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Abstract

This paper deals with generic transformations from ID-based key encapsulation mech-
anisms (IBKEM) to hybrid public-key encryption (PKE). The best generic transformation
known until now is by Boneh and Katz and requires roughly 704-bit overhead in the cipher-
text. We present new generic transformations that are applicable to partitioned IBKEMs.
A partitioned IBKEM is an IBKEM that provides some extra structure. Such IBKEMs are
quite natural and in fact nearly all known IBKEMs have this additional property. Our first
transformation yields chosen-ciphertext secure PKE schemes from selective-ID secure parti-
tioned IBKEMs with a 256-bit overhead in ciphertext size plus one extra exponentiation in
encryption/decryption. As the central tool a Chameleon Hash function is used to map the
identities. We also propose other methods to remove the use of Chameleon Hash, which may
be of independent technical interest.

Applying our transformations to existing IBKEMs we propose a number of novel PKE
schemes with different trade-offs. In some concrete instantiations the Chameleon Hash can
be made “implicit” which results in improved efficiency by eliminating the additional expo-
nentiation.

Since our transformations preserve the public verifiability property of the IBE schemes
it is possible to extend our results to build threshold hybrid PKE schemes. We show an
analogue generic transformation in the threshold setting and present a concrete scheme
which results in the most efficient threshold PKE scheme in the standard model.

Keywords: Hybrid Encryption, Selective-ID, KEM, Threshold PKE, Chameleon Hash

1 Introduction

1.1 Background

Research on efficient and secure public-key encryption (PKE) has been central in cryptography.
A vast number of papers are devoted to construct cryptosystems that achieves security against
adaptive chosen ciphertext attacks, aka CCA-security [38, 42]. Many of the schemes are only
secure in the random oracle model [4]. The random oracle model is a heuristic, and a proof
of security in the random oracle model does not directly imply anything about the security of
a system in the real world. In fact, it has been demonstrated that there exist cryptographic
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schemes which are secure in the random oracle model but which are inherently insecure when
the random oracle is instantiated with any real hash function (see, e.g., [15]).

In this paper we focus on CCA-secure cryptosystems under standard cryptographic assump-
tions, without using random oracles. Early such constructions were given in [38, 42, 43, 24],
which are considered as theoretical due to the use of a general technique for non-interactive zero-
knowledge proofs. The first practical breakthrough was introduced by Cramer and Shoup [21],
followed by its generalization [22].

Identity-based encryption (IBE) [45] extends the framework of public-key encryption such
that one’s public-key consists of an arbitrarily chosen string, possibly a string associated to one’s
real identity, on top of a set of system parameters shared by all users. The first instantiation
given by Sakai et al. [44] and Boneh and Franklin [11] opened vistas for further research on
IBE itself and its numerous applications. While most early constructions of CCA-secure PKE
followed the Naor-Yung paradigm [38], a completely different approach based on IBE schemes
was presented by Canetti et al. [18]. The technique, aka CHK transform, is a generic trans-
formation that converts any selective-ID CPA-secure IBE scheme [17] into a CCA-secure PKE
scheme by employing a one-time signature. Due to the inefficiency of one-time signatures, the
transformation adds about 65k bits1 of overhead to the original ciphertext in a typical setting.
Later, Boneh and Katz gave an alternative transformation (BK transformation) with improved
efficiency by essentially using a MAC [13] (Recently [18, 13] have been merged into one journal
paper [10]). However, the BK transformation still requires 704 bits of overhead. Since typi-
cal IBE schemes have ciphertext sizes of about 512 bits this transformation still doubles the
ciphertext overhead.

Meanwhile more efficient but dedicated constructions of CCA-secure key-encapsulation mech-
anisms (KEMs) were developed in [14, 30, 31, 33]. Whereas a PKE scheme encrypts messages,
in a KEM random session keys are encapsulated. According to the KEM/DEM composition
theorem [22], these KEMs in combination with CCA-secure symmetric encryption schemes even-
tually yield CCA-secure hybrid PKE schemes. These dedicated KEM constructions are based
on “identity-based techniques” and exploit certain algebraic structures of known IBE schemes,
mostly the one from Boneh and Boyen [7]. Compared to the PKE schemes obtained by the
generic transformations these dedicated PKE schemes are more efficient in ciphertext length.

Constructing hybrid PKEs in the threshold setting is yet another interesting issue. There
are some dedicated constructions in the standard model based on the Cramer-Shoup encryption,
which need interaction between the decryption servers [16, 1]. The paper [9] extends the CHK
transformation to the threshold setting and presents a non-interactive threshold CCA-secure
PKE based on a threshold variant of the Boneh-Boyen IBE. Unfortunately the more efficient
BK transformation cannot be applied here since due to the MAC consistency of the resulting
scheme can only be privately verified. Accordingly, the threshold scheme in [9] suffers from a
large overhead of about 65k caused by the CHK transform.

Some efficient CCA-secure threshold KEMs are presented in [14] and [26]. Unfortunately,
the KEM/DEM composition theorem does not work in the threshold setting [3] and it is not
rigorously clarified how to generically convert a threshold KEM into a threshold PKE.

1There are various ways to build one-time signatures with different tradeoffs in size and computational cost.
Our estimated 65k overhead comes from the a hash-tree based one-time signature scheme [25]. Using a one-time
signature based on the discrete-log problem one can reach to a ciphertext overhead of roughly 1.2k-6k with two
extra multi-base exponentiations. See Section 7.5 and Appendix A for details.
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1.2 Our Contributions

New generic transformations. We address the issue of reducing the ciphertext overhead
introduced in generic transformations from IBE to PKE. As our main contribution we present
new constructions that transform an identity-based key encapsulation mechanism (IBKEM) into
a hybrid public-key encryption scheme. Our constructions are applicable to so called partitioned
IBKEMs which will be explained shortly.

Our new transformations have the following properties.

• The first transformation in Section 4 transforms selective-ID secure partitioned IBKEMs
into chosen-ciphertext secure PKE schemes. The additional overhead in the transforma-
tion is one application of a Chameleon hash [34] (also called trapdoor hash function) in
encryption and decryption, respectively. For a typical implementation of a chameleon hash
this results in a ciphertext expansion of 128-bits plus one extra multi-exponentiation in
encryption/decryption.2

• To explain the essential key idea, we also develop methods to remove the use of Chameleon
hash in Section 7. They may be of independent theoretical interest, as well as of practical
advantage. For example, one of transformations can achieve chosen-ciphertext secure PKE
schemes with no additional overhead, in the case of (a strong variant of) adaptive-ID secure
partitioned IBKEMs.

We remark that in contrast to the CHK and BK transformations, our construction adds another
computational assumption to the security of the resulting PKE scheme. However, efficient
Chameleon hashes can be built a relatively weak assumptions such as discrete logarithms or
factoring [34] which are implied by the security assumptions on which all known IBE schemes
are based on.

Our transformations yield tag-KEMs [3], not PKE schemes. This is more general since every
tag-KEM can again be transformed into a hybrid PKE scheme by pairing it with a passively
secure symmetric encryption scheme. The advantage of a tag-KEM (rather than PKE) is its
great flexibility, i.e. it completely decouples the key encapsulation from the asymmetric part.
Furthermore, in contrast to a standard KEM [22], a tag-KEM only requires a passively secure
symmetric encryption scheme for the hybrid tag-KEM/DEM construction. We refer to [3] for
more details.

Partitioned IBKEMs. A small price we pay in our transformations is a restriction on the
ingredient, i.e. that the underlying IBKEM is required to be partitioned. Roughly, an IBKEM
is partitioned, if (i) the encapsulated session key does not depend on the identity, and (ii) the
ciphertext can be split into two parts such that one part depends on the identity but the other
one does not. We will argue that partitioned IBKEMs are a natural extension of IBKEMs —
all known IBKEMs, except the one in [28], are in fact partitioned. There are only few known
IBKEMs that are not partitioned [44, 12] in the random oracle model.

We think that our notion of partitioned IBKEMs may be also of independent theoretical
interest. As we will discuss later, it provides more insight in the problem of construction efficient
PKE schemes in the standard model.

New PKE schemes. We demonstrate the usefulness of our new transformations by providing
example instantiations of PKE schemes based on known IBE schemes from Boneh-Boyen [7],
Waters [47].

2One important detail is that, in contrast to the CHK and BK transformations, we do not have to include the
public parameters of the Chameleon hash in the PKE ciphertext.
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• For the selective-ID secure Boneh-Boyen IBE scheme we use our first transformation to
obtain an efficient PKE scheme. We further demonstrate how to improve efficiency of our
transformation by using an implicit Chameleon Hash. The implied PKE scheme saves one
multi-exponentiation in encryption/decryption.

• For Waters’ adaptive-ID secure IBE scheme we use our second (loss-free) transformation.
The resulting PKE scheme resembles exactly the PKE scheme presented in [14]. Using
our generic transformation we are able to explain its security in terms of the original IBE
scheme.

New Generic Transformations in the Threshold Setting. Since our transformations
preserve the public verifiability property of the IBE schemes it is possible to extend our results
to the threshold setting where some servers shares the private key and collaborate to decrypt a
ciphertext. We first rigorously prove a threshold Tag-KEM/DEM composition theorem, which
was first presented in [3] but without a proof. Next, we provide the required transformations and
give a concrete example instantiation of a threshold Tag-KEM scheme, which is more efficient
than some recently proposed solutions in the standard model [9].

1.3 Related Work

A similar but weaker result is independently introduced in [48] for constructing PKE schemes
while ours also concerns Tag-KEM schemes that provides more flexibility. [48] heavily relies
on the use of the trapdoor hashing (Chameleon hash), and its direct use of Chameleon hash
(by Pedersen commitment and a collision resistant hash, in [48, Section 2.5]) as a one-time
signature results in a scheme only provable in a (stronger) generic model. As we discuss later
in Appendix A, though a more complex three-base Pedersen Chameleon hash could be proven
as chosen message attack secure one-time signature, it is not known how to prove a two-base
one ([48] used) as a secure one-time signature in the standard model. Since our work focus on
the standard model and could avoid the use of Chameleon hash, it is clear to see our results are
more general. Besides, our proposals are in particular advantageous to build threshold hybrid
PKE scheme, because it is able to be built smoothly from Tag-KEM/DEM framework. On the
contrary, it is not known how to generically convert threshold KEM(PKE) to threshold hybrid
PKE.

2 Preliminaries

2.1 Notations

If x is a string, then |x| denotes its length, while if S is a set then |S| denotes its size. If k ∈ N
then 1k denotes the string of k ones. If S is a set then s

$← S denotes the operation of picking
an element s of S uniformly at random. We write A(x, y, . . .) to indicate that A is an algorithm
with inputs x, y, . . . and by z

$← A(x, y, . . .) we denote the operation of running A with inputs
(x, y, . . .) and letting z be the output. We write AO1,O2,...(x, y, . . .) to indicate that A is an
algorithm with inputs x, y, . . . and access to oracles O1,O2, . . . and by z

$← AO1,O2,...(x, y, . . .)
we denote the operation of running A with inputs (x, y, . . .) and access to oracles O1,O2, . . .,
and letting z be the output.
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2.2 Public-Key Encryption

A public-key encryption (PKE) scheme consists of three algorithms PKE = (PKE.kg,PKE.Enc,PKE.Dec).

(pk , sk) $← PKE.kg(1k); A probabilistic key-generation algorithm that produces a key pair for
given security parameter k ∈ N. The public-key pk defines a message space MsgSp.

C $← PKE.Enc(pk ,M); A probabilistic algorithm that outputs a ciphertext C for a message
M ∈ MsgSp.

M
$← PKE.Dec(sk ,C ); A probabilistic decryption algorithm that decrypts ciphertext C to re-

cover a message M . It may also output a special symbol ⊥ to represent rejection.

For consistency, we require that for all k ∈ N, all (pk , sk), all messages M ∈ MsgSp, it must
hold that Pr[PKE.Dec(sk ,PKE.Enc(pk ,M)) = M ] = 1, where the probability is taken over the
above randomized algorithms.

The security we require for PKE is IND-CCA security [42]. It is captured by defining the
following experiment.

Experiment Exppke-cca
PKE ,A (k)

(pk , sk) $← PKE.kg(1k)
(M0,M1,St1) $← APKE.Dec(sk ,·)

1 (pk)
b

$← {0, 1} ; C ∗ $← PKE.Enc(pk ,Mb)
b′

$← APKE.Dec(sk ,·)
2 (C ∗,St1)

If b 6= b′ then return 0 else return 1.

The adversary A2 is restricted not to ask C ∗ to the decryption oracle PKE.Dec and the two
messages M0 and M1 have to be of equal length.

We define the advantage of A in the chosen-ciphertext experiment as

Advpke-cca
PKE ,A (k) = |Pr[Exppke-cca

PKE ,A (k) = 1]− 1/2| .

A PKE scheme PKE is said to be indistinguishable against chosen-ciphertext attacks (IND-
CCA secure in short) if the advantage function Advpke-cca

PKE ,A (k) is a negligible function in k for
all polynomial-time adversaries A.

2.3 Identity-based Key-Encapsulation Mechanism

An identity-based key-encapsulation mechanism (IBKEM) scheme IBKEM = (IBKEM.Kg,
IBKEM.Extract, IBKEM.Enc, IBKEM.Dec) [45, 12] consists of four polynomial-time algorithms.

(pk , sk) $← IBKEM.Kg(1k); A probabilistic key-generation algorithm that produces a master key
pair for given security parameter k ∈ N. The public-key pk defines a key space KeySp and
an identity space IDSp.

sk [id ] $← IBKEM.Extract(sk , id); A probabilistic algorithm that outputs a user secret key sk [id ]
for identity id .

(C,K) $← IBKEM.Enc(pk , id); A probabilistic algorithm that creates a key K and a ciphertext
C for identity id .
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K ← IBKEM.Dec(sk [id ], id , C); A deterministic decryption algorithm that decapsulates cipher-
text C with identity id to recover a session key K. It may also outputs a special symbol
⊥ to represent rejection.

For consistency, we require that for all k ∈ N, all identities id , and all (C,K) $← IBKEM.Enc(pk , id),
we have Pr[IBKEM.Dec(IBKEM.Extract(sk , id), id , C) = K] = 1, where the probability is taken
over the choice of (pk , sk) $← IBKEM.Kg(1k), and the coins of all the algorithms in the expression
above.

For fixed public key pk and identity id we define the set of valid ciphertexts CipherSp =
CipherSp(pk , id) as all possible C that can be output from the probabilistic (C,K) $← IBKEM.Enc(pk , id).

2.4 Tag-KEM

A key-encapsulation mechanism with tags (tag-KEM) [3] TKEM consists of four polynomial-time
algorithms.

(pk , sk) $← TKEM.Kg(1k); A probabilistic key-generation algorithm that produces a master key
pair for given security parameter k ∈ N. The public-key pk defines a key space KeySp and
a tag space TagSp.

(K,ω) $← TKEM.SKey(pk); A probabilistic algorithm that outputs a key K and some state
information ω.

C
$← TKEM.Enc(t , ω); A probabilistic algorithm that creates a ciphertext C for tag t and key
K which is implicitly transmitted by state information ω.

K
$← TKEM.Dec(sk , t , C); A probabilistic decryption algorithm that decapsulates ciphertext C

with tag t to recover a session key K. It may also output a special symbol ⊥ to represent
rejection.

Note that in contrast to the original definition [3] we allow decapsulation also to be a probabilistic
algorithm.

For consistency, we require that for all k ∈ N, all (pk , sk), all tags t ∈ TagSp, and all (K,ω) $←
TKEM.SKey(pk) and C $← TKEM.Enc(t , ω), it must hold that Pr[TKEM.Dec(sk , t , C) = K] = 1,
where the probability is taken over the above randomized algorithms.

The security we require for tag-KEMs is IND-CCA security [3]. It is captured by defining
the following experiment.

Experiment Exptkem-cca
TKEM ,A(k)

(pk , sk) $← TKEM.Kg(1k) ; (K∗1 , ω) $← TKEM.SKey(pk) ; K∗0
$← KeySp ; b $← {0, 1}

(t∗,St1) $← ATKEM.Dec(sk ,·,·)
1 (pk ,K∗b )

C∗
$← TKEM.Enc(t∗, ω)

b′
$← ATKEM.Dec(sk ,·,·)

2 (C∗,St1)
If b 6= b′ then return 0 else return 1.

The adversary is restricted not to ask (t∗, C∗) to the decryption oracle TKEM.Dec.
We define the advantage of A in the chosen-ciphertext experiment as

Advtkem-cca
TKEM ,A(k) = |Pr[Exptkem-cca

TKEM ,A(k) = 1]− 1/2| .
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A tag-KEM TKEM is said to be indistinguishable against chosen-ciphertext attacks (IND-CCA
secure in short) if the advantage function Advtkem-cca

TKEM ,A(k) is a negligible function in k for all
polynomial-time adversaries A.

2.5 Data Encapsulation Mechanism

A data encapsulation mechanism (DEM, in short) DEM = (DEM.Enc,DEM.Dec) with key-space
{0, 1}k is specified by its encryption algorithm DEM.Enc and decryption algorithm DEM.Dec.
The DEM needs to be indistinguishable against one-time attacks captured by defining the ind-
ot-advantage of an adversary B as

Advdem-ind-ot
DEM ,B (k) = |Pr[b = b′ : KS

$← {0, 1}k ; b $← {0, 1} ; b′ $← BLOR(Ks,·,·,b)(1k)]− 1/2|

Above, LOR(KS ,M0,M1, b) returns ψ $← DEM.Enc(KS ,Mb). B is allowed only one query to this
left-or-right encryption oracle, consisting of a pair of equal-length messages.

2.6 Tag-KEM/DEM: From Tag-KEM to Hybrid PKE

We transform a tag-KEM TKEM = (TKEM.Kg,TKEM.SKey,TKEM.Enc,TKEM.Dec) and a
DEM DEM = (DEM.Enc,DEM.Dec) into a public-key encryption scheme PKE = (PKE.kg =
TKEM.Kg,PKE.Enc,PKE.Dec) as follows. For completeness the formal definition of a PKE
scheme is given in Section 2.2.

PKE.Enc(pk ,M)
(K,ω) $← TKEM.SKey(pk)
ψ ← DEM.Enc(K,M)
C

$← TKEM.Enc(ψ, ω)
Return C||ψ

PKE.Dec(sk , C||ψ)
K

$← TKEM.Dec(sk , C)
M ← DEM.Dec(K,ψ)
Return M

The following was proved in [3].

Theorem 1. Suppose TKEM is IND-CCA secure and DEM is IND-OT secure. Then the PKE
scheme is IND-CCA secure.

2.7 Chameleon Hash

A Chameleon Hash CMH = (CMH.Kg,CMH.H,CMH.Trap) is specified by the following algo-
rithms [34].

(pkch , skch) $← CMH.Kg(1k); A key-generation algorithm CMH.Kg that outputs a pair of hash
and trapdoor keys pkch , skch , respectively. The hash key defines the message space MsgCMH

and randomness space RandCMH.

h← CMH.H(pkch ,m, s); A hash algorithm that takes the hash key pkch , message m ∈ MsgCMH,
and randomness s ∈ RandCMH and outputs a hash value h.

s← CMH.Trap(skch ,m
′, s′,m); An algorithm that outputs randomness s uniformly such that

CMH.H(pkch ,m
′, s′) = CMH.H(pkch ,m, s) for given m′,m ∈ MsgCMH and s′ ∈ RandCMH by

using trapdoor-key skch .
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In the original security definition of a Chameleon hash, full collision resistance [23] was
considered. However, in our case something weaker is sufficient, i.e., random prefix collision
resistance [3], which seems close to the target collision resistance [37, 5] rather than full collision
resistance. It is captured by defining the following experiment.

Experiment Expcmh-rpc
CMH ,A (k)

(pkch , skch) $← CMH.Kg(1k)
(m,St) $← A1(pkch)
s

$← RandCMH

(m′, s′) $← A1(s,St)
If CMH.H(pkch ,m

′, s′) = CMH.H(pkch ,m, s)
∧

(m′, s′) 6= (m, s) then return 1 else return 0.

We define the success probability of A in the above experiment as

Advcmh-rpc
CMH ,A (k) = Pr[Expcmh-rpc

CMH ,A (k) = 1] .

A chameleon hash CMH is said to be random prefix collision resistant (RPC secure, in short)
if Advcmh-rpc

CMH ,A (k) is a negligible function in k for all polynomial-time adversaries A.

Chameleon Hash based on DLOG. To apply our generic transformation in Section 5, we
recall a simple construction from [34] of a discrete-log based Chameleon hash. The key gen-
erator creates a random group element h = gz, from a multiplicative cyclic group G of prime
order p. The public hash key pkch is h, the trapdoor key skch is z. Message space and ran-
domness are defined as Zp. To hash an element m ∈ Zp using randomness s ∈ Zp, com-
pute gmhs ← CMH.H(pkch ,m, s). To compute a collision for (m′, s′,m) the trapdoor algorithm
CMH.Trap(skch = z,m′, s′,m) computes s = (m−m′)/z + s′ mod p. If m 6= m′ so is s 6= s′. We
verify the correctness of the trapdoor algorithm by CMH.H(pkch ,m

′, s′) = gm
′
hs
′

= gm
′+zs′ =

gm+zs = CMH.H(pkch ,m, s). This Chameleon hash is prefix collision resistant under the as-
sumption that computing discrete logs in G is computational infeasible (DLOG assumption).

3 Partitioned IBKEM

3.1 Definition

Intuitively, an IBKEM is said to be partitioned if the encapsulated key K does not depend on id ,
and the ciphertext C can be split into two parts C = (c1, c2). We requre the first part c1 not to
depend on id , and (c1, id) uniquely determines c2. Furthermore, it is needed that IBKEM.Dec re-
jects all invalid ciphertexts by returning a random key K ∈ KeySp. Note that, since IBKEM.Dec
is deterministic, the randomness for K would come from IBKEM.Extract(sk , id). Though such
strong properties are indeed provided by most of existing schemes in the standard model, we will
show that some requirements can be relaxed or generalized in the sequel. Partitioned IBKEM
is formally defined as follows.

Definition 2. An IBKEM scheme is partitioned if there exist three functions IBKEM.SKey,
IBKEM.EncKey, and IBKEM.EncID such that:

(K,ϕ) $← IBKEM.SKey(pk); A probabilistic algorithm that takes a master public-key, and outputs
a session key K and state information ϕ.
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c1 ← IBKEM.EncKey(ϕ); A deterministic algorithm that takes a state information ϕ generated
by IBKEM.SKey, and outputs the first part of ciphertext c1.

c2 ← IBKEM.EncID(ϕ, id); A deterministic algorithm that takes a state information ϕ and an
identity id, and computes the second part of ciphertext c2.

And they fulfill the following properties.

Consistency: Let IBKEM.EncID ◦ EncKey ◦ SKey(pk , id) be a composed function that computes
(K,ϕ) $← IBKEM.SKey(pk), c1 ← IBKEM.EncKey(ϕ), c2 ← IBKEM.EncID(ϕ, id) and
outputs ((c1, c2),K). Then for any pk and id, we requre that IBKEM.EncID ◦ EncKey ◦
SKey(pk , id) = IBKEM.Enc(pk , id).

Unique Split Property: For any c1, c2 and id such that (c1, c2) ∈ CipherSp(pk , id) for some
pk, there exists no (c′1, id

′) such that (c′1, id
′) 6= (c1, id) and (c′1, c2) ∈ CipherSp(pk , id ′).

$-Rejection Property: If (c̃1, c̃2) 6∈ CipherSp(pk , id), then IBKEM.Dec(IBKEM.Extract(sk , id), id , (c̃1, c̃2))
distributes statistically close to uniform over KeySp.

Note that it is important to require c2 to be uniquely defined on c1 and id , since otherwise a
trivial splitting of the ciphertext as (c1, c2) = (ε, c1||c2) is always possible, where ε denotes the
empty string.

At this point it is worth noting that, to our best knowledge, most of known IBKEMs [7, 47]
are in fact partitioned. We will present concrete instantiations of the resulting tag-KEMs in
Section 5. Most of known IBKEMs, except the Sakai et al. scheme [44] and the Boneh-Franklin
scheme [12], are partitioned. However, both schemes are out of our main purpose in this paper,
since they are only secure in the random-oracle model.

3.2 Security Model

The notion of indistinguishability against selective-identity and chosen-plaintext attacks, sID
IND-CPA in short, is defined in the same way as given in [17, 12] regardless of the partitioned
structure. Formally, it is defined through the following game between a challenger and an
adversary A = (A0,A1). Let scheme IBKEM = (IBKEM.Kg, IBKEM.Extract, IBKEM.SKey,
IBKEM.EncKey, IBKEM.EncID, IBKEM.Dec) be a partitioned IBKEM.

To an adversary A we associate the following experiment:

Experiment Expibkem-sid-cpa
IBKEM ,A (k)

(id∗,St0) $← A0(1k)
(pk , sk) $← IBKEM.Kg(1k) ; (K∗1 , ϕ) $← IBKEM.SKey(pk) ; K∗0

$← KeySp ; b $← {0, 1}
c∗1 ← IBKEM.EncKey(ϕ) ; c∗2 ← IBKEM.EncID(ϕ, id∗)
b′

$← AIBKEM.Extract(sk ,·)
1 (pk ,K∗b , c

∗
1, c
∗
2,St0)

If b 6= b′ then return 0 else return 1

Adversary A is not allowed to query oracle IBKEM.Extract(sk , ·) for the target identity id∗.
It is stressed that though the above experiment is described by using the separated encryption

functions of an ’partitioned’ IBKEM, from the viewpoint of the adversary it is exactly the same
experiment as in the standard selective-ID IBKEM security definition presented in [12]. Hence
an adversary having some advantage in attacking the standard IBKEM security has exactly the
same advantage in attacking the partitioned IBKEM security described in the above experiment.
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We define the advantage of A in the experiment as

Advibkem-sid-cpa
IBKEM ,A (k) = |Pr[Expibkem-sid-cpa

IBKEM ,A (k) = 1]− 1/2| .

A partitioned IBKEM IBKEM is said to be selective-identity IND-CPA if the advantage func-
tions Advibkem-sid-cpa

IBKEM ,A (k) is a negligible function in k for all polynomial-time adversaries A.

4 Transformation using Chameleon Hash

We construct a tag-KEM TKEM = (TKEM.Kg,TKEM.SKey,TKEM.Enc,TKEM.Dec) from a
partitioned selective-ID IBKEM scheme IBKEM and a chameleon hash scheme CMH . For ease
of notation, CMH is considered as global so that CMH.H is accessible from a function without
explicitly taking its key from outside.

First of all, we set the key generation algorithm TKEM.Kg = IBKEM.Kg.3 The rest of the
algorithms are constructed as follows.

TKEM.SKey(pk)
(K,ϕ) $← IBKEM.SKey(pk)
Return (K,ϕ)

TKEM.Enc(t , ϕ)
c1 ← IBKEM.EncKey(ϕ)
s

$← RandCMH ; id ← CMH.H(t ||c1, s)
c2 ← IBKEM.EncID(ϕ, id)
Return c← c1||c2||s

TKEM.Dec(sk , t , c)
c1||c2||s← c
id ← CMH.H(t ||c1, s)
sk [id ] $← IBKEM.Extract(sk , id)
K ← IBKEM.Dec(sk [id ], id , (c1, c2))
Return K

In this transformation we implicitly require that the Chameleon hash maps elements from correct
domains. In a more general setting we can apply (target) collision resistant hash functions, see
Section 5 for more details.

Theorem 3. If the partitioned IBKEM is selective-ID IND-CPA secure and the chameleon hash
is random prefix collision resistant, then the above TKEM is IND-CCA secure. In particular,

Advtkem-cca
TKEM ,A(k) ≤ Advibkem-sid-cpa

IBKEM ,B (k) + Advcmh-rpc
CMH ,C (k).

Proof. (Sketch.) Assume there exists an adversary A against the IND-CCA security of the tag-
KEM TKEM . We show that then there exists either an adversary B against the selective-ID
IND-CPA security of IBKEM or an adversary C against the random prefix collision resistance
of CMH .

We first describe adversary B.

Setup. Given security parameter k, adversary B sets up a random instance (pkch , skch) of the
chameleon hash via CMH.Kg(1k). It then generates the target identity id∗ by id∗ ←
CMH.H(t ′, s′) where t ′ and s′ are chosen randomly from appropriate domains. It sends id∗

to the challenger and receives a public-key pk and a challenge (K∗b , c
∗
1, c
∗
2). Adversary B

now runs A by giving pk and pkch .

Challenge Simulation. At some point, A outputs a target tag t∗. B then computes s∗ ←
CMH.Trap(skch , t ′, s′, t∗||c∗1) and sends K∗b and (c∗1, c

∗
2, s
∗) to A.

3When CMH is local, TKEM.Kg also invokes CMH.Kg and include the hash keys to its public-key.
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Decryption Oracle Simulation. If A makes a decryption query with a ciphertext (c1, c2, s)
and a tag t , adversary B simulates decryption oracle TKEM.Dec(sk , t , (c1, c2, s)) in the
following way. Let id = CMH.H(t ||c1, s).

Case 0: If (c1, c2, s, t) = (c∗1, c
∗
2, s
∗, t∗), return nothing.

Case 1: If (c1, s, t) 6= (c∗1, s
∗, t∗) and id = id∗, abort. (Denote this event by COL.)

Case 2: If (c1, s, t) = (c∗1, s
∗, t∗) and c2 6= c∗2, return a random K.

Case 3: If none of the above happens, send id to oracle IBKEM.Extract and receive sk [id ].
Then compute K ← IBKEM.Dec(sk [id ], id , (c1, c2)) and return K to A.

Output. Finally, A returns a guess bit b′. Adversary B returns the same bit b′ and terminates
the game.

Challenge simulation is perfect since id∗ = CMH.H(t ′, s′) = CMH.H(t∗, s∗). In the simulation
of the decryption oracle, Case 0 and 3 are just as defined. In Case 2, the ciphertext (c∗1, c2) is
clearly incorrect since c∗2 6= c2 is the only correct second part for (c∗1, s

∗, t∗). Consequently, due
to the perfect $-rejection property, the decryption oracle in the original experiment outputs a
random K, just as done by B. Accordingly, B perfectly simulates A’s view in the IND-CCA
experiment unless event COL happens.

If COL does not happen then B has the same advantage in winning the experiment as A.
On the other hand, we can build an adversary C against the random prefix collision resistance
of the chameleon hash that wins with probability one if COL happens during A’s simulation.
This concludes the proof.

Remark 4. Following Thoerem 1, one can combine the above tag-KEM and DEM to obtain
an IND-CCA secure hybrid PKE.

Remark 5. There may exist some particular IBKEMs where the ciphertext C can not even
be split into the two parts c1 and c2. One possible reason is that all elements in C depend on
id . This is in particular the case when C only consists of one element. In that case one can
add one “dummy element” c1 to the ciphertext such that: (i) the security of the IBKEM is
not influenced; (ii) the new split (c1, c2) now fulfills the “unique split property” as defined in
Definition 2. The IBKEM from Sakai et al. [44] is such an example where this dummy element
can easily be added without harming the security of the scheme, but only secure in the random
oracle model.

From a theoretical point of view we find the need for element c1 in the transformation quite
interesting. Since a fixed id uniquely links c1 with c2 we observe that c1 it can be viewed as a
“witness” to prove correctness of the resulting tag-KEM ciphertext. Without witness c1 such
correctness cannot be verified. This may enables an adversary to modify c2 in a certain way to
mount a CCA attack.

If the element c2 does not uniquely depend on c1 and id , we instead require a limited sense
of non-malleability. Namely, given correct (c1, c2, id), it is possible to create another correct
(c1, c

′
2, id) only with negligible probability even with access to the oracle IBKEM.Extract. Such a

property, however, would result in needing a dedicated proof, which is not preferable for generic
construction we concern.

Remark 6. In the proof of Theorem 3, adversary B must simulate the behavior of the decryp-
tion oracle IBKEM.Dec(IBKEM.Extract(sk , id∗), id∗, (c∗1, c2)) without knowing sk . The unique
split and perfect $-rejection properties from Definition 2 allow to do so.
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Such a simulation is also possible if IBKEM.Dec(IBKEM.Extract(sk , id∗), id∗, (c∗1, c2)) returns
a special symbol, say ⊥, for every incorrect c2. In such a case, B simply outputs ⊥ instead of
random K. Hence such a property, which we call ⊥-rejection property, is also acceptable instead
of $-rejection. Indeed, any kind of rejection is acceptable as long as the output distribution of
IBKEM.Dec(IBKEM.Extract(sk , id∗), id∗, (c∗1, c2)) is efficiently simulatable without knowing sk .
One can also relax the “perfect” part by introducing a small error probability that additively
affects to the reduction cost shown in Theorem 3 and 10.

5 Concrete Tag-KEMs

In this section we demonstrate the usefulness of our transformation by giving possible instantia-
tions of tag-KEMs based on known IBE schemes. Note that all our tag-KEMs imply IND-CCA
secure PKE schemes using the generic transformation from Section 2.6.

Bilinear Groups. All pairing based schemes will be parameterized by a pairing parameter
generator. This is a polynomial-time algorithm G that on input 1k returns the description
of an multiplicative cyclic group G of prime order p, where 2k < p < 2k+1, the description
of a multiplicative cyclic group GT of the same order, and a non-degenerate bilinear pairing
ê: G × G → GT . See [12] for a description of the properties of such pairings. We use G∗ to
denote G \ {1}, i.e. the set of all group elements except the neutral element. Throughout the
paper we use PG = (G,GT , p, ê, g) as shorthand for the description of bilinear groups, where g
is a generator of G.

The BDDH assumption in PG is captured by defining the bddh-advantage of an adversary
B as

Advbddh
PG,B(k) = |Pr[B(gx, gy, gz, ê(g, g)xyz) = 1]− Pr[B(gx, gy, gz, gr) = 1]|

where x, y, z, r $← Z∗p.
In the following concrete transformation, we make use of a Chameleon hash from [34] based

on DLOG assumption recalled in Section 2.7. Note that the BDDH assumption in PG implies
the DLOG assumption in G. The Chameleon hash maps elements from Zp to G. Unfortunately,
in our application we additionally need to modify it to map elements from TagSp × G to Zp.
To this end we employ two (target collision-resistant) hash functions CR : {0, 1}∗ ×G→ G and
TCR : G → Zp. The modified Chameleon Hash function is defined as CMH.Hdl(h, t||c1, s) =
TCR(gCR(t||c1)hs). If CR is a collision resistant hash function and TCR is a target collision
resistant hash function then the modified Chameleon Hash is prefix collision resistant.

5.1 Based on Boneh-Boyen’s IBE

We first recall the (first) IBE scheme from Boneh and Boyen [7] which we already present in its
partitioned IBKEM form BB = (BB.Kg,BB.SKey,BB.EncKey,BB.EncID,BB.Extract,BB.Dec).

BB.Kg(1k)
x0, x1, y

$← Z∗p
u0 ← gx0 ; u1 ← gx1

v ← ê(g, g)y

pk ← (u0, u1, v)
sk ← (x0, x1, y)
Return (pk , sk)

BB.SKey(pk)
r

$← Z∗p ; K ← vr ∈ GT

Return (K,ϕ = (pk , r))

BB.EncKey(ϕ = (pk , r))
Return c1 ← gr

BB.EncID(id , ϕ = (pk , r))
Return c2 ← (u0u

id
1 )r

BB.Extract(sk , id)
s

$← Z∗p
d1 ← gs ; d2 ← gy · (u0u

id
1 )s

Return sk [id ] = (d1||d2)

BB.Dec(sk [id ], id , c1||c2)
Parse sk [id ] = (d1, d2)
Return K ← ê(c1, d2)/ê(c2, d1)
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The above IBKEM scheme is known to be selective-ID IND-CPA secure [7] under the BDDH
assumption. We quickly verify it has the perfect $-rejection property. Fix pk and id and let
C̃ = (c̃1, c̃2) 6∈ CipherSp be a ciphertext that was not generated by the encapsulation algo-
rithms. That means that c̃1 = gr1 and c̃2 = (u0u

id
1 )r2 for some r1 6= r2. Then, probabilistic

IBKEM.Dec(IBKEM.Extract(sk , id ]), c̃) picks a random s ∈ Zp and returns

K = ê(c̃1, g
y·(u0u

id
1 )s)/ê(c̃2, g

s) = ê(gr1 , gy)·ê(gr1 , (u0u
id
1 )s)/ê((u0u

id
1 )r2 , gs) = vr1 ·ê(g, u0u

id
1 )s(r1−r2).

Since for every decapsulation a fresh random value s ∈ Zp is chosen, K is indeed a random
key, uniformly distributed, and independent of anything else. On the other hand, a consistent
ciphertext C̃ ∈ CipherSp has r := r1 = r2 and yield the correct key K = vr.

Using the transformation from Section 4 and the modified DLOG-based Chameleon Hash
CMH.Hdl(h, ·, ·) we get the following tag-KEM. As it was already done in [17, 14, 30, 31], decap-
sulation can be further simplified by using sk to reject all inconsistent ciphertexts that are not
contained in CipherSp.

TKEM.Kg(1k)
(pk , sk) $← BB.Kg(1k)
z

$← Z∗p ; h← gz

pk ′ ← (pk , h)
Return (pk ′, sk)

TKEM.SKey(pk ′)
r

$← Z∗p ; K ← vr ∈ GT

Return (K,ϕ = (pk ′, r))

TKEM.Enc(t , ϕ = (pk ′, r))
c1 ← gr

s
$← Zp ; id ← CMH.Hdl(h, t||c1, s)

c2 ← (u0u
id
1 )r

Return C = c1||c2||s

TKEM.Dec(sk , t , c1||c2||s)
id ← CMH.Hdl(h, t||c1, s)
If cx0+id·x1

1 6= c2
then return ⊥

Else Return K ← ê(c1, gy)

Security of the above tag-KEM can be reduced by Theorem 3 to the security of the under-
lying IBKEM and the Chameleon hash. Hence the tag-KEM is IND-CCA under the BDDH
assumption.

There is also a second IBE scheme in the paper by Boneh and Boyen [7], i.e. a (more
efficient) scheme based on the stronger q-BDDHI assumption. We remark that applying our
transformation to this scheme leads to a tag-KEM that is almost identical to the above tag-
KEM. We therefore forbear from giving more details about the resulting here. This is reminiscent
to what what happens to the two Boneh-Boyen IBE schemes applied to the CHK transformation
from [18], see [31] for more details.

The above scheme uses a Chameleon Hash which additionally employs two hash functions
to map elements to the proper domains. We now show a non-generic improvement of the above
scheme that avoids these problems. The idea is to use an implicit Chameleon Hash in the
exponent defined as id = ICMH.H(t ′, s) = t ′ + x2s. In the public key of the Chameleon hash
we only include ux2

1 , so uICMH.H(t ′,s)
1 can be publicly evaluated by computing ut ′

1 · us2. Hence the
element c2 of the IBKEM ciphertext can be computed as c2 = (u0u

id
1 )r = (u0u

t ′
1 ·us2)r. Breaking

prefix collision resistance of this implicit Chameleon hash is as hard as breaking the DLOG
assumption in G. A similar technique was already used in [8] to obtain short signatures without
random oracles. Again, we need a collision-resistant hash function CR : TagSp ×G1 → Zp.
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TKEM.Kg(1k)
(pk , sk) $← BB.Kg(1k)
x2

$← Z∗p ; u2 ← ux2
1

pk ′ ← (pk , u2)
sk ′ ← (sk , x2)
Return (pk ′, sk ′)

TKEM.SKey(pk ′)
r

$← Z∗p ; K ← vr ∈ GT

Return (K,ϕ = (pk ′, r))

TKEM.Enc(t , ϕ = (pk ′, r))
s

$← Z∗p ; c1 ← gr

t ′ ← CR(c1||t) ; c2 ←
(
u0u

t′

1 u
s
2

)r

Return C = c1||c2||s

TKEM.Dec(sk ′, t , c1||c2||s)
t ′ ← CR(c1||t)
If cx0+t′·x1+s·x2

1 6= c2
then return ⊥

Else Return K ← ê(c1, gy)

We apply Theorem 3 (with obvious modifications to take into account the implicit Chameleon
hash) to prove that the above tag-KEM is IND-CCA secure if the hash function CR is collision
resistant and the BDDH assumption holds in PG.

5.2 Based on Waters’ IBE

Viewing Waters’ (adaptive-identity secure) IBE scheme [47] as an IBKEM we note that in fact
it is already a partitioned IBKEM.

Let CR : TagSp×G→ {0, 1}n be a collision resistant hash function, where n ≈ k is a security
parameter of the scheme. The transformation from Section 7.3 gives the following tag-KEM.

TKEM.Kg(1k)
x0, x1, . . . , xn, y

$← Z∗p
u0 ← gx0 ; . . . ; un ← gxn

z ← ê(g, g)y

pk ← (u0, . . . , un, z)
sk ← (x0, . . . , xn, g

y)
Return (pk , sk)

TKEM.SKey(pk)
r

$← Z∗p ; K ← zr

Return (K,ϕ = (pk , r))

TKEM.Enc(t , ϕ = (pk , r))
c1 ← gr

id ← CR(t||c1) ; c2 ← (u0

∏n
i=1 u

idi
i )r

Return C = c1||c2

TKEM.Dec(sk , t , c1||c2)
id ← CR(t||c1)
If cx0+

Pn
i=1 idixi

1 6= c2
then return ⊥

Else Return K ← ê(c1, gy)

Here id i means the ith bit of id ∈ {0, 1}n. In fact, one can readily verify that the proof in [47]
already shows that, under the BDDH assumption, Waters’ IBKEM is strongly adaptive-ID IND-
CPA. Using the tag-KEM/DEM framework from Section 2.6 the obtained PKE scheme is the
same as the “direct PKE scheme based on IBE techniques” from [14]. Security of the PKE
scheme can now be directly understood in terms of Theorem 10, i.e. by reducing it to the
security of the hash function plus the strong security properties of Water’s original IBE scheme.
In contrast, [14] had to rely on a dedicated proof.

Kiltz [32] recently showed that the technique from Waters [47] can also be applied to the
“inversion-based” IBE scheme from Boneh and Boyen [7] to obtain an another adaptive-identity
secure IBE scheme based on the q-BDHI assumption. Viewing this scheme as an IBKEM we
note that in fact it is already a partitioned IBKEM and hence it leads to another PKE scheme,
similar to the one described above.

Gentry proposed yet another adaptive-identity secure IBE scheme in the standard model [28].
Unfortunately, we are not able to prove the implied IBKEM secure in the sense of Section 7.3.

5.3 Comparison

A quick comparison of all tag KEMs discussed in this section is given in Table 1. As security
parameter we fixed k = 128 bits. For pairing groups that means that elements in G can be
represented in ≈ 256 bits. We remark that using the concept of sequential multiplications all
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Tag-KEM Security Ciphertext Encryption Decryption Keysize
Assumption Overhead #pairings + #[multi,regular]-exp (pk/sk)

§5.1 BDDH 768 0 + [1, 2] 1 + [0, 1] 4/3
§5.1 (implicit CMH) BDDH 768 0 + [1, 1] 1 + [0, 1] 4/4
§5.2 BDDH 512 0 + [3, 0] 1 + [0, 1] ≈ 130/130

Table 1: Efficiency comparison for our chosen-ciphertext secure tag KEMs. For efficiency we
count the number of pairings+[multi exponentiations, regular exponentiations] used for encryp-
tion, decryption, and key generation. All “symmetric” operations (such as the hash function)
are ignored. Ciphertext overhead represents the expected difference (in bits) between ciphertext
and plaintext length for k = 128 bit security. For comparison we mention that relative timings
for the various operations are as follows: bilinear pairing ≈ 3 − 5 [39], multi(=sequential)-
exponentiation ≈ 1.2 [6], and regular exponentiation = 1.

decapsulation algorithms can be optimized to use only one pairing plus one sequential exponen-
tiation. The security reduction of Waters’ IBE to the BDDH assumption is not tight, i.e. it
introduces a log q bit of security, where q is the maximal number of decryption queries made
by an adversary. Also note that the key-size of the Waters’ IBE based tag-KEM from can be
reduced by the factor of l by loosing any other l bits of security in the reduction [20].

6 Transformation in the Threshold Setting

Observe that the generic transformation proposed in Section 4 does not require any private-key
operation. The chameleon hashing in the decryption process comes before the decryption of
the underlying IBKEM. Accordingly, if the underlying partitioned IBKEM is publicly verifiable,
so is the resulting tag-KEM. This feature is quite useful in the threshold setting where every
decryption server needs to be convinced of the correctness of the ciphertext, preferable without
interacting with other servers.

Based on the above observation, we extend our framework from Section 4 to construct
efficient threshold PKE schemes from selective-ID partitioned threshold IBKEMs. We quickly
sketch the ingredients of this transformation.

• A threshold version of our generic transformation that transforms threshold selective-ID
partitioned IBKEMs into threshold tag-KEMs, and further to a threshold hybrid encryp-
tion according to the following generic composition.

• An extension of the tag-KEM/DEM framework to the threshold setting. Every threshold
tag-KEM can be combined with a passively secure DEM yielding efficient threshold PKE.
This construction was briefly mentioned in the original work of [3], without a rigorous
proof.

• A concrete example of a threshold selective-ID partitioned IBKEM that is secure on the
BDDH assumption.

Putting all three ingredients together we get an efficient threshold PKE scheme which is IND-
CCA secure under the BDDH assumption. Similar to the standard (non-threshold) case our
proposal introduces a ciphertext overhead of 128 bits. To show the full details of the
construction, we need to translate all the building blocks and the tag-KEM/DEM composition
theorem into the threshold setting. Except for certain technical subtleties, all the results in the
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previous sections hold in the threshold setting. Section 6.1 introduces detailed definitions in the
threshold setting. Section 6.2 and Section 6.3 contain a generic transformation and a concrete
example, respectively. For building threshold hybrid PKE from threshold Tag-KEM in a generic
way, Appendix B.2 provides the threshold version of the tag-KEM/DEM composition theorem.

An existing proposal of a threshold PKE scheme was giving in [9]. This construction makes
use of the CHK-transformation [18] based on a one-time signature scheme and therefore has a
ciphertext overhead of roughly 65k bits. We note that the more efficient BK-transformation [13]
is not applicable in this setting since it does not provide public verifiability of the threshold
ciphertexts.

6.1 Definition in the Threshold Setting

For conventional definitions of threshold encryption, please refer to Appendix B.

6.1.1 Threshold Tag-KEM

We define threshold tag-KEM by following the definitions in [3]. As well as the threshold PKE
in the previous section, we restrict ourselves to a simple case where non-interactive shared
decryption is possible. A threshold tag-KEM TTKEM is a set of algorithms (TTKEM.Kg,
TTKEM.SKey, TTKEM.Enc, TTKEM.Dec, TTKEM.Com) with the following properties.

(pk , vk , sk) $← TTKEM.Kg(n, ν, k): an algorithm that generates a public-key pk , a public verifi-
cation key vk and a private-key sk = {sk1, ..., skn}, given the number of decryption players
n (n > 1), a threshold ν (1 ≤ ν ≤ n) and a security parameter k. Note that the space for
tags TagSp should be inherently defined by pk .

(K , ω) $← TTKEM.SKey(pk): an algorithm that generates a session key K ∈ KD and some state
information ω.

C $← TTKEM.Enc(pk , ω, t): given a tag t , an algorithm that encrypts K (embedded in ω) into
C .

σi ← TTKEM.Dec(pk , sk i,C , t): an algorithm that, given C and t , outputs ⊥ or decryption
share σi.

K/⊥ ← TTKEM.Com(pk , vk ,C , S, t): a combining algorithm that takes as input a public key
pk , a verification key vk , a ciphertext C , and a set of decryption shares S ⊆ {σ1, . . . , σn}
and a tag t . It outputs K or ⊥.

Consistency and Robustness. They are defined in the same way as those for TPKE and
hence the details are omitted.

Real or Random Security against Chosen Ciphertext Attacks. LetA be a polynomial-
time oracle machine. We consider the following experiment.
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Experiment Expttkem-cca
TTKEM ,A(k)

(Ic,St0) $← A0(1k)
(pk , vk , sk) $← TTKEM.Kg(n, ν, k)
(K1, ω) $← TTKEM.SKey(pk) ; K0

$← KeySp ; b $← {0, 1}
(t∗,St1) $← ATTKEM.Dec(sk i,·,·)i/∈Ic

1 (pk , vk ,Kb, {sk i}i∈Ic ,St0)
C ∗ $← TTKEM.Enc(pk , ω, t∗)
b′

$← ATTKEM.Dec(sk i,·,·)i/∈Ic
2 (C ∗,St1)

If b 6= b′ then return 0 else return 1

Here Ic ⊂ {1, . . . , n} is the set of corrupted players, where |Ic| < ν. A makes queries
Crrpt(i) to get the secret key sk i and internal state for the corrupted players i ∈ Ic. Also, A has
access to a decryption oracle TTKEM.Dec(sk i, ·, ·) for i /∈ Ic, and gets the corresponding shares
σi ← TTKEM.Dec(pk , sk i,C , t), where A2 is not allowed to query (C , t) = (C ∗, t∗). We define
the advantage of adversary A as

Advttkem-cca
TTKEM ,A(k) = |Pr[Expttkem-cca

TTKEM ,A(k) = 1]− 1/2| .

We say that threshold tag-KEM TTKEM is CCA secure if for any polynomial-time A, the
advantage Advttkem-cca

TTKEM ,A(k) is a negligible function in k.

6.1.2 Partitioned Threshold IBKEM

The partitioned threshold IBKEM is defined as follows. TIBKEM = (TIBKEM.Kg,TIBKEM.Extract,
TIBKEM.SKey,TIBKEM.Enc,TIBKEM.Dec,TIBKEM.Com) with participating players {1, . . . , n}
consists of above polynomial-time algorithms. Since TIBKEM could be partitioned, it means
that TIBKEM.Enc is possibly divided into algorithms TIBKEM.SKey, TIBKEM.EncKey and TIBKEM.EncID,
which will be explained in the following.

(pk , vk , sk) $← TIBKEM.Kg(n, ν, k); Via the randomized key-generation algorithm, it produces
a public key pk , a public verification key vk , and the n master-key shares sk = {sk i}
(i ∈ {1, . . . , n}) for security parameter k ∈ N and threshold parameter 1 ≤ ν ≤ n.

(sk [id ]i/⊥) $← TIBKEM.Extract(pk , id , sk i); Via the extraction algorithm, for a certain id , the
ith share sk [id ]i of the user secret key sk [id ] is generated. TIBKEM.Extract(vk , id , sk [id ]i)
also checks the validity of the created key shares sk [id ]i, outputs sk [id ]i if shares are valid,
otherwise ⊥ for invalid shares. We require all correctly generated sk [id ]i must be valid.

(C ,K) $← TIBKEM.Enc(pk , id); It creates an encapsulation C of the random session key K,
with respect to identity id . Note that the underlying threshold IBKEM can be partitioned.
Thus, we have the following, s.t.

(K,ϕ) $← TIBKEM.SKey(pk); A random session key K is generated without depending on
the id , but on pk . Meanwhile, a state information ϕ of random session key K is also
delivered.

c1 ← TIBKEM.EncKey(ϕ); A deterministic algorithm takes state information ϕ as input,
then outputs the first part of ciphertext.

c2 ← TIBKEM.EncID(ϕ, id); A deterministic algorithm takes as input ϕ and id , to generate
the second part of the ciphertext.
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where C = (c1, c2).

(Ki/⊥)← TIBKEM.Dec(pk , id , sk [id ]i,C ); The possessor of the ith user secret key share sk [id ]i
partially decapsulates the ciphertext C encrypted with respect to id to get back the ith
decapsulation share Ki. The validity of decapsulation shares can be checked with vk , and
the algorithm outputs ⊥ when decapsulation shares are not valid.

(K/⊥)← TIBKEM.Com(pk , vk , id , S,C ); If sufficiently many valid shares of Ki are collected
(denote the set as S), TIBKEM.Com can recover the session key K. Otherwise just output
⊥ for failure.

Roughly speaking, for correctness it is required that all correctly generated shares pass
their respective verification tests. And for completeness, any set of at least ν valid shares of
a common identity id should be able to reconstruct the user secret key sk [id], or alternatively
to decapsulate any correctly generated encapsulation sent to id . We say that a user secret key
or decapsulation share is correctly generated if it has been obtained by following the protocol
specification. Moreover, a user secret key or decapsulation share is said to be valid if it passes
the corresponding verification test.

Threshold Selective-ID Security Requirement. Next, we associate to a partitioned
threshold IBKEM TIBKEM and an adversary A the experiment Exptibkem-sid-cpa

TIBKEM ,A as follows:

Experiment Exptibkem-sid-cpa
TIBKEM ,A (k)

(Ic, id∗,St0) $← A(1k)
(pk , sk , vk) $← TIBKEM.Kg(n, ν, k)
(K∗1 , ϕ) $← TIBKEM.SKey(pk) ; c∗1 ← TIBKEM.EncKey(ϕ)
c∗2 ← TIBKEM.EncID(ϕ, id∗) ; K∗0

$← KeySp ; b $← {0, 1}
b′

$← ATIBKEM.Extract(sk ,·)(pk , vk , {sk i}i∈Ic ,K∗b , c∗1, c∗2,St0)
If b = b′ then return 1 else return 0

The set Ic ⊂ {1, . . . , n} is called the set of corrupted players and |Ic| must be upper bounded
by ν − 1. The oracle TIBKEM.Extract(sk , ·) returns sk [id ] $← TIBKEM.Extract(pk , sk , id) with
the restriction that A is not allowed to query for id = id∗. We define the advantage of A in the
experiment as

Advtibkem-sid-cpa
TIBKEM ,A (k) =

∣∣∣Pr
[
Exptibkem-sid-cpa

TIBKEM ,A (k) = 1
]
− 1/2

∣∣∣ .
A partitioned threshold selective-ID IBKEM TIBKEM is said to be secure against chosen-

plaintext attacks if for any ν, n with 0 ≤ ν ≤ n, the advantage function Advtibkem-sid-cpa
TIBKEM ,A (k) is

a negligible function in k for all polynomial-time adversaries A.

6.2 Generic Transformation

We construct a threshold tag-KEM TTKEM = (TTKEM.Kg,TTKEM.SKey, TTKEM.Enc, TTKEM.Dec,
TTKEM.Com) from a partitioned threshold selective-ID IBKEM scheme TIBKEM = (TIBKEM.Kg,
TIBKEM.Extract, TIBKEM.SKey, TIBKEM.EncKey TIBKEM.EncID, TIBKEM.Dec, TIBKEM.Com)
and a chameleon hash scheme. As well as the description in Section 4, the chameleon hash is
considered as global for simplicity.

The key generation function TTKEM.Kg is set to TTKEM.Kg = TIBKEM.Kg. Since the
threshold setting does not change anything in encryption, TTKEM.SKey and TTKEM.Enc are
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exactly the same as TKEM.SKey and TKEM.Enc given in Section 4. (Note that IBKEM.SKey,
IBKEM.EncKey and IBKEM.EncID used in the construction are the same as TIBKEM.SKey,
TIBKEM.EncKey and TIBKEM.EncID, respectively.) The decryption functions, TTKEM.Dec and
TTKEM.Com, are as follows.

TTKEM.Dec(pk , sk i,C , t)
c1||c2||s← C
id ← CMH.H(t ||c1, s)
sk [id ]i

$← TIBKEM.Extract(pk , id , sk i)
Ki ← TIBKEM.Dec(pk , id , sk [id ]i,C )
Return Ki

TTKEM.Com(pk , vk ,C , S, t)
c1||c2||s← C
id ← CMH.H(t ||c1, s)
K ← TIBKEM.Com(pk , vk , id ,C , S)
Return K

Theorem 7. If the partitioned IBKEM TIBKEM is selective-ID threshold IND-CPA secure
and the chameleon hash is random prefix collision resistant, then the above threshold tag-KEM
TTKEM is IND-CCA secure. In particular,

Advttkem-cca
TTKEM ,A(k) ≤ Advtibkem-sid-cpa

TIBKEM ,B (k) + Advcmh-rpc
CMH ,C (k).

Proof.[Sketch] The theorem is proved in almost the same way as done for the proof of Theorem 3.
The only difference is in the decryption oracle simulation where the oracle is made by a set of
servers and the adversary may corrupt some of the servers. The simulation is done as follows.

Decryption Oracle Simulation. If A makes a decryption query with a ciphertext (c1, c2, s)
and a tag t , adversary B simulates TTKEM.Dec(pk , sk i,C , t) and TTKEM.Com(pk , vk ,C , S, t)
executed by the decryption servers in the following way. Let id = CMH.H(t ||c1, s).

Case 0: If (c1, c2, s, t) = (c∗1, c
∗
2, s
∗, t∗), show the input to the corrupted servers and return ⊥

as an output from each uncorrupted server.

Case 1: If (c1, s, t) 6= (c∗1, s
∗, t∗) and id = id∗, abort.

Case 2: If (c1, s, t) = (c∗1, s
∗, t∗) and c2 6= c∗2, select a random Ki to simulate the output of

TIBKEM.Dec for every uncorrupted server i. Next, set S = {Kij , . . . } and return
K ← TIBKEM.Com(pk , vk , id ,C , S).

Case 3: If none of the above happens, send id to oracle TIBKEM.Dec and receive Ki for every
uncorrupted players. It also sends the input to the corrupted servers and obtain Ki (of
any value). Then set S = {Kij , . . . } and computeK ← TIBKEM.Com(pk , vk , id ,C , S)
and return K to A.

In case 0, the corrupted servers see that honest players reject the input as prescribed. In case 3,
the corrupted servers see correct outputs Ki from each uncorrupted server and the final output
K as prescribed. Finally, in case 2, incorrect results in random Ki, as expected. This results
in random K by the property of partitioned scheme. Thus, the decryption oracle simulation is
perfect.
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6.3 A Concrete Threshold Tag-KEM

Next, we show a concrete scheme which originates from a partitioned threshold IBKEM. By
our new transformation, it can be efficiently lifted to a CCA-secure threshold hybrid PKE.
More precisely, it will be first converted into a CCA-secure threshold tag-KEM after applying
the transformation due to Theorem 7, and further extended to a threshold hybrid PKE due to
Theorem 12 (the threshold tag-KEM/DEM composition theorem).

6.3.1 The Scheme

We first investigate that a threshold KEM based on Boneh-Boyen selective-ID IBE [7] is actually
a partitioned threshold selective-ID IBKEM. For simplicity, the description assumes a trusted
party that distributes the shared keys to the parties. Later, we discuss how to do this key
generation efficiently in a distributed way, without the trusted party.

TIBKEM.Kg(n, ν, k); For an ν out of n threshold cryptosystem which security parameter is k,
given (n, ν, k) as input, it works as follows. It first generates a bilinear group G with prime
order p (p > n), and group GT where bilinear mapping ê : G×G→ GT exists. It further
chooses a random ν − 1 degree polynomial f ∈ Zp[X], such that

f(X) = α0 + α1X + ...+ αν−1X
ν−1

keeping α0 ∈ Zp secret. Then it chooses generators g, g1, u0 ∈ G at random and computes
u1 = gα0 . The public key is set to

pk = {g, g1, u0, u1} ∈ G4 ×GT .

A hash function H is also chosen from a collision-free hash family, which is considered
embedded in the public key. Correspondingly, for i ∈ {1, . . . , n}, the master secret key of
server i is sk i = g

f(i)
1 , where

sk = {sk1, . . . , skn} = {gf(1)
1 , . . . , g

f(n)
1 } ∈ Gn .

Finally, the verification key is set to

vk = {vk1, . . . , vkn} = {gf(1), . . . , gf(n)} ∈ Gn .

For verifying whether the shared private key sk i is legitimate, it can be checked if ê(g, sk i)
?=

ê(vk i, g1).

TIBKEM.Extract(pk , id , sk i); Given pk and id , the key extraction algorithm for server i outputs
the private key share sk [id ]i = (i, di,0, di,1) as

di,0 = sk i · (u0u
id
1 )r, di,1 = gr

where r is randomly chosen from Zp. If the private key share was correctly generated the
following must be satisfied:

ê(vk i, g1) · ê(u0u
id
1 , di,1) = ê(g, gf(i)

1 ) · ê(g, (u0u
id
1 )r) = ê(g, di,0) .

TIBKEM.Enc(pk , id); The encapsulation algorithm can be divided into the following:

20



TIBKEM.SKey(pk); Given pk , randomly choose γ $← Zp and compute K = Zγ ∈
GT . Output session-key K and state information γ.

TIBKEM.EncKey(pk , γ); Given pk , γ, output c1 = gγ .

TIBKEM.EncID(pk , id , γ); On input of pk , id , γ, compute c2 = (u0u
id
1 )γ . Output

C = (c1, c2) ∈ G2.

TIBKEM.Dec(pk , id , sk [id ]i,C ); Parse ciphertext C to (c1, c2), check whether ê(c1, u0u
id
1 ) =

ê(c2, g). If not, output ⊥. Otherwise, make use of sk [id ]i = (i, di,0, di,1) which has
been checked by ê(vk i, g1) · ê(u0u

id
1 , di,1) = ê(g, di,0) and compute decryption share Ki =

(Ki,0,Ki,1),
Ki,0 = di,0 · (u0u

id
1 )si , Ki,1 = di,1 · gsi

where si
$← Zp, is randomly chosen from Zp.

TIBKEM.Com(pk , vk , id , S, C); Parse C to (c1, c2). Check the consistency of the decryption
shares from the servers, in the following way. Given pk , vk , a set of decryption shares S,
output ⊥ if |S| < ν. For Ki output by TIBKEM.Dec, use vk to verify whether there is

ê(g,Ki,0) ?= ê(g, gf(i)
1 ) · ê(g, (u0u

id
1 )r+si) = ê(vk i, g1) · ê(u0u

id
1 ,Ki,1)

and output ⊥ if it does not hold. Let S be the sufficient set of valid Ki, since the
the ciphertext consistency and key consistency have been checked. Wlog, we assume
S = (K1, . . . ,Kν). Let πi ∈ Zp (1 ≤ i ≤ ν) is the Lagrange coefficients, s.t. α0 = f(0) =∑ν

i=1 πif(i).

Since there is an intermediate key (K0,K1),

K0 =
ν∏
i=1

Kπi
i,0 = gα0

1 · (u0u
id
1 )r̄, K1 =

ν∏
i=1

Kπi
i,1 = gr̄

where r̄ is some number in Zp. Then session-key K can be computed as follows,

K =
ê(c1,K0)
ê(c2,K1)

=
ê(gγ , gα0

1 · (u0u
id
1 )r̄)

ê((u0uid
1 )γ , gr̄)

= ê(gγ , gα0
1 ) = ê(u1, g1)γ

The underlying scheme is partitioned and selective-ID threshold IND-CPA secure if the
BDDH assumption holds, since it is based on the Boneh-Boyen selective-ID secure IBE. By
applying the transformation from Section 6.2, it is straightforward to get a threshold tag-KEM
from the underlying partitioned threshold selective-ID IBKEM. The technique we use is a mod-
ified discrete-log based Chameleon Hash CMH . It is noteworthy that though using CMH , we
do not necessarily generate the trapdoor CMH.Trap, because it will be used only in the security
proof. However, it is important to generate the parameters for the chameleon hash without leak-
ing the trapdoor especially when the public-key is generated in a threshold manner. It may not
be generally possible, but for the following instantiation, one can use the distributed discrete-log
key-generation techniques from [40, 27, 2].

We finally remark that the key generation part can also be distributed by using known
techniques such as [40, 27, 2]. Note that, while [40] and [27] works only on the discrete logarithm
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Threshold Hybrid Ciphertext Encryption Decryption Public Parameters
Encryption Overhead #pairings + #[multi,regular]-exp (vk+pk+hash)

Ours(§6.2) 768 0 + [1, 2] 2 + [0, 2ν] n+4+1
BBH+CHK [9, 18] 1792-6.5k 0 + [1, 2]+Sig 2 + [0, 2ν]+Vfy n+4

Table 2: Efficiency comparison for our transformed chosen-ciphertext secure threshold hybrid
encryption. The table compares the similar parameters as Table 1, while all are based on the
BDDH assumption. On the encryption and decryption (encapsulation and decapsulation), the
generation and verification of the one-time signature is an obvious cost in CHK transforma-
tion [18]. The public parameter compares the number of group elements needed for public key
and verification key, while secret key sk are required to be n due to the threshold setting. Note
that we merely need a hash function, instead of a strong one-time signature. Usually, a one-time
signature introduces at least 1280-6k bits overhead (see the footnote in the introduction). In
addition to the two group elements, it appears to generate 1792-6.5k bits overhead totally.

assumption in the secure-channels setting, the adaptively secure key generation by [2] over
public-channel setting requires DDH assumption for non-committing encryption. However, the
non-committing encryption can be instantiated independently from the bilinear groups used in
the above construction, hence available for our purpose.

6.3.2 Security

Since the above construction is the result of applying Theorem 7 to the partitioned IBKEM of
threshold Boneh-Boyen scheme in [9], the security can be shown only by inspecting that the
scheme in [9] is partitioned. Since we only need selective-ID security, partitioning is only a
syntactical issue which can be easily verified. By combining Theorem 7 and the original proof
of threshold Boneh-Boyen selective-ID IBE in [9], we have the following theorem.

Theorem 8. Under the BDDH assumption, the threshold tag-KEM is secure in the sense of
threshold CCA security. In particular,

Advttkem-cca
TTKEM ,A(k) ≤ Advbddh

G,B (k) + Advcmh-rpc
CMH ,A (k) + qs/2p

if the BDDH assumption holds in (G,GT ), where qs is the upper bound of the decapsulation
queries.

Following Theorem 12, this threshold tag-KEM and a one-time secure DEM yield a CCA-secure
hybrid PKE.

6.3.3 Efficiency

A threshold PKE scheme was recently proposed in [9]. This construction makes use of the CHK-
transform [18] based on a one-time signature scheme and therefore has a ciphertext overhead
of roughly 6k bits. We note that the more efficient BK-transformation [13] is not applicable in
this setting since it does not provide public verifiability of the threshold ciphertexts.

In Table 2 we make a brief comparison of efficient threshold hybrid encryption schemes in the
standard model. We compare our threshold tag-KEM(§6.3.1) with the solution from BBH [9].
Obviously our schemes has an advantage in communication and computation cost. The data is
taken when the security parameter k is set to 128-bit, similar to Table 1. The overhead of the
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CHK transformation includes the computation of one-time signature and verification, and the
typical overhead in ciphertext expansion.

7 Removing the Chameleon Hash

The heart of the transformation in Section 4 is the use of a chameleon hashing. Somewhat
contradictory, this section shows several ways to eliminate the use of the chameleon hashing.
The resulting transformations are of either theoretical interest, or practical advantages.

7.1 Building a CMH-like Functionality from CR and OWF

With a closer look, one may notice that the scheme and the security proof in Section 4 did not
use the full power of the CMH because the simulator uses the trapdoor only once, i.e. answer
the target encapsulation query and return (t∗||c∗1, s∗) to the adversary. The minimum property
we really need are:

• to compute s∗ that maps given t∗||c∗1 into id∗ selected in advance, and

• random-prefix collision resistance.

Theoretically, such a function can be made from one-way function plus a collision resistant hash
function as follows. Let CR be a collision resistant hash function. We use Naor’s bit commitment
scheme [36]. Let M be the input message to hash. Let m be the length of M and Mi denotes
i-th bit of M . Let Ri

$← {0, 1}3k and R = (R1, . . . , Rm). Let G : {0, 1}k → {0, 1}3k be a
pseudo-random generator. Finally let s be s = (s1, . . . , sm) where si

$← {0, 1}k. We define the
CMH-like function HR(M, s) : {0, 1}m × {0, 1}km → {0, 1}k as

HR(M, s) = CR(h1|| . . . ||hm) where hi = Mi ·Ri ⊕G(si).

Note that R is included in the public-key.
We argue that the above function H fulfills the first property as follows. To compute s

that matches to a given M and prefixed hash value, first set Ri = G(s0,i) ⊕ G(s1,i). Then set
hi = G(s0,i) and compute v = CR(h1|| . . . ||hm). The value v is published as the preliminary fixed
value. When M is given, set si = sMi,i and s = (s1, . . . , sm). Such s fulfills v = HR(M, s) as
expected and the distribution of R, v and s are computationally indistinguishable from the real
one, otherwise the pseudo-randomness of G is broken. To see that this function is random-prefix
collision resistant, first observe that each hi can be opened to both Mi = 0 and Mi = 1 only
with negligible probability due to the statistical binding property of the Naor’s bit commitment.
Having two distinct hi clearly contradicts to the collision property of CR. Finally, we note G is
constructible from one-way functions and the construction is done.

Nonetheless, this is only of theoretical interest and out of the main scope of this paper since
the resulting scheme suffers a huge overhead both in the public-key and ciphertext size.

7.2 Directly Replacing CMH with RPC

As mentioned above, the trapdoor information of CMH is used only in the security proof. The
scheme therefore functions correctly even if chameleon hash function CMH is replaced by a
collision resistant hash function CR. More precisely, we can use a random prefix collision resistant
hash function RPC, which has more relaxed collision resistant property than that of CR as defined
in Section 2.7, and replace CMH.H(t ||c1, s) in TKEM.Enc and TKEM.Dec by RPC(t ||c1||s).
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With this modification the current security proof no longer works since the reduction al-
gorithm needs to compute s∗ that fulfills id∗ = RPC(t∗||c∗1||s∗) for id∗, t∗, and c∗1 selected in
advance. We circumvent this technical difficulty by allowing the reduction algorithm to access to
an oracle, which we call hash partial preimage oracle, that outputs such s∗ for input (id∗, t∗, c∗1)
whenever it exists. For this idea to work, it is required that the underlying selective-ID IBKEM
should remain IND-CPA even against the adversaries equipped with the partial preimage oracle.
It would be reasonable when the underlying IBKEM and RPC can be considered as independent.
Such a relaxation, which allows the adversary to access to a seemingly irrelevant oracle, has been
used in the literature, e.g. [41, 35].

For example, let us take the concrete scheme shown in Section 5.1. The scheme uses the
Boneh-Boyen’s IBE in the above mentioned modified transformation. The Boneh-Boyen’s IBE
is selective-ID IND-CPA under the BDDH assumption. To cope with the hash partial preimage
oracle, we need to strengthen the underlying assumption to the BDDH with the hash partial
preimage oracle. That is, the necessary assumption for the resulting tag-KEM to be secure is that
the BDDH assumption holds even for the adversary given access to the hash partial preimage
oracle. Assuming that SHA-256 or AES-based hash functions is RPC would be reasonable since
they are seemingly irrelevant to the number-theoretic structure of the BDDH problem. On the
other hand, using RPC based on the discrete-log assumption such as Pedersen hash would not
be acceptable especially when the group is shared with the BDDH instance.

The modified scheme improves the efficiency. All known efficient construction of CMH limit
the input length and need CR to compress the input string of arbitrary length. Needing single
RPC in the modified scheme thus saves the computation for CMH. Also, the public-key has no
additional elements than that of the underlying IBKEM. Note however that the length of the
ciphertext gets slightly longer because the randomness s would have to be chosen from larger
domain as shown in the following.

The modification applies only to TKEM.Enc and TKEM.Dec as shown below. All other
functions remain as described in the following.

TKEM.Enc(pk , t , ϕ)
c1 ← IBKEM.EncKey(ϕ)
s

$← RandRPC ; id ← RPC(s||t ||c1)
c2 ← IBKEM.EncID(ϕ, id)
Return c← c1||c2||s

TKEM.Dec(sk , t , c)
c1||c2||s← c
id ← RPC(s||t ||c1)
sk [id ] $← IBKEM.Extract(sk , id)
K ← IBKEM.Dec(sk [id ], id , (c1, c2))
Return K

Let RPC : RandRPC × {0, 1}∗ → IDSp be a random prefix collision resistant hash function.
For id ∈ IDSp and x ∈ {0, 1}∗, define Sx(id) by Sx(id) = {s ∈ RandRPC | id = RPC(s||x)}. We
assume that RPC has a property that for every x the distribution of id is statistically close to
uniform when s is taken uniformly. For the sake of this property we assume |RandRPC| ≥ |IDSp|.
Having such a property, the random prefix collision resistance is almost the same as the target
collision resistance since the adversary has no advantage by choosing t∗. It means that the
birthday attack is not applicable and we can expect shorter output length. Based on this
observation, we set |RandRPC| to 128 bits in our efficiency analysis in Table 3. Let Op-preimg be
a hash partial preimage oracle for RPC that takes as input (id , x) ∈ IDSp ×{0, 1}∗ and outputs
s∗

$← Sx(id). It outputs ⊥ if Sx(id) is empty. From the above statistical property, ⊥ is returned
only with negligible probability when id is chosen randomly.
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Theorem 9. If the partitioned IBKEM is selective-ID IND-CPA secure with regard to all ad-
versaries that have oracle access to Op-preimg and RPC is random prefix collision resistant, then
the above TKEM is IND-CCA secure.

Proof. The outline of the proof is the same as that of Theorem 3. The following describes
the difference only. We first show an adversary B against the selective-ID IND-CPA security of
IBKEM as follows.

Setup. Given security parameter k, adversary B chooses RPC and selects the target identity
id∗ $← IDSp. It sends id∗ to the challenger and receives a public-key pk and a challenge
(K∗b , c

∗
1, c
∗
2). Adversary B now runs A by giving pk .

Challenge Simulation. At some point, A outputs a target tag t∗. B then sends (id∗, t∗||c∗1)
to Op-preimg. If ⊥ is returned, abort. Otherwise, s∗ ∈ St∗||c∗1(id∗) is obtained. B sends K∗b
and (c∗1, c

∗
2, s
∗) to A.

“Decryption Oracle Simulation” and “Output” are unchanged.
Challenge simulation will be successful with overwhelming probability by the statistical prop-

erty of RPC. Furthermore, the distribution of selected id∗ and s∗ are statistically close to the
real execution where s∗ is selected first. The rest of analysis is unchanged and hence B simulates
A’s view in the IND-CCA experiment statistically close to the real execution unless event COL
happens.

If COL does not happen then B has the same advantage in winning the experiment as A
except for the negligible simulation errors. If COL happens during A’s simulation with notice-
able probability, we use A to build an adversary C against the random prefix collision resistance
property of RPC. Adversary C will attack RPC by correctly computing the IBKEM part with
the secret-key generated by itself and perfectly simulates A’s view in the IND-CCA experiment
till A outputs a collision.

7.3 Based on Strongly Adaptive-ID IBKEM

In Section 3.2 we introduced the security notion of selective-ID IND-CPA for IBKEMs. For
the stronger notion of security against “full-identity” IND-CPA attacks (IND-CPA security)
changes the security experiment from Section 3.2 as follows. Instead of committing to the target
identity id∗ before seeing the public key the adversary now can adaptively select it. Namely,
(pk , sk) $← IBKEM.Kg(1k) is done at the beginning of the experiment and pk is given to A0. No
changes in anywhere else. We however do not use this notion in this paper and introduce rather
stronger one as below to obtain a more efficient transformation.

Roughly, in this stronger case, the adversary is given session-key K∗b and the first part of
ciphertext c∗1 before selecting the target identity id∗. Note that K∗b and c∗1 are independent of
id∗ in partitioned IBKEMs. Formally, the experiment is as follows.

Experiment Expibkem-id-cpa∗

IBKEM ,A (k)

(pk , sk) $← IBKEM.Kg(1k) ; (K∗1 , ϕ) $← IBKEM.SKey(pk) ; K∗0
$← KeySp ; b $← {0, 1}

c∗1 ← IBKEM.EncKey(pk , ϕ)
(id∗,St1) $← AIBKEM.Extract(sk ,·)

1 (pk ,K∗b , c
∗
1)

c∗2 ← IBKEM.EncID(pk , ϕ, id∗)
b′

$← AIBKEM.Extract(sk ,·)
2 (c∗2,St1)

If b 6= b′ then return 0 else return 1
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Adversary A is not allowed to query oracle IBKEM.Extract(sk , ·) for the target identity id∗.
We define the advantage of A in the experiment as

Advibkem-id-cpa∗

IBKEM ,A (k) = |Pr[Expibkem-id-cpa∗

IBKEM ,A (k) = 1]− 1/2| .

A partitioned IBKEM IBKEM is said to be strongly adaptive-ID IND-CPA (strongly IND-CPA)
if the advantage functions Advibkem-id-cpa∗

IBKEM ,A (k) is a negligible function in k for all polynomial-time
adversaries A.

The fact that the adversary can adaptively select the target identity id∗ depending on K∗b
and c∗1 is crucial to our definition and also the reason why we call it strong adaptive-ID IND-CPA
security. In fact, there may exist partitioned IBKEMs that are adaptive-ID IND-CPA in the
standard sense of [12] (where id∗ has to be provided before receiving challenge ciphertext/key)
but not strongly adaptive-ID IND-CPA because of this information given in advance. However,
these separating examples will hardly appear in practise since c1 and K are both required to be
independent of id . For concrete schemes (such as [47]) it is an easy exercise to verify that the
schemes actually provide this stronger type of security.

We remark that this difficulty does not arise in the case of selective-ID IND-CPA security
since there the adversary has to commit to the target identity before even seeing the public key.

When a partitioned strongly adaptive-ID IBKEM is available, we can construct a tag-KEM
without any overhead. Indeed, the construction is obtained simply by removing the chameleon
hash from the construction in Section 4. For completeness, we show the construction below.

Set the key generation algorithm TKEM.Kg = IBKEM.Kg. The rest of the functions are
constructed as follows.

TKEM.SKey(pk)
(K,ϕ) $← IBKEM.SKey(pk)
Return (K,ϕ)

TKEM.Enc(pk , t , ϕ)
c1 ← IBKEM.EncKey(ϕ)
id ← t ||c1

c2 ← IBKEM.EncID(ϕ, id)
Return c← c1||c2

TKEM.Dec(sk , t , c)
c1||c2 ← c
id ← t ||c1

sk [id ] $← IBKEM.Extract(sk , id)
K ← IBKEM.Dec(sk [id ], id , (c1, c2))
Return K

Theorem 10. If the partitioned IBKEM is strongly adaptive-ID IND-CPA secure, then the
above TKEM is IND-CCA secure. In particular,

Advtkem-cca
TKEM ,A(k) ≤ Advibkem-id-cpa∗

IBKEM ,B (k).

The proof can be done by showing the construction of B from A. Unlike the selective-ID
case, B commits to the target identity after having c∗1 from the challenger and t∗ from A. Hence
B can form id∗ = t∗||c∗1 without any problem. The rest of the simulation is the same as that for
the proof of Theorem 3 with trivial modifications for removing the chameleon hash.

7.4 Another Approach

This section discusses another approach that might be straightforwardly derived from the $-
rejection property but eventually fails short without assuming further structural property.
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Similar to [14, 30] one could try to directly build a key-encapsulation mechanism [22] (KEM)
out of an sID partitioned IBKEM using a target-collision resistant hash function TCR as fol-
lows. To encapsulate, first compute key and the first part of the ciphertext as (K,ϕ) $←
IBKEM.SKey(pk) and c1 ← IBKEM.EncKey(ϕ). Then, the second part of the ciphertext is
computed as c2 ← IBKEM.EncID(ϕ, id), where id = TCR(c1) is used to tie the two ciphertexts
together. Whereas syntactically this is correct, without assuming further algebraic structure it
seems hard to relate security of the KEM to the security of the IBKEM. This is since a simulator
for the KEM security experiment interacting with the sID IBKEM challenger has to commit to
a target identity before seeing the public key. But in the scheme the target identity depends on
the first part of the target ciphertext and hence a stronger (and less natural) security require-
ment to the IBKEM scheme is needed for a general security reduction. In general, proving that
the IBKEM satisfies such a stronger security property seems not easier than providing a direct
proof for the transformed KEM.

7.5 Efficiency Comparison

We make an efficiency comparison (with a security parameter of 128 bits) of the IBE to PKE
transformations from [18, 13] with ours. The entries in Table 3 refer to the following transfor-
mations.

CHK+DLOTP: The CHK transformation instantiated with a one-time signature based on
the discrete-log problem. The one-time signature scheme and its security proof is given
in Appendix A. This transformation is secure under the DLOG assumption in the group.
The overall ciphertext expansion introduced by the CHK transformation consists of the
public key (three group elements) plus the signature. Depending on the instantiation of
the group this is between 1280 (elliptic curve groups) and 6k bits (prime-order subgroups
of Zq).

CHK+hash-tree: The CHK transformation instantiated with a hash-tree based one-time sig-
nature, as recommended in [18]. The latter signature scheme has the advantage of having
negligible computational cost but has a ciphertext overhead of roughly 65k (≈ 2562). This
construction is secure under the assumption that the used hash functions are one-way and
collision-resistant.

BK: The BK transformation instantiated with a computationally secure MAC (i.e., CBC-MAC)
and a UOWHF-based commitment scheme [13].

Ours+DLCH: Our transformation from Section 4 instantiated with a DLOG-based Chameleon
hash. The ciphertext overhead consists of one element in Z|G| which can be represented in
256 bits (independent of the group).

Ours+RPC: Our transformation from Section 7.2 based on a RPC-secure hash function.

Ours+strong IBKEM: Our transformation from Section 7.3 applied to a strongly secure
IBKEM.
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Transformation Input Overhead Additional Publicly
Ciphertext Enc Dec assumption verifiable?

CHK+hash-tree sID IBE + one-time sig 65k — — CR∗
√

CHK+DLOTP sID IBE + one-time sig 1.2k-6k 2 exp 2 exp DLOG
√

BK sID IBE + MAC/COM 704 — — MAC∗ —
Ours+DLCH §4 sID part. IBKEM + CMH 256 1 exp — DLOG

√

Ours §7.2 sID part. IBKEM + RPC hash 128 1 exp — RPC
√

Ours §7.3 fID part. IBKEM — — — strong IBKEM
√

Table 3: Efficiency of the transformations for 128 bits security. ∗Since OW is basically required
in public-key cryptography and implied by CR, we simply write CR here. Similarly, UOWHF
that could be implied from MAC is omitted in BK, as well.

8 Extensions

8.1 CCA-secure (Hierarchical) Identity-Based Encryption

Similar to the case of the CHK and BK transformations [19, 13] our transformations from
Section 4 generalize to the setting of (hierarchical) identity-based encryption (HIBE) [29]. In
particular, any partitioned selective-ID secure k-level HIB-KEM can be transformed into an
IND-CCA secure `− 1-level HIBE.

8.2 Tag-based KEMs

For the CHK and BK transformations [19, 13] from selective-ID secure IBE to CCA-secure PKE
it was recently shown in [30] that a more general concept called tag-based encryption (TBE)
is already sufficient for the transformations to work. TBE can be understood as IBE without
the necessity to perform key derivation. In contrast to IBE there exists known instantiations
of TBE schemes without pairings, for instance on the linear assumption [30]. We remark that
our transformations can also be stated in terms of partitioned tag-based KEMs leading to more
example instantiations than given in Section 5.
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A CMA-Secure One-time Signature based on DLP

Let G be a group generated by g where |G| is a prime. Let q = |G|.

Private-Key: a, b, c $← Zq

Public-Key: g1 = ga, g2 = gb, y = gc
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Signing: σ = (σ1, σ2) where σ1 ← Z|G| and σ2 = (c−m− aσ1)/b ∈ Zq for message m ∈ Zq.

Verification: y ?= gmgσ1
1 gσ2

2

Lemma 11. The above signature scheme is one-time chosen message secure under the discrete
logarithm assumption in G.

Proof. Let A1 denote an adversary that launches a one-time chosen message attack against the
above scheme. We construct A2 that solves the discrete-log problem by using A1 as a black-box.
Given a DLP instance Y = gX in G, A2 first flips a coin b $← {0, 1} and does one of the following.

[Case b = 0]

• (Setup.) Select (σ∗1, r, b)
$← Z3

q and set g1 = Y gr, g2 = gb, y = gcg
σ∗1
1 . Give public-key

(g1, g2, y) to A1.

• (Signature Simulation.) Given m∗ ∈ G fromA1, return (σ∗1, σ
∗
2) where σ∗2 = (c−m∗)/b mod

q.

• (Output.) Let (m,σ1, σ2) denote the successful forgery A1 outputs. If σ1 = σ∗1, abort.
Otherwise, output X = {(σ∗2 − σ2)b+ (m∗ −m)} /(σ1 − σ∗1)− r mod q.

[Case b = 1]

• (Setup.) Select (σ∗2, r, a) $← Z3
q and set g1 = ga, g2 = Y gr, y = gcg

σ∗2
2 . Give public-key

(g1, g2, y) to A1.

• (Signature Simulation.) Givenm∗ ∈ G fromA1, return (σ∗1, σ
∗
2) where σ∗1 = (c−m∗)/a mod

q.

• (Output.) Let (m,σ1, σ2) denote the successful forgery A1 outputs. If σ2 = σ∗2, abort.
Otherwise, output X = {(σ∗1 − σ1)a+ (m∗ −m)} /(σ2 − σ∗2)− r mod q.

In the case b = 0, output X is correct because a successful forgery implies Y = gm
∗
g
σ∗1
1 g

σ∗2
2 =

gmgσ1
1 gσ2

2 , and we have m∗ + (X + r)σ∗1 + bσ∗2 = m+ (X + r)σ1 + bσ2. Correctness in the case
of b = 1 can be inspected similarly.

Observe now that the view of A1 is identical for the cases b = 0 and b = 1. Hence b
is independent of the view of A1. When A1 outputs successful forgery (m,σ1, σ2), which is
not the same as (m∗, σ∗1, σ

∗
2), at least one of σ1 6= σ∗1 or σ2 6= σ∗2 happens. Hence A2 outputs

X with probability at least Pr[σ1 6= σ∗1|b = 0]+Pr[σ2 6= σ∗2|b = 1] = 1
2 Pr[A1 outputs forgery.].

Note that, unlike in our case, more efficient two-base Pedersen CMH [40] does not suit for
this purpose since it is not known to be chosen-message secure when it is used as a one-time
signature scheme. [48] shows its security in the generic model, which would only be useful when
other components already demand this model for their security.

B Threshold Hybrid PKE

In the following, we provide notions on threshold PKE, as well as the proof for proving the
threshold Tag-KEM/DEM composition theorem.
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B.1 Threshold Public-Key Encryption

Possibly, the most general way of defining threshold PKE would be to follow the definition
of conventional PKE, which consists of key generation algorithm, encryption algorithm and de-
cryption algorithm, and re-define key generation and decryption as sets of interactive algorithms
executed by each player. Having existing efficient schemes in mind, however, we follow the defini-
tion by [46] with details. The definition is not quite general but captures many existing schemes
where key generation may be done by a trusted party (in some cases it is actually shared) and
the decryption can be done efficiently in a non-interactive way such that each player only needs
to broadcast the result of local shared decryption. Nevertheless, such a loss of generality is
irrelevant to our results. Appropriate notes will be given when generality is to be considered.

(pk , vk , sk) $← TPKE.Kg(n, ν, k); A probabilistic key generation algorithm that generates public-
key pk , public verification key vk and private-key sk , on input of the number of de-
cryption players n (n > 1), a threshold ν (1 ≤ ν ≤ n), and a security parameter k.
sk = (sk1, . . . , skn) represents n shares of private keys. For each player i (i ∈ {1, . . . , n}),
sk i is given to decrypt the ciphertext share. vk is used to publicly check the validity of
the decryption shares.

C $← TPKE.Enc(pk ,M ; r); A probabilistic encryption algorithm outputs ciphertext C , on input
of public key pk , message M and randomness r.

σi ← TPKE.Dec(pk , sk i,C ); A (probabilistic) decryption algorithm, takes as input the public
key pk , a private sk i, and a ciphertext C , outputs a decryption share σi which can be a
special symbol ⊥ in the case of abnormal operation

M/⊥ ← TPKE.Com(pk , vk ,C , S); A combining algorithm takes as input the public key pk , the
verification key vk , a ciphertext C , and a set of decryption shares S ⊆ {σ1, . . . , σn}. It
outputs a message M or ⊥.

For correctness, we require that all validly generated decryption shares should be correctly
verified with regard to (pk , vk), and for more than ν distinct and valid decryption shares, the
encrypted message must be recovered.

Consistency and Robustness. A scheme should be consistent, i.e., for any legitimately
generated keys (pk , vk , sk), any ciphertext and its corresponding decryption shares {σ1, . . . , σn},
TPKE.Com(pk , vk ,C , S) outputs the same message M 6= ⊥ for any S ⊆ {σ1, . . . , σn} of size ≥ ν.
Let A be an adversary that can corrupt up to ν − 1 players. On a corruption, A is given all the
internal state of the corrupted player and through control over the player from that moment.
We say a scheme is robust if consistency is achieved with overwhelming probability, say 1 − ε,
for any S that contains at least ν decryption shares from honest players in the presence of A.
Here, ε is a negligible function in the security parameter k (possibly in n and ν, too), and the
probability is taken over the coin flips of A. The adversary can be static, i.e., decides which
player to be corrupted in advance or adaptive, i.e., corruption occurs depending on the behavior
of the players.

Chosen Ciphertext Security. The chosen ciphertext security in threshold scenario is analo-
gous to conventional CCA security [42]. Next we define the security in the following experiment,
where adversary A (A0,A1,A2) is a polynomial-time oracle machine.
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Experiment Exptpke-cca
TPKE ,A(k)

(Ic,St0) $← A0(1k)
(pk , vk , sk) $← TPKE.Kg(n, ν, k)
(M0,M1,St1) $← ATPKE.Dec(sk i,·)i/∈Ic

1 (pk , vk , {sk i}i∈Ic ,St0)
C ∗ $← TPKE.Enc(pk ,Mb; r) ; b $← {0, 1}
b′

$← ATPKE.Dec(sk i,·)i/∈Ic
2 (C ∗,St1)

If b 6= b′ then return 0 else return 1

Ic ⊂ {1, . . . , n} chosen by A is a set of corruption players, which cardinality must be less than
ν, i.e. the adversary cannot obtain more than ν − 1 secret keys. The adversary A can have
access to oracles which are with regard to a legitimate (pk , vk). A makes queries Crrpt(i) if the
player i in the corruption set, i.e. i ∈ Ic, which returns sk i up to ν − 1 times and the random
tape of player i. Otherwise, A has access to decryption oracle TPKE.Dec(sk i, ·)i/∈Ic , and gets the
response σi ← TPKE.Dec(pk , sk i,C ). It is prohibited to ask C ∗ by A2.

Note that allowing access to the result of shared decryption is sufficient to model active and
adaptive adversary since we restrict ourselves to the non-interactive case as mentioned above.
An adaptive adversary can corrupt arbitrary player after seeing the result of shared decryption
by arbitrary player. In the case of static adversaries, corrupted players will be selected before
starting the game. The adversary may locally executes TPKE.Com to complete the decryption if
needed. More complicated interactive case can be handled by treating each round of interaction
as a function and allow the adversary to access to it. The key generation can be shared in the
same manner if desired.

Then we define the advantage of A in the above experiment as

Advtpke-cca
TPKE ,A(k) = |Pr[Exptpke-cca

TPKE ,A(k) = 1]− 1/2| .

A threshold public-key encryption TPKE is said to be indistinguishability secure against chosen-
ciphertext attacks (IND-CCA) if the advantage functions Advtpke-cca

TPKE ,A(k) is a negligible function
in k for all polynomial-time adversaries A.

B.2 Threshold Tag-KEM/DEM Framework

From a threshold tag-KEM and a DEM, we construct a threshold hybrid PKE as follows.

TPKE.Kg(n, ν, k)
(pk , vk , sk) $← TTKEM.Kg(n, ν, k)
Output (pk , vk , sk)

TPKE.Enc(pk ,m)
(ω,K ) $← TTKEM.SKey(pk)
ψ ← DEM.Enc(K ,m)
C ← TTKEM.Enc(pk , ω, ψ)
Output c = (C , ψ)

TPKE.Dec(pk , sk i, c)
c

parse−→ (C , ψ)
σi ← TTKEM.Dec(pk , sk i,C , ψ)
Output σi

TPKE.Com(pk , vk , c, S)
c

parse−→ (C , ψ)
K ← TTKEM.Com(pk , vk ,C , S, ψ)
If K = ⊥, output ⊥.
Otherwise, m← DEM.Dec(K , ψ)
Output m

Since TPKE.Kg is the same as TTKEM.Kg, if TTKEM.Kg is shared, so is TPKE.Kg.
We prove the following threshold tag-KEM/DEM composition theorem.
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Theorem 12. The above threshold hybrid PKE scheme is threshold CCA if the tag-KEM TTKEM
is threshold CCA and the DEM is one-time secure. In particular,

Advtpke-cca
TPKE ,A(k) ≤ 2Advttkem-cca

TTKEM ,A(k) + Advdem-ind-ot
DEM ,B (k)

Proof. Outline of the proof follows that of the main theorem of [3]. Let X be the event that
b̃ = b happens in experiment Exptpke-cca

TPKE ,A(k). Observe that PKE.Enc is now implemented by

(ω,K )← TTKEM.SKey(pk), ψ ← DEM.Enc(K ,mb),C ← TTKEM.Enc(pk , ω, ψ).

We first separate the threshold tag-KEM part from the DEM part by replacing K used in
DEM.Enc with a random key K ∗ $← KeySp.

Lemma 13. Let Exptpke-cca
TPKE ,A(k)′ and X ′ denote the modified game and an event in the game

that corresponds to the original X in Exptpke-cca
TPKE ,A(k). Then we have

∣∣Pr[X]− Pr[X ′]
∣∣ ≤ 2 Advttkem-cca

TTKEM ,A(k). (1)

Proof. (of Lemma 13) Namely, adversary APKE that acts differently in Exptpke-cca
TPKE ,A(k) and

Exptpke-cca
TPKE ,A(k)′ essentially distinguishes the real and random keys used in each game. Hence it

achieves the attack goal against TTKEM . Eq.(1) is formally proven by constructing an attacker
Attkem for the threshold tag-KEM scheme by using Atpke as follows.

Given a public-key, adversary Attkem forwards the public-key to Atpke. Given m0 and m1

from Atpke, Attkem composes a challenge ciphertext c∗ as follows. Assume a random Kδ has
been generated (δ $← {0, 1}) in Expttkem-cca

TTKEM ,A(k). The adversary first obtains challenge key Kδ

and computes ψ∗ = DEM.EncKδ(mb) for b $← {0, 1}. It then sends t∗ = ψ to TTKEM.Enc, and
receives C ∗. Finally c∗ is set as c∗ = (C ∗, ψ∗) and given to Atpke.

Decryption Oracle Simulation. All the oracle queries from Atpke are sent to decryption ora-
cle of Attkem transparently. Indeed, the only difference between the interfaces of decryption
oracles in Exptpke-cca

TPKE ,A(k) and Expttkem-cca
TTKEM ,A(k) is ψ and t, which are actually the same in

this generic construction since ψ is treated as a tag.

Given an answer to a shared decryption query, Attkem decrypts corresponding ψ with K
and sends the resulting plaintext to Atpke. Answers to corruption queries are given to
Atpke transparently. (This answer is consistent since DEM.Dec is deterministic.) If ⊥ is
given for any query, Attkem simply sends it to Atpke. Eventually, Atpke outputs b̃. Then
Attkem outputs δ̃ = 1 or 0 by following b̃ = b or 6= b, respectively.

We analyze the simulation. It is not hard to inspect that oracle queries are simulated perfectly.
Regarding the challenge ciphertext, it is the same as that in Exptpke-cca

TPKE ,A(k) when δ = 1 and that

in Exptpke-cca
TPKE ,A(k)′ when δ = 0. Hence the view of Atpke is perfectly simulated as if it is playing

in Exptpke-cca
TPKE ,A(k) when δ = 1, and that in Exptpke-cca

TPKE ,A(k)′ when δ = 0.
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Therefore, we have Pr[b̃ = b|δ = 1] = Pr[X] and Pr[b̃ = b|δ = 0] = Pr[X ′]. Since TTKEM is
CCA secure, we have

∣∣∣Pr[δ̃ = δ]− 1
2

∣∣∣ ≤ Advttkem and∣∣∣∣Pr[δ̃ = δ]− 1
2

∣∣∣∣ =
∣∣∣∣12(Pr[δ̃ = 1|δ = 1]− Pr[δ̃ = 1|δ = 0])

∣∣∣∣
=

∣∣∣∣12(Pr[b̃ = b|δ = 1]− Pr[b̃ = b|δ = 0])
∣∣∣∣

=
∣∣∣∣12(Pr[X]− Pr[X ′])

∣∣∣∣ ≤ Advttkem,

holds. This completes the proof of Lemma 13.

Next, consider the view of Atpke in Exptpke-cca
TPKE ,A(k)′. Only ψ is related to b and everything

else are information theoretically independent of b. Therefore, distinguishing b in Exptpke-cca
TPKE ,A(k)′

essentially means distinguishing the plaintexts in DEM .
Formally, we construct B from Atpke in Exptpke-cca

TPKE ,A(k)′. B has to simulate oracles in

Exptpke-cca
TPKE ,A(k)′ in the presence of corrupted players. B first invokes PKE.Gen and gives the

public-key pk to Atpke. Given m0 and m1 from Atpke, B forwards them to the encryption oracle
of DEM and receives a challenge ciphertext ψ∗.

It then creates c∗ = (C ∗, ψ∗) by executing TTKEM.SKey and TTKEM.Enc with ψ as a tag,
and sends c∗ to Atpke. For every shared decryption query, B invokes TTKEM.Dec with the
specified players. This can be done perfectly as B holds the corresponding sk i. Corruption
queries are also handled correctly by sending the private key (and the randomness used by the
simulating party if any).

Eventually, when Atpke outputs b̃, B outputs it as the guessing result. Now, observe that
B runs in polynomial time if Atpke does. It is also not hard to see that B perfectly simulates
Exptpke-cca

TPKE ,A(k)′; the oracle is simulated as just specified, and the key embedded in C ∗ is in-
dependent of the random one chosen by the encryption oracle of DEM just as intended in
Exptpke-cca

TPKE ,A(k)′. Therefore, we have∣∣∣∣Pr[X ′]− 1
2

∣∣∣∣ ≤ Advdem-ind-ot
DEM ,B (k) (2)

From Eq.(1) and (2), we have∣∣∣∣(Pr[X]− 1
2

)− (Pr[X ′]− 1
2

)
∣∣∣∣ ≤ 2Advttkem-cca

TTKEM ,A(k)

Advtpke-cca
TPKE ,A(k)−Advdem-ind-ot

DEM ,B (k) ≤ 2Advttkem-cca
TTKEM ,A(k)

Advtpke-cca
TPKE ,A(k) ≤ 2Advttkem-cca

TTKEM ,A(k) + Advdem-ind-ot
DEM ,B (k)
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