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Abstrat

Fingerprinting provides a means of traing unauthorized redistribution of digital data by individually

marking eah authorized opy with a personalized serial number. In order to prevent a group of users

from olletively esaping identi�ation, ollusion-seure �ngerprinting odes have been proposed. In this

paper, we introdue a new onstrution of a ollusion-seure �ngerprinting ode whih is similar to a reent

onstrution by Tardos but ahieves shorter ode lengths and allows for odes over arbitrary alphabets.

For binary alphabets, n users and a false ausation probability of �, a ode length of m � �
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0

ln(n=�)

is provably suÆient to withstand ollusion attaks of at most 

0

olluders. This improves Tardos' on-

strution by a fator of 10. Furthermore, invoking the Central Limit Theorem we show that even a ode

length of m �

1

2

�
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ln(n=�) is suÆient in most ases. For q-ary alphabets, assuming the restrited digit

model, the ode size an be further redued. Numerial results show that a redution of 35% is ahievable

for q = 3 and 80% for q = 10.

1 Introdution

1.1 Digital �ngerprinting

Fingerprinting, or forensi watermarking, provides a means of traing the unauthorized redistri-

bution of digital data, suh as entertainment ontent (i.e. musi or movie lips), digital reords

or software. Before authorized distribution, the distributor impereptibly embeds a �ngerprint,

whih plays the role of a personalized serial number, diretly into the ontent. This is done using a

digital watermarking algorithm. If the �ngerprint is di�erent for eah reipient (also alled `user'),

the distributor an extrat the embedded �ngerprint from an unauthorized opy of the ontent

and trae the reipient who leaked it.

Mathematially speaking, a �ngerprint is a �nite string over some q-ary alphabet �; the set

of all �ngerprints is alled a �ngerprinting ode. Throughout this paper we will denote by n the

number of users and by m the length of the �ngerprint. In order to mark a piee of ontent

before distribution, the distributor piks a �ngerprint from the ode and impereptibly embeds

eah symbol of the �ngerprint into di�erent segments of the ontent, suh as in di�erent senes

of a movie. In addition, he stores in a database the assoiation of a �ngerprint with the identity

of the user who reeived the personalized opy. In ase an unauthorized opy of the ontent is

found, the distributor an perform watermark detetion on the segments of the ontent to read

out its �ngerprint. One the �ngerprint is retrieved, he an ompare it with his database of

�ngerprints to identify the guilty user. Current watermarking shemes provide a onsiderable

level of robustness that allows orret reonstrution of the �ngerprint even if the ontent has

su�ered heavy distortions.

1.2 Collusion resistane

Fingerprinting shemes need to be robust against ollusion attaks, where several users pool dif-

ferent individualized versions of the same ontent. By looking at the di�erenes between these

versions, the olluding users (also referred to as `olluders' or `the oalition') try to produe an

1



1 Introdution 2

untraeable version of the ontent, from whih the distributor annot identify any of the olluders.

A segment of the ontent is alled a detetable position if the olluders have at least two di�erently

marked versions of that segment available.

A ode is alled ollusion-resistant against a oalition of size 

0

, if any set of  � 

0

olluders

is unable to produe an untraeable opy. The onstrution of ollusion-resistant odes has been

an ative researh topi sine the late 1990s (see e.g. [5, 8, 3, 6, 9℄). The onstrutions and the

ahieved results depend strongly on various assumptions whih restrit the type of manipulations

the attakers are allowed to perform. One often made assumption is the marking ondition, stating

that the olluders are able to hange �ngerprint symbols only in detetable positions. Throughout

this paper we will assume that the marking ondition holds. Furthermore, several attak models

have been introdued in the literature:

� The restrited digit model or narrow-ase model allows the olluders only to `mix and math'

their opies of the ontent, i.e. to replae a segment in a detetable position by any other

segment they have available in that position. On the �ngerprinting ode level, this means

that in the unauthorized opy the symbol at eah position an only be one of the symbols

that they have available in that position.

� The unreadable digit model allows for slightly stronger attaks. Besides mixing the ontent

segments, the attakers an also erase the embedded �ngerprint at detetable positions. At

the ode level, we denote this by a speial erasure symbol ? 62 �.

� The arbitrary digit model allows for even stronger attaks: the attakers an put an arbitrary

q-ary symbol from � (but not the erasure symbol `?') in detetable positions.

� The general digit model allows the attakers to put any symbol, inluding `?', in detetable

positions.

Note that in the ase of a binary alphabet all four attak models are equivalent in terms of

traeability. (For q = 2 it is detrimental for the olluders to use `?', sine it gives the distributor

more information than a `0' or `1', namely that the position is a detetable position for the

oalition).

The main parameters of a �ngerprinting ode are the odeword length, the False Positive (FP)

error probability and the False Negative (FN) error probability. The odeword length inuenes to

a great extent the pratial usability of a �ngerprinting sheme, as the number of segments m that

an be used to embed a �ngerprint symbol is severely onstrained; typial video watermarking

algorithms for instane an only embed 7 bits of information in a robust manner in one minute

of a video lip. Furthermore, the amount of information that an be embedded per segment is

limited; hene the alphabet size q must be small (typially q � 16). Obviously, distributors are

interested in the shortest possible odes that are seure against a large number of olluders, while

aommodating a huge number n of users (of the order of n � 10

6

or even n � 10

9

).

Low error probabilities are another entral requirement. The most important type of error is the

FP, where an innoent user gets aused. The probability of suh an event must be extremely small;

otherwise the distributor's ausations would be questionable, making the whole �ngerprinting

sheme unworkable. We will denote by "

1

the probability that one spei� user gets falsely aused,

while � denotes the probability that there are innoent users among the aused. The seond type

of error is the FN, where the sheme fails to ause any of the olluders. The FN probability will

be denoted as "

2

. In pratial situations, fairly large values of "

2

an be tolerated. Often the

objetive of �ngerprinting is to deter unauthorized distribution rather than to proseute all those

responsible for it. Even a mere 50% probability of getting aught is a signi�ant deterrent for

olluders.

1.3 Related work

For the restrited digit model, `deterministi' �ngerprinting odes have been proposed. Here

`deterministi' means that the error probabilities "

1

and "

2

are zero. Identi�able Parent Property
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(IPP) odes, introdued in [5℄, allow the distributor to identify at least one member of the oalition

with ertainty, without the danger of ausing innoent people. However, the shemes proposed

in [5℄ are not resistant against more than two olluders. In [8℄ the existene was proved of a

deterministi �ngerprinting ode resistant against 

0

olluders, having ode length m = 

2

0

log

q

(n).

However, the alphabet size is impratially large, requiring q � n� 1.

More eÆient �ngerprinting shemes are possible if nonzero error probabilities � and "

2

are

tolerated. In [3℄ Boneh and Shaw presented a binary sheme (q = 2) with ode length m =

O(

4

0

log

n

�

log

1

�

). Their sheme uses onatenation of a partly randomized inner ode with an

outer ode. They also proved, for binary alphabets, a lower bound on the ode length required

for resistane against 

0

olluders: m > O(

0

log

1



0

�

). In [6℄ Peikert et al. proved a tighter lower

bound of m > O(

2

0

log

1



0

�

).

In [9℄ Tardos further tightened the lower bound to m > O(

2

0

log

n

�

). This bound is valid for

arbitrary alphabets in the arbitrary digit model and the unreadable digit model. In the same

paper, he desribed a fully randomized binary �ngerprinting ode ahieving this lower bound.

The ode has length m = 100

2

0

ln

n

�

; a onstrution was given only for the binary alphabet. In [7℄

Tardos' onstrution was further analyzed. It was shown that, without hanging the sheme, the

onstant `100' an be redued to 4�

2

. In the same paper it was shown that an important quantity

in the sheme (the `ausation sum', see Setion 2.1), resulting from the summation of many i.i.d.

stohasti variables, has a Gaussian distribution, up to orretion terms that vanish for large 

0

.

Without hanging the Tardos sheme in any way, but assuming a Gaussian distribution, the ode

length m was further redued to m = 2�

2
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0

ln

n

�

.

1.4 Contributions and outline

In this paper, we propose a new onstrution of a �ngerprinting ode, whih is similar in spirit

to Tardos' original ode, but allows for odes over arbitrary-size alphabets. For binary alphabets

the new sheme allows for odes that are a fator 4 shorter than the onstrution given by [7℄

(and thus a fator 10 shorter than the sheme given in [9℄). In the restrited digit attak model,

moving from a binary to a q-ary alphabet allows for even shorter �ngerprinting odes. The key

ontributions of the paper are summarized as follows:

� In Setion 2 we review Tardos' binary �ngerprinting sheme [9℄ and propose a di�erent

onstrution, whih is symmetri and whih an be used for arbitrary alphabets �. The

onstrution is di�erent from Tardos' ode even for binary alphabets.

� In Setion 4 we study the ollusion resistane of the symmetri ode. We apply the methods

of [9℄ to rigorously prove a lower bound on the ode length m, suh that the desired error

rates are ahieved. The bound is given by m > 4~�

�2



2

0

ln

n

�

, where the quantity ~� is the

expetation value of the oalition's olletive `suspiiousness'.

� In Setion 5 we ompute the expetation value ~� in the restrited digit model. In the ase

of a binary alphabet we have ~� = 2=�. This orresponds to a bound on the ode length of

m > �

2
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0

ln

n

�

, whih is a fator 4 shorter than the bound obtained for the Tardos sheme

in [7℄ and a fator �10 shorter than the bound given in [9℄. For q-ary alphabets we ompute

~� numerially. The ode length m is further redued (with respet to the binary symmetri

sheme) by 40% for q = 3 and by 80% for q = 10.

� In Setion 6 we make use of the Central Limit Theorem to show that an important quantity in

the sheme, the ausation sum of an innoent user, has a probability density that is almost

Gaussian. Convergene to the normal form improves with inreasing 

0

. Approximation of

the distribution by a Gaussian is aurate starting from a value of 

0

between 10 and 20.

Assuming a perfet normal distribution, we show that the desired error rates are ahieved

for m > 2~�

�2



2

0

ln

n

�

. This is a fator 2 shorter than the ode length derived in Setion 4

without any assumptions.
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2 Symmetri Tardos �ngerprinting for arbitrary alphabet sizes

In this setion we �rst introdue Tardos' initial binary �ngerprinting ode [9℄ and then provide a

generalization for arbitrary alphabets.

2.1 The Tardos �ngerprinting sheme

Let n be the number of users to be aomodated in the system. The Tardos �ngerprinting sheme

distributes a binary odeword of length m to eah user; the length m is a system parameter

hosen by the distributor. It a�ets the FP and FN error rates. The distributed odewords an be

arranged as an n�m matrixX, where the j-th row orresponds to the �ngerprint given to the j-th

user. Let C be a set of olluding users. We denote by  the number of olluders and byX

C

the �m

matrix of odewords distributed to the olluders. The olluders use a (possibly nondeterministi)

strategy � to reate an unauthorized opy of the ontent from their personalized opies. The

unauthorized opy arries a �ngerprint y 2 f0; 1g

m

whih depends on both the strategy and the

reeived odewords, i.e. y = �(X

C

).

Fingerprint ode generation. The distributor generates the matrix X in two randomized steps.

In the �rst step, he hooses m random variables fp

i

g

m

i=1

over the interval p

i

2 [t; 1 � t℄, where t

is a �xed small parameter satisfying 

0

t � 1. The variables p

i

are independent and identially

distributed aording to the probability density funtion f . The funtion f(p) is symmetri

1

around p = 1=2 and heavily biased towards values of p lose to t and 1� t,

f(p) =

1

2 arsin(1� 2t)

1

p

p(1� p)

: (1)

In the seond step, the distributor �lls the olumns of the matrix X by independently drawing

random bits X

ji

2 f0; 1g aording to P[X

ji

= 1℄ = p

i

.

Fingerprint embedding. Before the ontent is realeased to ustomer j, it is watermarked with the

j-th row of the matrix X.

Ausation. Having spotted an unauthorized opy with embedded watermark y, the ontent owner

wants to identify at least one olluder. To ahieve this, he omputes for eah user 1 � j � n an

ausation sum S

j

as

S

j

=

m

X

i=1

y

i

U(X

ji

; p

i

); with U(X

ji

; p

i

) =

�

g

1

(p

i

) if X

ji

= 1

g

0

(p

i

) if X

ji

= 0;

(2)

where g

1

and g

0

are the `ausation funtions'

g

1

(p) =

r

1� p

p

and g

0

(p) = �

r

p

1� p

: (3)

The distributor deides that user j is guilty if S

j

> Z. The parameter Z is alled the `ausation

threshold'. The threshold is a system parameter hosen by the distributor.

In words, the ausation sum S

j

is omputed by summing over all symbol positions i in y. All

positions with y

i

= 0 are ignored. For eah position where y

i

= 1, the ausation sum S

j

is either

inreased or dereased, depending on how muh suspiion arises from that position: if user j has

a `1' in that position, then the ausation is inreased by a positive amount g

1

(p

i

). Note that

the suspiion dereases with higher probability p

i

, sine g

1

is a positive monotonially dereasing

funtion. If user j has a `0', the ausation is orreted by the negative amount g

0

(p

i

), whih gets

more pronouned for large values of p

i

, as g

0

is negative and monotonially dereasing.

Tardos hose the spei� form (3) for the funtions g

1

and g

0

beause it has nie properties:

For �xed p

i

, the ausation U(X

ji

; p

i

) in (2) has zero mean and unit variane. Espeially the

fat that the variane does not depend on p

i

greatly simpli�es the analysis of the sheme. It was

1

In [9℄ the parametrization p

i

= sin

2

r

i

is used, and the density funtion for r

i

is spei�ed.
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shown in [7℄ that for Tardos' sheme the hoie (1) for f is optimal, and that the hoie (3) for

the ausation funtions is optimal within the lass of funtions of the form p

z

1

(1� p)

z

2

, where z

1

and z

2

are onstants.

Tardos hose the system parameters m and Z as follows:

m = A

2

0

dln "

�1

1

e ; Z = B

0

dln "

�1

1

e; (4)

with A = 100 and B = 20. Reall from Setion 1.2 that the parameter "

1

is a re-saled version of

the false positive error parameter �. It represents the probability that a spei� innoent user j

gets aused. The relation between � and "

1

is � = 1� (1� "

1

)

n�

. For "

1

� 1 and  � n this

beomes � � (n� )"

1

� n"

1

.

A False Negative (FN) is de�ned as the event where none of the olluders are aused. Tardos

proved in [9℄ that his sheme ahieves FP and FN error rates smaller than "

1

and "

2

, respetively,

against oalitions of size  � 

0

, for "

2

= "



0

=4

1

. In [7℄ the Tardos sheme was further analyzed and

the following results were obtained for "

2

� "

1

(a far more reasonable hoie of parameters, see

Setion 1.2): (i) the ode length parameter A in (4) an be redued to 4�

2

. (ii) The ausation sum

S

j

has an almost Gaussian probability density funtion, with orretions that vanish in the limit



0

! 1. (iii) Assuming a perfet Gaussian distribution for S

j

, the parameter A an be redued

to 2�

2

. Hene, for suÆiently large 

0

, the ode length m an be set to m = 2�

2



2

0

dln "

�1

1

e without

any modi�ation of the ode onstrution, embedding or ausation method.

2.2 Proposed symmetri �ngerprinting sheme

The sheme presented in Setion 2.1 has two drawbaks. First, the omputation of Tardos' au-

sation sum (2) is asymmmetri in the sense that only those odeword positions i ontribute where

y

i

= 1, while all the others are disarded. This is an ineÆient way of exploiting the information

present in the unauthorized opy, beause the y

i

= 0 positions arry as muh information about

the olluders as the y

i

= 1 positions. Seond, due to this asymmetry, the onstrution annot be

diretly applied to nonbinary alphabets.

We apply two modi�ations to Tardos' onstrution. The �rst modi�ation is a straightforward

generalization of the �ngerprint generation step to produe a random q-ary ode. Instead of

bits we have X

ji

2 �, with � = f0; 1; � � � ; q � 1g. Instead of salar random variables p

i

we

have, independently for eah olumn, a q-omponent random vetor p

(i)

= (p

(i)

0

; � � � ; p

(i)

q�1

), with

P

q�1

�=0

p

(i)

�

= 1. The vetors p

(i)

have the probability density funtion F (p), whih replaes

f(p). While f is invariant under the mapping p ! 1 � p, our funtion F is invariant under any

permutation of the symbols � 2 �. Thus our onstrution is symmetri in all symbols � 2 �. In

the i-th olumn ofX, random symbols are drawn with probabilities ditated by p

(i)

. The olluders

reate an unauthorized opy y = �(X

C

) 2 �

m

aording to a (possibly non-deterministi) strategy

�. We will always assume that this strategy does not depend on the olumn index, i.e. the

same strategy � is applied to eah olumn of X

C

. We an make this assumption without loss

of generality; due to the olumn symmetry of p and X, the best olluder strategy is olumn-

symmetri.

The seond modi�ation lies in the omputation of the ausation sum. In ontrast to Tardos'

sheme, we let every �ngerprint symbol in the unauthorized opy give rise to ausations. The

ausation for a ertain user at a ertain symbol loation is positive if he has the same symbol

as the unauthorized opy; otherwise it is negative. The magnitude of the ausation depends on

the likelihood of the symbol that appears in the unauthorized opy. In full detail the proposed

onstrution is as follows:

Fingerprint ode generation. As in the original Tardos onstrution, the distributor produes an

n �m matrix X of q-ary symbols; the rows of the matrix orrespond to the �ngerprints for the

individual users. We parametrize m as in (4); the value of the parameter A is the subjet of

Setions 4, 5 and 6. Again, the distributor uses a two-step proedure:

1. He generates m independent random vetors p

(i)

= (p

(i)

0

; � � � ; p

(i)

q�1

) for 1 � i � m, where
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the omponents satisfy p

(i)

�

2 [t=(q � 1); 1 � t℄ and

P

q�1

�=0

p

(i)

�

= 1. We all t the `uto�

parameter' or the `uto�'. It satis�es 0 < t� 1; we parametrize it as t = T

�a

0

, with T > 0

and a 2 (0; 2). The random variables have a probability density funtion that is symmetri

in all the omponents p

�

. In our onstrution, we use a lass of funtions that are a speial

ase of the Dirihlet distribution (see e.g. [4℄),

F

q�t

(p) = N

�1

q�t

q�1

Y

�=0

p

�1+�

�

with � > 0: (5)

Here N

q�t

is a normalising onstant ensuring that

R

J(t;q)

d

q

p F

q�t

(p) = 1. The expression

R

J(t;q)

d

q

p stands for

R

1�t

t

q�1

dp

0

� � �

R

1�t

t

q�1

dp

q�1

Æ(1 �

P

q�1

�=0

p

�

), where Æ(�) is the Dira delta

funtion. The delta funtion ensures that the integration is done only over p suh that

P

�

p

�

= 1. The parameter � determines the steepness of F

q�t

. For q = 2, � =

1

2

the

funtion F

q�t

redues to Tardos' density funtion (1).

2. The distributor generates the olumns of X independently. In the i-th olumn, the vetor

p

(i)

determines the probabilities of generating eah spei� symbol in the alphabet:

P[X

ji

= �℄ = p

(i)

�

: (6)

Fingerprint embedding. Before the ontent is realeased to ustomer j, it is watermarked with the

j-th row of the matrix X.

Ausation. The distributor extrats the �ngerprint y from the unauthorized opy. For eah

user j, the distributor omputes the `ausation sum' A

j

from X, p and y. He deides that the

user j is guilty if A

j

> Z, where Z is referred to as the `ausation threshold'. We parametrize

Z as in (4), with the onstant B as yet left undetermined. The list of aused users is denoted as

�(p;X; y). The ausation sum A

j

is given by

A

j

(p;X; y) =

m

X

i=1

A

(i)

j

; A

(i)

j

:= Æ

y

i

;X

ji

g

1

(p

(i)

y

i

) + [1� Æ

y

i

;X

ji

℄g

0

(p

(i)

y

i

); (7)

where Æ

x;y

denotes the Kroneker delta. We have hosen the same funtions g

0

(p) =

p

(1� p)=p,

g

1

(p) = �

p

p=(1� p) as Tardos. There is no guarantee that this hoie is optimal for q > 2.

The hoie is motivated by the zero-mean, unit-variane property mentioned in Setion 2.1; this

property leads to a substantial simpli�ation of the analysis in the oming setions.

In words, the ausation (7) is omputed as follows. If user j has the same symbol in position

i as the unauthorized opy, then he is aused by a positive amount g

1

(p

(i)

y

i

), where the ausation

dereases with growing likelihood of the symbol. If user j has a di�erent symbol than the unau-

thorized opy, then he is aused by a negative amount g

0

(p

(i)

y

i

), whih has the largest e�et when

the symbol y

i

is likely to our.

Note that (7) is fully symmetri in the symbols and that it di�ers from Tardos' onstrution

even for q = 2. Note further that the Kroneker deltas in (7) redue the symbol spae into two

lasses: X

ji

= y

i

and X

ji

6= y

i

. In the latter ase the ausation does not depend on the atual

value of X

ji

.

Attak model. As mentioned in Setion 1.2, we use the marking assumption and we assume that the

restrited digit model holds. In addition, we make two assumptions on the attak strategy of the

olluders. First, we assume that all members of the oalition are equivalent. Hene, they base their

deisions only on the number of symbols they reeive, and not on the identity of the members who

reeive them. (Any deviation from this strategy will make it easier for the distributor to identify

a olluder). Seond, we assume that the olluders' strategy applies to eah watermark position

independently. This is not a restritive assumption, sine the olumns of X are independent.
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3 Preliminaries

In order to failitate our work in Setions 4 and 5, we introdue some notation and state a number

of lemmas.

3.1 Normalisation onstant

The value of the normalisation onstantN

q�t

in (5) is easily omputed for t = 0, using the following

lemma (see e.g. [1℄):

Lemma 1: Let v be a vetor of length q with v

�

> 0 for 0 � � � q � 1. Then

Z

J(0;q)

d

q

p

q�1

Y

�=0

p

�1+v

�

�

= B(v) :=

Q

q�1

�=0

�(v

�

)

�(

P

q�1

�=0

v

�

)

:

The funtion B is the generalized Beta funtion, also referred to as the multinomial Beta funtion

or Dirihlet integral.

Proof sketh: For two omponents (q = 2) the lemma is true, as the integral yields the ordinary

Beta funtion. For higher q the lemma an be proved by indution. �

For t 6= 0, q = 2 the integral yields the so-alled inomplete Beta funtion.

Applying Lemma 1 to the de�nition of F

q�t

in (5), we ompute the normalisation fator N

q�t

for t = 0 to be

N

q�0

=

[�(�)℄

q

�(�q)

: (8)

Remark: The di�erene between N

q�t

and N

q�0

is small. This is seen as follows. The integrand in

N

q�t

is of the form

Q

�

p

�1+�

�

with � > 0. The primitive funtion near a pole at p

�

= 0 sales as

p

�

�

. Hene the ontributions from the poles, present in N

q�0

and absent in N

q�t

, are of order t

�

.

If � is not extremely lose to 0, then t

�

� 1.

3.2 Colletive ausation sum

Let C be the set of olluding users and X

C

the restrition of X to the rows reeived by the

olluders. From (7) we de�ne a useful quantity: the `olletive ausation sum' A

C

, being the sum

of all individual ausation sums of the oalition members,

A

C

=

X

j2C

A

j

=

m

X

i=1

A

(i)

C

; A

(i)

C

:= b

(i)

y

i

g

1

(p

(i)

y

i

) + [� b

(i)

y

i

℄g

0

(p

(i)

y

i

): (9)

Here b

(i)

�

stands for the number of ourrenes of the symbol � in olumn i of X

C

. These numbers

satisfy the onstraint

P

q�1

�=0

b

(i)

�

= . The sum A

C

plays an important role in the FN error rate.

3.3 De�nition of averages

There are three stohasti proesses involved in the reation of the �ngerprinting odewords and

the unauthorized opy: The distributor's hoie of vetors p

(i)

, his proess of generating the

olumns of X, and the oalition's hoie of symbols y

i

. For eah proess we de�ne a separate

expetation value. Averaging over p is denoted as E

p

. Within the i-th olumn this is de�ned as

E

p

[�(p

(i)

)℄ :=

Z

J(t;q)

d

q

p �(p)F

q�t

(p); (10)

for an arbitrary funtion �. Here F

q�t

is the probability density funtion (5).
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We remind the reader that all the vetors p

(i)

are independent. We denote the odeword

reeived by user j as X

j

. For given p, averaging over X

j

is denoted as E

X

j

. We de�ne

E

X

j

[�(X

ji

)℄ :=

q�1

X

�=0

�(�)p

(i)

�

: (11)

In partiular we have, for an innoent user j,

E

X

j

[Æ

y

i

;X

ji

℄ = p

(i)

y

i

: (12)

For �xed p, averaging over X

C

is equivalent to averaging over the integers b (see Eq.9). The b

(i)

�

are distributed aording to a multinomial distribution. We have

E

b

[�(b

(i)

)℄ :=

X

b

�(b)

�



b

�

q�1

Y

�=0

[p

(i)

�

℄

b

�

: (13)

The notation

�



b

�

stands for the multinomial !=(b

0

! � � � b

q�1

!). The sum

P

b

stands for summation

over all q omponents of b, with the ondition

P

�

b

�

=  impliitly assumed,

X

b

�(b) =



X

b

0

=0

� � �



X

b

q�1

=0

Æ

;b

0

+b

1

+���+b

q�1

�(b): (14)

Finally we have to deal with the stohasti strategy of the oalition. We introdue the notation

P

b

(�) for the probability that the olluders output the symbol y = � in a ertain position, given

that they reeived symbols aording to b. Averaging over y is denoted as E

y

,

E

y

[�(y

i

)℄ :=

q�1

X

�=0

�(�)P

b

(i)

(�): (15)

The expetation value taken over all stohasti degrees of freedom is denoted as E

yXp

. It an be

omputed by �rst taking the expetation value E

y

(15) for �xed b, then for �xed p taking E

b

(13)

and E

X

j

(11) for all innoent users j, and �nally E

p

(10). Note that several orderings are possible.

For instane, the expetation E

X

j

(for innoent j) an be taken before E

y

and E

b

, sine y and b

do not depend on the odewords given to innoent users.

3.4 Statistial properties of the ausation sums

To failitate the analysis in the oming setions we introdue `saled' averages and varianes,

de�ned suh that they do not depend on m. For an innoent user j we de�ne

~�

j

=

E

yXp

[A

j

℄

m

= E

yXp

[A

(i)

j

℄ ; ~�

2

j

=

E

yXp

[A

2

j

℄� E

2

yXp

[A

j

℄

m

: (16)

For the olletive ausation we de�ne

~� =

E

yXp

[A

C

℄

m

= E

yXp

[A

(i)

C

℄ ; ~�

2

=

E

yXp

[A

2

C

℄� E

2

yXp

[A

C

℄

m

: (17)

The olumn index i in A

(i)

C

in (17) and A

(i)

j

in (16) an be hosen arbitrarily; the result does not

depend on i. The quantites ~�

j

, ~�

j

and ~� are disussed below, whereas Setion 5 is devoted to

omputing ~�.

Lemma 2: For an innoent user j we have ~�

j

= 0.
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Proof: We evaluate the expetation E

yXp

by �rst omputing the expetation E

X

j

. We apply (12)

to the de�nition of A

(i)

j

(7). This gives E

X

j

[A

(i)

j

℄ = p

(i)

y

i

g

1

(p

(i)

y

i

) + (1 � p

(i)

y

i

)g

0

(p

(i)

y

i

) = 0. The

last equality follows from the de�nition (3) of g

1

and g

0

. From E

X

j

[A

(i)

j

℄ = 0 it follows that

E

yXp

[A

(i)

j

℄ = 0. �

Lemma 3: For an innoent user j we have ~�

j

= 1.

Proof: Using the idempoteny of the Kroneker deltas in the de�nition of A

(i)

j

in (7) we write

A

2

j

=

m

X

i=1

(

Æ

y

i

;X

ji

1� p

(i)

y

i

p

(i)

y

i

+ (1� Æ

y

i

;X

ji

)

p

(i)

y

i

1� p

(i)

y

i

)

+

X

1�i;k�m

i 6=k

A

(i)

j

A

(k)

j

: (18)

We evaluate E

yXp

by �rst omputing the expetation E

X

j

. Using property (12) and independene

of the olumns of X, we get

E

X

j

[A

2

j

℄ =

m

X

i=1

E

X

j

[1℄ +

X

i;k;i 6=k

E

X

j

[A

(i)

j

℄E

X

j

[A

(k)

j

℄ = m+ 0: (19)

Here we have made use of the property E

X

j

[A

(i)

j

℄ = 0 (see proof of Lemma 2). From E

X

j

[A

2

j

℄ = m it

follows that E

yXp

[A

2

j

℄ = m. The de�nition of ~�

j

in (16) an be rewritten as ~�

j

= (1=m)E

yXp

[A

2

j

℄�

m~�

2

j

. Substitution of E

yXp

[A

2

j

℄ = m into this expression and appliation of Lemma 2 gives ~�

j

= 1.

�

Lemma 4: The mean ~� and variane ~� satisfy

~�

2

+ ~�

2

< q: (20)

Proof: From the de�nitions of ~�, ~� (17) and A

C

, A

(i)

C

(9) it follows that

~�

2

= m

�1

E

yXp

[A

2

C

℄�m~�

2

= m

�1

0

�

m

X

i=1

E

yXp

[fA

(i)

j

g

2

℄ +

X

i 6=j

E

yXp

[A

(i)

j

℄E

yXp

[A

(k)

j

℄

1

A

�m~�

2

= E

yXp

[fA

(i)

C

g

2

℄� ~�

2

: (21)

Using the idempoteny of the Kroneker delta, we write

fA

(i)

C

g

2

=

q�1

X

�=0

Æ

�y

[b

�

g

1

(p

�

) + (� b

�

)g

0

(p

�

)℄

2

: (22)

We apply the total average E

yXp

as desribed in Setion 3.3, by �rst performing E

y

, then E

X

and

�nally E

p

. We get

E

yXp

[fA

(i)

C

g

2

℄ =

q�1

X

�=0



X

b

�

=0

�



b

�

�

�

E

p

h

p

b

�

�

(1� p

�

)

�b

�

E

bnb

�

[P

b

(�)℄ fb

�

g

1

(p

�

) + [� b

�

℄g

0

(p

�

)g

2

i

: (23)

Here the notation E

bnb

�

indiates averaging over all degrees of freedom in b exept b

�

. Note that

the expression in E

p

[� � � ℄ is always nonnegative. So, using E

bnb

�

[P

b

(�)℄ � 1 we an bound the
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r.h.s. of (23) by

E

yXp

[fA

(i)

C

g

2

℄ <

q�1

X

�=0

E

p

"



X

b

�

=0

�



b

�

�

p

b

�

�

(1� p

�

)

�b

�

fb

�

g

1

(p

�

) + [� b

�

℄g

0

(p

�

)g

2

#

=

q�1

X

�=0

E

p

[℄ = q: (24)

The �rst equality is obtained by observing, as in [9℄, that the b

�

-sum represents the result of a

random walk onsisting of  steps, eah of whih has zero mean and unit variane. (This follows

from Lemmas 2 and 3). �

Remark: In Setion 5 it will be shown that ~� does not inrease as a funtion of . Lemma 4

then shows that ~� = O(

p

) for  ! 1. This asymptoti behaviour of ~� will play an important

role in Setion 6.

4 Lower bound on the ode length in the proposed symmetri sheme

Here we analyze the symmetri sheme desribed in Setion 2.2. We provide a lower bound on

the ode length m, as a funtion of the maximum oalition size 

0

and the maximum tolerable FP

and FN error probabilities "

1

, "

2

. We de�ne the following two properties:

Property 1: We say that a �ngerprinting sheme that generates a list � of aused users has

Property 1 for a ertain �xed value "

1

if, for all innoent users j, all oalitions C with j =2 C, and

all oalition strategies, the following holds:

P[False Positive℄ = P[j 2 �℄ < "

1

: (25)

Property 2: We say that a �ngerprinting sheme that generates a list � of aused users has

Property 2 for ertain �xed values 

0

, "

2

, if, for all oalitions C of size  � 

0

, and all oalition

strategies, it holds that

P[False Negative℄ = P[C \ � = ;℄ < "

2

: (26)

Our bound on the ode length is an asymptoti result for 

0

� 1. We formulate it as follows:

Theorem 1: Let the ode length m and the ausation threshold Z of our symmetri �nger-

printing sheme be hosen as

m = A

2

0

dln "

�1

1

e ; Z = B

0

dln "

�1

1

e (27)

with "

1

2 (0; 1℄ a �xed parameter and

A = 4~�

�2

(1 + Æ)

2

; B = 4~�

�1

(1 + Æ); (28)

where ~� is de�ned in (17). Let "

2

2 (0; 1℄ be a �xed parameter. For all Æ > 0 there exists a

suÆiently large 

0

suh that the symmetri �ngerprinting sheme has Property 1 for parameter

"

1

and Property 2 for parameters 

0

; "

2

.

Thus, aording to Theorem 1, for large 

0

a ode length

m > 4~�

�2



2

0

dln "

�1

1

e (29)

guarantees resistane against oalitions of size  � 

0

.

In Setions 4.1, 4.2 and 4.3 we present a proof of Theorem 1 following the approah of [7℄,

with minor modi�ations. First, onditions on A, B and 

0

are derived for ahieving Properties

1 and 2. Then the lowest value of A is identi�ed within the spae of allowed parameters. The

value of ~� is determined in Setion 5. At this point we already mention that 0 < lim



0

!1

~� <1.

Hene (29) has the asymptoti behaviour m = O(

2

0

).
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4.1 Conditions for satisfying Property 1

We onsider a �xed innoent user j. We introdue an auxiliary variable �

1

> 0 that allows us to

use the Markov inequality,

P[j 2 �℄ = P[A

j

> Z℄ = P[e

�

1

A

j

> e

�

1

Z

℄ �

E

X

j

[exp(�

1

A

j

)℄

exp(�

1

Z)

: (30)

Due to the independene of the olumns of X we an write E

X

j

[exp(�

1

A

j

)℄ =

n

E

X

j

[exp(�

1

A

(i)

j

)℄

o

m

. In what follows, we will always restrit �

1

suh that �

1

A

(i)

j

� 1:7. This

allows us to use the following (easily veri�ed) inequality

e

u

< 1 + u+ u

2

for u � 1:7; (31)

so that we an write

E

X

j

[e

�

1

A

(i)

j

℄ < 1 + �

1

E

X

j

[A

(i)

j

℄ + �

2

1

E

X

j

[fA

(i)

j

g

2

℄: (32)

We enfore the restrition �

1

A

(i)

j

� 1:7 for all realisations of the stohasti p, X and y. For

negative A

(i)

j

all �

1

> 0 are allowed. For positive A

(i)

j

we must have �

1

< 1:7=g

1

(p

y

). As g

1

is a

monotonously dereasing funtion, the strongest restrition on �

1

ours for p

y

= p

min

= t=(q�1).

Hene we restrit �

1

to the interval (0; 1:7=g

1

(

t

q�1

)℄.

From Lemmas 2 and 3 we know that E

X

j

[A

(i)

j

℄ = 0 and E

X

j

[fA

(i)

j

g

2

℄ = 1 for innoent j; thus

(32) yields E

X

j

[e

�

1

A

(i)

j

℄ < 1 + �

2

1

. Next we apply the inequality

1 + u < e

u

for u 6= 0 (33)

to write E

X

j

[exp(�

1

A

j

)℄ < exp(m�

2

1

). Substitution into (30) gives

P[j 2 �℄ < min

�

1

2(0;1:7=g

1

(

t

q�1

)℄

e

�

1

(m�

1

�Z)

: (34)

Filling in the expliit form for m and Z (27) into (34) we get

P[j 2 �℄ < min

�

1

2(0;1:7=g

1

(

t

q�1

)℄

"



0

�

1

(B�

0

A�

1

)

1

: (35)

The minimum lies at �

�

1

= B=(2

0

A), provided that the upper bound on �

1

is large enough. The

ondition 1:7=g

1

(

t

q�1

) � �

�

1

an be rewritten as



0

�

"

�

B

3:4 �A

�

2

q � 1

T

#

1

2�a

�

1�

T

�a

0

q � 1

�

1

2�a

�

"

�

B

3:4 � A

�

2

q � 1

T

#

1

2�a

; (36)

where we have used the parametrisation t = T

�a

0

. Substituton of �

�

1

into (35) gives

P[j 2 �℄ < "

B

2

=4A

1

: (37)

Hene a suÆient ondition for Property 1 to be satis�ed is that (36) holds and that

B

2

=4A � 1: (38)
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4.2 Conditions for satisfying Property 2

We start with a lemma that helps us to upper bound the FN error rate.

Lemma 5: Let C be a oalition of size  � 

0

. We have

P[C \ � = ;℄ � P[A

C

< Z℄ � P[A

C

< 

0

Z℄ (39)

Proof: The event C \ � = ; implies A

C

< Z. �

Remark: A

C

< Z does not imply C \ � = ;. It an happen that A

C

< Z while somebody in

the oalition does get aused.

Next we introdue an auxiliary variable �

2

> 0 that allows us to use the Markov inequality,

P[A

C

< 

0

Z℄ = P[e

��

2

A

C

> e

��

2



0

Z

℄ <

E

yXp

[exp(��

2

A

C

)℄

exp(��

2



0

Z)

: (40)

The olumns of X are independently generated, and the olluder strategy is the same for eah

olumn. This allows us to write E

yXp

[exp(��

2

A

C

)℄ = fE

yXp

[exp(��

2

A

(i)

C

)℄g

m

. We restrit �

2

suh that ��

2

A

(i)

C

� 1:7, allowing us to apply inequality (31) to bound the exponential. This

gives

E

yXp

[e

��

2

A

(i)

C

℄ < 1 + �

2

~�+ �

2

2

(~�

2

+ ~�

2

); (41)

where we have used the de�nitions (17). The restrition ��

2

A

(i)

C

� 1:7 holds for any realisation

of p and X. The smallest (most negative) ahievable value of A

(i)

C

is 

0

g

0

(p

max

y

) = 

0

g

0

(1 � t) =

�

0

p

(1� t)=t. Hene the ondition on �

2

is satis�ed for

�

2

� �

max

2

= 1:7

�1

0

p

t=(1� t): (42)

From Lemma 4 we know that ~�

2

+ ~�

2

< q. Thus we have from (41)

E

yXp

[e

��

2

A

C

℄ < (1� �

2

~�+ �

2

2

q

0

)

m

< e

�m�

2

~�(1��

2



0

q=~�)

: (43)

In the last inequality we have made use of (33). Substitution of (43) into (40) and minimizing

over �

2

gives

P[A

C

< 

0

Z℄ < min

�

2

2(0;�

max

2

℄

e

��

2

[m~�(1��

2



0

q=~�)�

0

Z℄

: (44)

We hoose m and Z suh that m~�(1 � �

max

2



0

q=~�) > 

0

Z. Hene the minimum in (44) ours

at �

2

= �

max

2

. Substitution of (27) into (44) and evaluation at �

max

2

gives

P[A

C

< 

0

Z℄ < "

1:7

0

p

t

1�t

[A~�(1� 

1

)�B℄

1

; (45)

where we have introdued the notation  

1

= 1:7

q

t

1�t

q=~�. To satisfy Property 2, (45) must not

be larger than "

2

. Hene Property 2 is satis�ed if

A~�(1�  

1

)�B �  

2

; (46)

where we have de�ned

 

2

=

p

1� t

1:7

0

p

t

�

ln "

2

ln "

1

: (47)

Note that the parameters  

1

and  

2

go to zero for 

0

!1.
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4.3 Final step in the proof of Theorem 1

We use the results of Setions 4.1 and 4.2 to prove Theorem 1. The onditions (38) and (46) an

be rewritten as an interval for A suh that Properties 1 and 2 are both satis�ed,

B +  

2

~�(1�  

1

)

� A �

B

2

4

: (48)

A solution exists only if the r.h.s. is not smaller than the l.h.s. in (48). We wish to identify the

smallest value of A for with a solution exists. This ours when the l.h.s. is equal to the r.h.s.

Solving the quadrati equation in B gives

B =

4

~�

(1 + �) with � :=

1 +

p

1 +  

2

~�(1�  

1

)

2(1�  

1

)

� 1 (49)

A =

B

2

4

=

4

~�

2

(1 + �)

2

: (50)

Finally, Theorem 1 follows by setting the parameter Æ in (28) equal to the expression � in (49),

whih goes to zero in the limit 

0

!1. �

5 The expetation of the olletive ausation sum

As was shown in Setion 4, the average olletive ausation ~� plays a entral role in determining

the ode length m required for ollusion resistane. In this setion we ompute the value of ~� in

the restrited digit model. (Other attak models are disussed in Setion 7.2). Unfortunately the

omputations are tedious. We �rst derive a general result in Setion 5.1, for all alphabet sizes q,

all values of the steepness parameter � and all olluder strategies. This result takes the form of a

(q� 1)-dimensional sum over all possible symbol frequenies b reeived by the olluders. Then, in

Setion 5.2 we investigate the speial ase (q = 2; � =

1

2

), preisely orresponding to the hoie of

parameters of Tardos [9℄ (but not the same ausation method). It turns out that our symmetri

ausation method yields an improvement of a fator 4 in the ode length. In Setion 5.3 we study

the ase q = 2 for arbitrary �. It turns out that for q = 2, the hoie � =

1

2

is optimal, a result

that was obtained for the original Tardos onstrution in [7℄. Finally, in Setion 5.4, we ome bak

to the nonbinary ase q > 2.

5.1 Sum representation of ~�

Aording to the de�nition (17), ~� is de�ned as the expetation value E

yXp

[A

(i)

C

℄. We follow

the proedure outlined in Setion 3.3: We �rst ompute the expetation value with respet to

the olluder strategy, then w.r.t. the matrix X

C

and �nally w.r.t. the vetors p

(i)

. Sine it is

understood that the results are idential for eah olumn of X

C

, we will omit the olumn index i

on the quantities y, p and b for notational simpliity.

We regard y as a (possibly stohasti) strategy-dependent funtion of b =

(b

0

; � � � ; b

q�1

) only. The olluders' strategy � annot depend on p, sine they do not know p. We

assume that � is not inuened by the olluders' identities, i.e. their deisions are purely based

on how many instanes of eah symbol were reeived, not by whom they were reeived. Using the

notation introdued in (15), we have

E

y

[A

(i)

C

℄ =

q�1

X

�=0

P

b

(�) fb

�

g

1

(p

�

) + [� b

�

℄g

0

(p

�

)g =

q�1

X

�=0

P

b

(�)

b

�

� p

�

p

p

�

(1� p

�

)

: (51)

Next we average over b and p. Applying (13) and (10) to (51), we obtain

~� =

X

b

�



b

�

q�1

X

�=0

P

b

(�)

Z

J(t;q)

d

q

p F (p)

q�1

Y

�=0

p

b

�

�

b

�

� p

�

p

p

�

(1� p

�

)

: (52)
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We further evaluate the integral

R

d

q

p for t = 0. As disussed in Setion 3.1, the error resulting

from integration over J(0; q) instead of J(t; q) is small. Furthermore, we will see in Setion 7.1 that

setting t = 0 is allowed for q � 3 in the Gaussian approximation. First we split the integration

into two parts: p

�

and the remaining q � 1 omponents

Z

J(0;q)

d

q

p =

Z

1

0

dp

�

Z

1�p

�

0

d

q�1

p Æ(1� p

�

�

X

� 6=�

p

�

): (53)

Note that the upper bound on the seond integration interval is redued from 1 to 1� p

�

. This

prevents us from diretly applying Lemma 1. For all  6= � we write p



= (1 � p

�

)s



, with

s



2 (0; 1) and

P

 6=�

s



= 1. This substitution has the following e�et,

Z

J(0;q)

d

q

p =

Z

1

0

dp

�

(1� p

�

)

q�2

Z

1

0

d

q�1

s Æ(1�

X

 6=�

s



)

F (p) = N

�1

q�0

p

�1+�

�

� (1� p

�

)

(�1+�)(q�1)

Y

 6=�

s

�1+�



q�1

Y

�=0

p

b

�

�

= p

b

�

�

(1� p

�

)

�b

�

Y

� 6=�

s

b

�

�

: (54)

Here we have used the property Æ(ax) = jaj

�1

Æ(x) for onstant a 6= 0. Substituting (54) into (52)

and applying Lemma 1 to the q � 1 degrees of freedom s



we obtain

~� = N

�1

q�0

X

b

�



b

�

q�1

X

�=0

P

b

(�)

Q

 6=�

�(�+ b



)

�( � b

�

+ �[q � 1℄)

�

Z

1

0

dp

�

p

b

�

�

3

2

+�

�

(1� p

�

)

�b

�

�

3

2

+�[q�1℄

(b

�

� p

�

): (55)

Finally, the p

�

-integral is evaluated as well, yielding ordinary Beta funtions,

~� =

�(�q)

[�(�)℄

q

 � !

�(+ �q)

X

b

[

q�1

Y

=0

�(�+ b



)

�(1 + b



)

℄� (56)

q�1

X

�=0

P

b

(�)

�(b

�

�

1

2

+ �)

�(b

�

+ �)

�(� b

�

�

1

2

+ �[q � 1℄)

�(� b

�

+ �[q � 1℄)

�

1

2

� ��

b

�



(1� �q)

�

:

Here we have used (8) for the normalisation onstant N

q�0

. Expression (56) is rather ompliated.

One property of (56) an be seen easily, however: For  � 1, the leading order terms of ~� are of

order 1, and do not depend on . This is readily seen by writing b



=  � w



, with w



2 [0; 1℄,

then applying the Stirling approximation �(x + 1) �

p

2�x(x=e)

x

to all Gamma funtions and

olleting powers of . For the quotients of Gamma funtions appearing in (56) we have the

proportionality �(b

�

+ v

1

)=�(b

�

+ v

2

) / 

v

1

�v

2

and �( � b

�

+ v

1

)=�( � b

�

+ v

2

) / 

v

1

�v

2

for

onstants v

1

; v

2

� . The sum

P

b

gives rise to a fator 

q�1

, sine it an be approximated by

an integral

R



1

d

q

b Æ( �

P

�

b

�

) � 

q�1

R

1

0

d

q

w Æ(1 �

P

�

w

�

). The orretions arising from the

summation terms where the ondition b



� 1 does not hold are negligible, sine the support is

negligible ompared to the full summation

P

b

.

The fat that ~� has a �nite value in the limit !1 shows that the asymptoti behaviour of

(27) is given by m / 

2

0

, without further dependene on 

0

arising from ~�.

5.2 The ase q = 2, � =

1

2

This ase orresponds to the probability density funtion in the original Tardos onstrution,

F (p

0

; p

1

) / (p

0

p

1

)

�1=2

Æ(1�p

0

�p

1

). Note that for q = 2, � =

1

2

the fator between urly brakets
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in (56) vanishes. However, ~� does not ompletely vanish, sine for (q = 2; b

�

= ) the expression

�(� b

�

�

1

2

+ �[q � 1℄) is divergent in the limit �!

1

2

. We have

lim

�!1=2

(�

1

2

+ �)�(�

1

2

+ �) = lim

�!1=2

�(

1

2

+ �) = 1: (57)

Hene, the only terms ontributing in the b-sum in (56) are those where b

�

= . Beause of

the marking ondition, P

b

(�) = 1 for these terms, as the oalition only sees the symbol �. The

ompliated expression (56) redues to a onstant:

~� =

�(1)

[�(

1

2

)℄

2

1

X

�=0

1 =

2

�

: (58)

Substitution into (27,28) gives the following asymptoti bound on the ode length,

m > �

2



2

0

dln "

�1

1

e: (59)

This bound is 4 times lower than the bound obtained in [7℄ and 10 times lower than the bound

in [9℄.

5.3 The ase q = 2, � 6=

1

2

Next we study how the symmetri binary sheme performs for � 6=

1

2

. Substitution of q = 2 into

(56) gives

~� =

�(2�)

[�(�)℄

2

(

1

2

� �)

� 1 + 2�



X

b

1

=0

�



b

1

�

B(b

1

�

1

2

+ �; � b

1

�

1

2

+ �)

�

�

�1 +

2



[b

1

P

b

(0) + (� b

1

)P

b

(1)℄

�

; (60)

where B denotes the Beta funtion. From (60) we an identify whih olluder strategy � fores

the ontent owner to use the longest possible ode. We denote this `extremal' strategy as �

�

2

. We

remind the reader that m / ~�

�2

. Hene, in order to maximize m, the strategy �

�

2

has to minimize

the summand in (60) for eah b. Note that the b

1

= 0 and b

1

=  ontributions to the summation

are not a�eted by the strategy. For 1 � b

1

� � 1 the Beta funtion in (60) is positive. Hene,

the fator (

1

2

��) in front of the summation determines the overall sign of the strategy-dependent

ontributions. For � <

1

2

, this fator is positive, so the olluders wish to minimize the expression

[b

1

P

b

(0)+(� b

1

)P

b

(1)℄. They ahieve this by hoosing the symbol that appears most frequently,

i.e. by applying `majority voting' to the 0s and 1s that they reeive in a olumn. For � >

1

2

, the

fator

1

2

� � has the opposite sign and the extremal strategy �

�

2

is minority voting.

Note that �

�

2

is not neessarily the strategy that the oalition atually applies. However, the

distributor has to take into aount that the olluders ould be using �

�

2

, and he has to hoose

his ode length m aordingly. We are interested in this `extremal' strategy beause our aim is to

derive a sharp lower bound on m.

Fig. 1 shows ~� as a funtion of � for the strategy �

�

2

. The dashed line orresponds to the value

2=� obtained in the previous setion. It is lear that � =

1

2

is the optimum. At the optimum we

have ~� = 2=�, independent of . The part of the urve with � <

1

2

hardly depends on . The part

with � >

1

2

beomes steeper with inreasing .

5.4 Non-binary alphabet

We now return to the general expression for ~� given in (56). We work in the restrited digit

model, where, at eah position, the olluders an output only the symbols they have available. (In

Appendies A and B we disuss the unreadable digit and arbitrary digit model).
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0.35 0.4 0.45 0.5 0.55 0.6
0.3

0.35

0.4

0.45

0.5

0.55

0.6

κ

µ~

2/π

Fig. 1: ~� as a funtion of � for q = 2,  = 80, given the `extremal' strategy �

�

2

.

Note that the sum

P

�

P

b

(�)(� � � ) in (56) represents an average over �. We obtain a lower

bound for the sum from the fat that an average is at least as big as the smallest element in the

summation. Thus we have

~� �

�(�q)

[�(�)℄

q

 � !

�(+ �q)

X

b

[

q�1

Y

=0

�(�+ b



)

�(1 + b



)

℄ (61)

min

�jb

�

6=0

�(b

�

�

1

2

+ �)

�(b

�

+ �)

�(� b

�

�

1

2

+ �[q � 1℄)

�(� b

�

+ �[q � 1℄)

�

1

2

� ��

b

�



(1� �q)

�

:

As we have assumed the restrited digit model, the minimum is taken only over those symbols

that the olluders have reeived.

Eq.(61) allows us to identify the `extremal' olluder strategy �

�

q

, whih fores the distributor

to use the largest ode length m. For eah b separately, the olluders hoose � suh that the

expression following `min

�

' is minimized.

For q � 10 and a �xed oalition size  = 20 we have numerially omputed ~� as a funtion

of � for the �

�

q

strategy, i.e. taking the equality in (61). For large q and  the numeris are

omputationally expensive, sine the number of terms in the b-summation is of order 

q�1

. Fig. 2

shows ~� as a funtion of the steepness parameter �. For q � 7 the maximum of the urve lies

slightly to the right of � = 1=q. For q � 8 an extra hump is visible. The hump is a `�nite 

e�et'; it does not exist when the ratio q= is small. Fig. 3 shows how ~� varies when  is inreased:

The part of the urve at � < 1=q is una�eted, while for � > 1=q the urve goes downward and

onverges to a �nite value.

We use the numerial results for ~� to estimate the required ode length (m / ~�

�2

). We give

estimates for the advantage that a q-ary ode gives over the symmetri binary ode with � = 1=2.

The omparison with the binary ase an be done in several ways, depending on the details of the

watermark embedding. We give the two extreme omparison methods:

1. Counting the number of symbols. A q-ary symbol oupies as muh spae in the ontent as a

binary symbol, regardless of q. Fig. 4 shows the

q�ary ase

binary ase

ratio for the number of symbols.

This ratio is given by 4=(�

2

~�

2

).

2. Counting the number of bits. A q-ary symbol oupies log

2

q times more spae in the ontent

than a binary symbol. In this ase it is not fair to ompare ode length expressed in symbols.

One has to ount bits. Fig. 5 shows the

q�ary ase

binary ase

ratio for the number of bits. This ratio is

given by log

2

q � 4=(�

2

~�

2

).
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Fig. 2: ~� as a funtion of � for several alphabet sizes q. The oalition size is  = 20. The olluders

employ the `extremal' strategy.
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Fig. 3: ~� as a funtion of � for q = 6 at several oalition sizes. The olluders employ the `extremal'

strategy. The dashed horizontal line lies at (2=�)

p

log

2

6. When ~� lies above this line, the

spae (in bits) oupied in the q = 6 sheme is smaller than in the binary sheme.
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Fig. 4: Number of symbols in the odewords, relative to the binary ase, for several alphabet

sizes q. The oalition size is  = 20. The olluders employ the `extremal' strategy.
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Fig. 5: Number of bits in the odewords, relative to the binary ase, for several alphabet sizes q.

The oalition size is  = 20. The olluders employ the `extremal' strategy.
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Type 1 is the most optimisti omparison possible, in the sense that it allows for the largest im-

provements w.r.t. the binary sheme. Type 2 omparison is the most pessimisti possible. Without

giving a full argument, we state that in the ase of video watermarking type 1 is more appropriate,

even for large alphabets. When, for instane, symbols are embedded using a spread-spetrum wa-

termark, where eah spreading sequene orresponds to a di�erent symbol in the alphabet, then

the segment length an be kept almost independent of q without dereasing detetion performane.

For ompleteness we give the results for both omparisons. The horizontal dotted line in Fig. 2

indiates the threshold for omparison of type 1. When ~� rises above this threshold, the q-ary

sheme needs fewer symbols than the binary sheme. The thik piee of eah urve indiates the

region where the q-ary sheme is better than the binary, using omparison type 2. Fig. 4 shows

the ode length m (the number of symbols) as a funtion of �, for a number of q values, and Fig. 5

similarly shows m log

2

q, the number of bits. Both graphs have their vertial axis normalised suh

that lengths are divided by orresponding lengths in the binary sheme. In both graphs the �nite-

humps are visible. Not taking the humps into aount, we see that for 3 � q � 10 the number of

symbols is redued by 40%{80% w.r.t. the binary ase, while the redution in the number of bits

is 11%{30%. Finite- e�ets further improve these results. We onlude that in our symmetri

sheme it is advantageous to use the largest possible alphabet allowed by the watermarking method

employed.

6 The Gaussian approximation

6.1 Motivation

In this setion we analyse the performane of the symmetri sheme using what we all the

`Gaussian approximation'. By this we mean the assumption that the ausation A

j

for innoent

j has a Gaussian probability density funtion. The assumption is motivated by the Central Limit

Theorem (CLT): when a large number of i.i.d. variables are summed, the distribution of the sum

onverges to the normal distribution. The CLT applies when the moments of the summands'

distribution meet ertain onditions. The moments also determine the rate of onvergene to the

normal form.

The ausation A

j

is omputed by taking the sum over m independent ausations, eah of

whih is based on a single symbol y

i

in the unauthorized opy. All the separate ausations

have the same probability distribution. The number of symbols, m, is large enough to guarantee

`suÆiently fast' onvergene to the normal form. This informal statement is made more preise

in Appendix C, where we derive a lower bound on 

0

as a funtion of q. When 

0

is above this

bound, the deviations from the normal form beome `small enough' in the entral region of the

A

j

-distribution funtion. It turns out that the bound approximately lies between 

0

= 10 and



0

= 20. Hene onvergene is fast enough in many pratial situations.

In Setion 6.2 we analyse the symmetri sheme under the assumption that A

j

has a Gaussian

distribution. We obtain a lower bound on m that is a fator 2 smaller than Theorem 1.

In the disussion of the CLT in Appendix C it turns out that for q � 3 the uto� parameter

t an be sent to zero without ausing any divergenes. The uto� parameter is disussed in

Setion 7.1.

6.2 Lower bound on the ode length

Theorem 2: Let A

j

have a Gaussian probability density. For all Æ > 0 there exists a

suÆiently large 

0

suh that Property 1 is satis�ed for parameter "

1

and Property 2 is satis�ed

for parameters 

0

; "

2

when the ode length is

m > 2~�

�2

(1 + Æ)

2

0

ln "

�1

1

: (62)

Note that this ode length is a fator 2 lower than the one in Theorem 1. We �rst give an informal

argument why a bound of the form (62) follows from the Gaussian probability density. Then we

give a formal proof.
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µ m
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ε
1

ε
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0

Fig. 6: Sketh of the probability density of A

j

=

p

m (left) and

1



A

C

=

p

m (right). The ausation

threshold Z and the error rates "

1

and "

2

are also shown.

Informal argument: If the probability density of A

j

is known, then that knowledge allows us

to ompute the FP and FN error rates as a funtion of ~�

j

, ~�

j

, ~�, ~�, m and Z. This is skethed in

Fig. 6. The left urve is the probability density of the quantity A

j

=

p

m. It has mean ~�

j

= 0 and

variane ~�

j

= 1 (see Lemmas 2 and 3). The error rate "

1

is given by the area to the right of the

(resaled) threshold Z=

p

m. The right urve is the probability density of the quantity

1



A

C

=

p

m.

It has average

1



~�

p

m and variane ~�=. The error rate "

2

is given by the area to the left of

Z=

p

m. The horizontal axis is saled suh that the A

j

-urve does not depend on  and m. If we

set ourselves the goal of having �xed error rates for arbitrary , two observations an be made

from Fig. 6:

� In order to have a �xed "

1

for all , the threshold line Z=

p

m must not shift. Hene Z must

be hosen as Z /

p

m as far as the dependene on  is onerned.

� When  inreases, the rightmost urve beomes narrower and shifts to the left. In order to

prevent "

2

from vanishing, m must be hosen proportional to 

2

.

From this informal argument we obtain the proportionality m / 

2

0

in (62), but not the onstants

and the logarithmi dependene on "

1

.

Proof of Theorem 2: Let �

1

and �

2

be the density funtions ofA

j

andA

C

, respetively, resaled

suh that they both have zero mean and unit variane. We de�ne umulative distributions in the

tails,

G

1

(x) =

Z

1

x

dx

0

�

1

(x

0

) ; G

2

(x) =

Z

x

�1

dx

0

�

2

(x

0

): (63)

Lemma 6: In order to ahieve a False Positive error rate � "

1

and a False Negative error rate

� "

2

against any oalition of size  � 

0

, it is suÆient to set the ode length m aording to

m � 

2

0

�

~�

j

~�

G

inv

1

("

1

)

�

2

�

1�

~�



0

~�

j

G

inv

2

("

2

)

G

inv

1

("

1

)

�

2

: (64)

Here the supersript `inv' denotes the inverse funtion.
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Proof: The proof is ompletely analogous to the derivation in Setion 3.4 of [7℄. �

Note that G

inv

2

("

2

) < 0. Note further that the dependene of (64) on "

2

vanishes in the limit



0

! 1. (Remember that ~�

j

= 1 aording to Lemma 3 and that ~� = O(

p



0

) as a onsequene

of Lemma 4). If A

j

and A

C

have Gaussian distributions, then G

1

and G

2

are error funtions

2

and

we have G

inv

1

("

1

) =

p

2Erf

inv

(2"

1

), G

inv

2

("

2

) = �

p

2Erf

inv

(2"

2

). Substitution into (64), using

~�

j

= 1, gives

m �

2

~�

2



2

0

h

Erf

inv

(2"

1

)

i

2

(

1 +

~�



0

Erf

inv

(2"

2

)

Erf

inv

(2"

1

)

)

2

: (65)

In the regime "

1

� "

2

, whih is the relevant regime for e.g. movie distribution, the dependene of

(65) on "

2

is rather weak even for �nite 

0

, sine Erf

inv

("

2

) < Erf

inv

("

1

). We use the asymptoti

form of the inverse error funtion for small arguments, Erf

inv

(") =

p

ln "

�1

[1 � O(

ln ln "

�1

ln "

�1

)℄, to

write

m �

2

~�

2



2

0

ln

1

"

1

�

1�O(

ln ln "

�1

1

ln "

�1

1

)

�

(

1 +O

 

1

p



0

s

ln "

�1

2

ln "

�1

1

!)

: (66)

For large 

0

the result (62) follows

3

. �

Hene for large enough 

0

a ode length m = 2~�

�2



2

0

ln "

�1

1

suÆes. This is shorter by a fator

2 than the result obtained in Setion 4.

7 Disussion

7.1 The uto� parameter t

In this setion we disuss the the e�ets of the uto� t = T

�a

0

introdued in Setion 2.2. The

probabilities p

�

lie in the restrited interval [t=(q � 1); 1 � t℄. It is lear from Setion 4 that the

presented proof of Theorem 1 does not work for t = 0. In the limit T # 0, the allowed intervals

for the auxiliary variables �

1

and �

2

(34,42) vanish, while both intervals need to be �nite for the

proof that Properties 1 and 2 are satis�ed.

The speed of the onvergene to the asymptoti result A = 4=~�

2

, B = 4=~� depends on the way

in whih the parameters a 2 (0; 2) and T are hosen. The small parameters  

1

and  

2

(45,47)

asymptotially behave as

 

1

� 1:7

q

~�

p

T



a=2

0

;  

2

�

ln "

2

ln "

1

1

1:7

p

T

1�a=2

0

: (67)

Furthermore, ondition (36), neessary for Property 1 to hold, an be written as



0

'

�

q � 1

T

(

~�

3:4

)

2

�

1=(2�a)

: (68)

For pratial reasons, we wish both  

1

and  

2

to beome small at a reasonably low value of 

0

,

while the bound (68) also should not be too high. However, in the limit T # 0, both the 

0

-bound

(68) and the expression for  

2

in (67) diverge. Hene, when t tends to zero, the approah of

Setions 4.1{4.3, based on the Markov inequality, an prove Properties 1 and 2 only for extremely

large 

0

.

The role of the uto� t is ompletely di�erent in the analysis using the Gaussian approximation.

2

To avoid ambiguities due to oniting de�nitions in the literature, we mention that we use the de�nition

Erf(x) = 1� (2=

p

�)

R

x

0

e

�u

2

du.

3

For proving Theorem 2 we do not have to assume that A

C

has a Gaussian form. The "

2

-term in (64) vanishes

for all funtions G

inv

2

beause of the fator ~�=

0

= O(1=

p



0

). However, the omputation of A

C

involves even more

summed ontributions than A

j

, so it is safe to assume that when A

j

is Gaussian, then A

C

is Gaussian as well.
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� The ase q = 2. It was shown in [7℄ for the original Tardos sheme that the CLT an only be

applied if t > 0. The probability distribution of the ausation U

i

(for innoent users) due

to the symbol y

i

is proportional to 1=(1 + U

2

i

)

2

. The 3rd moment is zero. For distributions

with vanishing 3rd moment, the CLT only holds when the 4th moment does not diverge.

However, for t = 0 the 4th moment does diverge. Hene we need t > 0. Exatly the same

reasoning applies to the symmetri sheme with q = 2.

� The ase q � 3. For q � 3, the 3rd moment of the probability distribution of A

(i)

j

(for

innoent j) is always nonzero, no matter what the value of t is. This is shown in Appendix C,

Eq.(74). Hene the CLT applies even if we set t = 0. In the Gaussian approximation, there

is no reason to have a uto� t for q � 3.

7.2 Di�erent attak models

Up to this point we have only onsidered the restrited digit model. However, it is easy to obtain

results for the other attak models listed in Setion 1.2. As an be seen from (64), the bound on

the ode length is proportional to ~�

2

j

=~�

2

.

4

The di�erenes between the various attak models give

rise to di�erent values ~�

j

, ~�, but the form (64) is independent of the attak model. Hene, in

order to see the di�erenes between the attak models, it is suÆient to ompare the ratio ~�

j

=~�.

The unreadable digit model is disussed in Appendix A. It is assumed that the olluders

output an erasure symbol `?' whenever they an, and that the distributor gives zero ausation

to loations with an erasure. It turns out that for large alphabets (q ' 7) the olluder strategy

of outputting erasures is good, and the distributor has to use longer odes than in the restrited

digit model. However, for small alphabets it is better for the olluders not to use an erasure at

eah detetable position, as a `?' informs the distributor that the position is detetable.

Results for the arbitrary digit model are derived in Appendix B. Unsurprisingly, with this

attak model a nonbinary sheme always performs worse than the symmetri binary sheme;

the olluders have ample opportunity to inriminate innoent users while avoiding ausation

themselves.

8 Summary

In this paper we have proposed a new onstrution for a randomized digital �ngerprinting ode,

whih is similar to a reent onstrution by Tardos but an be used with arbitrary size alphabets.

We have analyzed the performane of our sheme, in the restrited digit model, in two ways.

First, we have proved a lower bound on the ode length m suh that the desired False Positive

and False Negative error probabilities are ahieved against any oalition of size  � 

0

. Due to a

di�erent way of omputing ausations, the proposed ode allows for 10 times shorter odes (with

respet to [9℄) in the ase of a binary alphabet. Moving to a ode over a q-ary alphabet allows a

further redution of the ode length of 35% at q = 3 and 80% at q = 10.

Seond, we have analyzed our sheme under the assumption that the ausation sum A

j

follows

a Gaussian distribution. This `Gaussian approximation' is valid at oalition sizes 

0

of approxi-

mately 10{20 and larger. We have shown that, in this approximation, the ollusion resistane of

the sheme is retained for a ode length m that is twie as short as the bound obtained using no

assumptions.
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4

Theorem 1 is formulated after the substitution ~� ! 1 has been done. If appliation of Lemma 3 is postponed

in the analysis in Setion 4, we get the proportionality to ~�

2

j

in Theorem 1 as well.
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A Unreadable digit model

In this appendix we onsider the ase of the unreadable digit model. In this attak model, the

olluders are allowed to output the erasure symbol `?' in detetable positions. For simpliity we

make two assumptions: (i) The olluders generate an erasure whenever they an, and (ii) The

distributor gives zero ausation in ase of an erasure symbol.

The quantities ~�

j

and ~� are both a�eted by these assumptions. They are easily omputed,

sine all detetable positions (leading to `?') are disarded by the distributor. This leaves only

the undetetable positions, haraterized by vetors b that onsist of q � 1 zero omponents and

one omponent equal to . We have

~�

2

j

=

q�1

X

�=0

Z

J(0;q)

d

q

p F (p)p



�

= q

�(�q)�(+ �)

�(�)�(+ �q)

(69)

and

~� =

q�1

X

�=0

Z

J(0;q)

d

q

p F (p)p



�

� g

1

(p

�

) = q

�(�q)�(�

1

2

+ �)�(

1

2

+ �[q � 1℄)

�(�)�(�[q � 1℄)�(+ �q)

: (70)

Reall from (64) that the required ode length is proportional to ~�

2

j

=~�

2

. Using (69) and (70) we

obtain

~�

2

j

~�

2

=

1

q

2

�(+ �)�(+ �q)

[�(�

1

2

+ �)℄

2

�(�)

�(�q)

�

�(�[q � 1℄)

�(

1

2

+ �[q � 1℄)

�

2

�



�1+�[q�1℄

q

�(�)

�(�q)

�

�(�[q � 1℄)

�(

1

2

+ �[q � 1℄)

�

2

: (71)
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The last expression is obtained using the Stirling approximation of the Gamma funtion for large .

For � = 1=q the large q asymptoti behaviour is given by

lim

q!1

~�

2

j

=~�

2

= 4=�: (72)

Note that the result does not depend on . Consequently the asymptoti relation m / 

2

0

holds not

only in the restrited digit model, but also in the unreadable digit model. Eq. (72) demonstrates

that it is unfavorable for the distributor to use a very large alphabet in the unreadable digit model,

sine the ode length in bits (m log

2

q) then grows as log

2

q.

A graph of the (normalized) ode length in bits / log

2

(q)~�

2

j

=~�

2

, similar to the graphs in

Setion 5.4, is shown in Fig. 7 for q = 3 and q = 7. The number of bits inreases as a funtion of

q for the unreadable digit model, but it dereases in the restrited digit model. Apparently, the

olluder strategy of outputting erasures whenever possible makes sense for large alphabets (the

distributor has to use a longer ode than in the restrited digit ase), but not for small alphabets.

Depending on the employed value of �, the rossover value of q lies between approximately 5 and 8.
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c=20; q=3 and q=7
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Fig. 7: Code length in bits as a funtion of � in the unreadable digit model (solid lines), relative

to the q = 2 restrited digit model. The olluders output an erasure whenever allowed by

the marking ondition. The dotted lines are the results for the restrited digit model (see

Fig. 5).

B Arbitrary digit model

In this appendix we onsider the ase of the arbitrary digit model. In this attak model, the

olluders are allowed to output any symbol y 2 f0; : : : ; q�1g (but not `?') in detetable positions.

This hoie of attak model inuenes only ~�. The quantity ~�

j

is una�eted by going from the

restrited to the arbitrary digit model. We ompute ~� from expression (61) with one modi�ation:

The minimisation `min

�

' now also inludes symbols � for whih b

�

= 0 (provided, of ourse, that

none of the other symbols ours  times).

Numerial results are shown in Fig. 8. For eah q, the ~� urve of the arbitrary digit model (solid

urves) always lies below the urve of the restrited digit model (dotted urves). Note further that

the nonbinary sheme is always worse than the binary in the arbitrary digit model. (The urves

lie below 2=�). Hene, if the arbitrary digit model applies, the distributor's best option is to use

the binary sheme of Setion 2.2.
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Fig. 8: ~� as a funtion of � in the arbitrary digit model (solid lines). The dotted lines are the

results for the restrited digit model.

C Convergene to the normal distribution

In this appendix we study how fast (as a funtion of m) the distribution of A

j

onverges to the

normal distribution. We primarily study the ase q � 3, sine for q = 2 the analysis of [7℄ suÆes.

We set t = 0. We use a theorem from [2℄ that gives the width of the entral region where the normal

form is a good approximation. This entral region ontains a fration 1 � 2"

1

of the probability

mass. By `good approximation' it is meant that the deviation from the normal form, everywhere

in the entral region, is smaller than the value of the Gaussian at the edge of the entral region.

Applied to our ausation sum A

j

, the theorem gives the following width, expressed in standard

deviations,

#sigmas =

 

6~�

3

j

j�

3

j

!

1=3

m

1=6

; where �

3

:= E [fA

(i)

j

g

3

℄: (73)

Here E stands for averaging �rst over X

ji

, then y, then X

C

and �nally p. The third moment is

given by

�

3

=

�(�q)

[�(�)℄

q

q�1

X

�=0

X

b

P

b

(�)

�



b

�

Q

� 6=�

�(�+ b

�

)

�(� b

�

+ �[q � 1℄)

�

Z

1

0

dp

�

p

b

�

�1+�

�

(1� p

�

)

�b

�

�1+�[q�1℄

"

(1� p

�

)

3=2

p

p

�

�

p

3=2

�

p

1� p

�

#

: (74)

The integrals are all onvergent

5

if the inequality � > 1=[2(q�1)℄ holds. (We remind the reader that

b

�

� 1 due to the marking ondition. Hene, the integrals always onverge at p

�

= 0). From Fig. 2

we see that our region of interest lies at � > 1=q, whih means that the inequality indeed holds.

Notie that for q = 2 the integral is antisymmetri under the mapping (p

�

! 1�p

�

; b

�

! � b

�

),

yielding �

3

= 0. Notie too that we have set t = 0 without running into any divergenes. In the

proof of Theorem 1 it is impossible to set t = 0.

5

We also have E[jA

(i)

j

j

3

℄ < 1, and hene the Berry-Ess�een theorem holds, stating that there is uniform on-

vergene to a Gaussian distribution, with errors of order 1=

p

m = O(1=

0

). Eq.(73) gives a sharper bound on the

width of the entral region than the Berry-Ess�een theorem.
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If the `extremal' strategy of Setion 5.4 is employed by the olluders, then (74) an be written

as

�

3

=

�(�q)

[�(�)℄

q

 � !

�(+ �q)

X

b

[

q�1

Y

=0

�(�+ b



)

�(1 + b



)

℄ (75)

�(b

y

�

1

2

+ �)

�(b

y

+ �)

�(� b

y

�

1

2

+ �[q � 1℄)

�(� b

y

+ �[q � 1℄)

�

1�

2b

y



+

�[q � 2℄



�

:

Here y is a funtion of b, namely the symbol hosen by the olluders after they have observed b,

suh that ~� is minimized. Notie that (75) has the same form as (61); the only di�erene lies in

the fator between the urly brakets. Numerial results for (75) are shown in Figs. 9 and 10. It

is lear from Fig. 9 that �

3

hardly depends on .
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Fig. 9: Third moment �

3

as a funtion of � for various oalition sizes , for q = 6. The olluders

employ the `extremal' strategy.

Finally we substitute some numerial values into (73). From Lemma 3 we have ~�

j

= 1. We

use the result (62), m = (2=~�

2

)

2

0

ln "

�1

1

. We set "

1

= 10

�15

, orresponding to the probability of

an 8-sigma event. We wish the CLT to apply in a entral region with #sigmas� 8. Aording to

(73), this requirement is satis�ed for 

0

' 10 � �

3

~�.

We use Fig. 10 to read o� the value of �

3

at the �-value where ~� (61) is in the optimal range (as

shown in Fig. 2). Setting � slightly larger than 1=q, we see that j�

3

j < 1. Hene, for q � 10, given

the ~�-values plotted in Fig. 2, we onlude that the Gaussian approximation applies when the

ode is built to resist oalitions of size 

0

larger than some threshold lying between approximately

10 and 20. The larger 

0

, the better the Gaussian approximation.
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Fig. 10: Third moment �

3

as a funtion of � for various alphabet sizes q, for  = 20. The olluders

employ the `extremal' strategy.


