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Abstract

We propose a practical key encapsulation mechanism with a simple and intuitive design con-
cept. Security against chosen-ciphertext attacks can be proved in the standard model under a new
assumption, the Gap Hashed Diffie-Hellman (GHDH) assumption. The security reduction is tight
and simple.

Secure key encapsulation, combined with an appropriately secure symmetric encryption scheme,
yields a hybrid public-key encryption scheme which is secure against chosen-ciphertext attacks.
The implied encryption scheme is very efficient: compared to the previously most efficient scheme
by Kurosawa and Desmedt [Crypto 2004] it has 128 bits shorter ciphertexts, between 25-50%
shorter public/secret keys, and it is slightly more efficient in terms of encryption/decryption speed.
Furthermore, our scheme enjoys (the option of) public verifiability of the ciphertexts and it inherits
all practical advantages of secure hybrid encryption.

Our results extend to key encapsulation mechanisms based on the class of Gap Hashed Multi-
Diffie-Hellman (GHMDH) assumptions which is a natural generalization of GHDH.
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1 Introduction

One of the main fields of interest in cryptography is the design and the analysis of the security of
encryption schemes in the public-key setting (PKE schemes). In this work our goal is to provide
schemes for which we can provide theoretical proofs of security (without relying on heuristics such as
the random oracle), but which are also efficient and practical.

Key Encapsulation. Instead of providing the full functionality of a public-key encryption scheme,
in many applications it is sufficient to let sender and receiver agree on a common random session key.
This can be accomplished with a key encapsulation mechanism (KEM) as formalized by Cramer and
Shoup [43, 17]. In this protocol a sender (knowing the receivers public key) runs an encapsulation
algorithm to produce a random session key together with a corresponding ciphertext. This ciphertext
is sent (over a potentially insecure channel) to the receiver, who (using his secret key) can uniquely
reconstruct the session key using a decapsulation algorithm. In the end both parties share a common
random session key. An appropriate notion of security (against chosen-ciphertext attacks) says that,
roughly, not even an active eavesdropper (interacting with a decapsulation oracle that allows him
to obtain session keys corresponding to ciphertexts of his choosing) can learn any information about
the random session key just given the ciphertext. Chosen-ciphertext security [41] is a much stronger
security requirement than chosen-plaintext security [4], where in the latter an attacker is not given
access to the decryption oracle. After the execution of the protocol the random session key may now
be used for arbitrary symmetric-key operations such as a symmetric encryption scheme. If both, the
KEM and the symmetric primitive, are secure against chosen-ciphertext attacks then composition
theorems are used to obtain the same security guarantees for the hybrid protocol.

In this work we are interested in designing key encapsulation mechanisms that are both efficient
and provably secure with respect to a reasonable intractability assumption. To motivate our approach
we start with some history on key encapsulation.

Diffie-Hellman Key Encapsulation. In the Diffie-Hellman key encapsulation mechanism [18] the
receiver’s public key consists of the group element gx (we assume a commutative cyclic group of prime
order and generator g to be given), the secret key of the random index x. Key encapsulation is done
by computing the ciphertext as gy for random y; the corresponding session key is the group element
gxy = (gx)y (and therefore called Diffie-Hellman Key). This key is recovered from the ciphertext by
the possessor of the secret key x by computing gxy as (gy)x. This simple KEM can be proved secure
against chosen-plaintext attacks under the Decisional Diffie-Hellman (DDH) assumption. The DDH
assumption states, roughly, that the two distributions (gx, gy, gxy) and (gx, gy, gz) for random indices
x, y, z are computationally indistinguishable.

From an application point of view there is one major weakness in the original Diffie-Hellman key
encapsulation. Namely, the session key output by the scheme is a group element, whereas in practice
we rather want the session key to be a bit string. A straightforward way to overcome this shortcoming
is to feed the Diffie-Hellman key gxy to a hash function H with binary image to obtain the session
key H(gxy). Now the session key is a bit-string and may be used as a key to perform some symmetric
operation. This key encapsulation scheme can be proved secure against chosen-plaintext attacks under
the Hashed Diffie-Hellman (HDH) assumption, as formalized in [1]. The HDH assumption (relative to
a hash function H) states, roughly, that the two distributions (gx, gy, H(gxy)) and (gx, gy, R) for random
indices x, y and a random bit-string R (of appropriate length) are computational indistinguishable.
Under the HDH assumption, Hashed Diffie-Hellman can be proven secure against chosen-plaintext
attacks (IND-CPA).

For various reasons, the stronger notion of chosen-ciphertext (IND-CCA) security [41] has emerged
as the “right” notion of security for key encapsulation and encryption. Hashed Diffie-Hellman will
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be our starting point and the goal will be to modify the scheme in order to obtain security against
chosen-ciphertext attacks under a reasonable intractability assumption.

Our Construction. We modify the Hashed Diffie-Hellman key encapsulation in order to obtain
a KEM which is provably secure against chosen-ciphertext attacks under the Gap Hashed Diffie-
Hellman assumption (to be introduced later). Our main idea is to add some redundant information to
the ciphertext of the Hashed Diffie-Hellman key encapsulation. This information is used to check if a
given ciphertext was properly generated by the encapsulation algorithm (and hence is “consistent”);
if the ciphertext is consistent then decapsulation returns the session key, otherwise it simply rejects.
Our scheme’s security relies on the Gap Hashed Diffie-Hellman (GHDH) assumption which states that,
roughly, the two distributions (gx, gy, H(gxy)) and (gx, gy, R) are hard to distinguish even relative to
a “Diffie-Hellman oracle” that distinguishes (gx, gy, gxy) from (gx, gy, gz). Here the term “gap” stems
from the fact that there is a gap between the Decisional and the Computational version of the Diffie-
Hellman problem: the computational problem is hard to solve even though the corresponding decisional
problem is easy.

Main Results. Our main result shows that our key encapsulation mechanism (given in Section 4) is
secure against chosen-ciphertext attacks assuming the GHDH assumption holds. The scheme has very
short ciphertexts (2 groups elements or approximately 512 bits for 128 bits security) and its security
reduction is tight. Furthermore, when our scheme gets instantiated in gap-groups a given ciphertext can
get checked for consistency solely based on the knowledge of the public key. This feature (sometimes
called “public verifiability of the ciphertext”) has proved very useful, e.g. for building a chosen-
ciphertext secure threshold encapsulation scheme [14]. Furthermore, we show that our framework
extends to KEMs based on the Gap Hashed Multi Diffie-Hellman (GHMDH) assumption, a natural
generalization of GHDH with potentially stronger security properties. The GHMDH assumption
states that given many independent Diffie-Hellman instances (gi, hi, g

ri

i )1≤i≤ℓ, a certain fixed predicate

H : G
ℓ2 → G evaluated on the ℓ2 possible (hidden) Diffie-Hellman keys (hi)

rj (1 ≤ i, j ≤ ℓ) is
indistinguishable from a random element, even relative to a DDH oracle. The GHMDH assumption in
particular includes (a paring-free variant of) the Gap Linear Diffie-Hellman (GLDH) assumption [12].

The GHDH assumption is not a “random-oracle assumption”. We emphasize that this
scheme can be proved secure under reasonable intractability assumptions, without resorting to either
the random oracle heuristic, and without using “interactive intractability assumptions” like ODH as in
done in [1]. At first glance one may argue that assuming the hashed key H(gxy) to be indistinguishable
from a random string even though we can efficiently distinguish gxy from a random group element
sounds quite unreasonable and that, in a sense, hardness falls back on “random-oracle-like” properties
of the hash function, similar to the full-domain-hash (FDH) principle. However, this intuition is not
true as we will further elaborate in Section 3. To put more confidence in the GHDH assumption
we will show that it (provably) holds in generic groups assuming the hash function H is “weakly
one-way”. The latter result basically means that the GHDH assumption depends on the hardness of
computing the Diffie-Hellman key plus the fact that given only H(gxy) it is hard to recover sufficient
information on the Diffie-Hellman key gxy. We will argue that the well known and often employed
Bilinear Diffie-Hellman (BDH) assumption [13] can in fact be seen as a special (algebraic) instantiation
of the GHDH assumption. More precisely, using the specific algebraic hash function H(X) := êZ(X),
where êZ(X) := ê(X, Z) is a bilinear mapping for fixed Z = gz (but chosen uniformly at setup), we
get H(gxy) = ê(gxy, gz) = ê(g, g)xyz and GHDH actually gets BDH (here the output of H is a group
element, not a binary string). In this context, GHDH instantiated with a cryptographic hash function
like SHA1 (we will propose further candidates for H leading to different flavors of GHDH) appears not
to be a less reasonable assumption than the “standard” BDH assumption.
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Related Work. Historically, Cramer and Shoup [16] presented the first really practical public-
key encryption scheme in the standard model which was later generalized to a KEM [43, 17]. More
recently, Kurosawa and Desmedt came up with a direct hybrid encryption scheme [32] improving the
performance of the original CS scheme both in computational efficiency and in ciphertext length.
In their hybrid construction the symmetric scheme has to be secure in the sense of authenticated
encryption [5] which is a strictly stronger security requirement than in the standard KEM/DEM
hybrid paradigm [43], and in particular it necessarily adds 128 bits of redundancy to the symmetric
ciphertext. The KD-KEM (i.e. the KEM part of the Kurosawa Desmedt hybrid encryption scheme) is
similar to our KEM construction. In fact, the KD-KEM can be obtained from our KEM by (roughly)
switching the symmetric key with one element from the ciphertext. Our scheme can be proved chosen-
ciphertext secure whereas there exists a simple chosen-ciphertext attack against the KD-KEM [26]. We
think that this is really a surprising fact since a small difference in the constellation of the ciphertexts
seems to turn the scale when it comes to security of the two schemes.

An alternative group of schemes (“IBE-based schemes”) is based on recent results [15, 30] observing
that identity-based encryption (IBE) implies chosen-ciphertext secure encryption. The recent approach
taken by Boyen, Mei, and Waters [14] was to improve efficiency of one particular instantiation [10]
(based on the BDH assumption) obtained by the above IBE transformation. Similar results (with
improved key-decapsulation and based on a different assumption) were also obtained independently by
Kiltz [30]. All the encryption schemes constructed this way, however, so far remained less efficient than
the reference scheme from Kurosawa-Desmedt. Our KEM constructions are related (and generalize)
the KEMs obtained in [14, 30] and therefore fits best into the latter class of IBE-based [15, 30] schemes
(even though they are not derived from any IBE scheme).

Discussion and Comparison. Our implied hybrid PKE scheme is more efficient than the “reference
scheme” by Kurosawa and Desmedt [32]: it has “one MAC” shorter ciphertexts (by combining it with
redundancy-free symmetric encryption [39, 24, 25]), between 25-50% shorter public/secret keys, and it
is slightly more efficient in terms of encryption/decryption. However, an arguable disadvantage of our
scheme is that security can only be proven on the new GHDH assumption, whereas security of the KD
scheme provably relies on the well-established and purely algebraic DDH assumption. An extensive
comparison with all known KEM/PKE schemes in the standard model is done in Table 1 in Section 7.

Recent Results. Recently, building on this work, Hofheinz and Kiltz [27] combined a variation of
our scheme with symmetric authenticated encryption (and hence adding 128 bits redundancy to the
ciphertexts) to obtain public-key encryption secure under the DDH assumption. Their technique also
extends to the more general class of (Hashed) Multi Diffie-Hellman assumptions which can be seen as
the “DDH-oracle free” variant of GHMDH.

2 Preliminaries

2.1 Notation

If x is a string, then |x| denotes its length, while if S is a set then |S| denotes its size. If k ∈ N then 1k

denotes the string of k ones. If S is a set then s
$
← S denotes the operation of picking an element s of

S uniformly at random. We write A(x, y, . . .) to indicate that A is an algorithm with inputs x, y, . . .

and by z
$
← A(x, y, . . .) we denote the operation of running A with inputs (x, y, . . .) and letting z be

the output. We write AO1,O2,...(x, y, . . .) to indicate that A is an algorithm with inputs x, y, . . . and

access to oracles O1,O2, . . . and by z
$
← AO1,O2,...(x, y, . . .) we denote the operation of running A with

inputs (x, y, . . .) and access to oracles O1,O2, . . ., and letting z be the output.
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2.2 Public Key Encapsulation Mechanisms

A public-key encapsulation (KEM) scheme KEM = (Kg, Enc, Dec) with key-space KeySp(k) consists

of three polynomial-time algorithms. Via (pk , sk)
$
← Kg(1k ) the randomized key-generation algorithm

produces keys for security parameter k ∈ N; via (K,C )
$
← Enc(pk) a key K ∈ KeySp(k) together with

a ciphertext C is created; via K ← Dec(sk ,C ) the possessor of secret key sk decrypts ciphertext C to
get back a key. Here we will consider only KEMs that produce perfectly uniformly distributed keys
(i.e., we require that for all public keys pk that can be output by Kg, the second component of Enc(pk)

has uniform distribution). For consistency, we require that for all k ∈ N, and all (K,C )
$
← Enc(1k , pk)

we have Pr [Dec(C ) = K ] = 1, where the probability is taken over the choice of (pk , sk)
$
← Kg(1k ),

and the coins of all the algorithms in the expression above.

Definition 2.1 Formally, we associate to an adversary A the following experiment:

Experiment Expkem-cca
KEM ,A

(k)

(pk , sk)
$
← Kg(1k)

K∗
0

$
← KeySp(k) ; (K∗

1 ,C ∗)
$
← Enc(pk)

δ
$
← {0, 1}

δ′
$
← ADecO(·)(pk , K∗

δ ,C ∗)
If δ 6= δ′ then return 0 else return 1

where on input C the oracle DecO(sk , ·) returns K ← Dec(sk ,C ) with the restriction that A is not
allowed to query DecO(sk , ·) on the target ciphertext C ∗. We define the advantage of A in the left
experiment as

Advkem-cca
KEM ,A(k) =

∣

∣

∣

∣

Pr
[

Expkem-cca
KEM ,A(k) = 1

]

−
1

2

∣

∣

∣

∣

.

A key encapsulation mechanism KEM is said to be indistinguishable against chosen-ciphertext attacks
(IND-CCA) if the advantage function Advkem-cca

KEM ,A(k) is a negligible function in k for all polynomial-
time adversaries A.

Note that in contrast to the original definition given by Cramer and Shoup [43, 17] we consider a
simplified security experiment without a “find-stage”. In Appendix C we show that (in case of CCA
attacks) the two definitions are equivalent up to a negligible additive factor.

Lemma 2.2 Assume a KEM is IND-CCA secure in the sense of Definition 2.1. Then it is also IND-
CCA in the sense of [43, 17].

We stress that an analog of the above theorem neither holds for weaker types of attacks (such as CCA1
or CPA) nor for CCA security of PKE schemes.

KEM vs. PKE. Why to prefer a KEM over a PKE scheme? In any practical applications a random
shared session key needs to be generated that is fed into a highly efficient symmetric encryption
schemes. Therefore the biggest advantage of a KEM is its flexibility, i.e. it completely decouples
the key encapsulation from the asymmetric part. So one is free to pick whatever security parameter
necessary without changing the size of the message space. Due to his simplicity and flexibility this
modular approach is incorporated in many standards (see, e.g., [44, 3, 28]). We think that the above
practical advantages of a KEM are often overlooked in theoretical approaches. Ultimately, in practice
one is concerned with the efficiency of the KEM and not the PKE scheme taken as a whole.
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2.3 Target Collision Resistant Hash Functions

Let TCRs : G → Zp of keyed hash functions for each k-bit key s, where G is a cyclic group of prime
order p. It is assumed target collission resistant (TCR) [7, 17] captured by defining the tcr-advantage
of an adversary H as

Advhash-tcr
TCR,H (k) = Pr[TCRs(c

∗) = TCRs(c) ∧ c 6= c∗ : s
$
← {0, 1}k ; c∗

$
← G ; t

$
← H(s, c∗)]

Note TCR is a weaker requirement than collision-reistance, so that, in particular, any practical collision-
resistant function can be used. Also note that our notion of TCR is related to the stronger notion of
universal one-way hashing [33], where in the security experiment of the latter the target value a∗ is
chosen by the adversary (but before seeing the hash key s).

Since |G| = |Zp| = p we can alternatively also use a fixed (non-keyed) bijective encoding function
INJ : G→ Zp. We use INJ to refer to such a bijective encoding. In that case we have a perfect collission
resistent hash function, i.e. Advhash-tcr

INJ,H (k) = 0. In particular, in the important case where G is an
elliptic curve over a finite field Fq of prime order q we can easily obtain such a bijective encoding. We
refer to [17, 14, 20] for more examples of groups G that provide such efficiently computable bijective
maps INJ : G→ Zp.

3 The Gap Hashed Diffie-Hellman Assumption

3.1 Standard Diffie-Hellman assumptions

We first start with the following well known standard assumptions which we review for completeness.

Computational Diffie-Hellman assumption. The Computational Diffie-Hellman assumption
(CDH) states, that given the input (g, gx, gy) where x, y are drawn at random from Zp (g is a generator
of a group G of prime order p), it should be computationally infeasible to compute gxy. However,
under the CDH assumption it might be as well possible to efficiently compute some information about
gxy, say a single bit of the binary representation or even all but super-logarithmically many bits.

Decisional Diffie-Hellman assumption. A stronger assumption that has been gaining popu-
larity is the Decisional Diffie-Hellman assumption (DDH). It states, roughly, that the distributions
(g, gx, gy, gxy) and (g, gx, gy, gz) are computationally indistinguishable when x, y, z are drawn at ran-
dom from Zp.

Gap Diffie-Hellman assumption. Another variant of the Diffie-Hellman assumption is the Gap
Diffie-Hellman assumption (GDH) [37]. It states that the CDH assumption is still hard even though
an adversary has additional access to an oracle that solves the DDH problem.

3.2 The Gap Hashed Diffie-Hellman assumption

As indicated above, semantic security of Hashed Diffie-Hellman based schemes requires that we will
be able to get some number of hard-core bits from the Diffie-Hellman key (i.e. bits that cannot be
distinguished from random bits). We will be using a gap-assumption relative to a DDH oracle so we
are not allowed to take the whole Diffie-Hellman key. Our assumption is that applying a suitable hash
function H to gxy will yield such bits. The assumption we make, called the Gap Hashed Diffie-Hellman
assumption (GHDH) is a “composite one”; it concerns the interaction between a hash function H and
the group G. The GHDH is an extension of the HDH assumption formalized by Abdalla, Bellare,
Rogaway [1].
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Our scheme will be parameterized by a parameter generator. This is a polynomial-time algorithm
Gen that on input 1k returns the description of a multiplicative cyclic group G of prime order p, where
2k < p < 2k+1, and a random generator g of G. Gen furthermore outputs the description of a random
hash function H : G → {0, 1}l(k) (possibly keyed) that outputs l(k) bits for a fixed polynomial l(·).
Throughout the paper we use HG = (G, g, p,H) as shorthand for the description of the hash group
obtained by running Gen.

The GHDH assumption states, roughly, that the two distributions (gx, gy, H(gxy)) and (gx, gy, R)
are computationally indistinguishable when x, y are drawn at random from Zp and R is drawn at
random from {0, 1}l(k). This assumption should hold relative to an oracle that efficiently solves the
DDH problem.

More formally let Gen be a parameter generation algorithm. To an adversary B we associate the
following experiment.

Experiment Exp
ghdh
Gen,H,B(1k)

HG = (G, g, p,H)
$
← Gen(1k)

x, y
$
← Z

∗
p ; W0

$
← {0, 1}l(k) ; W1 ← H(gxy)

γ
$
← {0, 1}

γ′ $
← BDDHsolveG(·,·,·,·)(1k,HG , gx, gy, Wγ)

If γ 6= γ′ then return 0 else return 1

Here the oracle DDHsolveG(g, ga, gb, gc) returns 1 iff ab = c mod p. We define the advantage of B in
the above experiment as

Adv
ghdh
Gen,B(k) =

∣

∣

∣

∣

Pr
[

Exp
ghdh
Gen,B(1k) = 1

]

−
1

2

∣

∣

∣

∣

.

We say that the Gap Hashed Diffie-Hellman (GHDH) assumption relative to group generator Gen

holds if Adv
ghdh
Gen,B is a negligible function in k for all polynomial-time adversaries B.

We remark that in so called gap-groups [37], i.e. in groups where the Decisional Diffie-Hellman
(DDH) problem is easy on every input while the computational Diffie-Hellman (CDH) problem CDH
problem is hard, the GHDH assumption is equivalent to the HDH assumption. A possible implementa-
tion of gap-groups is given by the Weil/Tate bilinear pairing allowing to efficiently compute a bilinear
pairing which can be used to solve DDH [13].

In Section 5 we will propose promising candidates for Gen (i.e., for the prime-order group G and
the hash function H) and provide a detailed security analysis of the GHDH assumption.

4 Key Encapsulation based on Gap Hashed Diffie-Hellman

In this section we present our new GHDH-based key encapsulation mechanism. The starting point
is Hashed Diffie-Hellman (cf. Section 1) which itself is only secure against chosen-plaintext attacks
under the HDH assumption.

4.1 The Key Encapsulation Mechanism

Let HG = (G, g, p,H) be random parameters obtained by running the parameter algorithm Gen(1k),
where H : G → {0, 1}l(k) is a random instance of a hash function such that the GHDH assumptions
holds relative to Gen. Let TCRk = TCR : G → Zp be a family of target collision-resistant hash
functions. We build a key encapsulation mechanism KEM = (Kg, Enc, Dec) as follows.
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Kg(1k)

x, y
$
← Z

∗
p

u← gx ; v ← gy

pk ← (u, v)
sk ← (x, y)
Return (pk , sk)

Enc(pk)

r
$
← Z

∗
p ; c← gr

t← TCR(c) ; π ← (utv)r

K ← H(ur) ∈ {0, 1}l(k)

C ← (c, π) ∈ G
2

Return (C , K)

Dec(sk ,C )
Parse C as (c, π)
t ← TCR(c)
If cxt+y 6= π then reject

Else K ← H(cx)
Return K

For completeness the public-key pk should also contain a random seed for the target collision resistant
hash function TCR and, if necessary, also for the hash function H. Decapsulation has to perform one
subgroup-membership test, i.e. it checks if c ∈ G (and rejects otherwise). Note that cxt+y = π then
automatically also implies π ∈ G.1

Efficiency. The public key contains two group elements, the secret key of two elements from Zp.
A ciphertext C consists of two group elements, the key K is a binary string of length l (that may
be extended to poly(l(k)) bits using a key-derivation function). Ignoring all “symmetric operations”
(i.e., evaluating TCR and H), encapsulation needs three regular exponentiations, whereas decapsulation
can be carried out in two exponentiation.

Using the concept sequential/multi-exponentiations2 (see, e.g., [40, 9]) a considerable (and prac-
tical) speed-up can be obtained: encapsulation needs two regular exponentiations (to compute c and
K) plus one multi-exponentiation (to compute π = utrvr), whereas decapsulation can be carried out
in one single sequential exponentiation (to compute cxt+y and cx).

Correctness. Fix a pair of keys (pk , sk). We call a ciphertext C = (c, π) ∈ G
2 consistent if

cxt+y = π for t = TCR(c). For a correctly generated ciphertext C = (c, π) = (gr, utrvr) we have
cxt+y = (gxt+y)r = (utv)r = π and hence C is consistent. In that case decapsulation reconstructs the
session key as K = H(cx) = H((gr)x) = H(ur), as the key in encapsulation. This shows correctness of
the scheme.

Public Verifiability in Gap-Groups. Let C = (c, π) ∈ G
2 be a ciphertext with c = gr for some

value r ∈ Zp. Then (g, utv = gxt+y, c = gr, π) is a Diffie-Hellman-tuple if and only if g(xt+y)·r = π what
is equivalent to cxt+y = π. Therefore in gap-groups consistency of a ciphertext can be publicly checked
using one call to the Diffie-Hellman oracle, i.e. by verifying if DDHsolve(g, utv = gxt+y, c = gr, π)
returns true. This property is denoted as public verifiability of the ciphertext and it give rise to a
public-key threshold KEM [14].

Alternative Decapsulation. We further remark that equivalently decapsulation can be done
by first pick a random s ∈ Z

∗
p and then reconstructing the session key as K = H(cx−s(xt+y) · πs).

Its equivalent computation can be demonstrated similarly to [30]. This alternative decapsulation
algorithm seems usefull to protect against side-channel attacks since it does not (even internally) leak
information about consistency of a queried ciphertext.

4.2 Security

Our main theorem can be stated as follows:

1Elements in G are usually represented as elements in Ĝ, where G ⊆ Ĝ is a prime-order subgroup of Ĝ. It is crucial
that the two ciphertext elements are actually contained in G since otherwise there may be an attack on the KEM. See [17]
for further discussion on the importance of such subgroup membership tests.

2One multi-exponentiaion computes the group element gahb and one sequential exponentiation computes the two
group elements ga and gb in one single step (for the same fixed base g). Both concepts are related and (using Pippenger’s
algorithm [40]) can be carried out in about (1 + 2/ log log p) log p multiplications over G [9] which we will count as ≈ 1.2
exponentiations.
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Theorem 4.1 Assume TCR is a target collision resistant hash function. Under the Gap Hashed Diffie-
Hellman assumption relative to generator Gen, the key encapsulation mechanism from Section 4.1 is
secure against chosen-ciphertext attacks. In particular, for any adversary A against the KEM running
for time TimeA(k), there exists adversaries B, H with

Adv
ghdh
Gen,B(k) ≥ Advkem-cca

KEM ,A(k)−Advhash-tcr
TCR,H (k)

and TimeB(k) = TimeH(k) = TimeA(k) + O(q · TimeG(k)), where q is an upper bound on the
number of decapsulation queries made by adversary A and TimeG(k) is the time for a standard
operation in G.

We want to stress that the key encapsulation mechanism does not make use of the Decision Diffie-
Hellman oracle DDHsolve. Its existence is part of the assumption and solely needed for the proof of
security.

The proof is quite simple. An intuitive way to understand it is as follows: first consider a modified
KEM that is obtained by abandoning the hash function H from the construction in Section 4.1, i.e. the
symmetric key is now computed as K = ur. What we can prove is that this modified KEM is one-way
chosen-ciphertext secure under the gap Diffie-Hellman (GDH) assumption. In the security reduction
the DDH oracle provided by the GDH assumption is used to reject (as in the original scheme) every
invalid ciphertext submitted by the adversary to the decryption oracle. The key idea of the reduction
is based on an algebraic technique from [10] that was also used in [14, 30] in the context of KEMs. An
attacker B against the GDH problem can setup the public-key for the adversary attacking the security
of the KEM in a way that (i) adversary B (without knowing the secret key) can decapsulate every
ciphertexts except the challenge ciphertext; (ii) decapsulating the challenge ciphertext is equivalent
to solving GDH. If the adversary against the KEM is successfull (i.e. it decapsulates the challenge
ciphertext) so this adversary can be used to break the GDH problem using the above simulation.

More details. Adversary B inputs a GDH instance (g, u, ga) and it’s goal is to compute T = ua

(recall that we are attacking one-way chosen-ciphertext security). He picks a random value d and
defines the (thereby correctly distributed) public key as pk = (u, v = u−t∗gd), where t∗ = TCR(ga).
Note that this way a consistent ciphertext (c, π) properly created by the encapsulation algorithm has
the form

c = gr, π = (utv)r = (ur)t−t∗cd . (1)

Hence, in order to decapsulate the challenge ciphertext C ∗ = (c∗, π∗) defined as c∗ := ga, π∗ :=
(ga)d = (ua)t∗−t∗cd (i.e., a ciphertext computed with unknown randomness a from the GDH instance,
where t∗ = TCR(c∗)), adversary A (which is run on pk and C ∗) has to compute the target key
K∗ = ua what is equivalent to breaking GDH. On the other hand, for a decapsulation query for
ciphertext (c, π), B first checks for consistency using the DDH oracle DDHsolve provided by the GDH
assumption. If the ciphertext is inconsistent it gets rejected. Otherwise, the security properties of
TCR imply t = TCR(c) 6= TCR(c∗) = t∗ and the correct key K = ur can be reconstructed by Eqn. (1)
as K = (π/cd)1/(t−t∗).

The step to full security (i.e., indistinguishability compared to one-wayness) now can be intuitively
understood by the fact that (in terms of the assumption) we move from GDH to GHDH, i.e. under
GHDH the hash function H hides all information about the Diffie-Hellman key ur. A more formal
proof is given in Appendix A.

Remark 4.2 For the security proof of Theorem 4.1 a weaker version of the GHDH assumption is
actually sufficient. The weak GHDH security experiment is the same as the one from Section 5
with the difference that the adversary only gets access to a restricted DDH oracle DDHsolveg,gx(·, ·),
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where, for fixed g and gx, DDHsolveg,gx(gb, gc) answers 1 if bx = c and 0, otherwise. See the proof in
Appendix A for more details.

4.3 KEM/DEM: from KEM to full encryption

Given a KEM and a symmetric encryption scheme (aka DEM), a hybrid public-key encryption scheme
can be obtained by using the KEM to securely transport a random session key that is fed into the
DEM to encrypt the plaintext message. It is well known that if both the KEM and the DEM are
chosen-ciphertext secure, then the resulting hybrid encryption is also chosen-ciphertext secure [17,
Sec. 7]. The security reduction is tight.

A DEM secure against chosen-ciphertext attacks can be built from relatively weak primitives, i.e.
from any one-time symmetric encryption scheme by essentially adding a MAC. Phan and Pointcheval [39]
showed that strong pseudorandomn permutations directly imply redundancy-free chosen-ciphertext se-
cure DEMs that avoid the usual overhead due to the MAC. It seems reasonable to believe that known
block-ciphers (auch as AES) are strong PRPs. In practice, the modes of operation CMC [24], EME [25],
and EME* [23] (provided that the underlying block-cipher is a strong PRP) can be used to encrypt
large messages. We note that for the natural task of securely generating a joint random session key,
a KEM is sufficient and a fully-fledged public-key encryption scheme is not needed.

4.4 Direct public-key encryption

Building on a technique due to Waters [45], it is possible to build a direct public-key encryption
scheme (or a tag-KEM [2]) that can be instantiated with any one-time secure symmetric encryption
scheme (rather than a chosen-ciphertext secure one). A similar construction based on the BDH
assumption (hence using pairings) was already given in [14]. More details of this construction are
given in Appendix B. Implementing this scheme in a gap group (i.e. a group that supports an efficient
implementiation of a DDH oracle) we readily get a non-interactive chosen-ciphertext secure threshold
encryption scheme [14].

4.5 Relation to other encryption schemes

The KEMs based on “identity-based techniques” [14, 30, 31] are very similar to our construction. In
fact, (a slight variation of) the KEM from [14] (which itself is based on the first IBE scheme Boneh
and Boyen [10]) can be obtained from our KEM by instantiating the hash function H with a bilinear
map, i.e. by defining H(X) = ê(gz, X) (further simplifications in the decapsulation algorithm must be
applied). As we will further explain in Section 5.4, security of the KEM then can be proved relative
to the BDH assumption (just as in [14]). However, since it involves computing bilinear maps, the
BWM-KEM is considerably less efficient than our proposal when H is a cryptographic hash function.

Surprisingly, the KEM part (KD-KEM) of the Kurosawa-Desmedt public-key encryption scheme [32]
looks quite similar to our construction. Indeed, the KD-KEM encapsulates by computing the cipher-
text as (c1, c2) = (gr, ĝr) and the corresponding symmetric key is defined as K = (utv)r, where
g, ĝ, u = gxĝx̂, v = gy ĝŷ are elements from the public key and t is computed as t = TCR(c1, c2). In
comparison (and ignoring the hash function) our scheme basically swaps the elements c2 and K, i.e.
the ciphertexts of our scheme are given by (gr, (utv)r), where the corresponding key is H(ur).

In contrast our scheme is provably secure under a well-defined number-theoretic assumption whereas
the KD-KEM was recently shown to be not even one-way chosen-ciphertext secure [26].3 One could

3In fact that the KD-KEM is not even non-malleable against chosen-plaintext attacks. We stress again that it was
never claimed in [32] that the KD-KEM is chosen-ciphertext secure, nor does [26] imply that the KD-scheme, as a PKE
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possible remark that the stronger security properties of our KEM inherently rely on the stronger as-
sumption, i.e., the hash function H and the DDH oracle in the GHDH assumption (the gap-property).
However, this is not true as we will explain now; security rather seems to depend on the particular
constellation of the ciphertexts of our KEM. First, the attack from [26] aganst the KD-KEM is still
valid if the two elements in the KD-KEM ciphertext get checked for consistency before decapsulating
the key, i.e. the attack does not rely on “inconsistent ciphertext queries”. In other words it is not the
“gap”-property of the GHDH assumptions that makes the difference in the (in-)security of the two
KEMs. Second, chosen-ciphertext security of our KEM does also not depend on the hash function
H since without H our KEM is still one-way chosen-ciphertext secure under the gap computational
Diffie-Hellman assumption. As pointed out earlier the hash function H is only responsible to provide
indistinguishability (rather than one-wayness).

5 The Gap Hashed Diffie Hellman Assumption

In this section we discuss the security properties of the GHDH assumption introduced in Section 3.2
and propose promising candidate instantiations for the hash function H.

5.1 A necessary condition on the hash function for GHDH

Clearly, “one-wayness” is a necessary condition to H since otherwise the Hashed Gap Diffie-Hellman
assumption can be trivially broken using the DDH solver. We remark that in contrast to the usual
application of one-way functions (requiring length-preserving one-way functions [21]) using a one-way
function that hides a specific pre-image (instead of any pre-image) is sufficient in our context. A little
bit more formal we say that H : G → {0, 1}l(k) is a specific pre-image resistant one-way function if
Pr [A(H, H(x)) = x ], for uniform x ∈ G, is a negligible function in k for any polynomial-time adversary
A. With other words, H may get its one-wayness from a computational assumption (such as discrete
log), or even from a statistical property, i.e. when H(x) simply does not contain sufficient information
to recover x. (For concreteness consider a H that shrinks its input by at least ω(log k) bits.) The
latter case also means that H is many-to-one and hence inverting H (in a conventional sense) may be
easy – but of course to break GHDH it is not sufficient to have a “random” pre-image. Instead, for an
attack we would have to hit the precise value gxy which is information-theoretically hidden in H(gxy).

5.2 Generic Security of GHDH

Generic Group model. We now argue why for all “reasonable choices” of H the GHDH assumption
holds in the generic group model [34, 42]. Let π : G→ {0, 1}n(k) be a specific pre-image resistant one-
way function. In the generic group model all group elements are represented as random strings and the
adversary is given access to the group operation through an oracle. Furthermore the adversary is given
access to a DDH solver and an oracle that evaluates the one-way function π : G→ {0, 1}n(k). Consider
the two distributions (gx, gy, π(gxy)) and (gx, gy, π(gz)) when x, y, z are drawn at random from Zp. In
the generic group model it is easy to show that the two distributions are statistically indistinguishable,
i.e. that given g, gx, gy, the random variable Xn(k) = π(gxy) has (with high probabilty) almost n(k) ≈ k
bits of min-entropy. This has the interpretation that in the generic group model the above necessary
condition on H actually becomes a sufficient one. The proof is similar to the proof of the BDH
assumption ([11, App. A]) and is therefore omitted here.

scheme, does not meet the claimed security properties in [32].
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Since π(gxy) contains sufficient min-entropy we can extract a quasi uniformly distributed bit-
string from it. This is done by applying a strong extractor (“entropy-smooting” function) σ :
{0, 1}n(k)→{0, 1}l(k) and setting H = σ ◦ π such that H(x) = σ(π(x)). We now move on and discuss a
possible choice of the function σ. Now we split σ = f ◦h and use a variant of the Left-over Hash Lemma
from [19] as follows. If h : {0, 1}n(k)→{0, 1}N(k) is pairwise independent, and f : {0, 1}N(k)→{0, 1}l(k)

is an arbitrary function whose output is slightly less than the min-entropy of X, then the two dis-
tributions (h, f(h(Xn(k))) and (h, f(Un(k))) are computational indistinguishable, where Un(k) denotes

the uniform distribution over {0, 1}n(k). To be more precise the condition we have to make on l(k)
is l(k) ≤ n(k) − 2 log(1/ε) − 1, where ε resembles the statistical distance between the above two
distributions which should be negligible in the security parameter k .

Random Oracle Model. We show that in the random oracle model [6] (i.e., in an idealized world
where all parties magically get black-box access to a truly random function) the GHDH assumption
becomes equivalent to the GDH assumption. The novelty is that using the DDH solver we can get a
tight reduction. Its simple proof is postponed to Appendix D. We note that the proof only needs a
weak variant of random oracles, so called non-programmable or passive random oracles [35].

Lemma 5.1 If H is modeled as a (non-programmable) random oracle then the GHDH assumption is
tightly equivalent to the GDH assumption.

5.3 Cryptographic Hash Functions

Our suggested choice is to appropriately derive H from some cryptographic hash function like SHA1,
MD5, or RIPEMD. We call the corresponding assumptions SHA1-HDH, MD5-HDH, and RIPEMD-
HDH, respectively. The primary reason we prefer a cryptographic function is that one-wayness of H

appears important to the Hashed Diffie-Hellman assumption: it should be hard to recover gxy from
H(gxy), since otherwise the GHDH assumption can be trivially broken using the DDH solver. This
cryptographic hash function should be chosen independent of the underlying group G.

5.4 A Hash function based on bilinear maps

A possible point of criticism against the GHDH assumption is that it may be considered non-standard
in some sense since it is relative to some “non-algebraic” hash function. These concerns are certainly
valid. In this paragraph we show that the GHDH assumption instantiated in a specific group and with
a specific (algebraic) hash function actually becomes the well-known Bilinear Diffie-Hellman (BDH)
assumption which recently found numerous application and may be considered as standard. To this
end we generalize the notion of the hash funtion to H : G → KeySp, where KeySp may be a binary
string {0, 1}l(k) (as before) but also an algebraic object such a cyclic group Ĝ.

We briefly review the necessary facts about bilinear maps and bilinear groups. Let G and GT be
multiplicative groups of prime order p and let g be a generator of G. Assume there is a mapping
ê : G × G → GT that is bilinear (i.e., for all g1, g2 ∈ G, x1, x2 ∈ Z, ê(gx1

1 , gx2
2 ) = ê(g1, g2)

x1x2) and
non-degenerate (i.e., ê(g, g) 6= 1GT

). We say that G is a bilinear group if there exist a group GT and
a bilinear map ê satisfying the conditions above; moreover, the group operations in G and GT and ê
must be efficiently computable. Note that any bilinear group where CDH holds is a gap-group since
the DDH solver DDHsolve(g, gx, gy, gz) can be implemented by checking if ê(g, gz) = ê(gx, gy).

The BDH assumption [13] states that the two distributions (gx, gy, gz, ê(g, g)xyz) and (gx, gy, gz, ê(g, g)r)
are computationally indistinguishable when x, y, z, r are drawn at random from Zp. To some fixed pub-
lic element Y ∈ G (which is included in the description of H) we associate the mapping êY (X) : G→ GT

with êY (X) 7→ ê(X, Y ). Then defining the hash function H as H(X) = HY (X) = êY (X) (such that
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Hgz(gxy) = ê(g, g)xyz), the GHDH assumption becomes the BDH assumption. Note that the BDH
assumption implicitly contains the assumption that the function êY is one-way, sine otherwise the
BDH assumption could be broken using the DDH solver (implemented using the bilinear mapping ê).
See [29] and [13, Sec. 3] for more discussion on that issue.

We stress that, however, we do not recommend using the bilinear map as hash function since
evaluating it would dominate the running time of all our application protocols.

5.5 Discussion

We argued that the GHDH assumption relative to particular hash functions H and groups G seems
to be a reasonable intractability assumption which may deserves further attention. Depending on
specific groups (e.g., on elliptic curves) we propose to study further “algebraic” candidates for H, and
to discuss their efficiency and security in the GHDH context.

We also remark that for specific choices of the hash function H, GHDH can be true in the scenario
when DDH turns out to be wrong in all practical groups considerable for cryptography. Note that in
contrast, BDH inherently relies on DDH in the target group so once DDH is wrong in general, BDH
falls as well.

6 Key-encapsulation based on GHMDH

In this section we further generalize our KEM construction to build schemes based on the general class
of GHMDH assumptions which we now introduce.

6.1 Gap Hashed Multi Diffie-Hellman Assumptions

For an integer ℓ ≥ 1 let D ∈ G
ℓ×ℓ be a matrix with entries Di,j ∈ G. Let H : G

ℓ×ℓ → K be a hash-
function that maps ℓ2 group elements into the key-space K. We define SH as the subset of indices
(i, j) ∈ {1, . . . , ℓ}2 such that the hash function H(D) depends on entry Di,j . We need H to non-disorted
in the sense that for all indices (i, j) ∈ SH the output of H must be uniformly distributed in G for
uniform input Di,j ∈ K.

Informally, the Gap Hashed Multi Diffie-Hellman (GHMDH) assumption (realtive to hash function
H and group G) states that, given g1, . . . , gℓ, h1, . . . , hℓ, g

r1
1 , . . . , grℓ

ℓ and access to a DDH oracle, it is
computationally infeasible to distinguish H(D) from a random element in K, where the (hidden) entries
of matrix D contain all possible combinations of Diffie-Hellman keys, i.e. Di,j = h

rj

i . Intuitively, the
hash function H can be viewed as a hard predicate of the ℓ2 different Diffie-Hellman keys. Clearly, for
ℓ = 1 and K = {0, 1}l(k) this simplifies to the GHDH assumption but in this section we focus mostly
on algebraic candidates of the form H : G

ℓ×ℓ → G.
We let a parameter generator GenM(1k) output a random group G or primeorder p, a generator g

of |G, and a random instance of the hash function H : G
ℓ×ℓ → K. More formally, to an adversary B

we associate the following experiment.

Experiment Exp
ghmdh
Gen,H,B(1k)

(G, g, p,H)
$
← GenM(1k)

For i ∈ {1, . . . , ℓ} do gi, hi,
$
← G ; ri

$
← Z

∗
p

for 1 ≤ i, j ≤ ℓ do Di,j ← h
rj

i

W0
$
← K ; W1 ← H(D) ; c

$
← {0, 1}

c′
$
← BDDHsolve(·,·,·,·)(1k,HG , g1, . . . , gℓ, g

r1
1 , . . . , grℓ

ℓ , Wc)
If c 6= c′ then return 0 else return 1
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We define the advantage of B in the above experiment as

Adv
ghmdh
GenM,B(k) =

∣

∣

∣

∣

Pr
[

Exp
ghmdh
GenM,B(1k) = 1

]

−
1

2

∣

∣

∣

∣

.

We say that the Hashed Gap Multi Diffie-Hellman (GHMDH) assumption relative to group generator

GenM holds if Adv
ghmdh
GenM,B is a negligible function in k for all polynomial-time adversaries B.

6.2 The class of ℓ-GLDH assumptions

Using the general class of GHMDH assumptions the Gap Decision Linear Diffie-Hellman (GLDH)
assumption [12] is obtained by setting ℓ = 2 and defining H : G

2×2 → G as H(D) = D1,1 ·D1,2. More
precisely, the GLDH assumption states that, given g1, g2, g

r1
1 , gr2

2 , h1, W , destinguishing W = hr1+r2
1

from a uniform W ∈ G is computational infeasible, even relative to a DDH oracle. Originally the GLDH
assumption was defined over bilinear maps [12] (called Decision Linear Diffie-Hellman assumption),
whereas here we only require the assumption to hold relative to a DDH oracle. This, in particilar,
makes it possible to define (and apply) it relative to any cyclic group [30]. We remark that the GLDH
assumption holds in the generic group model, even relative to a pairing oracle [12].

More generally, for any polynomial ℓ = ℓ(k) ≥ 2, one can also define the class of ℓ-GLDH assump-
tions for arbitrary ℓ = ℓ(k) = poly(k) by defining H : G

ℓ×ℓ → G as H(D) =
∏ℓ

i=1 D1,i. (Note that
the 1-GLDH assumption states that DDH is hard relative to a DDH oracle which is clearly insecure
without applying any further hash function to the Diffie-Hellman key.) The ℓ-GLDH assumptions form
a strict hierarchy of security assumptions with 2-GLDH = GLDH and, the larger the ℓ, the weaker
the ℓ-GLDH assumption. More precisely, for any ℓ ≥ 2 we have that ℓ-GLDH implies ℓ+1-GLDH.
On the other hand (extending [12]) we can show that in the generic group model [42], the ℓ+1-GLDH
assumption holds, even relative to an ℓ-GLDH oracle.

6.3 Key Encapsulation based on GHMDH

Let HG = (G, g, p,H) be random parameters obtained by running the parameter algorithm GenM(1k),
where H : G

ℓ×ℓ → K is a random instance of a hash function such that the GMHDH assumptions
holds relative to GenM. Let TCRk = TCR : G

ℓ → Zp be a family of target collision-resistant hash
functions.

We build a key encapsulation mechanism KEM = (Kg, Enc, Dec) as follows. Key generation
generates random group elements g1, . . . , gℓ, h1, . . . , hℓ and indices xi,j ((i, j) ∈ SH) such that hi = g

xi,j

j .

Furthermore it defines ui,j = g
yi,j

j , for random yi,j ((i, j) ∈ SH). The public key contains the elements
(gi)1≤i≤ℓ, (hi)1≤i≤ℓ, and (ui,j)(i,j)∈SH

, and the secret key contains all corresponding indices.

Enc(pk)

For each j ∈ {1, . . . , ℓ}: rj
$
← Z

∗
p ; cj ← g

rj

j

t← TCR(c1, . . . , cℓ)
For each (i, j) ∈ SH: πi,j ← (ht

iui,j)
rj ; Ki,j ← h

rj

i

K ← H(K) ; C ← (c1, . . . , cℓ, (πi,j)(i,j)∈SH
)

Return (C , K)

Dec(sk ,C )
t← TCR(c1, . . . , cℓ)
For each (i, j) ∈ SH:

if c
xi,jt+yi,j

j 6= πi,j reject

Ki,j ← c
xi,j

j

Return K ← H(K)

Correctness of the scheme is easy to verify. The ciphertexts of the KEM contain ℓ + |SH| group
elements, public/secret keys 2ℓ+|SH| elements. The scheme instantiated with the 2-GLDH assumption
reproduces the KEM from [30] which, for any ℓ ≥ 1, generalizes to the class of ℓ-GLDH schemes.
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Theorem 6.1 Assume TCR is a target collision resistant hash function. Under the Gap Hashed
Multi Diffie-Hellman assumption relative to generator GenM, the key encapsulation mechanism is
secure against chosen-ciphertext attacks.

The proof is similar to the one of Theorem 4.1 and omitted here. We give the intuition for the OW-CCA
security of the scheme based on the computational GHMDH assumption. The simulator B is given the
values (g1, . . . , gℓ, h1, . . . , hℓ, g

a1
1 , . . . , gaℓ

ℓ ) and wants to compute H(D), where Di,j = h
aj

i . Adversary

B picks up random di,j and sets up the elements ui,j of the public key as ui,j = h−t∗

i g
di,j

j , where
t∗ = TCR(ga1

1 , . . . , gaℓ

ℓ ). This has the consequence that for consistent ciphertext pairs (cj , πi,j), the

elements πi,j = (ht
iui,j)

rj = ((ht−t∗

i g
di,j

j )rj = Kt−t∗

i,j c
di,j

j can be used to reconstruct all Diffie-Hellman

keys Ki,j = h
rj

i as Ki,j = (πi,j/c
di,j

j )1/(t−t∗), for all TCR(c1, . . . , cℓ) = t 6= t∗. The above assumes that

the ciphertexts are consistent, i.e. that c
xi,jt+yi,j

i = πi,j for all (i, j) ∈ SH which can be checked using
the DDH oracle. Hence B can answer all decapsulation queries made by A (attacking the OW-CCA
security of the KEM), as long as t 6= t∗.

For the target ciphertext B sets (c∗j , π
∗
i,j) = (g

aj

j , (g
aj

j )di,j ), which is a correct ciphertext since
t∗ = TCR(ga1

1 , . . . , gaℓ

ℓ ) = TCR(c∗1, . . . , c
∗
ℓ). To win it security game, B has to compute the target key

K∗ = H(K∗) = H(D) since K∗
i,j = h

aj

i = Di,j .

7 Implementation and Comparison

7.1 Implementation details

Implementations in prime order groups. An implementation is given by using any prime order
group, for instance a prime-order subgroup of Zq, where q is a prime of ≈ 3072 bits for a security pa-
rameter of k = 128 bits. For a more efficient implementation we recommend using elliptic curve groups
that allow for a considerable speed-up and small representations of one elements in G. More precisely,
NIST [36] recommends curves such that for 128 bits of security” elements in G need 256 bits, For
concreteness we mention that for 128 bits security our schemes allows for an efficient implementation
with 512 bits ciphertext size.

Implementations using bilinear groups. If one wants provable security under HDH or if the
public verifiability property is needed (e.g., to make the scheme threshold [14]) one has to implement
our KEM in gap-groups. Currently the only candidate instantiations of gap-groups arise from bilin-
ear groups where the DDH solver is implemented using a bilinear pairing. It is possible that other
constructions of gap-groups exist. The definition of bilinear groups from Section 5.4 assumed (for
simplicity) a symmetric pairing ê : G × G → GT . In practice one would also like to use asymmetric
pairings of the form ê : G1 ×G2 → GT , where G2 6= G1 is a group of prime order p. Such asymmetric
bilinear groups have the advantage of being less special than symmetric ones — and consequently
offer better security properties since their generality makes it harder to design tailor-made attacks.
Furthermore, as we will sketch below, they lead to considerably shorter ciphertexts than symmetric
pairings.

In asymmetric groups elements in G2 can take much more space to represent than in G1. Further-
more exponentiations in G2 are much more expensive than in G1 [38, 22]. We remark that our scheme
can be adapted to the asymmetric case such that all ciphertext elements lie in the group G1 and that
moreover all exponentiations can be carried out in G1. For a concrete implementation we mention the
non-supersingular curves with security parameters between 80 and 256 bits considered in [38]. In that
particular case the representation of one element in G1 has about the same size as in standard (non
pairing-based) elliptic-curve schemes with key-sizes recommended by NIST [36].

14



Scheme Security Ciphertext Encryption Decryption Keygen Keysize Publ Any
Assmptn Overhead #pairings + #[multi,regular]-exp (pk/sk) Vfy? group?

KD DDH 2|p| 640 0 + [1, 2] 0 + [1, 0] 0 + [2, 0] 4/4 —
√

CS DDH 3|p| 768 0 + [1, 3] 0 + [1, 1] 0 + [2, 0] 5/5 —
√

BMW BDH 2|p| 512 0 + [1, 2] 1 + [0, 1] 1 + [0, 2] 4/3
√

—
Ours §4 GHDH 2|p| 512 0 + [1, 2] 0 + [1, 0] 0 + [0, 2] 3/2

√
∗

√

Ours §6 ℓ-GLDH 2ℓ|p| 512ℓ 0 + [ℓ, 2ℓ] 0 + [ℓ, 0] 0 + [0, 2ℓ] 2ℓ + 1/2ℓ
√

∗
√

∗in gap and pairing groups only

Table 1: Efficiency comparison for chosen-ciphertext secure hybrid encryption schemes. Some figures are borrowed
from [14, 30]. For efficiency we count the number of pairings + [multi exponentiations, regular exponentiations] used
for encryption, decryption, and key generation. All “symmetric” operations (such as hash function/MAC/KDF) are
ignored. Ciphertext overhead represents the difference (in bits) between ciphertext and plaintext length, and |p| is the
length of the bit-representation of a group element in G. For concreteness the expected ciphertext overhead for an 128-bit
implementation is also given. The keysize is measured in two parameters: the size of the system parameters (which are
fixed for every public-key) plus the size of the public key pk , and the size of the secret key sk . Here we only take into
account the number of group elements for params plus pk , and the number of elements in Z

∗

p for sk . A “
√

” in the “Publ.
Vfy” column means that the scheme supports public verifiability. A “

√
” in the “Any group?” column means that the

scheme can be implemented in any prime-order group, whereas a “—” means that the scheme has to be implemented
in pairing groups. For comparison we mention that relative timings for the various operations are as follows: bilinear
pairing ≈ 3 − 5 [38], multi(=sequential)-exponentiation ≈ 1.2 [9], and regular exponentiation = 1.

7.2 Efficiency considerations

The usual efficiency comparison with all previously known chosen-ciphertext secure KEMs/encryption
schemes in the standard model is assembled in Table 1. Here KD is the hybrid encryption scheme
from Kurosawa and Desmedt [32] and CS refers to the Cramer-Shoup encryption scheme [16] which we
compare in its hybrid variant from [43, 17]. BMW is the KEM from Boyen, Mei, and Waters [14]. Our
first scheme is the GHDH-based KEM from Section 4 instantiated with an efficient cryptographic hash
function H : G → {0, 1}l(k). Our second scheme refers to the ℓ-GLDH-based scheme from Section 6
which, for the case ℓ = 2, simplifies to the GLDH-based KEM from [30]. All KEMs are assumed
to be instatiated using a redundancy-free chosen-ciphertext secure symmetric scheme to obtain a full
hybrid PKE scheme. The KD encryption scheme can only be proved secure in combination with
an authenticated symmetric encryption scheme which inherently adds “one MAC” overhead to the
ciphertext size.

Even though our scheme shares the same number of exponentiations for encryption/decryption
with the KD scheme, it has some practical advantages which makes a more efficient implementation
possible. First, it is possible to use a bijective encoding TCR0 : G→Zp and does not have to rely
on expensive number-theoretic constructions of provably secure TCR functions. Second, one only
needs one subgroup membership test for decryption, whereas the KD-scheme needs two. Depending
on the underlying group such subgroup membership tests may be as expensive as one exponentiation.
Third, the class of symmetric encryption schemes our KEM can be securely instantiated with is larger
since we do not require authenticated encryption. This in particular makes it possible to rely on free
redundancy-free “one-pass” symmetric techniques (which process the message to be encrypted only
once). For authenticated encryption there are only less efficient two-pass schemes freely available since
all one-pass techniques are covered by patents [8].
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A Proof of Theorem 4.1

Suppose there exists a polynomial time adversary A that breaks the chosen-ciphertext security of the
encapsulation scheme with (non-negligible) advantage Advkem-cca

KEM ,A(k) and makes at most q decapsu-
lation queries.

We show that there exists an adversary B that runs in time TimeB(k) = TimeA(k) + O(q ·
TimeG(k)), (where TimeG(k) is the time to perform a basic operation in G) and runs adversary A
as a subroutine to solve a random instance of the GHDH problem with advantage

Adv
ghdh
Gen,B(k) ≥ Advkem-cca

KEM ,A(k)−Advhash-tcr
TCR,H (k) . (2)

Now Eqn. (2) proves the Theorem.
We now give the description of adversary B. Adversary B inputs an instance of the GHDH problem,

i.e. B inputs the values (1k,HG , H, g, u = ga, gb, W ). B’s goal is to determine whether W = H(ub)
or W ∈ {0, 1}l is a random bit string. Adversary B runs adversary A simulating its view as in the
original KEM security experiment as follows:

Key Generation & Challenge. Initially adversary B picks a random value d ∈ Z
∗
p and defines the

target ciphertext
C ∗ = (c∗, π∗)← (gb, (gb)d) . (3)

and the challenge key as K∗ = W . We denote t∗ = TCR(c∗) as the target tag (associated with
the target ciphertext). The value v from the public key pk = (u, v) is defined as

v ← u−t∗ · gd . (4)

Note that the public key is identically distributed as in the original KEM.

With each ciphertext C = (c, π) we associate a tag t = TCR(c). Recall that we call a ciphertext
consistent if π = (utv)r, where r = logg c. Note that the way the keys are setup for a consistent
ciphertext we have

π = (utv)r = (utu−t∗gd)r = (ur)t−t∗ · cd . (5)

Given a consistent ciphertext C = (c, π) with associated tag t 6= t∗ the session key K = H(cx)
can alternatively be computed by Eqn. (5) as

K = H((π/cd)(t−t∗)−1
) . (6)

By Eqn. (5) and since t∗ = TCR(c∗) the challenge ciphertext C ∗ = (c∗, π∗) = (gb, (gb)d) =
(c∗, (c∗)d) is a correctly generated ciphertext for randomness b. If W = H(ub) then it follows by
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Eqn. (4) that C ∗ = (gb, (gb)d) is a correct ciphertext of key K∗ = W = H(ub), distributed as in
the original experiment. On the other hand, when W is uniform and independent in {0, 1}l then
C ∗ is independent of K∗ = W in the adversary’s view.

Adversary B runs A on input (pk , K∗,C ∗) answering to its queries as follows:

Decryption queries. The KEM decapsulation queries are simulated by B as follows: Let C = (c, π)
be an arbitrary ciphertext submitted to the decapsulation oracle DecO(·). First B performs a con-
sistency check of the ciphertext, i.e. it checks (using the Diffie-Hellman oracle DDHsolve(·, ·, ·, ·))
if (g, utv, c, π) is a valid Diffie-Hellman tuple.4

We remark that this is the only case where the simulation depends on the existence of the DDH
oracle DDHsolve. If C is not consistent then B returns reject. Otherwise, if the ciphertext is
consistent B computes t = TCR(c) and distinguishes the following three cases:

Case 1: t = t∗ and c = c∗: adversary B rejects the query. In this case consistency (c.f. Eqn. (5))
implies π = cd = (c∗)d = π∗ and hence C = C ∗ and the query made by A is illegal.
Therefore it may be rejected by B.

Case 2: t = t∗ and c 6= c∗: adversary B found a collision c 6= c∗ in TCR with TCR(c) = TCR(c∗).
In that case B returns the collision and aborts.

Case 3: t 6= t∗: adversary B computes the correct session key by Eqn. (6) as K ← H((π/cd)(t−t∗)−1
).

This completes the description of the decapsulation oracle.

We have shown that unless B finds a collision in TCR (Case 2) the simulation of the decapsu-
lation oracle is always perfect, i.e. the output of the simulated oracle DecO(sk , ·) is identically
distributed as the output of Dec(sk , ·).

Guess. Eventually, A outputs a guess δ′ ∈ {0, 1} where δ′ = 1 means that K∗ is the correct key.
Algorithm B concludes its own game by outputting γ′ = δ′ where γ′ = 1 means that W = H(gab)
and γ′ = 0 means that W is random.

This completes the description of adversary B.

Analysis. We have shown that as long as there is no hash collision in TCR found by B, adversary
A’s view in the simulation is identically distributed to its view in the real attack game.

Note that c∗ is a random element from G1 (provided from outside of B’s view), therefore finding a
value c 6= c∗ with TCR(c) = TCR(c∗) really contradicts to the security property of the target collision
resistant hash function. The probability that B finds a collision in the hash function TCR is bounded
by Advhash-tcr

TCR,H (k), where H is an adversary against the target collision resistance of TCR, running in
about the same time as B.

Define ”F” to be the event that B wins its GHDH game, i.e. it outputs δ′ = 1 if W = H(gab)
and δ′ = 0 if W is random. Assume there was no hash collision found by B. On the one hand, if W
is uniform and independent in {0, 1}l then the challenge ciphertext C ∗ is independent of K∗ = W
in the adversary’s view. In that case we have Pr [F ] = Pr [ δ′ = 0 ] = 1

2 . On the other hand, when
W = H(gab) then C ∗ is a correct ciphertext of the challenge key K∗, distributed as in the original
experiment. Then, by our assumption, A must make a correct guess δ′ = 1 with advantage at least
Advkem-cca

KEM ,A(k) and we have |Pr [F ]− 1
2 | = |Pr [ δ′ = 1 ]− 1

2 | ≥ Advkem-cca
KEM ,A(k).

4At this point the existence of a weak DDH oracle DDHsolveg,u(·, ·) for fixed u is sufficient. This is since (g, utv, c, π)

is a valid Diffie-Hellman tuple iff (g, u, c, (π/cd)(t−t∗)−1)) is a valid Diffie-Hellman tuple. So to verify consistency of the

KEM ciphertext, B equivalently queries DDHsolveg,u(c, (π/cd)(t−t∗)−1

). Also cf. Remark 4.2.
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Therefore, adversary B’s advantage in the GHDH game is Adv
ghdh
Gen,B(k) ≥ Advkem-cca

KEM ,A(k)−Advhash-tcr
TCR,H (k)

which proves Eqn. (2) and completes the proof of the theorem.

B Public-key encryption based on Gap Hashed Diffie-Hellman

We give more details of the direct PKE scheme based on GHDH that applies a hash-technique due to
Waters [45] to our KEM scheme from Section 4. Let HG = (G, g, p,H) be random group parameters
obtained by running the group parameter algorithm Gen(1k). Let CRk = CR : G×{0, 1}l(k) → {0, 1}n(k)

be a family of collision-resistant hash functions. We build a public-key encryption scheme PKE as
follows.

PKEkg(1k)

x0, . . . , xn
$
← Z

∗
p

h0 ← gx0 , . . . , hn ← gxn

pk ← (h0, . . . , hn)
sk ← (x0, . . . , xn)
Return (pk , sk)

PKEenc(pk , M)

r
$
← Z

∗
p ; c1 ← gr

e←M⊕H(hr
0) ; t← CR(c1||e)

c2 ← (h0
∏n

i=1 hti
i )r

C ← (c1, c2, e)

Return C ∈ G
2 × {0, 1}l(k)

PKEdec(sk ,C )
Parse C as (c1, c2, e)
t ← CR(c1||e)

If c
x0+

Pn
i=1 xiti

1 6= c2

then reject

Else return M ← e⊕H(cx0
1 )

Theorem B.1 Assume CR is a collision resistant hash function which outputs strings of length n(k).
Under the Gap Hashed Diffie-Hellman assumption relative to generator Gen and hash function H, the
above public-key encryption scheme is secure against chosen-ciphertext attacks. In particular, for any
adversary A against the PKE scheme running for time TimeA(k), there exists an adversary B against

GHDH with Adv
ghdh
Gen,B(k) := ε, where

ε = Ω(Adv
pke-cca
PKE ,A (k)/(nq)−Advhash-cr

CR,A′ (k)− q/p)

and TimeB(k) = TimeA(k) + O((ε−2 ln(ε−1) + q) · TimeG(k)), where q is an upper bound on the
number of decapsulation queries made by adversary A and TimeG(k) is the time for a standard
operation in G.

The (quite technical) proof of Theorem B.1 combines the proof of Theorem 4.1 with Waters’ hash [45]
and is omitted. We remark that the above scheme can also be viewed as a tag-KEM [2].

C Equivalence of the two security notions for KEMs

In this section we provide the original two-phase definition of IND-CCA security for KEMs [43] and
prove it equivalent to our simplified definition.

Definition C.1 Formally, we associate to an adversary B = (B1,B2) the following experiment:

Experiment Expkem-ccaf
KEM ,B

(k)

(pk , sk)
$
← Kg(1k)

state
$
← B

DecO(·)
1 (pk)

K∗
0

$
← KeySp(k) ; (K∗

1 ,C ∗)
$
← Enc(pk)

δ
$
← {0, 1}

δ′
$
← B

DecO(·)
2 (state, K∗

δ ,C ∗)
If δ 6= δ′ then return 0 else return 1
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where the oracle DecO(C ) returns K
$
← Dec(sk ,C ) with the restriction that B is not allowed to query

DecO(·) on the target ciphertext C ∗. We define the advantage of B in the left experiment as

Advkem-ccaf
KEM ,B (k) =

∣

∣

∣

∣

Pr
[

Expkem-ccaf
KEM ,B (k) = 1

]

−
1

2

∣

∣

∣

∣

.

A key encapsulation mechanism KEM is said to be indistinguishable against chosen-ciphertext at-
tacks if the advantage function Advkem-ccaf

KEM ,B (k) is a negligible function in k for all polynomial-time
adversaries B.

To prove Theorem 2.2 we show the following:

Lemma C.2 Suppose there exists an attacker A that attacks the IND-CCA security as defined in Def-
inition 2.1 with advantage Advkem-cca

KEM ,B (k). Then there exists an attacker B that attacks the IND-CCA

security as defined in Definition C.1 with advantage Advkem-ccaf
KEM ,B (k) ≥ Advkem-cca

KEM ,B (k)−q1/|KeySp(k)|,

where q1 is an upper bound on the number of decapsulation queries B1 makes (in the find phase).

Proof: The proof is simple (sketch). A recieves (pk , K∗, C∗) from the experiment. A runs B1 on pk
and answers B1’s decapsulation queries using its own decapsulation oracle. This simulation is perfect
unless B1 queries C∗. Since C∗ is information theoretically hidden from B1’s view and since we assumed
Enc(pk) to output a perfectly uniform distribution on KeySp, this happens with probability at least
q1/|KeySp(k)|. Eventually B1 terminates and outputs a state state. Then B2 is run on (state, K∗, C∗)
and again B2’s decapsulation queries are answered by A. Eventually B2 terminates and A outputs
whatever B2 outputs.

D Proof of Lemma 5.1

Proof: We first show the tight equivalence of GDH and GHDH in the (non-programmable) random
oracle model, i.e. the non-trivial direction that GHDH implies GDH. Adversary B inputs an instance
of the GDH problem, i.e. B inputs the values (1k, G, g, h, gr). B’s goal is to compute hr.

Now suppose there exists an adversary A that breaks the GHDH assumption with (non-negligible)

advantage Adv
ghdh
Gen,H,A(k). We show that adversary B can run adversary A to solve its instance of the

GDH problem with the same advantage.

B picks a random Y ∈ {0, 1}l and runs A on input (1k, G, g, h, gr, Y ). The hash queries H(X) made
by A are answered as follows. B maintains a table (X, K(X)) of all oracle queries. If X was already
queried the corresponding value K(X) from the table is returned. If X was not queried yet B tests
if the tuple (g, h, gr, X) is a Diffie-Hellman tuple using the provided DDH oracle DDHsolve. If the
answer is yes then B stops the simulation and returns X. Otherwise B picks a new random value

K(X)
$
← {0, 1}l. Finally the values (X, K(X)) are stored in a table and K(X) is returned.

Eventually A returns a bit γ′ and terminates. In that case B ignores the returned bit, returns a
random value X and terminates. This completes the description of B. Note that the simulation is
always perfect, i.e. the view of A is as in the GDH security experiment.

Now the standard argument is that when A has a chance in deciding between a random Y and
Y = H(hr) then it must have asked the random oracle H for the value hr. This query will be detected

by B using the DDH oracle. That shows Adv
gdh
Gen,B(k) ≥ Adv

ghdh
Gen,A(k). Note that in the proof B does

not “programm” the random oracle, it only observes queries to it made by A. That is, in the reduction
the hash function H is modeled as a non-programmable random oracle [35].
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