
Fast Digital Signature Schemes as Secure as

Diffie-Hellman Assumptions

Changshe Ma1, Jian Weng2 and Dong Zheng2

1School of Computer, South China Normal University,

Guangzhou, China, 510631

changshema@gmail.com
2Department of Computer Science and Engineering, Shanghai Jiaotong

University, Shanghai, China, 200030

January 22, 2007

Abstract: This paper presents two fast digital signature schemes based on Diffie-Hellman
assumptions. In the random oracle model, the first scheme S1 has a tight security reduction
to the computational Diffie-Hellman (CDH) problem; and the second scheme S2 has a tight
security reduction to the decisional Diffie-Hellman (DDH) problem.

Comparing with existing signature schemes (whose security is tightly related to CDH
problem) like EDL signature schemes, the signature generation of S1 is about 27% faster,
and the verification is about 35% faster, if without considering the hash function evalu-
ations. Comparing with existing signature schemes (whose security is tightly related to
DDH problem) like KW-DDH signature scheme, the signing of S2 is about 40% faster and
the verification is about 35% faster.

The high efficiency of the proposed schemes is attributed to a new protocol EDL mwz

which implements the proof of equality of discrete logarithm. The EDL mwz protocol
outperforms its counterpart, the Chaum and Pedersen protocol, as its computation is
about 38% faster and its bandwidth is |G| bits shorter. This new protocol may be of
independent interests.

Key Words: Public-key cryptography, signature schemes, discrete logarithm problem,
Diffie-Hellman problem, tight reduction.

1

1 Introduction

Digital signature has been the most charming research field of public key cryptography since it was
firstly introduced by Diffie and Hellman [13] in 1976. According to the IEEE P1363 [28] standards, One
of the standard mathematical settings to construct cryptographic algorithms is the discrete logarithm
(DL) [32] setting, based on which, a vast variety of signature schemes [2, 26, 18, 19, 14, 31] have been
presented in literature.

Nowadays, provable security is a widely accepted necessary requirement for cryptographic primi-
tives. The core technique of provable security is the security reduction. Typically, there are two types
of reduction: tight reduction and loose reduction [24]. The tight reduction says that we can transfer
an adversary breaking the cryptographic primitive into a solver to solve some difficult problem in a
probability close to 1 [2].

In the random oracle model [5, 10], the first efficient signature scheme tightly related to RSA [30]
assumption is [6]. Up to now, the known shortest signature scheme is BLS scheme due to Boneh,
Lynn and Shacham [7], but it is limited to the groups with pairing. In the standard model, RSA-
based signature schemes [12, 17] have been shown to be secure under stronger assumptions. Based
on pairing, Boneh and Boyen [1] proposed an efficient short signature scheme which is secure tightly
related to q-strong Diffie-Hellman assumption.

The traditional discrete logarithm based signature schemes, such as El Gamal [14], DSS [26], and
Schnorr [31] signature schemes, either suffer a loose security reduction or require non-standard as-
sumptions. Recently, Goh and Jarecki [19] showed that a previously introduced signature scheme
called EDL signature scheme [9] has a tight security reduction related to CDH assumption. The
disadvantage of EDL signature scheme is that its signature size is bigger than its traditional coun-
terparts and needs more exponentiations. The signature size of EDL scheme has been shortened by
Katz and Wang [22] (we call it as KW-CDH). In the same paper, they also proposed a more efficient
signature scheme (we call it as KW-DDH) with tight security reduction to decisional Diffie-Hellman
(DDH) problem [23] which is a stronger assumption than the CDH problem. In [2], a new signature
scheme (we call it as CM signature scheme) was proposed. Similar to EDL signature scheme, CM
signature scheme also has a tight security reduction to CDH problem, but it has a smaller signature
size, especially it provides a fast online computation [33].

Discrete exponentiation is the most expensive computational component in the public key cryp-
tography. It dominates the computational cost of public key cryptographic schemes. Much work goes
into improving the performance of cryptographic algorithms by reducing the number of exponenti-
ations. Especially, in a mobile environment, exponentiation would consume the power the battery
which is very limited. Reducing the number of exponentiation will increase battery life. So, the fewer
the number of exponentiations, the better. This is a domain where a 10% improvement would be very
welcome and a 50% improvement would be dramatic.

2

On the other hand, researchers engage in studying optimal and fast exponentiation algorithms[3],
which includes fast single exponentiation algorithms and fast multi-exponentiation algorithms [4]. In-
terestingly, the cost of multi-exponentiation is not equal to that of a single exponentiation multiplying
the number of powers [4]. Indeed, the cost of a multi-exponentiation is only a little more than that
of a single exponentiation. For example, the cost of a two-element multi-exponentiation is about 20%
more than that of a single exponentiation [19]. This gap will help us construct fast signature schemes
by merging single exponentiations into multi-exponentiation.

Scheme Sign Verify Signature Size |pk| Assumption

EDL[19] 3 exp 2 mexp |G|+ 2|Zq|+ |r| 1|G| CDH
KW-CDH[22] 3 exp 2 mexp |G|+ 2|Zq|+ 1 1|G| CDH
KW-DDH[22] 2 exp 2 mexp 2|Zq| 4|G| DDH
CM[2] 3 exp 2 mexp |G|+ 2|Zq| 1|G| CDH

our scheme S1 1 exp + 1 mexp 1 mexp |G|+ 2|Zq|+ 1 1|G| CDH
our scheme S2 1 mexp 1 mexp 2|Zq| 4|G| DDH

Table 1: Comparisons amongst signature schemes with tight security reduction to Diffie-
Hellman assumptions. Where, “exp” stands for an exponentiation in the group, and
“mexp” for a multi-exponentiation. We make the comparisons according to the signing
cost, verification cost, signature size, public key size and the security related assumptions.
Note that we do not consider the cost of hash function evaluations. Averagely, hashing to
Gg,q is less efficient than a single exponentiation.

1.1 Our Contributions

In this paper, we first propose a fast protocol EDL mwz to implement the proof of equality of
logarithm. Its outstanding advantage over Chaum and Pedersen’s protocol [11] is the high efficiency.
Since the EDL mwz protocol needs only two multi-exponentiations, while Chaum and Pedersen’s
protocol needs two single exponentiations and two multi-exponentiations. These implies that there
is a 38% computational improvement of our protocol. Furthermore, the bandwidth of EDL mwz

protocol is |G| bits shorter. The protocol EDL mwz may be of independent interests and can improve a
variety of cryptographic schemes like threshold signature/decryption schemes, verifiable secret sharing
schemes, etc..

Based on the EDL mwz protocol, we proposed two fast digital signature schemes S1 and S2 whose
security is also tightly related to Diffie-Hellman assumptions in the random oracle model. Security of
our scheme S1 relies on the hardness of CDH problem; security of our scheme S2 (which is more efficient
than S1) relies on the hardness of DDH problem. Thanks to the advantage of EDL mwz protocol, the
derived signature schemes S1 and S2 need fewer exponentiations. The efficiency comparisons between

3

our schemes and other existing schemes are detailed as follows (the advantages of our schemes can be
easily seen from the above table 1).

Comparing with existing signature schemes (whose security is tightly related to CDH problem)
like EDL signature schemes, the signature generation of S1 is about 27% faster; and the verification is
about 35% faster, if without considering the hash function evaluations. Concretely, only one exponenti-
ation and one multi-exponentiation is required for signature generation; and one multi-exponentiation
is required for verification of our scheme S1. Hence, there is a two-exponentiation reduction in our
scheme S1.

Comparing with existing signature schemes (whose security is tightly related to DDH problem) like
KW-DDH signature scheme, the signing of S2 is about 40% faster and the verification is about 35%
faster. Concretely, only one multi-exponentiation is required separately for signing and verification of
our scheme S2. So, there is also a two-exponentiation reduction in our scheme S2.

1.2 Outline of the Paper.

The rest of the paper is organized as follows. We first recall some definitions and notations in § 2. In
§ 3, we propose the new protocol EDL mwz to implement the proof of equality of discrete logarithm.
In § 4, we present and analyze the new signature scheme S1. In § 5, we present and analyze the new
signature scheme S2. In § 6, we draw a conclusion.

2 Preliminaries

In this section, we will present the definition of the signature scheme and its security model. We also
introduce some mathematical notations and the difficult problems. At first, we recall the definition
of the signature scheme and its security model.

2.1 Signature Scheme

Generally, a signature scheme S=(KeyGen, Sign, Verify) consists of a triple of algorithms which are
described as follows.

KeyGen Key generation algorithm: on input 1k, it outputs a key pair (sk, pk) of matching the private
key and the corresponding public key.

Sign Signature generation algorithm: on input a message m and the user’s private key sk, it outputs
a signature σ on message m.

4

Verify Signature verification algorithm: on input a signature σ, a message m and a public key pk, it
outputs 1 to imply a valid signature or a symbol ⊥ to imply an invalid signature.

A universally accepted security notion of a signature scheme is existential unforgability under
adaptive chosen message attack (EUF-CMA) [21] in the random oracle model. Under such a model,
a forger can ask the sign oracle in an adaptive fashion. Its goal is to produce a valid signature on a
message that has not been asked to the sign oracle. This model is described as the following game
EUF-CMA played between a challenger and a forger F . Our computing model is the probabilistic
polynomial time Turing machine.

Game EUF-CMA.

Initialization The challenger runs the key generation algorithm KeyGen to generate a public/private
key pair (pk, sk), sk is kept secret while pk is given to the forger F .

Queries F performs a series of oracle queries in an adaptive fashion. The following queries are
allowed:

Sign oracle queries in which F submits a message m ∈ M to the challenger and obtains a
signature σ on message m under the public key pk.

Hash queries in which F submits a string and obtains its corresponding hash value (here, we
deal with the hash function as ideally random function).

Output At the end of the game, F outputs a message and signature pair (m∗, σ∗). We say that
F wins the game if (m∗, σ∗) is a valid message-signature pair with the restriction that m∗ has
never been asked to the sign oracle.

The above game describes a security model for signature unforgeability. F ’s advantage is defined
to be Adv(F) = Pr[F wins the game EUF-CMA].

Definition 2.1. We say that an algorithm (qH , qS , t, ε)-breaks the signature scheme if in the above
game there exists a forger running in a time at most t and making at most qH hash functions queries,
qS sign oracle queries with Adv(F) ≥ ε.

A signature scheme is said to be (qH , qS , t, ε)-secure if there exists no such a forger which can
(qH , qS , t, ε)-break it.

2.2 Mathematical Preliminaries

We consider the mathematical preliminaries for constructing and proving our signature schemes. Let
G be an abelian group. Also let Gg,q ⊂ G denote a cyclic subgroup generated by g, whose order is a
large prime q.

5

Let x be a random number in Zq. Define y = gx. The discrete logarithm problem says that given
y and g to find x ∈ Zq such that gx = y. In this paper, the discrete logarithm of y w.r.t. g will be
denoted as Dloggy = x. We assume that the discrete logarithm problem over G is hard.

Computational Diffie-Hellman (CDH) Problem. For random numbers a and b, given ga, gb ∈ G,
to compute gab ∈ G. An algorithm A has advantage ε in solving CDH problem in group G if

Pr[A(g, ga, gb) = gab] ≥ ε

where the probability is over the random choice of generator g ∈ G, the random choice of a and b,
and the coin toss of A.

Definition 2.2. We say that (t, ε)-CDH assumption holds in G if no polynomial time algorithm runs
in time at most t, and has advantage at least ε in solving CDH problem in G.

Decisional Diffie-Hellman (DDH) Problem. For random numbers a, b, c ∈ Z∗q , informally, the
decisional Diffie-Hellman problem is to distinguish between the tuple of the form (g, ga, gb, gab) and
the tuple of the form (g, ga, gb, gc). A tuple (g, ga, gb, gc) is called a “DDH tuple” if and only if it
satisfies that ab = c, otherwise, it is called a “random tuple”. Formally, A distinguisher D is said to
have advantage ε in solving the DDH problem in G if

|Pr[D(g, ga, gb, gab) = 1]− Pr[D(g, ga, gb, gc) = 1]| ≥ ε,

where the probability is over the random choice of generator g ∈ G, the random choice of a, b and c,
and the coin toss of D.

Definition 2.3. We say that (t, ε)-DDH assumption holds in group G if no polynomial time distin-
guisher runs in time at most t, and has advantage at least ε in solving the DDH problem in G.

3 Proof of the Equality of Discrete Logarithm

In this section, we first review Chaum and Pedersen’s protocol [11]. Then, we will introduce a new
zero knowledge proof protocol to prove the equality of discrete logarithm.

Let g, h ∈ Gg,q be two publicly known generators. The prover selects a secret x ∈ Zq and computes
the public values y1 = gx and y2 = hx. The prover must convince the verifier that:

Dlogg y1 = Dlogh y2.

3.1 Chaum and Pedersen’s Protocol

The protocol, described by Chaum and Pedersen [11], is as follows:

6

1. The prover randomly chooses t ∈ Z∗q and sends the pair (a, b) = (gt, ht) to the verifier.

2. After receiving the pair, the verifier randomly selects a challenge c ∈ Z∗q and sends it to the
prover.

3. The prover computes s = t− cx mod q and sends s to the verifier.

4. The verifier accepts the proof if:

a = gsyc
1 and b = hsyc

2.

It is well known that the above protocol is honest verifier zero knowledge. This protocol has been
used to design a variety of schemes like the signature schemes with tight security reduction, verifiable
encrypted signature, threshold cryptography, etc.. Its performance improvement will make all of those
schemes better, as it is the most expensive component of computational cost.

3.2 The New Protocol

Here, we present a new protocol EDL mwz to prove the equality of discrete logarithm. The trick lies
behind Chaum and Pedersen’s protocol is that the elements a and b have the same form of multi-
exponentiation. In our protocol, the elements a and b are merged into a whole unity, which will result
in a two-exponentiation reduction. We use a new technique to prevent an attack which is very similar
to rogue-key attack in the multi-signature schemes [8, 27]. So, the technique presented here can be
used to design multi-signature schemes in the plain public key model [8]. The new protocol proceeds
as follows:

In the EDL mwz protocol, we assume that the discrete value of Dloggh is unknown to all partic-
ipants. Let H : {0, 1}∗ −→ Z∗q be a random oracle.

1. The prover selects uniformly at random t ∈ Z∗q and sends the commitment v = (gnh)t to the
verifier, where n = H(g, h, y1, y2).

2. After receiving v, the verifier selects a random challenge c ∈ Z∗q and sends it to the prover.

3. The prover sends the response s = t− cx mod q to the verifier.

4. The verifier accepts the proof if:

v = (gnh)s(yn
1 y2)c, where n = H(g, h, y1, y2).

The above described protocol requires only two multi-exponentiations comparing with two expo-
nentiations and two multi-exponentiations for Chaum and Pedersen’s protocol. The cost of a four-
element multi-exponentiation is about 55% more than that of a single exponentiation. Hence, our

7

protocol offers a saving of 38% computation cost. In addition, the bandwidth of EDL mwz protocol is
|G| bits less than that of Chaum and Pedersen’s protocol. The proposed protocol is an honest verifier
zero-knowledge proof:

Lemma 1. In the random oracle model, if the discrete logarithm value of Dloggh is unknown to all
participants, then the protocol EDL mwz is an honest verifier statistically zero knowledge proof.

Proof. The detailed proof has been given in the Appendix. Here, we only state a sketch of the proof.
The completeness can be verified without any hardness. The soundness can be achieved by using the
general forking lemma [8] and the rewinding technique. The simple trick is that if an adversary A
can cheat the verifier with non-negligible probability, then we can translate it into an algorithm B to
extract the discrete logarithm value Dloggh. The protocol is zero knowledge because the view of the
verifier can be easily simulated by selecting randomly e, s ∈ Z∗q and computing v = (gnh)s(yn

1 y2)e.

The above presented interactive protocol can be transformed into a non-interactive protocol
through Fiat-Shamir heuristic [16]. The verifier’s challenge e is replaced with the hash value of
the commitment v and of the public data using a collision resistance hash function G. So,

a non-interactive protocol of proof of equality of discrete logarithm is a pair (e, s), where e =
G(g, h, y1, y2, v).

Indeed, this non-interactive protocol is also an honest verifier statistically zero-knowledge proof:

Lemma 2. In the random oracle model, if the discrete logarithm value of Dloggh is unknown to all
participants, then the above protocol is honest verifier statistically zero knowledge.

Proof. It can be done very similar to Lemma 1.

4 A Signature Scheme Based on the CDH Assumption

In this section, we present a new signature scheme S1=(KeyGen, Sign, Verify) from abelian groups.
To describe our scheme, some global parameters are required to be defined in advance. Let `p and `q

denote the security parameters. Let also Gg,q be a subgroup of G, where |q| = `q and representation
of the elements in Gg,q is included in {0, 1}`p . Let H : {0, 1}∗ −→ Gg,q, L : {0, 1}∗ −→ Z∗q and
G : {0, 1}∗ −→ Z∗q be three hash functions. The new signature scheme S1 is defined as follows.

KeyGen Every user picks his random private key x from Z∗q and computes his public key y = gx.

Sign The inputs are a secret key x ∈ Zq and a message m ∈ {0, 1}∗. At first, the signer checks
whether m has been signed before. If so, output the previously generated signature. Otherwise,
it does as below.

1. pick a random number k from Z∗q and a random bit bm ∈ {0, 1};

8

2. compute h = H(m, bm) ∈ Gg,q;

3. compute u = hx;

4. compute v = (gnh)k, where n = L(m, g, h, y, u);

5. compute r = G(m, g, h, y, u, v);

6. compute s = k − xr mod q.

The signature on message m is σ = (u, r, s, bm).

Verify To verify a signature σ on a message m, one does as follows.

1. parse σ as (u, r, s, bm);

2. compute h = H(m, bm) and n = L(m, g, h, y, u);

3. compute v′ = (gnh)s(ynu)r;

4. verify whether r = G(m, g, h, y, u, v′)?

If the equation in step 4 holds, then return 1, else return ⊥.

The consistency of our scheme can be easily verified as

v′ = (gnh)s(ynu)r = (gnh)s(gnh)xr = (gnh)s+xr = (gnh)k = v.

It is the case that r = G(m, g, h, y, u, v′). We now prove the security.

Theorem 1 In the random oracle model, if there exists an adversary F that has a non-negligible
advantage ε against the unforgeability of the scheme S1 when running in a time t, making at most qS

Sign queries, qH queries on hash function H, qL queries on hash function L and qG queries on oracle
G, then there exists an algorithm B that can solve the CDH problem with a probability

ε′ ≥ 1
2
ε− η − 3

q
in a time t′ < t + 3.55(qS + qH + qL + qG)te,

where η denotes the probability to break the soundness of the protocol EDL mwz and te denotes the
time required for an exponentiation evaluation.

Proof. We describe how to construct an algorithm B that runs F as a subroutine to solve the CDH
problem. Let Gg,q be a cyclic group and (g, ga, gb) a CDH problem instance. B runs F with the
public key y = ga and the public parameters (Gg,q, g, q). Then, F performs adaptive queries which
are handled by B as follows.

9

Hash queries. To simulate hash queries, B maintains three hash query lists LH , LL, LG and a
signature list LS . All these lists are initially empty. Assuming that all hash queries do not
repeat. When F asks for a hash query (may be on H, L or G) on a point where a message m is
contained, B first checks whether m has been contained in the list LS . If has not, then B does
as the following signature generation procedure:

1. select four random numbers (k, n, r, s) from Z∗q and a random bit bm from {0, 1};
2. compute u = yk;

3. set h = H(m, bm) = gk;

4. compute v = (gnh)s(ynu)r;

5. set L(m, g, h, y, u) = n and G(m, g, h, y, u, v) = r and the signature on message m be
σ = (u, r, s, bm);

6. update lists LH ,LL,LG and LS respectively.

Next, B also does as follows (note that in this case, LS definitely contains the message m and
its signature):

1. If the query is H(m, b), B checks whether b = bm. If so, return hk. Otherwise, B selects a
random number z ∈ Zq and returns (gb)z as the answer and inserts the tuple (m, b, (gb)z, z)
into the list LH .

2. If the query is on hash function L or G, B manipulates it in a natural way: B first checks
whether the querying point has been contained in lists LL or LG. If so, the previously
assigned value is returned. Otherwise, B returns an element chosen uniformly at random
from Z∗q and updates the corresponding list.

Sign queries. When a signature query on message m is asked, B first determines whether m has
been contained in the list LS . If so, return the previously generated signature. Otherwise, B
follows the above signature generation procedure and returns the resulted signature to F .

As we can see, this simulator is valid and indistinguishable from an actual signer. Thus, the
probability that F outputs a valid forgery in the simulated experiment is exactly ε.

Solving the CDH Problem When F returning a valid signature forge (ũ, r̃, s̃, b̃) on message m̃ (we
assume that F has asked the hash queries H(m̃, ∗), L(m̃, ∗) and G(m, ∗) before), B first checks
whether b̃ = bm̃. If so, B aborts with output “failure” (Since F did not previously request the
signature on message m̃, the value of bm̃ is independent of the view of F . So, the probability
that b̃ = bm̃ is 1

2). Otherwise, it searches the list LH to find the tuple (m̃, b̃, z̃, (gb)z̃) which
indicates that h̃ = H(m̃, b̃) = (gb)z̃. Then, B forms the following equation

ũ = (H(m̃, b̃))a = ((gb)z̃)a = (gab)z̃

and extracts the solution of the given CDH instance as ũ
1
z̃ , provided that Dloggy = Dlogh̃ũ.

10

Let bad be the event that F outputs a valid signature forge (ũ, r̃, s̃, b̃) with Dloggy 6= Dlogh̃ũ,
which implies that F has successfully attacked the soundness of protocol EDL mwz (note that the
discrete logarithm value of Dloggh̃ is indeed unknown to F). According to the lemma 2, Pr[bad] ≤ η.
Here, we admit that the forger has the ability to compute the discrete logarithm value Dloggh̃, but
its success probability can bounded by η.

Now, we give a upper bound for the probability that F forges a valid signature without asking
hash function queries on L, H or G. Since all hash functions are modeled as random oracles, it is no
hard to see that F ’s success probability is no more than 3

q .

Put all together, B’s success probability ε′ satisfies

ε′ ≥ 1
2
ε− η − 3

q

and the running time t′ satisfies t′ < t + 3.55(qS + qH + qL + qG)te, since every query relevant to a
message may need two single exponentiations and one four-element multi-exponentiation to produce
the signature. ¤

Efficiency Consideration. In our signature scheme, the computational costs are one exponentiations
and one multi-exponentiation for the signer and one multi-exponentiations for the verifier, whereas in
EDL and CM signature schemes, three exponentiations and two multi-exponentiations are required
for signature generation and verification separately. To avoid having the signer maintain a record of
all previously signed signature/message pairs, the technique of [20] can also be used for our scheme
S1.

5 A Signature Scheme Based on the DDH Assumption

In this section, we introduce another efficient signature scheme S2. This new scheme has been proved
to be secure tightly related to the DDH assmuption, rather than the CDH assumption. But it is more
efficient than scheme S1, as scheme S2 has a two-exponentiation reduction comparing with S1.

As before, Let `p and `q denote the security parameters. Let also Gg,q be a subgroup of G, where
|q| = `q and representation of the elements in Gg,q is included in {0, 1}`p . Let h be another generator
of Gg,q. Also let L : {0, 1}∗ −→ Z∗q and H : {0, 1}∗ −→ Z∗q be two hash function that will be modeled
as random oracles. Our second digital signature scheme S2 is defined as follows.

KeyGen Every user selects his random private key x from Z∗q , and computes his public key as (y1, y2) =
(gx, hx).

Sign The inputs are a secret key x ∈ Zq and its corresponding public key (y1, y2), and a message
m ∈ {0, 1}∗. To generate the signature, one does as below.

11

1. pick a random number k from Z∗q ;

2. compute n = H(m, g, h, y1, y2);

3. compute v = (gnh)k;

5. compute e = G(m, g, h, y1, y2, v);

6. compute s = k − xe mod q.

The signature on message m is σ = (e, s).

Verify To verify a signature σ on a message m, one does as follows.

1. parse σ as (e, s);

2. compute n = H(m, g, h, y1, y2);

3. compute v′ = (gnh)s(yn
1 y2)e;

4. verify whether e = G(m, g, h, y1, y2, v
′)?

If the equation in step 4 holds, then return 1, else return ⊥.

It is not hard to see that the signature scheme S2 is correct. Since y1 = gx and y2 = hx, the
signature verification algorithm computes v′ = (gnh)s(yn

1 y2)e = (gn)s+xehs+xe = (gnh)k = v. It is
indeed the case that G(m, g, h, y1, y2, v

′) = e.

Theorem 2 If (t′, ε′)-DDH assumption holds on the group Gg,q, then the above signature scheme is
(qH , qs, t, ε)-secure in the random oracle model, where ε ≥ ε′+η+ 1

q and t ≤ t′+1.55(qS +1)te. (where
η denotes the probability to break the soundness of the protocol EDL mwz and te presents the cost of
a single exponentiation in group G.)

Proof. Assuming that we have a forger F , running in time at most t and making at most qH hash
function queries (which includes queries to H and G) and at most qS signature generation queries,
which produces a forged signature with advantage at least ε. We use F to construct an algorithm
D to solve the DDH problem with probability at least ε′ and running time at most t′. The detailed
description of the algorithm D is as follows.

Algorithm D is given as input a challenge tuple (g, h, y1, y2) ∈ G4
g,q. Its goal is to determine

whether this presents a “random tuple” or a “DDH tuple”. To this end, it sets the public parameter
as g, h and Gg,q and runs F on the public key (y1, y2). Algorithm D simulates the random oracle
queries and signing queries as follows.

Hash queries. In order to response the queries on hash functions H and G, D maintains three lists
LH , LG and LS which are initially empty. The list LS contains the simulated signatures gener-
ated by D. When a query H(m, g, h, y1, y2) (or G(m, g, h, y1, y2, v)) is asked, D first determines
whether it has been asked before by searching the list LH (or LG). If so, D returns the previously
defined value. Otherwise, D proceeds as the following signature generation procedure.

12

1. choose three numbers n, e, s uniformly at random from Z∗q ;
2. compute v′ = (gnh)s(yn

1 y2)e;

3. set H(m, g, h, y1, y2) = n, G(m, g, h, y1, y2, v
′) = e and the signature on message m be

σ = (e, s).

At last, D responses F with n (or e′, where e′ = e if v = v′, otherwise e′ is a random number
chosen from Z∗q) and updates the lists LH , LG and LS correspondingly.

Signing queries. When F asks a signature query on message m, D first determines whether it was
contained in the list LS . If so, the previously generated signature is returned. Otherwise, D
follows the above signature generation procedure and returns the resulted signature to F .

At some point, F outputs a signature forger (σ∗, s∗) on a message m∗ which has never been
submitted for a signature query. D checks whether (σ∗, s∗) is a valid signature on message m∗. If so,
D outputs 1 to indicated that the challenge tuple is indeed a “DDH tuple”. Otherwise, D outputs 0
to indicated that the challenge tuple is indeed a “random tuple”.

Now, we assess the probability that D output 1. If (g, h, y1, y2) is “DDH tuple”, then D provides
a perfect simulation for F . It is no hard to see that D will outputs 1 with probability at least ε.

On the other hand, if the challenge tuple is a “random tuple”, then with probability 1 − 1/q

it is not a “DDH tuple”. The valid signature (e∗, s∗) implies that F has successfully attacked the
soundness of protocol EDL mwz. According to the lemma 2, the probability that F produces such a
valid signature is no more than η. Thus, in this case, F outputs a valid signature with probability at
most η − η

q + ε
q < η + 1

q .

Put all together, we can obtain

|Pr[a, b ←− Z∗q : D(g, ga, gb, gab)]− Pr[a, b, c ←− Z∗q : D(g, ga, gb, gc)]|
≥ ε− (η +

1
q
)

≥ ε′

The running time of D mainly includes the running time of F , he time of simulating hash function
queries, the time of simulating signature queries, and the time of verifying the valid of the forged
signature. In very query, a four element multi-exponentiation is required to generate the signature.
The cost of this four element multi-exponentiation is about 55% more than the cost of a single
exponentiation. Hence, t′ ≤ t + 1.55(qS + qH + qG + 1)te. ¤

6 Conclusion

Deffie-Hellman assumptions are well studied mathematical problems in cryptographic field. Nowadays,
provable security is a widely accepted necessary requirement for cryptographic primitives. In this

13

paper, we have proposed two new fast signature schemes with tight security reduction to Diffie-
Hellman problems. A remarkable advantage of our schemes is its high efficiency: there is a two-
exponentiation reduction in our schemes when comparing with their counterpart like EDL, CM and
KW-DDH schemes. To achieve high efficiency of signature schemes, we proposed a new protocol
EDL mwz to implement the proof of equality of discrete logarithm. The new protocol outperforms
its old counterpart, the Chaum and Pedersen protocol, as two exponentiations is saved by the new
protocol. The EDL mwz protocol may be of independent interests, as it can accelerate a variety
cryptographic schemes such as threshold signature (or decryption) schemes, verifiable secret sharing
schemes, etc..

References

[1] D. Boneh and X. Boyen. Short signatures without random oracles. In C. Cachin and J. Ca-
menisch, editors, Proceedings of Eurocrypt 2004, volume 3027 of Lecture Notes in Computer
Science, pages 56-73. Springer-Verlag, 2004.

[2] Benoit Chevallier-Mames. An efficient CDH-based signature scheme with a tight security re-
duction. Advances in Cryptology-CRYPTO 2005,Volume 3621 of Lecture Notes in Computer
Science, pages 511-526, 2005.

[3] Ernest Brickell, Daniel Gordon, Kevin McCurley, and David Wilson. Fast exponentiation with
precomputation. In R.A. Rueppel, editor, Proceedings of Eurocrypt 92, volume 658 of Lecture
Notes in Computer Science, pages 200-207. Springer-Verlag, May 1992.

[4] Bodo Moller. Algorithms for Multi-exponentiation. Selected Areas in Cryptography - SAC
2001, volume 2259 of Lecture Notes in Computer Science, pages 165-180, 2001.

[5] M. Bellare, P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. Proceeding of the 1st ACM Conference on Computer and Communications Security,
pages 62-73, 1993.

[6] M. Bellare and P. Rogaway. The exact security of digital signatures: How to sign with RSA
and Rabin. In U. Maurer, editor, Advances in Cryptology-EUROCRYPT’96, Volume 1070 of
Lecture Notes in Computer Science, pages 399-416. Springer-Verlag, 1996.

[7] D. Boneh, B. Lymn and H. Shacham. Short signatures from the Weil pairing. Prodeedings of
Asiacrypt 2001, Volume 2248 of Lecture Notes in Computer Science, pages514-532, 2001.

[8] M. Bellare and G. Neven. Multi-signature in the plain pulic-key modle and s genral forking
lemma. The 13th ACM Conference on Computer and Communication Security, pages 390-398,
2006,

14

[9] David Chaum, Jan-Hendrik Evertse, and Jeroen van de Graaf. An improved protocol for
demonstrating possession of discrete logarithms and some generalizations. In David Chaum
and Wyn Price, editors, Proceedings of Eurocrypt 87, volume 304 of Lecture Notes in Computer
Science, pages 127-142. Springer-Verlag, 1987.

[10] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited.
In Proceedings of the 30th annual ACM symposium on Theory of Computing, pages 209-218.
ACM Press, 1998.

[11] D. Chaum and T. Pedersen. Wallet databases with observers. In Advances in Cryptology-
Crypto’92, Volume 704, pages 89-105, 1992.

[12] R. Cramer and V. Shoup. Signature scheme based on the strong RSA assumption. ACM
Transactions on Information and System Security, 3(3):161-185, 2000.

[13] W. Diffie and M.E. Hellman. New directions in cryptography. IEEE Transactions on Informa-
tion Theory, IT-22(6):644-654, 1976.

[14] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory, IT-31(4):469-472, 1985.

[15] U.Feige, A. Fiat and A. Shamir. Zero-knowledge proofs of Identity. Journal of Cryptology, vol.
1, pages 77-95, 1988.

[16] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signa-
ture problems. In A.M. Odlyzko, editor, Advances in Cryptology-CRYPTO’86, volume 263 of
Lecture Notes in Computer Science, pages 186-194. Springer-Verlag, 1987.

[17] R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures without the random or-
acle. In M. Bellare, editor, Advances in Cryptology-EUROCRYPT’99, volume 1592 of Lecture
Notes in Computer Science, pages 123-139. Springer-Verlag, 1999.

[18] M. Girault. An identity-based identification scheme based on discrete logarithms modulo a
composite number. In Advances in Cryptology-EUROCRYPT’90, volume 473 of Lecture Notes
in Computer Science, pages 481-486. Springer-Verlag, 1991.

[19] E. J. Goh and S. Jarecki, A signature scheme as secure as the Diffie-Hellman problem. In
E. Biham, editor, Advances in Cryptology EUROCRYPT 2003, Lecture Notes in Computer
Science, pages 401-415. Springer-Verlag, 2003

[20] E. J. Goh, S. Jareckiz, J. Katzx N. Wang. Efficient signature schemes with tight reductions to
the Diffie-Hellman problems. http://cr.yp.to/bib/2003/katz-sigs.pdf.

15

[21] S. Goldwasser, S. Micali and R. Rivest. A digital signature scheme secure against adaptive
chosen message attacks. SIAM J. Comput. 17, 2, pages 281-308, 1988.

[22] J. Katz and N. Wang. Efficiency improvements for signature schemes with tight security reduc-
tions. In ACM Conference on Computer and Communications Security, pages 155-164. ACM
Press, 2003.

[23] A. Joux and K. Nguyen. Separating Decision Diffie-Hellman from Diffie-Hellman in crypto-
graphic groups. In Journal of Cryptology, Volume 16, No. 4, pages 239-247, 2003.

[24] S. Micali and L. Reyzin. Improving the exact security of digital signatre schemes. Journal of
Cryptology, 15(1):1-18, 2002.

[25] Ueli Maurer and Stefan Wolf. The relationship between breaking the Diffie-Hellman protocol
and computing discrete logarithms. SIAM Journal on Computing, 28(5):1689-1721, 1999.

[26] National Institute of Standards ans Technology. JIST FIPS PUB 186, Digital signature stan-
dard. U.S. Department of Commerce (1994).

[27] K. Ohta and T. Okamoto. A digital multisignature scheme based on the Fiat-Shamir scheme.
Advance in Cryptology-ASIACRYPT’91, Volume 739 of Lecture Notes in Computer Science,
pages 139-148, Springer-Verlag, 1991.

[28] IEEE P1363. IEEE Standard Specifications for Public-Key Cryptography. IEEE Computer
Society, August 2000.

[29] D. Pointcheval and J. Stern. Security proofs for signature schemes. In U. Maurer, editor,
Advances in Cryptology-EUROCRYPT’96, volume 1070 of Lecture Notes in Computer Science,
pages 387-398. Springer- Verlag, 1996.

[30] R.L. Rivest, A. Shamir, and L.M. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21(2):120-126, 1978.

[31] C.-P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161-
174, 1991.

[32] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, Proceedings of Eurocrypt 97, volume 1233 of Lecture Notes in Computer Science, pages
256-266. Springer-Verlag, 1997.

[33] Adi Shamir and Yael Tauman. Improved online/offline signature schemes. In Joe Killian, editor,
Proceedings of Crypto 01, volume 2139 of Lecture Notes in Computer Science, pages 355-367.
Springer-Verlag, August 2001.

16

7 Appendix: the Proof of Lemma 1

In order to prove the security of the protocol EDL mwz, we follow the approach of Feige, Fiat
and Shamir [15], firs proving the completeness, then the soundness and, finally the zero knowledge
property. The completeness of our protocol is described as follows.

Lemma 3 (Completeness). If the prover knows Dloggy1 =Dloghy2 = x, then the verifier will accept
the proof with probability 1.

Proof. This can be easily argued. Assuming that the prover and the verifier follow the protocol
honestly. Let (v, c, s) be the output of an interactive proof between the prover and verifier. Since
x = Dloggy1 = Dloghy2, the verifier computes (gnh)s(yn

1 y2)c = (gn)s+xchs+xc = (gnh)k = v, which
implies that the verifier accepts the proof. Thus, the verifier will accept the proof of an honest prover
with probability 1. ¤

The proof of soundness consists in proving that, if an adversarial prover A can make its proof
accepted but in fact Dloggy1 6= Dloghy2, then we can use it as a subroutine to solve the discrete
logarithm problem. Unlike existing protocols, he soundness of our protocol is proved in the random
oracle model. During the proof, the hash function H is modeled as a random oracle. We argue the
soundness by using general fork lemma [8] and rewinding technique.

Lemma 4 (Soundness). Assume Dloggy1 6= Dloghy2. In the random oracle model, if there exists a
prover that makes the verifier accept the proof, then there exists an algorithm B which can solve the
discrete logarithm problem.

Proof. Assuming that we have an adversarial proverA which can cheat (here, the word “cheat” means
that the prover is accepted but Dloggy1 6= Dloghy2) the verifier with non-negligible probability. We
use A to construct an algorithm B to solve the discrete logarithm problem. The detailed description
of algorithm B is as follows.

Algorithm B is given as input an instance g, h ∈ Gg,q of discrete logarithm problem. Its goal is
to output the value Dloggh. To this end, B initializes the adversary A with the public parameters
g, h and Gg,q. Then A selects the public values y1 and y2. Assuming that Dloggy1 6= Dloghy2 and A
can interact with B at most qI times. B simulates A’s hash function queries and interacts with A as
follows.

Hash queries. To manipulate hash function queries, B first chooses a random number n from Z∗q
for H(g, h, y1, y2). If A asked a hash query on the point (g, h, y1, y2), the value n is returned.
Else, B checks whether it was asked before. If so, the previously assigned value is returned.
Otherwise, B responses with a random number n chosen from Z∗q .

Interaction. When A launches a proof interaction, B responses it with a random number c selected
from Z∗q .

17

At some interaction, A passes the proof successfully and outputs the tuple (vR, cR, sR) which is
the view of the verifier during this proof.

Now, B run the forking algorithm [8] FA(X) (where X = (g, h)), which with probability frk returns
(1, (vR, cR, sR), (vR, c′R, s′R)) with cR 6= c′R. These two tuples are such that

vR = (gnh)sR(yn
1 y2)cR = (gnh)s′R(yn

1 y2)c′R .

Let w1 = sR−s′R
c′R−cR

, we can obtain

yn
1 y2 = (gnh)w1 . (1)

B rewinds the above game to the point where A asks for the query H(g, h, y1, y2). At this time, B
responses A with H(g, h, y1, y2) = 2n. Using the general forking lemma again, we can also obtain

y2n
1 y2 = (g2nh)w2 . (2)

B rewinds the above game again to the same point and responses A with H(g, h, y1, y2) = 3n.
Using the general forking lemma for the third time, we can also obtain

y3n
1 y2 = (g3nh)w3 . (3)

(2)
(1) and (3)

(2) , we can obtain

yn
1 = g2nw2−nw1hw2−w1 = g3nw3−2nw2hw3−w2 .

Obviously, g3nw3−4nw2+nw1 = h2w2−w1−w3 . We argue that 2w2 − w1 − w3 6= 0. This can be easily
done by contradiction. Assume 2w2 − w1 − w3 = 0, then 3nw3 − 4nw2 + nw1 = 0. Substituting 2w2

with w1 + w3 in the latter formula, we can obtain w1 = w3. Hence, y1 = gw1 and y2 = hw1 , which
contradicts with the assumption that Dloggy1 6= Dloghy2. So, it is the case that 2w2 − w1 − w3 6= 0.

Now, we have h = g
3nw3−4nw2+nw1

2w2−w1−w3 . This completes the proof. ¤

Lemma 5 (Zero knowledge). The protocol is honest verifier statistically zero knowledge.

Proof. We first remind that the zero knowledge property is verified if the view of the honest verifier
interacting with the honest prover can be simulated by a polynomial time algorithm (which is also
called the simulator) with only the public parameter as input. A protocol is said to statistically zero
knowledge if the view and the output of the simulator are statistically indistinguishable.

We now construct the simulator S as: when given the public parameters g, h, y1, y2, S chooses
random numbers c, s from Z∗q and computes v = (gnh)s(yn

1 y2)c, where n = H(g, h, y1, y2). It is no
hard to verify that the distribution of the transcript (v, c, s) is identically to the distribution of the
view of the honest verifier interacting with the prover (who knows the secret information x). Thus,
we have done this lemma. ¤

18

