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Abstract. NLS is a stream cipher which was submitted to the eSTREAM project. A
linear distinguishing attack against NLS was presented by Cho and Pieprzyk, which
was called Crossword Puzzle (CP) attack. NLSv2 is the tweak version of NLS which
aims mainly at avoiding the CP attack. In this paper, a new distinguishing attack
against NLSv2 is presented. The attack exploits high correlation amongst neighboring
bits of the cipher. The paper first shows that the modular addition preserves pairwise
correlations as demonstrated by existence of linear approximations with large biases.
Next it shows how to combine these results with the existence of high correlation
between bits 29 and 30 of the S-box to obtain a distinguisher whose bias is around
2−37. Consequently, we claim that NLSv2 is distinguishable from a random process
after observing around 274 keystream words.
Keywords : Distinguishing Attacks, Crossword Puzzle Attack, Stream Ciphers, eS-
TREAM, NLS, NLSv2.

1 Introduction

In 2004, ECRYPT project launched a new multi-year project eSTREAM, the ECRYPT
Stream Cipher project, to identify new stream ciphers that might become suitable for
widespread adoption as international industry standards [8]. NLS is one of stream ciphers
submitted to the eSTREAM project [4]. The second phase of the eSTREAM included NLS in
both profiles 1 (Software) and 2 (Hardware). During the first phase, a distinguishing attack
against NLS was presented in [3]. The attack requires around 260 keystream observations.

NLSv2 is a tweaked version of NLS to counter the distinguishing attack mentioned above.
Unlike in the original NLS, NLSv2 periodically updates the value Konst every 65537 clock.
The new value of Konst is taken from the output of the non-linear filter. In [3], the lin-
ear approximation from non-linear feedback shift register (NFSR) was derived and the sign
of bias can be either positive or negative depending on the value of Konst. Thus, a ran-
domly updated Konst is expected to “neutralize” the overall bias of approximations, which
eventually minimizes the bias of distinguisher.

In [2], the authors presented distinguishing attacks on NLS and NLSv2 by Crossword Puzzle
attack (or shortly CP attack) method. The CP attack is a variant of the linear distinguishing
attack which was specifically designed to work for NFSR based stream ciphers. The attack
concentrates on finding approximations and combining them in such a way that the internal
states of NFSR cancel each other.

Being more specific, the authors showed that, for the attack on NLSv2, the effect of Konst

could be eliminated by using ’even’ number of NFSR approximations. A distinguisher was
constructed by combining eight NFSR approximations and two NLF approximations, for
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which 296 observations of keystream are required. However, due to the explicit upper limit
of 280 on the number of observed keystream imposed by the designers of the cipher, this
attack does not break the cipher.

In this paper, we have improved the linear distinguishing attack on NLSv2 presented in the
latter part of [2]. We still use the CP attack from [2] for our distinguisher. However, we have
observed that there are linear approximations of S-boxes whose biases are much higher than
those used in the previous attack.

Using those more effective approximations, we can now construct a distinguisher whose bias
is around 2−37. Therefore, we claim that NLSv2 is distinguishable from a truly random
cipher after observing around 274 keystream words which are within the limit of permitted
observations during the session with a single key.

This paper is organized as follows. Section 2 presents some properties of multiple modular
additions which are useful for our attack. Section 3 presents the structure of NLSv2. Section
4 presents the technique we use to construct linear approximations required in our attack.
Section 5 contains the main part of the paper and presents the CP attack against NLSv2.
Section 6 concludes the work.

Notation :

1. + denotes the addition modulo 232,
2. x≪k represents the 32-bit x which is rotated left by k-bit,
3. x(i) stands for i-th bit of the 32-bit string x

These notations will be used throughout this paper.

2 Probabilistic properties of multiple modular additions

The attack on NLSv2 explores a correlation between two neighboring bits. This Section
describes the behavior of neighboring bits in modular additions and establishes the back-
ground for our further considerations. Suppose that z = x + y where x, y ∈ {0, 1}32 are
uniformly distributed random variables. According to [1], each z(i) bit is expressed a func-
tion of x(i), · · · , x(0) and y(i), · · · , y(0) bits as follows

z(i) = x(i) ⊕ y(i) ⊕ x(i−1)y(i−1) ⊕
i−2
∑

j=0

x(j)y(j)

i−1
∏

k=j+1

[x(k) ⊕ y(k)], for i = 1, . . . , 31

and z(0) = x(0) ⊕ y(0). Let R(x, y) denote the carry of modular addition as follows

R(x, y)(i) = x(i)y(i) ⊕
i−1
∑

j=0

x(j)y(j)

i
∏

k=j+1

[x(k) ⊕ y(k)], i = 0, 1, . . . , 30. (1)

Then, obviously, z(i) = x(i) ⊕ y(i) ⊕ R(x, y)(i−1) for i = 1, . . . , 31. Due to Equation (1), the
carry R(x, y)(i) has the following recursive relation.

R(x, y)(i) = x(i)y(i) ⊕ (x(i) ⊕ y(i))R(x, y)(i−1) (2)

Hereafter, we study the biases of approximations using a pair of adjacent bits when multiple
modular additions are used. For this, we introduce the following definition.
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Definition 1. Γi denotes a linear masking vector over GF (2) which has ’1’ only on the

bit positions of i and i + 1. Then, given 32-bit x, Γi · x = x(i) ⊕ x(i+1), where · denote the

standard inner product.

Now we are ready to present a collection of properties that are formulated in the lemmas
given below. These results are essential for setting up our attack. In the following, we assume
that all inputs of modular addition are uniformly distributed random variables.

Lemma 1. Given x, y ∈ {0, 1}32, then the probability distribution of the carry bits can be

expressed as follows

Pr[R(x, y)(i) = 0] =
1

2
+ 2−i−2 for i = 0, . . . , 30.

Proof. The proof is given by induction.

(1) Let i = 0. Then Pr[R(x, y)(0) = x(0)y(0) = 0] = 3
4 = 1

2 + 2−2

(2) In the induction step we assume that Pr[R(x, y)(i−1) = 0] = 1
2 + 2−i−1. Then, from

Relation (2), we have

Pr[R(x, y)(i) = 0] =

{

Pr[x(i)y(i) = 0] = 3
4 , if R(x, y)(i−1) = 0

Pr[x(i)y(i) ⊕ (x(i) ⊕ y(i)) = 0] = 1
4 , if R(x, y)(i−1) = 1

Hence, the following equation holds

Pr[R(x, y)(i) = 0] =
3

4
· Pr[R(x, y)(i−1) = 0] +

1

4
· Pr[R(x, y)(i) = 1] =

1

2
+ 2−i−2.

This proves our lemma. ⊓⊔

Corollary 1. Given x, y ∈ {0, 1}32, the following approximation holds with the constant

probability

Pr[Γi · R(x, y) = 0] =
3

4
for i = 0, . . . , 30.

Proof. By definition, we obtain

Γi · R(x, y) = R(x, y)(i) ⊕ R(x, y)(i+1) = x(i+1)y(i+1) ⊕ (x(i+1) ⊕ y(i+1) ⊕ 1)R(x, y)(i).

Hence, from Lemma 1, we get

Pr[Γi · R(x, y) = 0] =
3

4
· Pr[R(x, y)(i) = 0] +

3

4
· Pr[R(x, y)(i) = 1] =

3

4

and the corollary holds. ⊓⊔

Due to Corollary 1, the following approximation has the probability of 3
4 , as stated in [2].

Γi · (x + y) = Γi · (x ⊕ y), i = 0, . . . , 30 (3)

Lemma 2. Suppose that x, y, z ∈ {0, 1}32. Then, the following linear approximation

Γi · (x + y + z) = Γi · (x ⊕ y ⊕ z) (4)

holds with the probability of 2
3 − 1

32−2i−1 for i = 0, . . . , 30.
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Proof. The proof of the lemma can be found in Appendix A.

It is interesting to see that the probability of Approximation (4) is around 2
3 = 1

2 (1+2−1.58)
due to the dependency between the two modular additions. In contrast to Lemma (2), the
approximation Γi ·[(x + y)⊕(z + w)] = Γi ·[(x⊕y)⊕(z⊕w)] holds with the bias of (2−1)2 by
Piling-Up Lemma [6] since the two modular additions are mutually independent. A similar
observation was exploited to construct an improved distinguisher for SNOW 2.0 in [9].

Lemma 3. Suppose that x1, x2, . . . , xn, k ∈ {0, 1}32 where n is an even number. Then, the

following linear approximation

Γi · (x1 + k) ⊕ Γi · (x2 + k) ⊕ · · · ⊕ Γi · (xn + k) = Γi · (x1 ⊕ x2 ⊕ · · · ⊕ xn)

holds with the probability of around n+2
2(n+1) for i = 1, . . . , 30.

Proof. The lemma is proved in Appendix B.

Corollary 2. Given x, y, z ∈ {0, 1}32, the following linear approximation

Γi · (x + y) ⊕ Γi · (x + z) = Γi · (y ⊕ z)

holds with the probability of 2
3 + 1

32−2i−2 for i = 0, . . . , 30.

Proof. Appendix C contains the proof of the Corollary.

Lemma 4. Given x, y, z, w ∈ {0, 1}32, the following linear approximation

Γi · (x + y) ⊕ Γi · (z + w) = Γi · (x + z) ⊕ Γi · (y + w)

has the probability of 2
3 + 1

32−2i−2 for i = 0, . . . , 30.

Proof. For the proof, see Appendix D.

Corollary 3. Let x, y, z, w ∈ {0, 1}32, then the following linear approximation

Γi · (x + y) ⊕ Γi · (x + z) ⊕ Γi · (y + w) = Γi · (z ⊕ w)

holds with the probability of 29
48 + 1

32−2i−4 for i = 0, . . . , 30.

Proof. For the proof, see Appendix E.

For convenience, in the rest of the paper we are going to use bias of approximation rather
than probability that an approximation holds.

3 Brief description of NLSv2

NLS is a synchronous, word-oriented stream cipher controlled by a secret key of the size
up to 128 bits. The keystream generator of NLS is composed of a non-linear feedback shift
register (NFSR) and a non-linear filter (NLF) with a counter. In this section, we describe
only the part of NLS which is necessary to understand our attack. The structure of NLSv2 is
exactly the same as that of NLS except a periodically updated Konst [4]. For more details,
refer to [4] and [5].
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Fig. 1. The update function of NFSR

3.1 Non-linear Feedback Shift Register (NFSR)

At time t, the state of NFSR is denoted by σt = (rt[0], . . . , rt[16]) where rt[i] is a 32-bit
word. Konst is a key-dependent 32-bit word, which is set at the initialization stage and is
updated periodically. The transition from the state σt to the state σt+1 is defined as follows:

(1) rt+1[i] = rt[i + 1] for i = 0, . . . , 15;
(2) rt+1[16] = f((rt[0]≪19) + (rt[15]≪9) + Konst) ⊕ rt[4];
(3) if t ≡ 0 (modulo f16), then

(a) rt+1[2] is modified by adding t (modulo 232),
(b) Konst is changed to the output of NLF,
(c) the output of NLF at t = 0 is not used as a keystream word,
where f16 is a constant integer 216 + 1 = 65537.

The f function The function f is defined as f(ω) = S-box(ω(H)) ⊕ ω where ω(H) is the
most significant 8 bits of 32-bit word ω. The main S-box is composed of two independent
smaller S-boxes: the Skipjack S-box (with 8-bit input and 8-bit output) [7] and a custom-
designed QUT S-box (with 8-bit input and 24-bit output). The output of main S-box in
NLSv2 is defined as a concatenation of outputs of the two smaller S-boxes. Note that the
input of Skipjack S-box (that is ω(H)) is added to the output of Skipjack S-box in advance
for fast implementation. Since the output of the main S-box is added to ω again, the original
output of Skipjack S-box is restored. See Figure 1 for details.

3.2 Non-linear Filter (NLF)

Each output keystream word νt of NLF is generated according to the following equation

νt = NLF (σt) = (rt[0] + rt[16]) ⊕ (rt[1] + rt[13]) ⊕ (rt[6] + Konst). (5)

Note that there is no output word when t = 0 modulo f16.
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4 Building linear approximations

In this section, linear approximations for NLF and NFSR are developed for the CP attack
against NLS and NLSv2. Our main goal here is to derive new approximations of NFSR that
have a higher bias than those presented in [2]. Let n is a positive number. Given a linear
approximation l : {0, 1}2n → {0, 1}, a bias ǫ of the approximation l is defined as follows 1

Pr[l = 0] =
1

2
(1 + ǫ), |ǫ| > 0.

The advantage of the definition is that the bias of the combination of n independent ap-
proximations each of bias ǫ is equal to ǫn as asserted by the Piling-up lemma [6].

4.1 Linear approximations of NFSR

We investigate the bias of the approximation of linear combination of two neighboring bits
of α = S-box(ω(H)). As ω(H) is an 8-bit input, the bias ǫi can be calculated as follows

ǫi = 2−8 · {#(Γi · α = 0) − #(Γi · α = 1)}, i = 0, . . . , 30.

By the exhaustive search, we have found that the linear approximation α29 ⊕ α30 = 1 has
the largest bias of 2−2.3. Since f(ω) = S-box(ω(H))⊕ω, it is clear that the following output
approximation has the bias of 2−2.3.

Γ29 · (ω ⊕ f(ω)) = 1 (6)

Having Approximation (6), we derive the best approximation of the NLF function. From
the structure of NLF, we know that the following relation is always true.

Γ29 · (f(ω)t ⊕ rt[4] ⊕ rt+1[16]) = 0

By combining the above relation with Approximation (6), we obtain the approximation

Γ29 · (ωt ⊕ rt[4] ⊕ rt+1[16]) = 1 (7)

that has the bias of 2−2.3.

4.2 Linear approximations of NLF

The best linear approximation of NLF for our attack is similar to the one which was given
in [2] except that we use the bit position 29 and 30 instead of 12, 13, 22 and 23. Moreover,
we quantify the value of the approximation which was given in [2].

Lemma 5. Given two consecutive outputs of NLF, namely, νt and νt+1, the following ap-

proximation

Γi · (νt ⊕ νt+1) = Γi · (rt[0] ⊕ rt[2] ⊕ rt[6] ⊕ rt[7] ⊕ rt[13] ⊕ rt[14] ⊕ rt[16] ⊕ rt+1[16])

holds with the bias of 1
36 (1 + 2−2i−1)2.

1
ǫ is also known in the literature as the correlation or the imbalance.
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Proof. From the non-linear filter function (5), we know that

νt ⊕ νt+1 = (rt[0] + rt[16]) ⊕ (rt[1] + rt[13]) ⊕ (rt[6] + Konst)

⊕ (rt+1[0] + rt+1[16]) ⊕ (rt+1[1] + rt+1[13]) ⊕ (rt+1[6] + Konst)

for two consecutive clocks (t, t + 1). Note that rt[1] and Konst are used twice in above
expression. Hence, according to Corollary 2, the following two approximations have the
probability of 1

2 (1 + 1
3 + 1

32−2i−1) each.

Γi · (rt[6] + Konst) ⊕ Γi · (rt+1[6] + Konst) = Γi · (rt[6] ⊕ rt+1[6])

Γi · (rt[1] + rt[13]) ⊕ Γi · (rt+1[0] + rt+1[16]) = Γi · (rt[13] ⊕ rt+1[16])

In addition, due to Corollary 1, the approximation given below holds with the probability
of 1

2 (1 + 2−1), respectively.

Γi · (rt[0] + rt[16]) = Γi · (rt[0] ⊕ rt[16])

Γi · (rt+1[1] + rt+1[13]) = Γi · (rt+1[1] ⊕ rt+1[13])

Hence, the overall bias is ( 1
3 + 1

32−2i−1)2 × 2−2 = 1
36 (1 + 2−2i−1)2. ⊓⊔

Therefore, the best linear approximation of NLF for our attack is

Γ29 · (νt ⊕ νt+1) = Γ29 · (rt[0] ⊕ rt[2] ⊕ rt[6] ⊕ rt[7] ⊕ rt[13] ⊕ rt[14] ⊕ rt[16] ⊕ rt+1[16] (8)

that has the bias of 1
36 (1 + 2−2×29−1)2 ≈ 2−5.2.

4.3 Linear property of NFSR

Due to the update rule of NFSR, we know that rt+i[j] = rt+j [i] where i, j > 0.

5 Crossword Puzzle (CP) Attack on NLSv2

In NLSv2, the value of Konst is updated by taking the output of NLF at every 65537 clock. In
[2], authors showed that Konst terms could be removed from the distinguisher by combining
two consecutive approximations of NLF. In this section, the similar technique is adapted
for our attack. That is, the distinguisher are derived by combining the approximations of
NFSR and NLF appropriately in such a way that the internal states of the shift register are
canceled out.

However, we develop more efficient attack on NLSv2 using Approximation (7) and (8) at
clock positions η which are

η = {0, 2, 6, 7, 13, 14, 16, 17}.

Note that Approximation (7) consists of non-linear terms and linear terms: Γ29 · ωt and
Γ29 · (rt[4]⊕ rt+1[16]), respectively. In the following section, we develop the approximations
of the Xt and Yt separately which are defined as follows:

Xt =
⊕

k∈η

Γ29 · (rt+k[4] ⊕ rt+k+1[16]), Yt =
⊕

k∈η

Γ29 · ωt+k.
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5.1 Bias of Xt

Due to Approximation (8), the Xt can be represented in the following form:

Xt =
⊕

k∈η

Γ29 · (rt+k[4] ⊕ rt+k+1[16]) =
⊕

k∈η

Γ29 · (rt+4[k] ⊕ rt+17[k])

= Γ29 · (νt+4 ⊕ νt+5 ⊕ νt+17 ⊕ νt+18). (9)

The bias of Approximation (9) is 2−8.6. The calculations of the bias are given below. Due
to the definition of νt given in Equation (5), we know that

Γ29 · (νt+4 ⊕ νt+5 ⊕ νt+17 ⊕ νt+18)

= Γ29 · (rt+4[0] + rt+4[16]) ⊕ Γ29 · (rt+4[1] + rt+4[13]) ⊕ Γ29 · (rt+4[6] + Konst)

⊕Γ29 · (rt+5[0] + rt+5[16]) ⊕ Γ29 · (rt+5[1] + rt+5[13]) ⊕ Γ29 · (rt+5[6] + Konst)

⊕Γ29 · (rt+17[0] + rt+17[16]) ⊕ Γ29 · (rt+17[1] + rt+17[13]) ⊕ Γ29 · (rt+17[6] + Konst)

⊕Γ29 · (rt+18[0] + rt+18[16]) ⊕ Γ29 · (rt+18[1] + rt+18[13]) ⊕ Γ29 · (rt+18[6] + Konst)

We can see that several terms are shared due to the linear property of NFSR. Hence, the
approximations are applied separately into four groups as follows.

1. According to Corollary 3, we get

Γ29 · (rt+4[1] + rt+4[13]) ⊕ Γ29 · (rt+17[0] + rt+17[16]) ⊕ Γ29 · (rt+5[0] + rt+5[16])

= Γ29 · rt+17[16] ⊕ Γ29 · rt+5[16]

that holds with the probability of 29
48 + 1

32−2×29−4 ≈ 1
2 (1 + 2−2.3).

2. Due to Lemma 3, the approximation

Γ29 · (rt+5[1] + rt+5[13]) ⊕ Γ29 · (rt+18[0] + rt+18[16]) ⊕ Γ29 · (rt+17[1] + rt+17[13])

= Γ29 · (rt+5[1] ⊕ rt+5[13] ⊕ rt+18[16] ⊕ rt+17[13])

holds with the probability of around 5
8 = 1

2 (1 + 2−2).

3. Lemma 3 also asserts that the approximation

Γ29 · (rt+4[6] + Konst) ⊕ Γ29 · (rt+5[6] + Konst) ⊕ Γ29 · (rt+17[6] + Konst)

⊕Γ29 · (rt+18[6] + Konst) = Γ29 · (rt+4[6] ⊕ rt+5[6] ⊕ rt+17[6] ⊕ rt+18[6])

holds with the probability of around 3
5 = 1

2 (1 + 2−2.3).

4. Corollary 1 says that the approximation

Γ29 · (rt+4[0] + rt+4[16]) ⊕ Γ29 · (rt+18[1] + rt+18[13])

= Γ29 · (rt+4[0] ⊕ rt+4[16]) ⊕ Γ29 · (rt+18[1] ⊕ rt+18[13])

holds with the probability of 1
2 (1 + 2−2).

Therefore, the bias of Approximation (9) is 2−2.3 × 2−2 × 2−2.3 × 2−2 = 2−8.6.
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5.2 Bias of Yt

The ωt is an intermediate variable that is defined as ωt = (rt[0]≪19) + (rt[15]≪9) + Konst.

Due to Lemma 2, the ωt has the following approximation

Γ29 · ω = Γ29 · (rt[0]≪19 ⊕ rt[15]≪9 ⊕ Konst)

= Γ10 · rt[0] ⊕ Γ20 · rt[15] ⊕ Γ29 · Konst

that holds with the probability of 2
3 − 1

32−2×29−1 ≈ 1
2 (1 + 2−1.6). Due to Lemma 5, the

approximation of Yt can be described as

Yt =
⊕

k∈η

Γ29 · ωt+k =
⊕

k∈η

(Γ10 · rt+k[0] ⊕ Γ20 · rt+k[15] ⊕ Γ29 · Konst)

= Γ10 · (νt ⊕ νt+1) ⊕ Γ20 · (νt+15 ⊕ νt+16). (10)

The bias of Approximation (10) is at least 2−10.4. The detail analysis on the bias will be
discussed in Section 5.4. Notice that Konst terms have disappeared since the binary addition
of eight approximations cancels Konst as observed in [2]. Due to the lack of a keystream
word at every f16-th clock, we can see precisely when Konst is updated. Since the updated
Konst has been effective to all states of registers after the first 17 clocks, the observations
generated from the first 17 clocks should not be counted for the bias. Hence, Konst is
regarded as a constant in all approximations. 2

5.3 Bias of the distinguisher

From Approximation (7),
⊕

k∈η

Γ29 · (ωt+k ⊕ rt+k[4] ⊕ rt+1+k[16]) = Xt ⊕ Yt = 0 (11)

On the other hand, by adding up the approximations of (9) and (10), we obtain the following
approximation

Xt ⊕ Yt = Γ29 · (νt+4 ⊕ νt+5 ⊕ νt+17 ⊕ νt+18)⊕ Γ10 · (νt ⊕ νt+1)⊕ Γ20 · (νt+15 ⊕ νt+16) (12)

that holds with the bias equal to 2−8.6 × 2−10.4. Therefore, by combining (11) and (12), the
distinguisher on NLSv2 can be described by the approximation

Γ29 · (νt+4 ⊕ νt+5 ⊕ νt+17 ⊕ νt+18) ⊕ Γ10 · (νt ⊕ νt+1) ⊕ Γ20 · (νt+15 ⊕ νt+16) = 0 (13)

that holds with the bias of around 2−2.3×8 × 2−8.6 × 2−10.4 = 2−37.4.

5.4 The bias of Approximation (10)

According to the definition of νt given by Equation (5), we can write the following approxi-
mation

Γ10 · (νt ⊕ νt+1) ⊕ Γ20 · (νt+15 ⊕ νt+16)

= Γ10 · (rt[0] + rt[16]) ⊕ Γ10 · (rt[1] + rt[13])Γ10 · (rt[6] + Konst)

⊕Γ10 · (rt+1[0] + rt+1[16]) ⊕ Γ10 · (rt+1[1] + rt+1[13]) ⊕ Γ10 · (rt+1[6] + Konst)

⊕Γ20 · (rt+15[0] + rt+15[16]) ⊕ Γ20 · (rt+15[1] + rt+15[13]) ⊕ Γ20 · (rt+15[6] + Konst)

⊕Γ20 · (rt+16[0] + rt+16[16]) ⊕ Γ20 · (rt+16[1] + rt+16[13]) ⊕ Γ20 · (rt+16[6] + Konst)

, ∆1 ⊕ ∆2 ⊕ ∆3

2 By this reason, the notation Konstt is not used in the approximations.
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where

∆1 = Γ10 · (rt[0] + rt[16]) ⊕ Γ20 · (rt+15[0] + rt+15[16])

⊕Γ10 · (rt+1[1] + rt+1[13]) ⊕ Γ20 · (rt+16[1] + rt+16[13])

∆2 = Γ10 · (rt[1] + rt[13]) ⊕ Γ20 · (rt+15[1] + rt+15[13])

⊕Γ10 · (rt+1[0] + rt+1[16]) ⊕ Γ20 · (rt+16[0] + rt+16[16])

∆3 = Γ10 · (rt[6] + Konst) ⊕ Γ20 · (rt+15[6] + Konst)

⊕Γ10 · (rt+1[6] + Konst) ⊕ Γ20 · (rt+16[6] + Konst)

In order to determine the bias of ∆1,∆2 and ∆3, the following two lemmas are required.

Lemma 6. Given x, y, a, b, c, d, k ∈ {0, 1}32, the following approximation has the bias of

2−3.1 when i > 0.

Γi · (x + a) ⊕ Γi · (y + b) ⊕ Γi · (x + c) ⊕ Γi · (y + d)

= Γi · (a + b + k) ⊕ Γi · (c + d + k)

Proof. For the proof, see Appendix F.

Lemma 7. Given x, y, z, w, a, b, c, d, k ∈ {0, 1}32, the following approximation holds with

the bias of 2−4.2 when i > 0.

Γi · (x + a) ⊕ Γi · (y + b) ⊕ Γi · (z + c) ⊕ Γi · (w + d)

= Γi · (x + y + k) ⊕ Γi · (a + b + k) ⊕ Γi · (z + w + k) ⊕ Γi · (c + d + k) (14)

Proof. See Appendix G for the proof.

Now we can derive the biases of the approximations ∆1, ∆2 and ∆3.

∆1 : From the definition of the rotations, we know that

∆1 = Γ29 · (rt[0]≪19 + rt[16]≪19) ⊕ Γ29 · (rt+15[0]≪9 + rt+15[16]≪9)

⊕Γ29 · (rt+1[1]≪19 + rt+1[13]≪19) ⊕ Γ29 · (rt+16[1]
≪9 + rt+16[13]≪9)

According to Lemma 7, the following approximation holds with the bias of 2−4.2.

∆1 = Γ29 · (rt[0]≪19 + rt+15[0]≪9 + Konst) ⊕ Γ29 · (rt[16]≪19 + rt+15[16]≪9 + Konst)

⊕Γ29 · (rt+1[1]≪19 + rt+16[1]
≪9 + Konst) ⊕ Γ29 · (rt+1[13]≪19 + rt+16[13]≪9 + Konst)

= Γ29 · (ωt ⊕ ωt+16 ⊕ ωt+2 ⊕ ωt+14)

∆2 and ∆3 : Due to Lemma 6, we can write the approximations

∆2 = Γ29 · (rt[1]≪19 + rt+15[1]≪9) ⊕ Γ29 · (rt[13]≪19 + rt+15[13]≪9)

⊕Γ29 · (rt+1[0]≪19 + rt+16[0]≪9) ⊕ Γ29 · (rt+1[16]≪19 + rt+16[16]≪9)

= Γ29 · (rt[13]≪19 + rt+15[13]≪9 + Konst) ⊕ Γ29 · (rt+1[16]≪19 + rt+16[16]≪9 + Konst)

= Γ29 · (ωt+13 ⊕ ωt+17)

∆3 = Γ29 · (rt[6]≪19 + rt+15[6]≪9) ⊕ Γ29 · (Konst≪19 + Konst≪9)

⊕Γ29 · (rt+1[6]≪19 + rt+16[6]≪9) ⊕ Γ29 · (Konst≪19 + Konst≪9)

= Γ29 · (rt[6]≪19 + rt+15[6]≪9 + Konst) ⊕ Γ29 · (rt+1[6]≪19 + rt+16[6]≪9 + Konst)

= Γ29 · (ωt+6 ⊕ ωt+7)

with the same bias of 2−3.1. Thus, Approximation (10) holds with the bias of 2−(4.2+3.1×2) =
2−10.4.
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5.5 Experiments

The verification of the bias of Distinguisher (13) is not viable due to the requirement of
large observations of keystream. Instead, our experiments have been focused on verifying
the biases of Approximation (9) and (10) independently. Figure 2 shows that the graphs
follow the expected biases of those approximations.
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Fig. 2. The biases of Approximation (9) and (10)

6 Conclusion

In this paper, we present a Crossword Puzzle (CP) attack against NLSv2 that is a tweaked
version of NLS. Even though the designers of NLSv2 aimed to avoid the distinguishing attack
that was constructed for the NLS, we have shown that the CP attack can be applied for
NLSv2. The distinguisher has a bias higher than 2−40 and consequently, the attack requires
less than 280 observations which was given as the security benchmark by the designers.
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A Proof of Lemma 2

By Definition (1), we obtain

Γi · (x + y + z) = Γi · (x ⊕ y ⊕ z) ⊕ Γi−1 · (R(x, y) ⊕ R(x + y, z)).

Thus, our task is to find Pr[Γi−1 · (R(x, y) ⊕ R(x + y, z)) = 0]. Let us denote Li = x(i) ⊕
y(i) ⊕ z(i), Qi = x(i)y(i) ⊕ y(i)z(i) ⊕ z(i)x(i), and Ti = x(i)y(i)z(i). Assume further that Xi and
Yi are defined as follows.

Xi , R(x, y)(i) ⊕ R(x + y, z)(i) = Qi ⊕ LiXi−1 ⊕ Yi−1

Yi , R(x, y)(i)R(x + y, z)(i) = TiXi−1 ⊕ QiYi−1

Since Qi · Li = Ti by definition, the following relation between Xi and Yi holds

Yi = QiXi ⊕ Qi.

We try to find out the Pr[Xi = 0]. We start from the equation Xi = Qi ⊕ LiXi−1 ⊕ Yi−1

and replace Yi−1 by Yi−1 = Qi−1Xi ⊕ Qi−1, so we find

Xi = Qi ⊕ LiXi−1 ⊕ Yi−1 = Qi ⊕ Qi−1 ⊕ (Li ⊕ Qi−1)Xi−1. (15)

This gives us

Pr[Xi = 0] =
1

2
Pr[Xi−1 = 0] +

1

4
(1 − Pr[Xi−1 = 0]) =

1

4
+

1

4
Pr[Xi−1 = 0]

Therefore, applying the recursion relation from Appendix H, we obtain

Pr[Xi = 0] =
1

3
+

1

3
2−2i−1. (16)

Note that Pr[X0 = 0] = Pr[x(0)y(0) ⊕ y(0)z(0) ⊕ z(0)x(0) = 0] = 1
2 . Hence, we can write that

Γi−1 · (R(x, y) ⊕ R(x + y, z)) = Xi−1 ⊕ Xi = Qi ⊕ (Li ⊕ 1)Xi−1 ⊕ Yi−1

= Qi ⊕ Qi−1 ⊕ (Li ⊕ Qi−1 ⊕ 1)Xi−1

Therefore,

Pr[Γi−1 · (R(x, y) ⊕ R(x + y, z)) = 0] =

{

Pr[Qi ⊕ Qi−1 = 0] = 1
2 , if Xi−1 = 0,

P r[Qi ⊕ Li ⊕ 1 = 0] = 3
4 , if Xi−1 = 1

By applying Equation (16), we get the final result

Pr[Γi−1 · (R(x, y) ⊕ R(x + y, z))] =
1

2
Pr[Xi−1 = 0] +

3

4
(1 − Pr[Xi−1 = 0]) =

2

3
−

1

3
2−2i−1



Multiple Modular Additions and Crossword Puzzle Attack on NLSv2 13

B Proof of Lemma 3

Let us denote Φn,(i) = R(x1, k)(i) ⊕R(x2, k)(i) ⊕ · · · ⊕R(xn, k)(i). By Relation (2), we know

Φn,(i) = k(i)(x1,(i) ⊕ x2,(i) ⊕ · · · ⊕ xn,(i)) ⊕ (x1,(i) ⊕ k(i))R(x1, k)(i−1) ⊕

(x2,(i) ⊕ k(i))R(x2, k)(i−1) ⊕ · · · ⊕ (xn,(i) ⊕ k(i))R(xn, k)(i−1)

Then, Φn,(i) has the following properties.

– If
⊕n

t=1 xt,(i) = 0, then there exists a pair of (x1,(i), x2,(i), . . . , xn,(i), k(i)) which generate
the same Φn,(i).

– If
⊕n

t=1 xt,(i) = 1, then there exists a pair of (x1,(i), x2,(i), . . . , xn,(i), k(i)) whose Φn,(i)s
are complement each other.

Hence, by defining, Pr,(i) = Pr[
⊕r

t=1 R(xt, k)(i) = 0], we get

Pn,(i) =
1

2n+1
[

n/2
∑

r=0

(

n

2r

)

2P2r,(i−1) +

n/2−1
∑

r=0

(

n

2r + 1

)

] =
1

4
+

1

2n

n/2
∑

r=0

(

n

2r

)

P2r,(i−1)

where P0 = 1. Hence, Pn,(i) ≈
n+2

2(n+1) for i > 0.

By definition, we can write (x + k)(i) = x(i) ⊕ k(i) ⊕ R(x, k)(i−1). Thus, we get

Γi · (x1 + k) ⊕ Γi · (x2 + k) ⊕ · · · ⊕ Γi · (xn + k) ⊕ Γi · (x1 ⊕ x2 ⊕ · · · ⊕ xn)

= Γi−1 · (R(x1, k) ⊕ R(x2, k) ⊕ · · · ⊕ R(xn, k))

= Φn,(i−1) ⊕ Φn,(i)

= k(i)(x1,(i) ⊕ x2,(i) ⊕ · · · ⊕ xn,(i)) ⊕ (x1,(i) ⊕ k(i) ⊕ 1)R(x1, k)(i−1) ⊕

(x2,(i) ⊕ k(i) ⊕ 1)R(x2, k)(i−1) ⊕ · · · ⊕ (xn,(i) ⊕ k(i) ⊕ 1)R(xn, k)(i−1)

As before, we can get the following equation

Pr[Φn,(i−1) ⊕ Φn,(i) = 0] =
1

4
+

1

2n

n/2
∑

r=0

(

n

2r

)

Pn−2r,(i−1) =
1

4
+

1

2n

n/2
∑

r=0

(

n

n − 2r

)

Pn−2r,(i−1) = Pn,(i)

For i > 0, we have Pr[Φn,(i−1) ⊕ Φn,(i) = 0] ≈ n+2
2(n+1) which concludes the proof.

C Proof of Corollary 2

From Definition (1), we write

R(x, y)(i) ⊕R(x, z)(i) = x(i)y(i) ⊕ (x(i) ⊕ y(i))R(x, y)(i−1) ⊕x(i)z(i) ⊕ (x(i) ⊕ z(i))R(x, z)(i−1).

Then, according to (x(i), y(i), z(i)), the expression R(x, y)(i) ⊕ R(x, z)(i) is split into eight
cases. Hence, we have the following recursive probability

Pr[R(x, y)(i) ⊕ R(x, z)(i) = 0] =
1

2
+

1

4
Pr[R(x, y)(i−1) ⊕ R(x, z)(i−1) = 0].

Using the recursion relation from Appendix H, we state that

Pr[R(x, y)(i) ⊕ R(x, z)(i) = 0] =
2

3
+

1

3
2−2i−2
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Applying Relation (2), we can get

Γi · (x + y) ⊕ Γi · (x + z) ⊕ Γi · (y ⊕ z) = Γi−1 · (R(x, y) ⊕ R(x, z))

= x(i)y(i) ⊕ (x(i) ⊕ y(i) ⊕ 1)R(x, y)(i−1) ⊕ x(i)z(i) ⊕ (x(i) ⊕ z(i) ⊕ 1)R(x, z)(i−1)

Therefore, arguing in similar way as above, we establish that

Pr[Γi · (R(x, y) ⊕ R(x, z)) = 0] =
1

2
+

1

4
Pr[R(x, y)(i−1) ⊕ R(x, z)(i−1) = 0] =

2

3
+

1

3
2−2i−2.

D Proof of Lemma 4

Our task is to determine the probability of the following approximation:

Γi · (x + y) ⊕ Γi · (z + w) = Γi · (x + z) ⊕ Γi · (y + w).

We add both sides of the approximation and are going to find the probability that it becomes
zero. So we have

Γi · (x + y) ⊕ Γi · (z + w) ⊕ Γi · (x + z) ⊕ Γi · (y + w)

= Γi−1 · (R(x, y) ⊕ R(z, w) ⊕ R(x, z) ⊕ R(y, w))

= x(i)y(i) ⊕ z(i)w(i) ⊕ x(i)z(i) ⊕ y(i)w(i) ⊕ (x(i) ⊕ y(i) ⊕ 1)R(x, y)(i−1)

⊕(z(i) ⊕ w(i) ⊕ 1)R(z, w)(i−1) ⊕ (x(i) ⊕ z(i) ⊕ 1)R(x, z)(i−1) ⊕ (y(i) ⊕ w(i) ⊕ 1)R(y, w)(i−1)

, Λi

Then Λi can be split into eight cases according to the values of (x(i), y(i), z(i), w(i)). In order
to compute Pr[Λi = 0], the following three probabilities are required.

– αi = Pr[R(x, y)(i) ⊕ R(z, w)(i) ⊕ 1 = 0],
– βi = Pr[R(x, y)(i) ⊕ R(x, z)(i) = 0],
– γi = Pr[R(x, y)(i) ⊕ R(z, w)(i) ⊕ R(x, z)(i) ⊕ R(y, w)(i) = 0].

They can be used to state that

Pr[Λi = 0] =
1

4
αi−1 +

1

2
βi−1 +

1

8
γi−1 +

1

8
(17)

Now the probabilities αi, βi and γi are computed as follows.

(1) From Lemma 1, we get αi = 3
8 + 1

4αi−1. Hence, αi = 1
2 − 2−2i−3 by Appendix H.

(2) Using Appendix C, we get βi = 1
2 + 1

4βi−1. Hence, βi = 2
3 + 1

32−2i−2.
(3) By definition, we see that

R(x, y)(i) ⊕ R(z, w)(i) ⊕ R(x, z)(i) ⊕ R(y, w)(i)

= x(i)y(i) ⊕ z(i)w(i) ⊕ x(i)z(i) ⊕ y(i)w(i) ⊕ (x(i) ⊕ y(i))R(x, y)(i−1)

⊕(z(i) ⊕ w(i))R(z, w)(i−1) ⊕ (x(i) ⊕ z(i))R(x, z)(i−1) ⊕ (y(i) ⊕ w(i))R(y, w)(i−1)

According to the values of (x(i), y(i), z(i), w(i)), we establish that

γi =
1

4
αi−1 +

1

2
βi−1 +

1

8
γi−1 +

1

8

=
1

4

i−1
∑

j=0

αj2
−3(i−j−1) +

1

2

i−1
∑

j=0

βj2
−3(i−j−1) + 2−3iγ0 +

1

7
(1 − 2−3i)

=
2

3
+

1

3
2−2i−2
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Therefore, by plugging in the Equation (17), the probability becomes

Pr[Λi = 0] =
1

4
(
1

2
− 2−2i−1) +

1

2
(
2

3
+

1

3
2−2i) +

1

8
(
2

3
+

1

3
2−2i) +

1

8
=

2

3
+

1

3
2−2i−2

and gives the final result.

E Proof of Corollary 3

We take both sides of the approximation, add them and find the probability when it becomes
zero so

Γi · (x + y) ⊕ Γi · (x + z) ⊕ Γi · (y + w) ⊕ Γi · (z ⊕ w)

= Γi−1 · (R(x, y) ⊕ R(x, z) ⊕ R(y, w))

= x(i)y(i) ⊕ (x(i) ⊕ y(i) ⊕ 1)R(x, y)(i−1) ⊕ x(i)z(i) ⊕ (x(i) ⊕ z(i) ⊕ 1)R(x, z)(i−1)

⊕y(i)w(i) ⊕ (y(i) ⊕ w(i) ⊕ 1)R(y, w)(i−1)

Next, the expression Γi · (R(x, y)⊕R(x, z)⊕R(y, w)) is split into the sixteen cases according
to (x(i), y(i), z(i), w(i)). Note that there are four pairs which are complement of each other.
Using the notation of Appendix D, we get

αi = Pr[1 ⊕ R(x, z)i ⊕ R(y, w)i = 0] =
1

2
− 2−2i−3

βi = Pr[R(x, y)i ⊕ R(x, z)i = 0] = Pr[R(x, y)i ⊕ R(y, w)i = 0] =
2

3
+

1

3
2−2i−2

Therefore, we get the final result

Pr[Γi−1 · (R(x, y) ⊕ R(x, z) ⊕ R(y, w)) = 0] =
3

8
+

1

4
β(i−1) +

1

16
α(i−1)

=
3

8
+

1

4
(
2

3
+

1

3
2−2i) +

1

8
(
1

2
− 2−2i−1) =

29

48
+

1

3
2−2i−4

F Proof of Lemma 6

From the approximation being considered, w.l.g we assume that x = 0 and y = 0 since the
variables x and y are independent on the expressions (a + b + k) and (c + d + k). Then,
the approximation is simplified as follows.

Γi · (x + a) ⊕ Γi · (y + b) ⊕ Γi · (x + c) ⊕ Γi · (y + d) ⊕ Γi · (a + b + k) ⊕ Γi · (c + d + k)

= Γi−1 · (R(a, b) ⊕ R(a + b, k)) ⊕ Γi−1 · (R(c, d) ⊕ R(c + d, k))

Using the recursive relation (15) in Appendix A, we have

(R(a, b) ⊕ R(a + b, k))(i) ⊕ (R(c, d) ⊕ R(c + d, k))(i)

= Q1,(i) ⊕ Q1,(i−1) ⊕ (L1,(i) ⊕ Q1,(i−1))(R(a, b)(i−1) ⊕ R(a + b, k)(i−1)) ⊕

Q2,(i) ⊕ Q2,(i−1) ⊕ (L2,(i) ⊕ Q2,(i−1))(R(c, d)(i−1) ⊕ R(c + d, k)(i−1))

where Q1,(i) = a(i)b(i) ⊕ b(i)k(i) ⊕ k(i)a(i), Q2,(i) = c(i)d(i) ⊕ d(i)k(i) ⊕ k(i)c(i), L1,(i) =
a(i) ⊕ b(i) ⊕ k(i) and L2,(i) = c(i) ⊕ d(i) ⊕ k(i). According to the values of ten variables



16 J. Y. Cho, J. Pieprzyk

(a(i), b(i), c(i), d(i), k(i), a(i−1), b(i−1), c(i−1), d(i−1), k(i−1)), the above expression is simplified
as a function of (R(a, b)(i−1) ⊕R(a + b, k)(i−1)) and (R(c, d)(i−1) ⊕R(c + d, k)(i−1)). Hence,
by counting appropriate probabilities, we get

Pr[(R(a, b) ⊕ R(a + b, k))(i) ⊕ (R(c, d) ⊕ R(c + d, k))(i) = 0]

=
35

64
−

3

64
· Pr[(R(a, b) ⊕ R(a + b, k))(i−1) = 0] −

3

64
· Pr[(R(c, d) ⊕ R(c + d, k))(i−1) = 0]

+
5

64
· Pr[(R(a, b) ⊕ R(a + b, k))(i−1) ⊕ (R(c, d) ⊕ R(c + d, k))(i−1) = 0]

From Lemma 2, we know that

Pr[(R(a, b) ⊕ R(a + b, k))(i−1) = 0] = Pr[(R(c, d) ⊕ R(c + d, k))(i−1) = 0] =
1

3
+

1

3
2−2i+1

Therefore, by the recursive relation of Appendix H, for i > 0,

Pr[(R(a, b) ⊕ R(a + b, k))(i) ⊕ (R(c, d) ⊕ R(c + d, k))(i) = 0] ≈
33

59
=

1

2
(1 + 2−3.1)

Since Pr[(R(a, b) ⊕ R(a + b, k))(i) ⊕ (R(c, d) ⊕ R(c + d, k))(i) = 0] is identical to Pr[Γi−1 ·
(R(a, b) ⊕ R(a + b, k)) ⊕ Γi−1 · (R(c, d) ⊕ R(c + d, k)) = 0], the lemma holds.

G Proof of Lemma 7

Suppose k = 0. Then, the approximation (14) is divided into two independent approxima-
tions as follows.

Γi · (x + a) ⊕ Γi · (y + b) = Γi · (x + y) ⊕ Γi · (a + b)

Γi · (z + c) ⊕ Γi · (w + d) = Γi · (z + w) ⊕ Γi · (c + d)

By applying Lemma 4 twice, we see that above approximation has the bias of 1
9 (1 +

2−2i−2)2 ≈ 2−3.2 for i > 0.

For k = 1, 2, . . . , 2i, the bias of (14) has the following properties.

– the bias decreases monotonously for k = 1, 2, . . . , 2i−1.
– the bias increases monotonously for k = 2i−1 + 1, . . . , 2i.
– the bias is the highest at k = 2i and is the lowest (around zero) at k = 2i−1.

This bias pattern is repeated for k = 2i + 1, . . . , 2i+2 − 1. If i > 0, the overall bias of (14) is
around a half of the highest bias, which is 2−3.2 ∗ 2−1 = 2−4.2. Hence, the lemma holds.

H Recursion Relation

Let us remind a calculus on recursion relation. Assume that we have the recursive relation
xn = r ·xn−1 + c. If r 6= 1, we get 1+ r + r2 + · · ·+ rn−1 = 1−rn

1−r . Thus, xn can be expressed

as xn = c(1−rn)
1−r + x0 · r

n. If r = 1, then xn = x0 + c · n.


