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Abstract. The standard digital signature scheme can be easily subject to key 
exposure problem In order to overcome this problem; a feasible and effective 
approach is employed by key-evolving signature scheme. In this paper, we 
study key- evolving signature within the UC framework and propose an 
appropriate ideal functionality that captures the basic security requirements of 
key-evolving signature. Then, we present a generic way to transform a key-
evolving signature scheme into a real-life protocol. Finally, we show that UC 
definition of security is equivalent to previous definition of security which is 
termed as EU-CMA security. 
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1   Introduction 

Digital signature, which was firstly proposed by Diffie and Hellman in [1], plays a 
very important role in the modern cryptography. An intuitive and widely accepted 
formalization of the security requirements of signature scheme, called EU-CMA 
security, was first put forth in [1]. EU-CMA, namely existential unforgeability against 
chosen message attacks, is also an accepted definition of security of other non-
standard digital signature schemes, such as key-evolving signature scheme described 
below. 

The standard digital signature scheme can be easily suffered from key exposure 
problem, which has been classified as one of the biggest problems for a security 
system. The system security is completely compromised once the key is exposed. To 
address this problem, several different approaches have been suggested. Many of 
them try to minimize exposure of the secret by splitting it and storing the parts in 
different places, usually via secret sharing [2, 3]. However, as indicated in [4], those 
approaches can be quite costly and not a viable option for the user.  

A feasible approach is employed by forward-secure digital signature scheme, 
which was firstly formalized by Bellare and Miner in [4]. Following the initial work 
by [4], a sequence of other deviations of the forward-secure signatures was proposed 
[5, 6, 7, 8]. All these forward-secure signature schemes involve updating the secret 
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key periodically. Therefore, a forward-secure signature scheme is, first, a key-
evolving signature scheme. Forward security results from the fact that the update 
algorithm is a one-way function and it is very difficult for an adversary to recover 
previous secret keys even if the secret key in the current time-period is known. 

A general framework for representing cryptographic protocols and analyzing their 
security is presented by R.Canetti [9, 10]. This framework allows defining the 
security properties of practically cryptographic tasks. Most importantly, in this 
framework security of protocols is preserved under a very general composition 
operation with an unbounded number of copies of arbitrary protocols running 
concurrently in the system. This composition operation is called universal 
composition. Similarly, definitions of security formulated in this framework are called 
universally composable (UC) security. 

The definitions in the UC framework follow a definitional approach which is 
referred to as “security by emulation of an ideal process”. In the last few years, 
research on the relation between emulation-based definition of security and 
conventional definition of security has become one of the significant topics in 
cryptography [11]. One case where the conventional definition and emulation-based 
definition of security were shown to be equivalent is semantically secure encryption 
against adaptive chosen ciphertext attack [10]. 

In this paper, we study and formulate an appropriate ideal functionality, which 
captures the basic idea and security requirements of key-evolving signature. Then, we 
propose that how to convert a generic key-evolving signature scheme ∑ into a real-
life protocolπ∑ . Finally, we prove that ∑ is EU-CMA if and only if π∑  UC-
securely realizes our proposed ideal functionality. 

 

2   Preliminary 

We sketch a key-evolving digital signature scheme in section 2.1, and recall some 
useful notions within the UC framework in section 2.2. 

2.1   Key-evolving Digital Signature Schemes  

A generic key-evolving digital signature scheme ∑  is an algorithm with the 
quadruple, ∑ = (Gen,Upd,Sig,Ver), such that: 

1. Gen: the key generation algorithm is a probabilistic algorithm that inputs a 
security parameter k∈N (given in unary as 1k) and the total number of time-periods T, 
and returns a public key PK and the initial secret key SK0. 

2. Upd: the secret key update algorithm, accepts as input the secret key SKi for 
the current time-period, and returns the new secret key SKi+1 for the next time-period. 
This algorithm is usually deterministic. 



3. Sig: the signing algorithm, accepts as input the secret key SKi in the current 
time period and a message m. It returns a pair (i,sign), that represents the signature of 
m and time-period index i. This algorithm may be probabilistic. 

4. Ver: the verification algorithm, accepts as input the public key PK, a 
message m and a candidate signature (i,sign), and returns 1 if the signature of m is 
valid and returns 0 otherwise. This algorithm is typically deterministic. 

The verification algorithm is required to verify that whether a signature of m 
generated via Sig(SKi, m) is valid for period i. For convenience, it is also assumed that 
the secret key SKi for time-period i∈{0,…,T−1} , always contains both the value i 
and the total number of periods T . For the last time period T−1, Upd(SKT-1) returns 
the empty string SKT. 

2.2   Some Useful Notions in the UC Framework 

Recall that there are three types of messages, which are input message, output 
message and incoming message, transmitted in the UC framework. (The detail of 
these three types of messages is in [10].) 

 
Dummy adversary.   Dummy adversary, denote D , is a special type of 

adversaries. It proceeds as follows: 
1. When activated with an input x which contains identity of some party from Z, it 

delivers this message to relevant party. 
2. When activated with an incoming message m from some party, it passes m as 

output to Z. 
3. It corrupts parties when instructed by Z, and passes all gathered messages to Z. 

Note that a real-life protocol UC-securely realizes the ideal functionality if and 
only if it UC-securely realizes the ideal functionality with respect to dummy 
adversary [10].  

 
Party corruptions.   Adaptive party corruptions, namely corruptions that occur 

as the computation proceeds, based on the information gathered by the adversary so 
far. Arguably, adaptive corruption of parties is a realistic threat in existing networks. 
Nonetheless, it is sometimes useful to consider also a weaker threat model, called 
non-adaptive party corruptions, where the identities of the adversarially controlled 
parties are fixed before the computation starts. 

Active party corruptions mean that adversary obtains total control over the 
behavior of corrupted parties. Another standard corruption model assumes that even 
corrupted parties continue to follow their prescribed protocol. Here the only 
advantage the adversary gains from corrupting parties is in learning the internal states 
of those parties. Such party corruption is called passive party corruption.  



3   Definition of Ideal Functionality 

In this section, we formulate UC definition of security for key-evolving signature. 
The basic idea of FKE-SIG is to provide a “registry service”. The signer S can register 

(message, signature) pairs. Any party that provides the correct verification algorithm 
can check whether a given pair is registered. 

Functionality FKE-SIG is presented in Figure 1. As expected, it begins with 
KeyGeneration phase. Upon receiving KeyGeneration message from party S, FKE-SIG 
asks the ideal process adversary to provide the tuple (u,s,v,SK0): a polytime 
deterministic updating algorithm u, a polytime probabilistic signing algorithm s, a 
polytime deterministic verification algorithm v and private signing key SK0.  

FKE-SIG lets the adversary determine the values of the verification algorithm and the 
legitimate signature. This reflects the fact that the intuitive notion of security of 
signature schemes does not make any requirements on these values. 

Then FKE-SIG outputs verification algorithm v to all the parties. In addition, FKE-SIG 
initializes variable i=0 to record current time-period and sets a variable f0 to record 
whether the signer S is corrupted in the time-period 0. 

 
FKE-SIG

KeyGeneration: Upon receiving a query (KeyGen, sid,S,T) with total time-period 
T from party S, send this query to the adversary. Upon receiving (Algorithms,sid, 
S,u,s,v, SK0) from the adversary, where s are descriptions of PPT ITM, u and v are 
descriptions of a deterministic polytime ITM, output (VerificationAlgorithm,sid,S,v) 
to all the parties and adversary. In addition, set i=0 and f0=fresh. If S is corrupted at 
this period, output SK0 and reset f0=corrupt.  

Update: Upon receiving a query (Update,sid,S) from party S (for party S only), 
let SKi+1=u(SKi), erase SKi, set i← i+1, output i and set fi=fresh. If the signer S is 
corrupted in the period i, output SKi and reset fi=corrupt.  

Signature: Upon receiving a query (Sign,sid,S,m) from party S (for party S only), 
let σ =(i,sign)=s(SKi,m), and verify that v(m,σ )=1. If so, output (Signature,sid 
S,m,σ ) to S and record the pair (m,σ ). Else, output error message and halt. 

Verification: Upon any party V receiving a query (Verify,sid,m’, 'σ ,v’) with 
'σ =(i’,sign’) from any party V, then do: if v’=v, v’(m’, 'σ )=1, fi’=fresh and no pair 

(m’, "σ ) for any "σ  is recorded, then output an error message to V and halt. Else, 
output (Verified,sid,S, m’, 'σ ,v’(m’, 'σ ) to S. 

 
Fig 1: The key-evolving signature ideal functionality FKE-SIG

 
Upon receiving Update message from party S (and for party S only), FKE-SIG 

“enters” the next time-period by computing the new private signing key SKi+1, erasing 
the old private signing key SKi ,and updating variable i← i+1 and setting new 
variable fi to record whether the signer S is corrupted in the time-period i. 

Upon receiving a query from party S (and for party S only) to sign a message m, 
FKE-SIG first obtains a σ  by running the algorithm s. It then verifies that v(m,σ )=1. 
If so, it outputs the signatureσ to S and records the pair (m,σ ); Else, FKE-SIG outputs 



an error message and halt. Verifying that v(m,σ )=1 in the Signature phase 
guarantees Completeness, namely that if a signature was generated “honestly” (i.e. 
via FKE-SIG) then it will be correctly verified.  

In the Verification phase, FKE-SIG checks if the input (m’, 'σ =(i’,sign’), v’) 

consists of a forgery, namely if v’=v, v’(m’, 'σ )=1, fi’=fresh and no pair (m’, "σ ) for 

any "σ  is recorded. If so, FKE-SIG outputs an error message and halt. So 

Unforgeability is guaranteed. Else, it outputs v’(m’, 'σ ). If the verification algorithm 
v’ presented by the verifier is not the registered one (i.e. v), FKE-SIG provides no 
guarantee regarding the result of the verification phase. This captures the fact that the 
basic notion of signature scheme only binds messages and signatures to verification 
algorithms, rather than the party identities. It’s the responsibility of the protocol that 
invokes FKE-SIG to make sure that the verification algorithm is correct. 

 

4   EU-CMA Security and Real-life Protocol 

In this section we state the security definition of EU-CMA for key-evolving signature 
scheme in section 4.1 and how to transform a key-evolving signature scheme into a 
real-life protocol in section 4.2. 

4.1   The definition of EU-CMA Security  

The definition of EU-CMA security, which is a security requirement for standard 
signature scheme, was first proposed by in [1]. In this section, we state a little 
modified variant of definition of EU-CMA security for key-evolving signature 
scheme. 

Definition 1   A key-evolving signature scheme ∑ = (Gen,Upd,Sig,Ver) is 
called EU-CMA if the following properties hold for any negligible function p(), and 
all large enough values of security parameter k: 

Completeness: For any message m and any period i, Pr[ (PK,SK0) Gen(1← k); 
σ ←Sig(SKi,m); Ver(PK,m,0 ← σ ) ]< p(k). 

Consistency: For any message m and any period i, the probability that Gen(1k) 
generates (PK,SK0) and Ver(PK,m,σ ) generates two different outputs in two 
independent invocations is smaller than p(k). 

Unforgeability: For any PPT adversary G (called forger), the probability that G 
wins the “EU” game is smaller than p(k). The full description of “EU” game 
described as follows: 

In the “EU” game, a forger G knows public key PK, the total number of time-
periods T and the current time-period. For a key-evolving signature scheme = ∑



(Gen,Upd,Sig,Ver), G is functioning in three stages: the chosen-message attack 
(CMA) phase, the break-in phase, and the forgery phase.  

In the CMA phase, G has access to the signing oracle, and can obtain the signature 
of any message it selects under the current secret key. The break-in phase is used to 
model the possible key exposure caused by an adversary break-in. In such a case, G is 
given the current secret key SKi. In the final forgery phase, G outputs its forgery, i.e. 
a signature message pair.  

The adversary G is said to win the game if it forges the signature of some “new” 
message for some time-period prior to the break-in. Here, the term “new” message is 
used to indicate some message that has never been queried for the signature by the 
adversary.  

4.2   Transform generic scheme into real-life protocol  

We describe how to convert a generic key-evolving scheme ∑ = (Gen,Upd,Sig,Ver) 
into a real-life protocol π∑ . The protocol π∑  proceeds as follows: 

Protocol π∑  
 Generation: When party S (signer) receives a query (KeyGen,sid,S,T), it runs 

algorithm Gen(1k), obtains pair (PK,SK0), keeps the signing key SK0 secretly and 
outputs (VerificationAlgorithm,sid,S,v=ver(PK, ⋅ )) to the adversary and all the parties. 
In addition, S sets i=0. 

 Update:  When party S receives a query (Update,sid,S), it computes 
SKt+1=Upd(SKi), erase SKi, set i← i+1 and output i to all the parties and adversary. 

 Signature: When party S receives a query (Sign,sid,S,m), it computes 
σ =(i,sign)=sig(SKi,m) and outputs (Signature,sid, S,m,σ ). 

 Verification: When any party receives a query (Verify,sid,m’, 'σ ,v’), it outputs 
(Verified,sid,S,m’, 'σ , v’(m’, 'σ )). 

 When a party is corrupted, it reveals its internal state, which includes all past 
signing and verification requests and answers. If signer S is corrupted, it also reveals 
the current private signing key SKi. 

 
Fig 2: The generic key-evolving signature protocol π∑  

 

5   Proof of Security 

In this section, we will prove that the definition of EU-CMA security is equivalent to 
definition of UC security. 

 



Theorem 1 let ∑ = (Gen,Upd,Sig,Ver) be a key-evolving signature scheme, 
then π∑  securely realizes FKE-SIG with respect to active and adaptive party 

corruption if and only if is EU-CMA. ∑
Proof:  Assume that "⇒ " ∑ is not EU-CMA, we show that π∑  doesn’t 

realize FKE-SIG under the active and adaptive party corruption. Recall that the 
definition of UC security with respect to dummy adversary. We should construct an 
environment Z such that for any ideal process adversary J, Z can distinguish whether 
it interacts with dummy adversary  and protocolD π∑  in the real world or interacts 
with ideal process adversary J and ideal functionality FKE-SIG in the ideal process.  

In following case 1 and case 2, Z outputs 1 if it receives an error message, while in 
following case 3, Z outputs 0 if it receives an error message. The full construction of 
Z is described as follows: 

1. Assume that  is not complete, i.e., there exists i∑ ∈N and a message m, such 
that Prob[ (PK,SK0) Gen(1← k);σ ← Sig(SKi,m);1← Ver(PK,m,σ )] 1-p(k) 
for infinitely many k’s. Then Z simply activates party S with (KeyGen,sid,S,T), 
followed by inputs (Update,sid,S) i times and input (Sign,sid,S,m), obtains 
verification algorithm v and signature 

<

σ . Next Z activates some party V with 
input (Verify,sid,m,σ ,v) and outputs the returned verification value. Then, Z 
always outputs 1 if it interacts with ideal process, while output 0 with non-
negligible probability if it interacts with real world. 

2. Assume that  is complete but not consistent. Then Z operates similarly 
except that it actives V twice with (Verify,sid,m,

∑
σ ,v)and outputs 1 iff the two 

answers are the identical. Then again, if it interacts with FKE-SIG in the ideal 
process, Z always outputs 1 since Z receives a deterministic polytime ITM. 
However, Z output 0 with non-negligible probability if it interacts with π∑  in 
the real world. 

3. Assume that  is both complete and consistent but not unforgeable. In the 
other words, there exists a forger G such that G wins the “EU” game with non-
negligible probability. Then Z proceeds as above except that Z internally runs an 
instance of G and hands it the verification algorithm v obtained from S. From 
now on, whenever G asks its signing oracle to signed a message m, Z activates 
signer S with input (Sign,sid,S,m) and sends the respond signature

∑

σ to G. When 
G asks break-in, Z corrupts signer S and sends the current private signing key 
SKi to G. When G finally generates a pair (m’, 'σ ), Z proceeds as follows. If m’ 
was signed before, then Z outputs 0 and halts. Else, Z activates some party with 
input (Verify,sid,m’, 'σ ,v) and outputs the verification result. It can be easily 
seen that, when Z interacts with π∑  in the real world, the G’s views be exactly 

an “EU” game on , thus Z outputs 1 with non-negligible probability. However, 
Z never output 1 if it interacts with F

∑
KE-SIG in the ideal process. 

 
'' '⇐  Assume that π∑  does not UC-securely realize FKE-SIG, we will show 



that is not EU-CMA Using the equivalent notion of security with respect to the 
dummy adversary, we have that for any ideal process adversary J, there exists an 
environment Z that can distinguish whether it interacting with dummy adversary  
and protocol

∑

D
π∑  in the real world or interacts with ideal process adversary J and ideal 

functionality FKE-SIG in the ideal process. 
Since Z succeeds for any J, it also succeeds for following “generic” J. Then J does 

not interact with Z at all, except to corrupt parties. J runs (PK,SK0)←Gen(1k), and 
sends (u=Upd( ⋅ ),s=Sig( ⋅ ),v=Ver(PK, ⋅ ),SK0) to FKE-SIG. When Z instructs to corrupt 
party, J sends to FKE-SIG a corruption message, and forwards to Z the information 
provided by FKE-SIG.  

Assume that scheme is both complete and consistent (otherwise, the theorem 
is proven). We argue that it is not unforgeable, by constructing a successful forger G. 
This is done as follows. 

∑

G sets i=0 and runs a simulated instance of Z, and simulates for the instance of Z 
the interaction with parties: 
1. When Z activates some party S with input (KeyGen,sid,S,T), G returns its 

verification algorithm v on be half of S. 
2. When Z asks signer S to enter the next time-period, G sets i← i+1 and sends i to 

Z on be half of S.  
3. When Z asks signer S to sign some message m, G asks its signing oracle for a 

signatureσ on m, and returnsσ to Z on be half of S. 
4. When Z instructs to corrupt some party, G returns all signing and verification 

message request made by such party, and if be the signer, G asks break-in to 
obtain current private signing key SKi and sends it to Z. 

5. Whenever Z activates some party with input (Verify,sid,m’, 'σ ,v), G checks 
whether (m’, 'σ ) a success forgery for “EU” game. If yes, G outputs that pair 
and halt. Else it continues the simulation. 
 

We analyze the success probability of G. let B denote the event that, in the 
execution of π∑  some party is activated with a verification request (Verify,sid, 

m’, 'σ ,v), where the pair (m’, 'σ ) is a success forgery for “EU” game.  
Since is both complete and consistent, we have that as long as B does not occur, 

Z’s view of an interaction with real world is statistically close to its view of an 
interaction with ideal process. However, Z can distinguish real world and ideal 
process with non-negligible probability. Thus it is guaranteed that, when Z interacts 
with dummy adversary and protocol

∑

D π∑  in the real world, event B occurs with 
non-negligible probability. 

It’s easy to see that, from the views of simulated Z, the interaction with the forger 
G looks the same as an interaction withπ∑ . This means that G wins the “EU” game 
with non-negligible probability.      # 
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