, and so on. The first practical identity based encryption
scheme (IBE) was found by Boneh and Franklin in 2001 [12]. Using Fujisaki-
Okamoto transformation [24], the IBE can be converted to IND-CCA2 secure
under adaptive chosen identity attack.

3 Cryptographic Assumptions on Non-commutative
Groups

3.1 Two Well-Known Cryptographic Assumptions

In a non-commutative group G, two elements x,y are conjugate, written
x ~ vy, if y = 27 a2 for some z € G. Here z or 27! is called a conjugator.
Over a non-commutative group G [35], we can define the following cryptographic
problems which are related to conjugacy 2:

— Conjugator Search Problem (CSP): Given (z,y) € G x G, find z € G such
that y = 2~ 'z,

— Decomposition Problem (DP): Given (z,y) € GxG and S C G, find 21, 22 €
S such that y = z1x25.

At present, we believe that for general non-commutative group G, both of
the above problems are difficult enough to be cryptographic assumptions. That
is, the CSP (DP, respectively) assumption says that CSP (DP, respectively) is
intractable. More precisely, the CSP (DP, respectively) assumption states that
there does not exist probabilistic polynomial time algorithm which can solve
CSP (DP, respectively) with non-negligible accuracy with respect to problem
scale, i.e., the number of input bits of the problem.

! Non-malleability against adaptive chosen-ciphertext attacks (NM-CCA2) is another
strongest security notions, which has been proved to be equivalent to IND-CCA2 in
[4].

2 Maybe, in theoretical, these problems are not solvable for arbitrary instance. But
in practice of the cryptographic applications, we usually start from some solvable
instances to construct desired schemes.



3.2 Symmetrical Decomposition and Computational Diffie-Hellman
Assumptions over Non-commutative Groups

Enlightened by the above problems, we would like to define the following
cryptographic problems over a non-commutative group G:

— Symmetrical Decomposition Problem (SDP): Given (z,y) € G X G
and m,n € Z, find z € G such that y = zMzz".

— Generalized Symmetrical Decomposition Problem (GSDP): Given
(z,y) e Gx G, S C G and m,n € Z, find z € S such that y = 2™zz".

Clearly, GSDP can be looked as a type of constrained SDP. In general, if
the size of S is large enough and its membership information does not help
one to extract z from z™xz", then we believe that GSDP is at least as hard
as SDP. So, in the subsequent presentation, we always address GSDP unless
specific indication. Then, the GSD assumption says that GSDP is intractable,
i.e., there is no probabilistic polynomial time algorithm which can solve GSDP
with non-negligible accuracy with respect to problem scale.

In the above definition of GSDP, if we fix the parameters m,n, then we can
define a new function on G x S as follows:

GxS—aG,

z,z) — 2"xz".
(z,2)

Further, if we denoted z™x2"™ as a new form z*, then the above function can be
looked as a newly introduce exponential operation on G with respect to its subset
S 3. Similarly, if y = z™x2", then z can be looked as the discrete logarithm of
y with respect to the base z, i.e. z can be denoted by log, v.

Now, we can regard GSDP as the discrete logarithm (DL) problem over G.
Then, we can introduce the computational Diffie-Hellman (CDH) problem over
G by a similar way:

— Computational Diffie-Hellman (CDH) Problem over Non-commutative
Group G (with respect to its subset S): Compute x*#2 (or z*2*1) for
given x, z*! and z*2, where z € G, 21,29 € S.

Note that if z; € C(z2), i.e., 21 is commutative with z5, then 2*1%2 = x*2%1 holds.
It is clear that if GSDP, i.e. DL problem over G is tractable, so is CDH problem
over GG. But the inverse maybe is not true. At present, we have no clue to solve
this kind of CDH problem without extracting z; (or z) from = and z** (or z*2).
Then, the CDH assumption over G says that CDH problem over G is intractable,
i.e., there is no probabilistic polynomial time algorithm which can solve CDH
problem over G with non-negligible accuracy with respect to problem scale.
The same definition can also be considered for the case when G is a non-

commutative semi-group and m,n € Zxg. One thus arrives at the concept of the
GSD (also DL) and CDH assumptions over a non-commutative semi-group.

3 We omit the clause of “with respect to its subset S” for visual comfort, unless the
set S should be explicit specified.



3.3 Sampling and Disguising

Just as addressed in [35], we have to be careful when we mention instances
in an infinite group G. In the current information theory, it is hard to discuss a
uniform distribution in G of elements described by randomly chosen information
[35]. To avoid any potential controversy, we always assume that instances to a
problem are randomly chosen in a finite subset of an infinite group G restricted
by system parameters [35].

Disguising is another issue we have to address here. In abstract groups, the
result of multiplication is simply concatenation: a-b = ab, thus an extra effort is
always required to disguise factors in a product [59]. The importance of this is
rather obvious [59]: if, for example, one transmits a conjugate 2~ 'ax of a public
element a “as is”, i.e., without disguising, then the opponent can determine the
private element z just by inspection. Choosing good disguising technique is non-
trivial problem outside the scope of this paper, please refer [59] and [19] for more
materials.

4 Public Key Cryptosystems Using Non-commutative
Rings

4.1 Integral Coefficient Ring Polynomials

Suppose that R is a ring with (R, +,0) and (R, -, 1) as its additive abelian
group and multiple non-abelian semi-group, respectively. Let us consider integral
coefficient polynomials with ring assignment.

At first, the notion of scale multiplication over R is already on hand. For
ke€Zspandr e R,

(Byr&r4- 4. (1)
k times

When k € Zq, we can define

(k) 2 (=k)(=r) = (=) + -+ (7). 2)

—k times

For k = 0, it is natural to define (k)r = 0.
Property 1. (a)r™-(b)r™ = (ab)r™*™ = (b)r™-(a)r™,Ya,b,m,n € Z and Vr € R.

Proof. According to the definition of scale multiplication, the distributivity of
multiplication with respect to addition, and commutativity of addition, this
statement is concluded immediately. a

Remark 2. Note that in general, (a)r - (b)s # (b)s - (a)r when r # s, since
multiplication in R is non-commutative.



Now, let us proceed to define positive integral coefficient ring polynomials.
Suppose that f(x) =ag + a1z + -+ + anz™ € Zso[z] is a given positive integral
coefficient polynomial. We can assign this polynomial by using an element r in
R and finally obtain

n

f(r) = Z(ai)ri = (ap)l + (a1)r + -+ - + (an)r", (3)

=0

which is an element in R, of course. Further, if we regard r as a variable in R,
then f(r) can be looked as a polynomial about variable r. The set of all this
kind of polynomials, taking over all f(x) € Zsq[x], can be looked the extension
of Z~o with r, denoted by Z~[r]. For convenience, we call it the set of 1-ary
positive integral coefficient R-polynomials.

Suppose that f(r) = Y (a;)r' € Zso[r], h(r) = 3 (bj)r? € Zso[r] and

i=0 j=0

n > m, then

(Z(m)ﬂ) + (D ) | = (Z(ari—bi)?“i) + < > Wz‘)”) (4

i=0 j=0 i=0 i=m+1
and according to Property 1 as well as the distributivity, we have

n m n+m
() (S ) = L ®

=0 i=0

i

where p; = > ajbi—; = > a;by. And then, we can conclude immediately the
3=0 jHk=i

following theorem according to Property 1.

Theorem 1. f(r)-h(r) = h(r)- f(r),Vf(r),h(r) € Zso[r]

Remark 3. If r and s are two different variable, then f(r) - h(s) # h(s) - f(r) in
general.

4.2 Further Assumptions on Non-commutative Rings

Suppose that (R, +,+) is a non-commutative ring. For any randomly picked
element a € R, we define a set P, C R by

Py £ {f(a) : f(2) € Zo[z]}.

Then, let us consider the new versions of GSD and CDH problems over (R, -) with
respect to its subset P,, and name them as polynomial symmetric decomposition
(PSD) problem and polynomial Diffie-Hellman (PDG) problem respectively:



— Polynomial Symmetrical Decomposition (PSD) Problem over Non-
commutative Ring R: Given (a,z,y) € R® and m,n € Z, find z € P, such
that y = zmax2™.

— Polynomial Diffie-Hellman (PDH) Problem over Non-commutative
Ring R: Compute x**2 (or x*2*1) for given a,z,z*' and z*2, where a,z €
R,z1,20 € P,.

Accordingly, the PSD (PDH, respectively) cryptographic assumption says
that PSD (PDH, respectively) problem over (R, -) is intractable, i.e., there does
not exist probabilistic polynomial time algorithm which can solve PSD (PDH,
respectively) problem over (R,-) with non-negligible accuracy with respect to
problem scale.

4.3 Diffie-Hellman-Like Key Agreement Protocol from
Non-commutative Rings

Now, let us take R as the underlying work fundamental infrastructure and
design a Diffie-Hellman-like key exchange protocol, by which two entities, say
Alice and Bob, can reach an agreement on a shared, secret session key via a
public, insecure network.

The protocol is described as follows:

(0) One of the entities (say, Alice) sends two random small, positive integers
(say, less than 10) m,n € Z~ and two random? elements a,b € R to another
entity (say, Bob) as the signal of launching the protocol.

(1) Alice chooses a random polynomial f(z) € Zso[z] such that f(a) # 0 and
then takes f(a) as her private key.

(2) Bob chooses a random polynomial h(xz) € Zsg[z] such that h(a) # 0 and

then takes h(a) as his private key.

3) Alice computes 74 = f(a)™ - b- f(a)™ and sends® 74 to Bob.

4) Bob computes r5 = h(a)™ - b- h(a)™ and sends rp to Alice.

5) Alice computes K4 = f(a)™ - rp - f(a)™ as the shared session key.

6) Bob computes Kp = h(a)™-r4 - h(a)™ as the shared session key.

In practice, the steps (0), (1) and (3) can be finished simultaneously and
require only one pass communication from Alice to Bob. After that, the steps
(2) and (4) can be finished in one pass communication from Bob to Alice. Finally,
Alice and Bob can execute the steps (5) and (6) respectively, needless further
communication. A high-level depiction of the protocol is given in Figure 1.

It is trivial to prove that the above key agreement protocol can resist passive
adversary under the PDH assumption over the non-commutative monoid (R, -).
Obviously, similar to the standard Diffie-Hellman protocol [20], the protocol
depicted in Figure 1 cannot resist the man-in-the-middle (MIM) attack. The
revising work is a meaningful but little tough task which is left for interested
readers.

4 See Section 3.3 for the sampling issue.
5 In practice, the element has to be disguised by certain canonical form before it is
transmitted via the public channel. Please see Section 3.3 for the disguising issue.



Pass|Alice Bob
Chooses m,n € Z~o at random
Chooses a,b € R at random
Chooses f(z) € Z>o[z] at random
m,n,a,b,f(a)™bf(a)"

1
Chooses h(z) € Zso[z] at random
9 h(a)™bh(a)™
Ka = f(a)"h(a)"bh(a)" f(a)" = Kp=h(a)"f(a)"bf(a)"h(a)"

Fig. 1. Diffie-Hellman-Like Key Agreement Based on Non-commutative Ring

4.4 ElGamal-Like Encryption Scheme From Non-commutative
Rings

Based on the above key agreement, it is straightforward to describe an
ElGamal-like encryption scheme as follows.

[Basic Scheme]

— Initial setup: Suppose that the non-commutative ring (R, +, -) is the under-
lying work fundamental infrastructure and SDP is intractable on the monoid
(R,-). Pick two small positive integers m,n € Z~q. Let H : R — M be a
cryptographic hash function which maps R to the message space M. Then,
the public parameters of the system would be the tuple < R, m,n, M, H >.

— Key generation: Each user chooses two random elements p,q € R and a
random polynomial f(z) € Zso[z] such that f(p) # 0 and then takes f(p)
as his private key, computes y = f(p)™ - ¢ - f(p)" and publishes his public
key (p,q,y) € R®.

— Encryption: Given a message M € M and receiver’s key (p, q,y) € R3, the
sender chooses a random polynomial h(z) € Zsg[x] such that h(p) # 0 and
then takes h(p) as salt, computes

¢c=hp)"-q-h(p)", d=H(h{p)" y-h(p)")® M,

and finally outputs the ciphertext (¢,d) € R x M.
— Decryption: Upon receiving a ciphertext (c,d) € R x M, the receiver, by
using his private key f(p), computes the plaintext

M =H(f(p)™-c- f(p)") & d

First, we present an “all or nothing” security result for the above basic en-
cryption scheme. The statement of the result as well as the proof technique are
very similar to Theorem 8.3 of [44], except an additional random oracle assump-
tion on H.



Theorem 2. For a plaintext message uniformly distributed in the plaintext mes-
sage space, the above cryptosystem is “all-or-nothing” secure against CPA under
the PDH assumption over the non-commautative ring (R, +,-) provided that H is
a random oracle.

Proof. On the one hand, if PDH problem is tractable, for any given ciphertext
pair (¢,d) and the corresponding public key (p, q,y), it is easy to compute k =
q1°8a 91984 ¥) from the triple (¢,c,y) and then extract the plaintext M = d &
On the other hand, suppose on the contrary there exists an efficient adversary
A, with access to the random oracle H, against the above cryptosystem, that is,
given any public key (p,q,y = f(p)™qf(p)™) and ciphertext (¢, d), A outputs

M — AH(p7 q7 ya C, d)
with a non-negligible advantage ¢ such that M satisfies
M = d®H (y'°%¢) = dpH (q"°%a V1084 )) i, M = dpH (K™ yh™) and ¢ = h™qh"

for some h € P,. Then, for an arbitrary PDH instance (a,z,z*',2**). We set
(a,z,z*) as public key and set (z*2,d) as ciphertext pair for a random d € M.
Then, with the advantage ¢, A outputs

M — A (a,x, 2%, 22, d)
with M satisfying
M=d® H(z*??), ie. M =d® H(zJ' 2" x2]25)

for some 2o € P,. Recall that z; € P,, thus z221 = 2122 according to Theorem
1. Then,

M =d® H(zJ'2"xz72y) =d® H(x™??) = d @ H(z™*).

Clearly, if the adversary A’s advantage € is non-negligible, then .4 must make cor-
responding H-query on z*#2; Otherwise, since H is modeled as a cryptographic
hash, A’s advantage should be negligible no matter what he can compute before
making such a query.

With the random oracle assumption on H, we can maintain a H-list which
contains two fields (r;, h;) and is initialized with empty. Whenever the adversary
A makes a H-query with input r, we examine whether there exists the pair (r, h)
in H-list. If so, return h as the answer to A; Otherwise, randomly pick h € M,
add the pair (r,h) into H-list and return h as the answer to A. Clearly, the
simulation on H is perfect. Finally, when A outputs M, we can retrieval the
correct item x*1%2 = r; by checking the equality M = d ® h;. Thus, we can solve
PDH problem with the non-negligible probability e. This contradicts the holding
of the PDH assumption. O



The above theorem just say that the basic scheme reaches the weakest secu-
rity, i.e. the OW-CPA security. Although we can use a technique due to Fjisaki-
Okamoto (at CRYPTO’99) [25] to convert the above basic scheme into a chosen
ciphertext secure system in the random oracle, we would like to adopt another
technique also due to Fjisaki-Okamoto (at PKC’99) [24] to reach the same goal,
since the latter is more direct than the former. Before to do this, we have at first
prove that the above basic scheme reaches the IND-CPA security.

Theorem 3 (IND-CPA of Basic Scheme). Let H be a random oracle from
R to M. Let A be an IND-CPA adversary that has advantage € against the above
basic scheme within t steps. Suppose A makes a total of qg > 0 queries to H.
Then there is an algorithm B that solves PDH problem over the non-commutative
ring R with advantage at least € within t' steps, where

2
=5 and ¥ = O(t).
4H

Proof. Algorithm B is given as input a 4-tuple (a,x,y1,y2) with y; = a* =
ztxz for unknown z; € P,, ¢ = 1,2, i.e.; an instance of PDH problem. Let
y = x*1*2 denote the solution to PDH problem on this instance.

— Setup. At first, the algorithm B sets the system parameters to be < R, m,n, M, H >
and creates a public key (a,x, y1). Both the system parameters and the pub-
lic key should be available to the adversary A.

— H-queries. Then, B maintains a H-list which contains two fields (r;, h;)
and is initialized with empty. Whenever the adversary 4 makes a H-query
with input r, B examines whether there exists the pair (r,h) in H-list. If
so, returns h as the answer to A; Otherwise, randomly picks h € M, adds
the pair (r,h) into H-list and returns h as the answer to A. Clearly, the
simulation on H is perfect.

— Challenge. When A outputs two messages My and M; on which it wished
to be challenged. B picks randomly a string d € M and defines C to be the
ciphertext pair C' = (ya, d). It then gives C' to A as the challenge. Notice that,
by definition, the decryption of C is d@® H (z(1°8= ¥1) (108 ¥2) = 4y H (2*1%2) =
d® H(y). (Recall that 21, 2o and y are all unknown and y is just the solution
to the above instance of PDH.)

— Guess. A outputs its guess b’ € {0,1}. At this point, B picks a random
tuple (r;,h;) from the H-list and outputs r; as the solution to the given
instance of PDH.

It is easy to see that A’s view in B’s simulation is the same as in a real attack,
in other words, the simulation is perfect. So A’s advantage in this simulation will
be e. We let ‘H be the event that y is queried to H oracle during B’s simulation.

Notice that H(y) is independent of A’s view, so if A never queries y to the
H oracle in the above simulation, then the decryption of C' is also independent
of its view. Therefore, in the simulation we have Pr[b = V/|-H] = 1/2. By the



definition of A, we know that in the real attack (and also in the simulation)
| Pr[b =] —1/2 | > e. We have the following bounds on Pr[b = b']:

Pr[b = b'] = Pr[b = b'|~H]Pr[~H] + Pr[b = b'|H]Pr[H]
<Prjp= b/|ﬁH] r[—~H] + Pr[H]
= %Pr[—\'H] + Pr[H]
1 1

Pr[b = b'] > Pr[b = b'|=H]Pr[-H]
= %Pr[ﬁH]

IO )
1 1
= 5 - 5P,

Hence we have | Pr[b = V'] — 1/2 | < 4Pr[H]. By | Pr[b = b'] —1/2 | > ¢
we know that Pr[H] > 2e. Furthermore, by the definition of the event H, we
know that y appears in some tuple on the H-list with probability at least 2e. It
follows that B outputs the correct answer to the above instance of PDH with
probability at least 2¢/qy as required. O

At PKG99, Fujisaki and Okamoto [24] introduced a method to convert an
IND-CPA encryption scheme into an IND-CCA2 scheme. For self-containing, we
rehearse their main idea as follows:

Suppose IT := {K, &, D} is an IND-CPA secure public-key encryption scheme
with key generation algorithm KC(1%), encryption algorithm &,;(X,S) and de-
cryption algorithm D (y), where pk and sk are a public key and the correspond-
ing private key, X a message with k + kg bits, S a random string with [ bits and
y a ciphertext. The converted public-key encryption scheme IT := {K,&, D} is
defined by

R(9) = K+,
Eon(rr) o= e e )

Foif y = Epp(Dsk(y), H(Dsk(y)))
y { otiJlervmsleC Y Y

where H is a random function of {0, 1}**ko — {0, 1}! z is a message with k
bits, r a random string with kg bits and || denotes concatenation.

Theorem 4 (Fujisaki-Okamoto Theorem [24]). Suppose that IT(1%%0) is
the original IND-CPA secure scheme and II is the converted scheme. If there
exists a (t,qm,qp,€)-breaker A for II(1¥) in the sense of IND-CCA2 in the



random oracle model, there exist constant ¢ and a (t',0,0,€')-breaker A’ for
IT(1%+ko) where

¢ =(e—qg-2- ko). (1 —270)0 gpg
t'=t+qu- (Te(k)+c-k).

Here, (t,qm,qp,€)-breaker A, informally, means that A stops within t steps,
succeeds with probability at least €, makes at most qg queries to random or-
acle H, and makes at most qp queries to decryption oracle Dgy. Te(k) de-
notes the computational time of the encryption algorithm Ei(-), and ly :=

log, (miny, ¢ (o 1yx+50 [#{ Epi (2, 7)1 € {0, 1} }]).
Proof. See Theorem 3 of [24].

According to Fujisaki-Okamoto[24], with sacrificing of kg bits plaintext, we
can convert our basic encryption scheme into an enhanced one, which reaches
IND-CCAZ2 security. In the enhanced scheme, system parameters < R, m,n, M >
are as same as those in the basic scheme. The cryptographic hash function H
in basic scheme is replaced with two new cryptographic hash functions H; :
{0, 1}F+ko — 7 o[x] and Hy : R — {0, 1}F+*0 where k is the standard length of
a message, i.e., M = {0,1}*, while ko is the length of random salt that should
not be determined by binary search method (for example, we set kg = 128).

Now, the enhanced encryption scheme which achieves IND-CCAZ2 security, is
described as follows.

[Enhanced Scheme]

— Initial setup: System public parameters include R, m,n, M and kg, Hy, Hs.

— Key generation: Identical to the Key Generation step in the basic
scheme.

— Encryption: Given a message M € M and receiver’s key (p,q,y = f(p)™ -
q- f(p)") € R3, the sender chooses a random salt r € {0, 1}*0 and extracts®
a polynomial h(z) = Hi(M || r) € Zsolx] such that h(p) # 0 and then
computes

c=h(p)™ q-h(p)", d= Hay(h(p)™  pk-h(p)") & (M | r),

and finally outputs the ciphertext (c,d) € R x {0, 1}*+ko,
— Decryption: Upon receiving a ciphertext (c,d) € R x {0,1}F**0 the re-
ceiver, by using his private key f(p), computes

M'" = Hy(f(p)™ -c- f(p)") @ d.

Finally, extracts g(x) = H1(M') € Z~o[z] and checks whether ¢ = g(p)™ -
q - g(p)™ holds. If so, outputs the beginning k bits of M’; otherwise, outputs
empty string, which means that the given ciphertext is invalid.

6 See Remark 4 for further discussion.



Analogously, the enhanced scheme is the result of applying the Fujisaki-
Okamoto [24] transformation to the basic scheme. Based on Theorem 3 and
Theorem 4, we have

Theorem 5 (IND-CCAZ2 of Enhanced Scheme). Let Hy and Hs be random
oracles. Then the enhanced scheme is an adaptively chosen ciphertext secure
encryption (IND-CCAZ2) assuming PDH over the non-commutative ring R is
hard. More specifically, suppose there is an IND-CCA2 adversary A that has
advantage € against the enhanced scheme within t steps. Suppose A makes at
most qp decryption queries, and at most q,, qm, queries to the hash functions
Hy, Hy respectively. Then there is an algorithm B which can solve PDH with the
probability at least € within t' steps, where

2 €
e . 9—(ko—1)
- qH, (1 - 2—10)(1D * 1t 2 i ’ and

t/ = O(t—qH2 . (Tg(k)—FCk))

where ¢ is a constant and Te (k) denotes the computational time of the encryption
algorithm Epy(+) in our basic scheme, and ly := logy(ming ¢ o 1yr-+ro [#{ Epk (2, 7)|r €

{0,1}'3).

Proof. At first, from Theorem 3 and Theorem 4, it immediately concludes that
our enhanced encryption scheme reaches IND-CCA2 security in the random
oracle model assuming that PDH is hard. Then, by combining the results of
both the IND-CPA theorem and Fujisaki-Okamoto theorem, we obtain the above
bounds. ad

Remark 4. Tt is worth noting the elaborations on implementing a cryptographic
hash that maps a binary string to a polynomial, such as H; : {0, 1}*+k0 —
Z~o|x]. In particular, the resulting polynomials should satisfy further constraints,
such as the condition h(p) # 0 and so on. We employ the so-called divide-
and-conquer strategy to solve this problem: At first, we extract a polynomial
h(z) € Zso[z] from a binary string in {0,1}*+%0; Then, we adopt a unique,
deterministic way to rectify h(z) to h(zx) such that h(z) satisfies the desired con-
dition C. In other words, we have to consider the following issues in designing
the desired hash:

— Extracting. In practice, we prefer to choose polynomials with low degrees
and large coefficients. Let us assume that the highest degree is dg and the
maximal coefficient is ¢z, then dg - cpr should be large enough to resist brute
force attack. Thus, there is a trivial solution to implement H;: Suppose that
we already have a cryptographic hash function H’ which maps {0, 1}*+*o
to Z3# 1 Then, for any given image of Hy, i.e., a vector (29,21, ,2dy) €
Zgﬂ*‘;“, we can map it to a goal polynomial hA(z) by a natural way:

h(z) = 20 + 212 4 - - - + 2q, 2. (6)



— Rectifying. Suppose we adopt an additive rectifying strategy. Then, for
resulting polynomial h(z), it can be rectified to h(x) = h(z) + A while

A=min{d € Z>¢: h(z) + 6 - 1r € Zso[x] N C},

where Zso[z] N C is the set of polynomials in Zsg[z] satisfying the given
condition C.

— Collision-Resisting. The above rectifying strategy should not violate the
property of collision resistance. In fact, the collision resistance of H; is rooted
in the one-wayness of H'.

4.5 Concrete Examples: Public Key Cryptosystems Using Matrix
Rings
Let us illustrate our method by using a special matrix ring: Ms(Zy ), where

N = p-q while p and ¢ are two large secure primes. We have solid reason to
believe that SDP over M»(Zy) is intractable, since it is infeasible to extract

A= (g 8) € My(Zy),a € Zy

from
2
A2 = <“ IEOd N 8) € My(Zy)

without knowing the factoring of V.
Example 1. Diffie-Hellman-Like Key Agreement Using Matrix Rings

Let N = 7-11 for simplicity”. Suppose that Alice chooses

m=3n=>5A4= <3 i),B (; g), and f(z) = 3% + 42® + 52 + 6.

She computes

2 5)\° 2 5)\° 2 5 35 12
f<A):3'<7 4) +4'(7 4) +5'<7 4>+6'I:(63 9)’

(35 12\’ /1 9\ /35 12\° (49 53
"A=\63 9 3 2)\63 9) “\42 31)°
Then, she sends m,n, A, B and r4 to Bob.

7 Although the modular N in our toy examples is too small, it is enough to illustrate
our method.



Now, suppose that Bob, upon receiving m,n, A, B and r 4 from Alice, chooses
another polynomial h(x) = 2% + 52 + 1 and computes

5
2 5 2 5 64 13
h(A)<7 4> +5'(7 4)*1(49 23>’

/64 13\’ /1 9\ /64 13\° (29 40
"5=\49 23) \3 2)\49 23) T\s52 6 )"

Then, he sends rg to Alice.
Finally, Alice extracts the session key

o (35 12)* (20 40\ (35 12\ _ (28 87
A7 \63 9 52 6 )\63 9) ~\14 40)°

while Bob extracts the session key
Koo (64 137 (49 53) (64 13\° _ (28 37
B=\49 23 42 31 )\49 23) ~\14 40/

Apparently, K4 = Kp holds, i.e., the key agreement is successful.

and

Example 2. Encryption/Decryption Using Matrix Rings

At first, we have to define the message space M as well as cryptographic hash
functions H for the basic scheme and Hy, Hy for the enhanced scheme (note that

in this subsection we always define R £ My(Zy)). For simplicity, we assume that
M £ My(Zy) for the basic scheme and M £ {(CCL 8) ta,b,ce ZN} for the

enhanced scheme, while
HZMQ(ZN) —>M:M2(ZN),mijl—>2m” mod ]\77

and

b

Hy: M x Zy — Zoolal, ((‘Cl 0

> ,7‘) — 27 4 2% + 2%2% + 2¢23,

where all coefficients 27,2%, 2% and 2¢ should be regarded as elements in Zy. For
more simplicity, we define

afa b 0 0\ f(a b
(M”r)_(c 0>+<O T>_(C 7’)'
Then, Hy : Ma(Zn) — M x Zy can be defined as

i—>(MH7) where M = d N,r=2 d N
= — 9d R
R r mo R mo



Next, let N = 711 for example. Suppose that the left system parameters
are

[Encryption/Decryption with Basic Scheme)]
Suppose that the polynomial f(z) picked by Alice is just that of in example
1. Then, Alice’ private key is f(p) = (35 12), just as f(A) in Example 1.

63 9
49 53)

Then, the corresponding public key would be pk = f(p)3qf(p)® = <42 31

just as 74 in Example 1.

Let us pick a message M randomly, say M = gz 189>' Suppose the salt
polynomial we picked randomly is coincide to h(z) in Example 1. Then, the salt
64 13

matrix h(p) = 19 923

ciphertext (¢, d) as follows:

3 5
s (64 13\ /1 9\ /64 13\° (29 40
¢ = h(p)°qh(p)” = <49 23> (3 2) <49 23) - <52 6 )

)7 just as h(A) in Example 1. Now, let us compute the

and

. pk-h(p)°) & M
- (64 B (R Ry
o((5 %)= (V)
~((3n 5) moan)e (3 V)
E 333@@ ?)
31)°



Now, let us check the decryption process:

H(f(p)*-c- f(p)®) & d

H( S E )@
~a((3 %)= 3

((ifi 31?) modN)@(gg gf)
(5 m)e (s )
(%)

[Encryption/Decryption with Enhanced Scheme]

Suppose that the private/public keys are unchanged. Let us pick a message M
27 19
34 0
is 7 = 35. Then, we extract a polynomial as follows:

randomly, say M = . Suppose the salt number we picked randomly

h(z) = (2*° mod N) + (22" mod N)z + (2! mod N)z? + (2** mod N)z?
= 32+ 29z + 7227 + 162°.

Thus,

2 3
2 5 2 5 2 5 37
h(p)—32-]+29~<7 4)+72-<7 4> +16~<7 4> _(42 49>7£0

(Note that if h(x) does not satisfy the condition of h(p) # 0, we should at first

rectify h(z) to h(x) = h(z) + A, where

s=minfsezaminm o (1 ) w0},

Fortunately, in this example. The above extracted h(x) meets the requirement
of h(p) #0, ie., A=0.)

Then, then cipertext pair is

3 5
s (37 30\’ /1 9\ /37 30\° (65 37
¢ = h(p)ah(p)” = (42 19) \3 2)\42 49) “\35 7 )



and

h(p)® - pk - h(p)®) & (M || 7)

(G5 ) (@ w))=C 2
#((5 )= 5)
(3 %) moan)s(
<

47
27 16
Now, let us check the enhanced decryption process:

M'=H(f(p)’-c f(p)°) @d
B 35 12\* /65 37\ (35 12\’ 34 47
= 63 9) \s5 7 ) es o) )% 27 16
21 14 34 47
H((m 7))@<27 16)
21 14
(G %) mean)e (3t 56)
(57 60 34 47
= (57 51) © <27 16)

d=H(
-

27 19
34 35

27 19
34 35

2719+00
34 0 0 35

5 Public Key Cryptosystems Using Non-commutative
Groups and Semi-groups

The method described in the above section is suite for general non-commutative
rings. A natural question is: Can we transfer these results to general non-
commutative groups and non-commutative semi-groups by similar ways?

5.1 Extension of Non-commutative Groups

Now, given a non-commutative group (G, -, 1¢). Suppose that there is a ring
(R,+,-,1g) and a monomorphism 7 : (G,-,1g) — (R, -, 1g). Then, the inverse



map 7! : 7(G) — G is also a well-defined monomorphism and for a,b € G, if
7(a) + 7(b) € 7(G), we can assign a new element ¢ € G as

c2 77 r(a) +7(b)), (7)

and call ¢ as the quasi-sum of a and b, denoted by ¢ = a Bb. Similarly, for k£ € R
and a € G, if k- 7(a) € 7(G), then we can assign a new element d € G as

d2 77k 7(a)), (8)

and call d as the k quasi-multiple of a, denoted by d = k K a.
Then, we can see that the monomorphism 7 is linear in sense of that the
following equalities hold

r(kRa@b) = 7((kKa)Bb)

for a,b € G and k- 7(a) + 7(b) € 7(G).

Further, for f(z) = 2o + z1z + -+ - + 2™ € Z[z] and a € G, if f(7(a)) =
z0-1lp+21-7(a) + -+ 2z, - T(a)™ € 7(G), then we can assign a new element
e €@ as

e2 17N f(r(a) =720 lp+ 21 -7(a) + -+ 2, - T(a)"), ©)
and call e as the quasi-polynomial of f on a, denoted by e = f(a).

Clearly, for arbitrary a,b € G,k € R and f(z) € Z[z], a B b,k K a and f(a)

are not always well-defined. But, we can prove that the following theorem holds.

Theorem 6. For some a € G and some f(z),h(x) € Zlz], if f(a) and h(a) are
well-defined, then

(i) 7(f(a)) = F(r(a));

(i) f(a)-h(a) = h(a)- f(a).

Proof. At first, (i) is apparent according to the definition of quasi-polynomial.
Next, we have,

f@@)-h(a) =7(r7 (f(a))) - (v~ (h(a)) (o 7(r7(9)) = 9,9 €G.)
=7(r"Y(f(a)) - 77*(h(a))) (. 7 is monomorphism.)
=7(r"Y(f(a)-h(a))) (. 7~'is monomorphism.)
=7(r7Y(h(a) - f(a))) (. Theorem 1)

7(r7H(h(a)) - 77 (f(a)))
=7(r7 (h(a)) - 7(77 (f(a)))
= h(a) - f(a)



5.2 Further Assumptions on Non-commutative Groups

Similar to polynomial version assumptions over a non-commutative ring
in Section 4.2, we now consider polynomial version assumption over the non-
commutative group G. For any randomly picked element a € G, we define a set
P, C G by

Py 2 {f(a) € 7(G) : () € Z[al}.

Then, we can define the PSD and PDH problems over (G, -) by a similar way:

— Polynomial Symmetrical Decomposition (PSD) Problem over Non-
commutative Group G: Given (a,z,y) € G and m,n € Z, find z € P,
such that y = z™axz™.

— Polynomial Diffie-Hellman (PDH) Problem over Non-commutative
Group G: Compute z*'#2 (or z*2*1) for given a,z,z*' and x*2, where
a,x € G,z1,29 € P,.

Accordingly, the PSD (PDH, respectively) cryptographic assumptions over
(G, ) says that PSD (PDH, respectively) problems over (G, ) is intractable, i.e.,
there does not exist probabilistic polynomial time algorithm which can solve
PSD (PDH, respectively) problems over (G, -) with non-negligible accuracy with
respect to problem scale.

5.3 Public Key Cryptosystems From Non-commutative Groups

Now, let us take a non-commutative group G with intractable SDP as the
underlying work fundamental infrastructure and then restate the Diffie-Hellman-
like key exchange protocol in Section 4.3, by a very similar way:

(0) One of the entities (say, Alice) sends two random small, positive integers
(say, less than 10) m,n € Z and two random elements a,b € G to another
entity (say, Bob) as the signal of launching the protocol.

(1) Alice chooses f(x) € Z[z] at random such that f(a) is well-defined, i.e.,
f(r(a)) € 7(G). Then, Alice takes f(a) as her private key.

(2) Bob chooses h(z) € Zlx] at random such that h(a) is well-defined, i.e.,

h(r(a)) € 7(G). Then, Bob takes h(a) as his private key.

Alice computes 74 = f(a)™ -b- f(a)™ and sends r4 to Bob.

Bob computes rg = h(a)™ - b- h(a)"™ and sends rg to Alice.

Alice computes K4 = f(a)™ -rp - f(a)™ as the shared session key.

Bob computes K = h(a)™ - 74 - h(a)" as the shared session key.

In practice, the steps (0), (1) and (3) can be finished simultaneously and
require only one pass communication from Alice to Bob. After that, the steps (2)
and (4) can be finished simultaneously and require another pass communication
from Bob to Alice. Finally, Alice and Bob can execute the steps (5) and (6)
respectively, needless further communication. Thus, we can depict the protocol
in Figure 2.



Pass|Alice Bob
Chooses m,n € Z at random

Chooses a,b € G at random

Chooses f(z) € Z[z] randomly

s.t. f(7(a)) € 7(G)

m,n,a,b,f(a)"bf(a)™

1
Chooses h(g) € Z|z] randomly
s.t. h(7(a)) € 7(G)
9 h(a)™bh(a)™

Ka = f(a)"h(a)"bh(a)" f(a)" = Kp = h(a)"f(a)"bf(a)"h(a)"

Fig. 2. Diffie-Hellman-Like Key Agreement Based on Non-commutative Groups

Similarly, it is easy to describe ElGamal-like encryption schemes, including
the basic scheme and the enhanced scheme as well, by using non-commutative
groups as the underlying algebraic basis.

[Basic Scheme]

— Initial setup: Given the non-commutative group (G,-), we assume that
SDP on G is intractable. Pick two small positive integers m,n € Z and
two elements p,q € G at random. Let H : G — M be a cryptographic
hash function which maps G to the message space M. Then, set the tuple
< G,m,n,p,q, M, H > as the public parameters of the system.

— Key generation: Each user chooses a random polynomial f(z) € Z[z] such
that f(7(p)) € 7(G) and takes sk = f(p) as his private key, then computes
and publishes his public key pk = f(p)™ - q¢- f(p)" € G.

— Encryption: Given a message M € M and receiver’s key pk € G, the
sender chooses a random polynomial h(z) € Z[x] such that h(7(p)) € 7(G)
and takes h(p) as salt, then computes

c=h(p)™-q-h(p)", d=H(h(p)™ - pk - h(p)") ® M,

and finally outputs the ciphertext (¢,d) € G x M.
— Decryption: Upon receiving a ciphertext (c,d) € R x M, the receiver, by
using his private key f(p), computes the plaintext

M=H(f(p)™ c-f(p)")®d

[Enhanced Scheme]

— Initial setup: System public parameters include G, m, n, p, g, M and kg, Hy, Ho,
where G, m,n,p,q and M are as same as those in the basic scheme, while
the cryptographic hash function H in basic scheme is replaced with two
new introduced cryptographic hash functions H; : {0, 1}*+%0 — Z_o[z] and



Hy : G — {0,1}*+k0 where k is the standard length of a message, i.e.,
M = {0,1}*, while kg is the length of random salt that should not be de-
termined by binary search method (for example, we set kg = 128).

— Key generation: Identical to the Key Generation step in the basic
scheme.

— Encryption: Given a message M € M and receiver’s key pk € G, the sender
chooses a random salt r € {0,1}*0 and extracts® a polynomial h(z) € Z[z]
such that h(7(p)) € 7(G) and then computes

c=h(p)™-q-h(p)", d= Ha(h(p)™ - pk-h(p)") ®& (M || r),

and finally outputs the ciphertext (c,d) € R x {0,1}*+ko,
— Decryption: Upon receiving a ciphertext (c,d) € R x {0,1}¢**0 the re-
ceiver, by using his private key f(p), computes

M' = Hy(f(p)™ -c- f(p)") ®d.

Finally, extracts g(x) = H1(M') € Z[z] and checks whether ¢ = g(p)™ - ¢ -
g(p)™ holds. If so, outputs the beginning k bits of M’; otherwise, outputs
empty string, which means that the given ciphertext is invalid.

The securities and related proofs of the above cryptosystems are very similar
to that of those schemes in Section 4, except replacing the PDH assumption
over non-commutative ring R with the PDH assumption over non-commutative
group G.

5.4 For Non-commutative Semi-groups

The same construction from Section 5.1 to Section 5.3 can also be consid-
ered for the case when G is a non-commutative semi-group, except replacing all
appearances of Z and Z[z] with Z~o and Z¢[x] respectively.

The main differences between the protocols and schemes on non-commutative
rings and semi-groups and those on non-commutative groups lie in two aspects:

(1) m,n € Zs¢ on rings and semi-groups while m,n € Z on groups;
(2) f,h € Zsolz] on rings and semi-groups while f,h € {g € Z[z] : g(7(a)) €
7(G)} C Z[x] on groups.

5.5 More Examples: Public Key Cryptosystems Using Symmetric
Groups

Let us illustrate our method by using the group Ss, i.e., the minimal non-
commutative group. ?

8 See Remark 4 for further explanation.

9 In practical applications, we should use symmetric groups S, for some larger n
such that the complexity level O(n!) overwhelms any adversary’s computational
capability. Here, S3 and the following employed M2(Z2) are too simple to be secure.
But here it is enough to use these toy examples to demonstrate our method.



At first, we should choose a non-commutative ring as the bridge for definition
addable relation over Ss. We choose M3(Z3) for convenience.

Next, we should find a monomorphism from S3 to Ms(Z2). Let us define
T :S3 — Ms(Z3) as follows:

123 1 0 123 1 1 123 0 1
— — =
123 0 1)’ 132 0 1/’ 213 1 0/’
123 0 1 123 1 1 123 1 0
— — — .
231 1 1)’ 312 1 0)’° 321 1 1
It is not difficult to verify that 7 is a monomorphism from Sz to Ma(Zs).

Example 3. Diffie-Hellman-Like Key Agreement Using S3

Suppose that Alice chooses

123 123
m=3n=>5, (231)’ <213>’

and picks a random polynomial f(z) such that f(A) € 7(S3), assuming that one
of such polynomial is

f(z) =42 + 2+ 2.
Then, Alice computes

f(4)

T H(f(7(A)))

=7—1<4.<? 1)2+_<? 1>-+2*I>
()

-(3Y)

123\% /123 123\° 123
raA = o o = .
231 213 231 321

Then, she sends m,n, A, B and r4 to Bob.

Upon receiving m,n, A, B and f(A) from Alice, Bob chooses another random

polynomial h(x) such that h(A) € 7(S3), assuming that one of such polynomial
is

and

h(z) = 4z + 23 4+ 422 + 3z + 4.



Then, Bob computes

h(A) = 77 (h(7(4)))

SR SRR
(@)
G

123\° /123 123)\° 123
TR = o o = .
312 213 312 132

Then, he sends rg to Alice.

= 7'_1

and

Finally, Alice extracts the session key

oo (123) (123 (123\°_ (123
47231 132 231)  \213)"

while Bob extracts the session key

123\° /123 123\° /123
Kp = o o = .
312 321 312 213
Apparently, K4 = Kp holds, i.e., the key agreement is successful.

Example 4. Encryption/Decryption Using S3

We can implement encryption/decryption by ways which are very similar to
those of in Example 2, i.e., to encrypt/decrypt step by step according to the
basic scheme and the enhanced scheme defined in Section 5.3.

At first, let us choose two prime p and ¢ such that ¢|p — 1 and set Z,, as the
message space M. Also, we assume that g is a generator of order ¢q. Then, we
define

123

010203

H:S55 — M, < ) — ggl+2'02+22~03 mod p

and

Hy i M X Zy — Lso[z], (M, 1) = 1o + rix + roa? + -« + rpa”,



where all coefficients r;,0 < i < k, is determined by the following process: '°:

M =rky+1rg, 0 <19 <T,
r=rok1 +r1, 0 <r <ro,
ro = T1ks + 12, 0 <1y < 71y,

Ti—g =Tk +1, 0 <rp <7p_q,

Tn—1 = Tnkn—i-l + Tn4+1y Tn+l = 0.

For simplicity, we define !
Mlr&r-p+MeZ
and can extract M from M || r by
M= (M]|r) modp.
Another required hash Hs : S3 — M x Zy can be defined as

123

0102 03

H2 : 53 — MXZP < ) — (ggl+2'02+22‘03 mod P 903+2'61+22'U2 mod p)

Next, let p = 23,¢ = 11 and g = 2 for simplifying computation and verifica-
tion. Suppose that the left system parameters are

e s (123 (123
TN TP T 931 )97 213 )"

[Encryption/Decryption with Basic Scheme)]

Suppose that the polynomial f(z) picked by Alice is just that of in example
3. Then, Alice’ private key is f(p) = (; ?,) ‘;’), just as f(A) in Example 3. Then,
the corresponding public key would be

A 123\* /123 123\° /123
kaf(P)3Qf(p)5:<231) 0(213>o<231) :<321)7

just as r4 in Example 1.

10 Here, we assume that gcd(M,r) # r; Otherwise, we set 7 = g" mod p and then
resume the process. Also, we assume that M > r; Otherwise, we can swap them in
advance.

11 Of course, this leads to minor expanding of ciphertext.



Let us pick a message M randomly, say M = 17. Suppose the salt polynomial
we picked randomly is coincide to h(x) in Example 3. Then, the salt permutation

h(p) = <;32>

just as h(A) in Example 3. Now, let us compute the ciphertext (¢, d) as follows:
123\° (123 123\° /(123
_ 3 5 _ _
¢ = h(p)"gh(p) <312) °<213)°<312) <132)’
d=H(h(p) - pk - h(p)°) & M
3 5
g 123 o 123 o 123 @17
312 321 312
123
((213))or

92 4 9214 92°3 04 23) ®17
8317

and

[
T

|
/N

Il
w =

Now, let us check the decryption process:

M =H(f(p)® ¢ f(p)°)@d
3 5
(G R GHRGHIRE
EHIR

_ (22 1£921 4 92°3 o 23) &3

[Encryption/Decryption with Enhanced Scheme]

Suppose that the private/public keys are unchanged. Let us pick a message
M randomly, say M = 19. Suppose the salt number we picked randomly is r = 7.
Then, we extract a polynomial as follows:

19=7-2+5
7T=5-142
59=2-2+1
2=2-140

Soh(z) =54 22 + 2% + 2P,



Note that if h(z) does not satisfy the condition of h(7(p)) € 7(S3), we should at
first rectify h(z) to h(xz) = h(z) + A, where

A = min {5 € Zoo  h(r(p)) + 6 ((1) (1)) e T(sg)} .

Fortunately, in this example. The above extracted h(x) meets the requirement
of h(r(p)) € 7(Ss), i.e., A = 0. Thus,

h(p) =771 (h(7(p)))
(e e (D)D)
= ([0 1)
-(72)

Consequently, the corresponding ciphertext pair (¢, d) would be
¢ = h(p)’qh(p)® = (; i 2)3 ° (; i 2) ° (;, i 3)5 - (1 :2’) 3)
d=H(h(p)* - pk - h(p)°) ® (M || r)
(370 < (a1 (323) oo
Cu((120)) e

_ (22 4$921 4 92°3  oq 23) 6134
—18@ 134
— 148.

and

Now, let us check the enhanced decryption process:

M'=H(f(p)’ ¢ f(p)°)@d
(1)) (1)) e
(22

- (22 Fo2l 4 9% o 23) @ 148
=18 @ 148
— 134.

Then, M = M’ mod 23 = 19.



6 Conclusions

Recently, some promising build public-key cryptosystems have been con-
structed on non-commutative groups, such as braid groups, Thompson’s groups,
etc. In this paper, we described a totally different method for designing PKC
based on general non-commutative algebraic systems, including non-commutative
rings, non-commutative groups and non-commutative semi-groups as well. The
key ideas behind our proposal lies that we take polynomials over the given non-
commutative algebraic systems as the the underlying work structure for con-
structing cryptographic schemes. By doing so, we can efficiently obtain some
commutative sub-structures for the given non-commutative algebraic systems.
The security assumption is that the proposed polynomial Diffie-Hellman (PDH)
problem over the given non-commutative algebraic systems is intractable.
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