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Abstra
t

Fingerprinting provides a means of tra
ing unauthorized redistribution of digital data by individually

marking ea
h authorized 
opy with a personalized serial number. In order to prevent a group of users

from 
olle
tively es
aping identi�
ation, 
ollusion-se
ure �ngerprinting 
odes have been proposed. In this

paper, we introdu
e a new 
onstru
tion of a 
ollusion-se
ure �ngerprinting 
ode whi
h is similar to a re
ent


onstru
tion by Tardos but a
hieves shorter 
ode lengths and allows for 
odes over arbitrary alphabets.

For binary alphabets, n users and a false a

usation probability of �, a 
ode length of m � �

2




2

0

ln(n=�)

is provably suÆ
ient to withstand 
ollusion atta
ks of at most 


0


olluders. This improves Tardos' 
on-

stru
tion by a fa
tor of 10. Furthermore, invoking the Central Limit Theorem we show that even a 
ode

length of m �

1

2

�

2




2

0

ln(n=�) is suÆ
ient in most 
ases. For q-ary alphabets, assuming the restri
ted digit

model, the 
ode size 
an be further redu
ed. Numeri
al results show that a redu
tion of 35% is a
hievable

for q = 3 and 80% for q = 10.

1 Introdu
tion

1.1 Digital �ngerprinting

Fingerprinting, or forensi
 watermarking, provides a means of tra
ing the unauthorized redistri-

bution of digital data, su
h as entertainment 
ontent (i.e. musi
 or movie 
lips), digital re
ords

or software. Before authorized distribution, the distributor imper
eptibly embeds a �ngerprint,

whi
h plays the role of a personalized serial number, dire
tly into the 
ontent. This is done using a

digital watermarking algorithm. If the �ngerprint is di�erent for ea
h re
ipient (also 
alled `user'),

the distributor 
an extra
t the embedded �ngerprint from an unauthorized 
opy of the 
ontent

and tra
e the re
ipient who leaked it.

Mathemati
ally speaking, a �ngerprint is a �nite string over some q-ary alphabet �; the set

of all �ngerprints is 
alled a �ngerprinting 
ode. Throughout this paper we will denote by n the

number of users and by m the length of the �ngerprint. In order to mark a pie
e of 
ontent

before distribution, the distributor pi
ks a �ngerprint from the 
ode and imper
eptibly embeds

ea
h symbol of the �ngerprint into di�erent segments of the 
ontent, su
h as in di�erent s
enes

of a movie. In addition, he stores in a database the asso
iation of a �ngerprint with the identity

of the user who re
eived the personalized 
opy. In 
ase an unauthorized 
opy of the 
ontent is

found, the distributor 
an perform watermark dete
tion on the segments of the 
ontent to read

out its �ngerprint. On
e the �ngerprint is retrieved, he 
an 
ompare it with his database of

�ngerprints to identify the guilty user. Current watermarking s
hemes provide a 
onsiderable

level of robustness that allows 
orre
t re
onstru
tion of the �ngerprint even if the 
ontent has

su�ered heavy distortions.

1.2 Collusion resistan
e

Fingerprinting s
hemes need to be robust against 
ollusion atta
ks, where several users pool dif-

ferent individualized versions of the same 
ontent. By looking at the di�eren
es between these

versions, the 
olluding users (also referred to as `
olluders' or `the 
oalition') try to produ
e an

1
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untra
eable version of the 
ontent, from whi
h the distributor 
annot identify any of the 
olluders.

A segment of the 
ontent is 
alled a dete
table position if the 
olluders have at least two di�erently

marked versions of that segment available.

A 
ode is 
alled 
ollusion-resistant against a 
oalition of size 


0

, if any set of 
 � 


0


olluders

is unable to produ
e an untra
eable 
opy. The 
onstru
tion of 
ollusion-resistant 
odes has been

an a
tive resear
h topi
 sin
e the late 1990s (see e.g. [5, 8, 3, 6, 9℄). The 
onstru
tions and the

a
hieved results depend strongly on various assumptions whi
h restri
t the type of manipulations

the atta
kers are allowed to perform. One often made assumption is the marking 
ondition, stating

that the 
olluders are able to 
hange �ngerprint symbols only in dete
table positions. Throughout

this paper we will assume that the marking 
ondition holds. Furthermore, several atta
k models

have been introdu
ed in the literature:

� The restri
ted digit model or narrow-
ase model allows the 
olluders only to `mix and mat
h'

their 
opies of the 
ontent, i.e. to repla
e a segment in a dete
table position by any other

segment they have available in that position. On the �ngerprinting 
ode level, this means

that in the unauthorized 
opy the symbol at ea
h position 
an only be one of the symbols

that they have available in that position.

� The unreadable digit model allows for slightly stronger atta
ks. Besides mixing the 
ontent

segments, the atta
kers 
an also erase the embedded �ngerprint at dete
table positions. At

the 
ode level, we denote this by a spe
ial erasure symbol ? 62 �.

� The arbitrary digit model allows for even stronger atta
ks: the atta
kers 
an put an arbitrary

q-ary symbol from � (but not the erasure symbol `?') in dete
table positions.

� The general digit model allows the atta
kers to put any symbol, in
luding `?', in dete
table

positions.

Note that in the 
ase of a binary alphabet all four atta
k models are equivalent in terms of

tra
eability. (For q = 2 it is detrimental for the 
olluders to use `?', sin
e it gives the distributor

more information than a `0' or `1', namely that the position is a dete
table position for the


oalition).

The main parameters of a �ngerprinting 
ode are the 
odeword length, the False Positive (FP)

error probability and the False Negative (FN) error probability. The 
odeword length in
uen
es to

a great extent the pra
ti
al usability of a �ngerprinting s
heme, as the number of segments m that


an be used to embed a �ngerprint symbol is severely 
onstrained; typi
al video watermarking

algorithms for instan
e 
an only embed 7 bits of information in a robust manner in one minute

of a video 
lip. Furthermore, the amount of information that 
an be embedded per segment is

limited; hen
e the alphabet size q must be small (typi
ally q � 16). Obviously, distributors are

interested in the shortest possible 
odes that are se
ure against a large number of 
olluders, while

a

ommodating a huge number n of users (of the order of n � 10

6

or even n � 10

9

).

Low error probabilities are another 
entral requirement. The most important type of error is the

FP, where an inno
ent user gets a

used. The probability of su
h an event must be extremely small;

otherwise the distributor's a

usations would be questionable, making the whole �ngerprinting

s
heme unworkable. We will denote by "

1

the probability that one spe
i�
 user gets falsely a

used,

while � denotes the probability that there are inno
ent users among the a

used. The se
ond type

of error is the FN, where the s
heme fails to a

use any of the 
olluders. The FN probability will

be denoted as "

2

. In pra
ti
al situations, fairly large values of "

2


an be tolerated. Often the

obje
tive of �ngerprinting is to deter unauthorized distribution rather than to prose
ute all those

responsible for it. Even a mere 50% probability of getting 
aught is a signi�
ant deterrent for


olluders.

1.3 Related work

For the restri
ted digit model, `deterministi
' �ngerprinting 
odes have been proposed. Here

`deterministi
' means that the error probabilities "

1

and "

2

are zero. Identi�able Parent Property
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(IPP) 
odes, introdu
ed in [5℄, allow the distributor to identify at least one member of the 
oalition

with 
ertainty, without the danger of a

using inno
ent people. However, the s
hemes proposed

in [5℄ are not resistant against more than two 
olluders. In [8℄ the existen
e was proved of a

deterministi
 �ngerprinting 
ode resistant against 


0


olluders, having 
ode length m = 


2

0

log

q

(n).

However, the alphabet size is impra
ti
ally large, requiring q � n� 1.

More eÆ
ient �ngerprinting s
hemes are possible if nonzero error probabilities � and "

2

are

tolerated. In [3℄ Boneh and Shaw presented a binary s
heme (q = 2) with 
ode length m =

O(


4

0

log

n

�

log

1

�

). Their s
heme uses 
on
atenation of a partly randomized inner 
ode with an

outer 
ode. They also proved, for binary alphabets, a lower bound on the 
ode length required

for resistan
e against 


0


olluders: m > O(


0

log

1




0

�

). In [6℄ Peikert et al. proved a tighter lower

bound of m > O(


2

0

log

1




0

�

).

In [9℄ Tardos further tightened the lower bound to m > O(


2

0

log

n

�

). This bound is valid for

arbitrary alphabets in the arbitrary digit model and the unreadable digit model. In the same

paper, he des
ribed a fully randomized binary �ngerprinting 
ode a
hieving this lower bound.

The 
ode has length m = 100


2

0

ln

n

�

; a 
onstru
tion was given only for the binary alphabet. In [7℄

Tardos' 
onstru
tion was further analyzed. It was shown that, without 
hanging the s
heme, the


onstant `100' 
an be redu
ed to 4�

2

. In the same paper it was shown that an important quantity

in the s
heme (the `a

usation sum', see Se
tion 2.1), resulting from the summation of many i.i.d.

sto
hasti
 variables, has a Gaussian distribution, up to 
orre
tion terms that vanish for large 


0

.

Without 
hanging the Tardos s
heme in any way, but assuming a Gaussian distribution, the 
ode

length m was further redu
ed to m = 2�

2




2

0

ln

n

�

.

1.4 Contributions and outline

In this paper, we propose a new 
onstru
tion of a �ngerprinting 
ode, whi
h is similar in spirit

to Tardos' original 
ode, but allows for 
odes over arbitrary-size alphabets. For binary alphabets

the new s
heme allows for 
odes that are a fa
tor 4 shorter than the 
onstru
tion given by [7℄

(and thus a fa
tor 10 shorter than the s
heme given in [9℄). In the restri
ted digit atta
k model,

moving from a binary to a q-ary alphabet allows for even shorter �ngerprinting 
odes. The key


ontributions of the paper are summarized as follows:

� In Se
tion 2 we review Tardos' binary �ngerprinting s
heme [9℄ and propose a di�erent


onstru
tion, whi
h is symmetri
 and whi
h 
an be used for arbitrary alphabets �. The


onstru
tion is di�erent from Tardos' 
ode even for binary alphabets.

� In Se
tion 4 we study the 
ollusion resistan
e of the symmetri
 
ode. We apply the methods

of [9℄ to rigorously prove a lower bound on the 
ode length m, su
h that the desired error

rates are a
hieved. The bound is given by m > 4~�

�2




2

0

ln

n

�

, where the quantity ~� is the

expe
tation value of the 
oalition's 
olle
tive `suspi
iousness'.

� In Se
tion 5 we 
ompute the expe
tation value ~� in the restri
ted digit model. In the 
ase

of a binary alphabet we have ~� = 2=�. This 
orresponds to a bound on the 
ode length of

m > �

2




2

0

ln

n

�

, whi
h is a fa
tor 4 shorter than the bound obtained for the Tardos s
heme

in [7℄ and a fa
tor �10 shorter than the bound given in [9℄. For q-ary alphabets we 
ompute

~� numeri
ally. The 
ode length m is further redu
ed (with respe
t to the binary symmetri


s
heme) by 40% for q = 3 and by 80% for q = 10.

� In Se
tion 6 we make use of the Central Limit Theorem to show that an important quantity in

the s
heme, the a

usation sum of an inno
ent user, has a probability density that is almost

Gaussian. Convergen
e to the normal form improves with in
reasing 


0

. Approximation of

the distribution by a Gaussian is a

urate starting from a value of 


0

between 10 and 20.

Assuming a perfe
t normal distribution, we show that the desired error rates are a
hieved

for m > 2~�

�2




2

0

ln

n

�

. This is a fa
tor 2 shorter than the 
ode length derived in Se
tion 4

without any assumptions.
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2 Symmetri
 Tardos �ngerprinting for arbitrary alphabet sizes

In this se
tion we �rst introdu
e Tardos' initial binary �ngerprinting 
ode [9℄ and then provide a

generalization for arbitrary alphabets.

2.1 The Tardos �ngerprinting s
heme

Let n be the number of users to be a

omodated in the system. The Tardos �ngerprinting s
heme

distributes a binary 
odeword of length m to ea
h user; the length m is a system parameter


hosen by the distributor. It a�e
ts the FP and FN error rates. The distributed 
odewords 
an be

arranged as an n�m matrixX, where the j-th row 
orresponds to the �ngerprint given to the j-th

user. Let C be a set of 
olluding users. We denote by 
 the number of 
olluders and byX

C

the 
�m

matrix of 
odewords distributed to the 
olluders. The 
olluders use a (possibly nondeterministi
)

strategy � to 
reate an unauthorized 
opy of the 
ontent from their personalized 
opies. The

unauthorized 
opy 
arries a �ngerprint y 2 f0; 1g

m

whi
h depends on both the strategy and the

re
eived 
odewords, i.e. y = �(X

C

).

Fingerprint 
ode generation. The distributor generates the matrix X in two randomized steps.

In the �rst step, he 
hooses m random variables fp

i

g

m

i=1

over the interval p

i

2 [t; 1 � t℄, where t

is a �xed small parameter satisfying 


0

t � 1. The variables p

i

are independent and identi
ally

distributed a

ording to the probability density fun
tion f . The fun
tion f(p) is symmetri


1

around p = 1=2 and heavily biased towards values of p 
lose to t and 1� t,

f(p) =

1

2 ar
sin(1� 2t)

1

p

p(1� p)

: (1)

In the se
ond step, the distributor �lls the 
olumns of the matrix X by independently drawing

random bits X

ji

2 f0; 1g a

ording to P[X

ji

= 1℄ = p

i

.

Fingerprint embedding. Before the 
ontent is realeased to 
ustomer j, it is watermarked with the

j-th row of the matrix X.

A

usation. Having spotted an unauthorized 
opy with embedded watermark y, the 
ontent owner

wants to identify at least one 
olluder. To a
hieve this, he 
omputes for ea
h user 1 � j � n an

a

usation sum S

j

as

S

j

=

m

X

i=1

y

i

U(X

ji

; p

i

); with U(X

ji

; p

i

) =

�

g

1

(p

i

) if X

ji

= 1

g

0

(p

i

) if X

ji

= 0;

(2)

where g

1

and g

0

are the `a

usation fun
tions'

g

1

(p) =

r

1� p

p

and g

0

(p) = �

r

p

1� p

: (3)

The distributor de
ides that user j is guilty if S

j

> Z. The parameter Z is 
alled the `a

usation

threshold'. The threshold is a system parameter 
hosen by the distributor.

In words, the a

usation sum S

j

is 
omputed by summing over all symbol positions i in y. All

positions with y

i

= 0 are ignored. For ea
h position where y

i

= 1, the a

usation sum S

j

is either

in
reased or de
reased, depending on how mu
h suspi
ion arises from that position: if user j has

a `1' in that position, then the a

usation is in
reased by a positive amount g

1

(p

i

). Note that

the suspi
ion de
reases with higher probability p

i

, sin
e g

1

is a positive monotoni
ally de
reasing

fun
tion. If user j has a `0', the a

usation is 
orre
ted by the negative amount g

0

(p

i

), whi
h gets

more pronoun
ed for large values of p

i

, as g

0

is negative and monotoni
ally de
reasing.

Tardos 
hose the spe
i�
 form (3) for the fun
tions g

1

and g

0

be
ause it has ni
e properties:

For �xed p

i

, the a

usation U(X

ji

; p

i

) in (2) has zero mean and unit varian
e. Espe
ially the

fa
t that the varian
e does not depend on p

i

greatly simpli�es the analysis of the s
heme. It was

1

In [9℄ the parametrization p

i

= sin

2

r

i

is used, and the density fun
tion for r

i

is spe
i�ed.



2 Symmetri
 Tardos �ngerprinting for arbitrary alphabet sizes 5

shown in [7℄ that for Tardos' s
heme the 
hoi
e (1) for f is optimal, and that the 
hoi
e (3) for

the a

usation fun
tions is optimal within the 
lass of fun
tions of the form p

z

1

(1� p)

z

2

, where z

1

and z

2

are 
onstants.

Tardos 
hose the system parameters m and Z as follows:

m = A


2

0

dln "

�1

1

e ; Z = B


0

dln "

�1

1

e; (4)

with A = 100 and B = 20. Re
all from Se
tion 1.2 that the parameter "

1

is a re-s
aled version of

the false positive error parameter �. It represents the probability that a spe
i�
 inno
ent user j

gets a

used. The relation between � and "

1

is � = 1� (1� "

1

)

n�


. For "

1

� 1 and 
 � n this

be
omes � � (n� 
)"

1

� n"

1

.

A False Negative (FN) is de�ned as the event where none of the 
olluders are a

used. Tardos

proved in [9℄ that his s
heme a
hieves FP and FN error rates smaller than "

1

and "

2

, respe
tively,

against 
oalitions of size 
 � 


0

, for "

2

= "




0

=4

1

. In [7℄ the Tardos s
heme was further analyzed and

the following results were obtained for "

2

� "

1

(a far more reasonable 
hoi
e of parameters, see

Se
tion 1.2): (i) the 
ode length parameter A in (4) 
an be redu
ed to 4�

2

. (ii) The a

usation sum

S

j

has an almost Gaussian probability density fun
tion, with 
orre
tions that vanish in the limit




0

! 1. (iii) Assuming a perfe
t Gaussian distribution for S

j

, the parameter A 
an be redu
ed

to 2�

2

. Hen
e, for suÆ
iently large 


0

, the 
ode length m 
an be set to m = 2�

2




2

0

dln "

�1

1

e without

any modi�
ation of the 
ode 
onstru
tion, embedding or a

usation method.

2.2 Proposed symmetri
 �ngerprinting s
heme

The s
heme presented in Se
tion 2.1 has two drawba
ks. First, the 
omputation of Tardos' a

u-

sation sum (2) is asymmmetri
 in the sense that only those 
odeword positions i 
ontribute where

y

i

= 1, while all the others are dis
arded. This is an ineÆ
ient way of exploiting the information

present in the unauthorized 
opy, be
ause the y

i

= 0 positions 
arry as mu
h information about

the 
olluders as the y

i

= 1 positions. Se
ond, due to this asymmetry, the 
onstru
tion 
annot be

dire
tly applied to nonbinary alphabets.

We apply two modi�
ations to Tardos' 
onstru
tion. The �rst modi�
ation is a straightforward

generalization of the �ngerprint generation step to produ
e a random q-ary 
ode. Instead of

bits we have X

ji

2 �, with � = f0; 1; � � � ; q � 1g. Instead of s
alar random variables p

i

we

have, independently for ea
h 
olumn, a q-
omponent random ve
tor p

(i)

= (p

(i)

0

; � � � ; p

(i)

q�1

), with

P

q�1

�=0

p

(i)

�

= 1. The ve
tors p

(i)

have the probability density fun
tion F (p), whi
h repla
es

f(p). While f is invariant under the mapping p ! 1 � p, our fun
tion F is invariant under any

permutation of the symbols � 2 �. Thus our 
onstru
tion is symmetri
 in all symbols � 2 �. In

the i-th 
olumn ofX, random symbols are drawn with probabilities di
tated by p

(i)

. The 
olluders


reate an unauthorized 
opy y = �(X

C

) 2 �

m

a

ording to a (possibly non-deterministi
) strategy

�. We will always assume that this strategy does not depend on the 
olumn index, i.e. the

same strategy � is applied to ea
h 
olumn of X

C

. We 
an make this assumption without loss

of generality; due to the 
olumn symmetry of p and X, the best 
olluder strategy is 
olumn-

symmetri
.

The se
ond modi�
ation lies in the 
omputation of the a

usation sum. In 
ontrast to Tardos'

s
heme, we let every �ngerprint symbol in the unauthorized 
opy give rise to a

usations. The

a

usation for a 
ertain user at a 
ertain symbol lo
ation is positive if he has the same symbol

as the unauthorized 
opy; otherwise it is negative. The magnitude of the a

usation depends on

the likelihood of the symbol that appears in the unauthorized 
opy. In full detail the proposed


onstru
tion is as follows:

Fingerprint 
ode generation. As in the original Tardos 
onstru
tion, the distributor produ
es an

n �m matrix X of q-ary symbols; the rows of the matrix 
orrespond to the �ngerprints for the

individual users. We parametrize m as in (4); the value of the parameter A is the subje
t of

Se
tions 4, 5 and 6. Again, the distributor uses a two-step pro
edure:

1. He generates m independent random ve
tors p

(i)

= (p

(i)

0

; � � � ; p

(i)

q�1

) for 1 � i � m, where
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the 
omponents satisfy p

(i)

�

2 [t=(q � 1); 1 � t℄ and

P

q�1

�=0

p

(i)

�

= 1. We 
all t the `
uto�

parameter' or the `
uto�'. It satis�es 0 < t� 1; we parametrize it as t = T


�a

0

, with T > 0

and a 2 (0; 2). The random variables have a probability density fun
tion that is symmetri


in all the 
omponents p

�

. In our 
onstru
tion, we use a 
lass of fun
tions that are a spe
ial


ase of the Diri
hlet distribution (see e.g. [4℄),

F

q�t

(p) = N

�1

q�t

q�1

Y

�=0

p

�1+�

�

with � > 0: (5)

Here N

q�t

is a normalising 
onstant ensuring that

R

J(t;q)

d

q

p F

q�t

(p) = 1. The expression

R

J(t;q)

d

q

p stands for

R

1�t

t

q�1

dp

0

� � �

R

1�t

t

q�1

dp

q�1

Æ(1 �

P

q�1

�=0

p

�

), where Æ(�) is the Dira
 delta

fun
tion. The delta fun
tion ensures that the integration is done only over p su
h that

P

�

p

�

= 1. The parameter � determines the steepness of F

q�t

. For q = 2, � =

1

2

the

fun
tion F

q�t

redu
es to Tardos' density fun
tion (1).

2. The distributor generates the 
olumns of X independently. In the i-th 
olumn, the ve
tor

p

(i)

determines the probabilities of generating ea
h spe
i�
 symbol in the alphabet:

P[X

ji

= �℄ = p

(i)

�

: (6)

Fingerprint embedding. Before the 
ontent is realeased to 
ustomer j, it is watermarked with the

j-th row of the matrix X.

A

usation. The distributor extra
ts the �ngerprint y from the unauthorized 
opy. For ea
h

user j, the distributor 
omputes the `a

usation sum' A

j

from X, p and y. He de
ides that the

user j is guilty if A

j

> Z, where Z is referred to as the `a

usation threshold'. We parametrize

Z as in (4), with the 
onstant B as yet left undetermined. The list of a

used users is denoted as

�(p;X; y). The a

usation sum A

j

is given by

A

j

(p;X; y) =

m

X

i=1

A

(i)

j

; A

(i)

j

:= Æ

y

i

;X

ji

g

1

(p

(i)

y

i

) + [1� Æ

y

i

;X

ji

℄g

0

(p

(i)

y

i

); (7)

where Æ

x;y

denotes the Krone
ker delta. We have 
hosen the same fun
tions g

0

(p) =

p

(1� p)=p,

g

1

(p) = �

p

p=(1� p) as Tardos. There is no guarantee that this 
hoi
e is optimal for q > 2.

The 
hoi
e is motivated by the zero-mean, unit-varian
e property mentioned in Se
tion 2.1; this

property leads to a substantial simpli�
ation of the analysis in the 
oming se
tions.

In words, the a

usation (7) is 
omputed as follows. If user j has the same symbol in position

i as the unauthorized 
opy, then he is a

used by a positive amount g

1

(p

(i)

y

i

), where the a

usation

de
reases with growing likelihood of the symbol. If user j has a di�erent symbol than the unau-

thorized 
opy, then he is a

used by a negative amount g

0

(p

(i)

y

i

), whi
h has the largest e�e
t when

the symbol y

i

is likely to o

ur.

Note that (7) is fully symmetri
 in the symbols and that it di�ers from Tardos' 
onstru
tion

even for q = 2. Note further that the Krone
ker deltas in (7) redu
e the symbol spa
e into two


lasses: X

ji

= y

i

and X

ji

6= y

i

. In the latter 
ase the a

usation does not depend on the a
tual

value of X

ji

.

Atta
k model. As mentioned in Se
tion 1.2, we use the marking assumption and we assume that the

restri
ted digit model holds. In addition, we make two assumptions on the atta
k strategy of the


olluders. First, we assume that all members of the 
oalition are equivalent. Hen
e, they base their

de
isions only on the number of symbols they re
eive, and not on the identity of the members who

re
eive them. (Any deviation from this strategy will make it easier for the distributor to identify

a 
olluder). Se
ond, we assume that the 
olluders' strategy applies to ea
h watermark position

independently. This is not a restri
tive assumption, sin
e the 
olumns of X are independent.
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3 Preliminaries

In order to fa
ilitate our work in Se
tions 4 and 5, we introdu
e some notation and state a number

of lemmas.

3.1 Normalisation 
onstant

The value of the normalisation 
onstantN

q�t

in (5) is easily 
omputed for t = 0, using the following

lemma (see e.g. [1℄):

Lemma 1: Let v be a ve
tor of length q with v

�

> 0 for 0 � � � q � 1. Then

Z

J(0;q)

d

q

p

q�1

Y

�=0

p

�1+v

�

�

= B(v) :=

Q

q�1

�=0

�(v

�

)

�(

P

q�1

�=0

v

�

)

:

The fun
tion B is the generalized Beta fun
tion, also referred to as the multinomial Beta fun
tion

or Diri
hlet integral.

Proof sket
h: For two 
omponents (q = 2) the lemma is true, as the integral yields the ordinary

Beta fun
tion. For higher q the lemma 
an be proved by indu
tion. �

For t 6= 0, q = 2 the integral yields the so-
alled in
omplete Beta fun
tion.

Applying Lemma 1 to the de�nition of F

q�t

in (5), we 
ompute the normalisation fa
tor N

q�t

for t = 0 to be

N

q�0

=

[�(�)℄

q

�(�q)

: (8)

Remark: The di�eren
e between N

q�t

and N

q�0

is small. This is seen as follows. The integrand in

N

q�t

is of the form

Q

�

p

�1+�

�

with � > 0. The primitive fun
tion near a pole at p

�

= 0 s
ales as

p

�

�

. Hen
e the 
ontributions from the poles, present in N

q�0

and absent in N

q�t

, are of order t

�

.

If � is not extremely 
lose to 0, then t

�

� 1.

3.2 Colle
tive a

usation sum

Let C be the set of 
olluding users and X

C

the restri
tion of X to the rows re
eived by the


olluders. From (7) we de�ne a useful quantity: the `
olle
tive a

usation sum' A

C

, being the sum

of all individual a

usation sums of the 
oalition members,

A

C

=

X

j2C

A

j

=

m

X

i=1

A

(i)

C

; A

(i)

C

:= b

(i)

y

i

g

1

(p

(i)

y

i

) + [
� b

(i)

y

i

℄g

0

(p

(i)

y

i

): (9)

Here b

(i)

�

stands for the number of o

urren
es of the symbol � in 
olumn i of X

C

. These numbers

satisfy the 
onstraint

P

q�1

�=0

b

(i)

�

= 
. The sum A

C

plays an important role in the FN error rate.

3.3 De�nition of averages

There are three sto
hasti
 pro
esses involved in the 
reation of the �ngerprinting 
odewords and

the unauthorized 
opy: The distributor's 
hoi
e of ve
tors p

(i)

, his pro
ess of generating the


olumns of X, and the 
oalition's 
hoi
e of symbols y

i

. For ea
h pro
ess we de�ne a separate

expe
tation value. Averaging over p is denoted as E

p

. Within the i-th 
olumn this is de�ned as

E

p

[�(p

(i)

)℄ :=

Z

J(t;q)

d

q

p �(p)F

q�t

(p); (10)

for an arbitrary fun
tion �. Here F

q�t

is the probability density fun
tion (5).
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We remind the reader that all the ve
tors p

(i)

are independent. We denote the 
odeword

re
eived by user j as X

j

. For given p, averaging over X

j

is denoted as E

X

j

. We de�ne

E

X

j

[�(X

ji

)℄ :=

q�1

X

�=0

�(�)p

(i)

�

: (11)

In parti
ular we have, for an inno
ent user j,

E

X

j

[Æ

y

i

;X

ji

℄ = p

(i)

y

i

: (12)

For �xed p, averaging over X

C

is equivalent to averaging over the integers b (see Eq.9). The b

(i)

�

are distributed a

ording to a multinomial distribution. We have

E

b

[�(b

(i)

)℄ :=

X

b

�(b)

�




b

�

q�1

Y

�=0

[p

(i)

�

℄

b

�

: (13)

The notation

�




b

�

stands for the multinomial 
!=(b

0

! � � � b

q�1

!). The sum

P

b

stands for summation

over all q 
omponents of b, with the 
ondition

P

�

b

�

= 
 impli
itly assumed,

X

b

�(b) =




X

b

0

=0

� � �




X

b

q�1

=0

Æ


;b

0

+b

1

+���+b

q�1

�(b): (14)

Finally we have to deal with the sto
hasti
 strategy of the 
oalition. We introdu
e the notation

P

b

(�) for the probability that the 
olluders output the symbol y = � in a 
ertain position, given

that they re
eived symbols a

ording to b. Averaging over y is denoted as E

y

,

E

y

[�(y

i

)℄ :=

q�1

X

�=0

�(�)P

b

(i)

(�): (15)

The expe
tation value taken over all sto
hasti
 degrees of freedom is denoted as E

yXp

. It 
an be


omputed by �rst taking the expe
tation value E

y

(15) for �xed b, then for �xed p taking E

b

(13)

and E

X

j

(11) for all inno
ent users j, and �nally E

p

(10). Note that several orderings are possible.

For instan
e, the expe
tation E

X

j

(for inno
ent j) 
an be taken before E

y

and E

b

, sin
e y and b

do not depend on the 
odewords given to inno
ent users.

3.4 Statisti
al properties of the a

usation sums

To fa
ilitate the analysis in the 
oming se
tions we introdu
e `s
aled' averages and varian
es,

de�ned su
h that they do not depend on m. For an inno
ent user j we de�ne

~�

j

=

E

yXp

[A

j

℄

m

= E

yXp

[A

(i)

j

℄ ; ~�

2

j

=

E

yXp

[A

2

j

℄� E

2

yXp

[A

j

℄

m

: (16)

For the 
olle
tive a

usation we de�ne

~� =

E

yXp

[A

C

℄

m

= E

yXp

[A

(i)

C

℄ ; ~�

2

=

E

yXp

[A

2

C

℄� E

2

yXp

[A

C

℄

m

: (17)

The 
olumn index i in A

(i)

C

in (17) and A

(i)

j

in (16) 
an be 
hosen arbitrarily; the result does not

depend on i. The quantites ~�

j

, ~�

j

and ~� are dis
ussed below, whereas Se
tion 5 is devoted to


omputing ~�.

Lemma 2: For an inno
ent user j we have ~�

j

= 0.
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Proof: We evaluate the expe
tation E

yXp

by �rst 
omputing the expe
tation E

X

j

. We apply (12)

to the de�nition of A

(i)

j

(7). This gives E

X

j

[A

(i)

j

℄ = p

(i)

y

i

g

1

(p

(i)

y

i

) + (1 � p

(i)

y

i

)g

0

(p

(i)

y

i

) = 0. The

last equality follows from the de�nition (3) of g

1

and g

0

. From E

X

j

[A

(i)

j

℄ = 0 it follows that

E

yXp

[A

(i)

j

℄ = 0. �

Lemma 3: For an inno
ent user j we have ~�

j

= 1.

Proof: Using the idempoten
y of the Krone
ker deltas in the de�nition of A

(i)

j

in (7) we write

A

2

j

=

m

X

i=1

(

Æ

y

i

;X

ji

1� p

(i)

y

i

p

(i)

y

i

+ (1� Æ

y

i

;X

ji

)

p

(i)

y

i

1� p

(i)

y

i

)

+

X

1�i;k�m

i 6=k

A

(i)

j

A

(k)

j

: (18)

We evaluate E

yXp

by �rst 
omputing the expe
tation E

X

j

. Using property (12) and independen
e

of the 
olumns of X, we get

E

X

j

[A

2

j

℄ =

m

X

i=1

E

X

j

[1℄ +

X

i;k;i 6=k

E

X

j

[A

(i)

j

℄E

X

j

[A

(k)

j

℄ = m+ 0: (19)

Here we have made use of the property E

X

j

[A

(i)

j

℄ = 0 (see proof of Lemma 2). From E

X

j

[A

2

j

℄ = m it

follows that E

yXp

[A

2

j

℄ = m. The de�nition of ~�

j

in (16) 
an be rewritten as ~�

j

= (1=m)E

yXp

[A

2

j

℄�

m~�

2

j

. Substitution of E

yXp

[A

2

j

℄ = m into this expression and appli
ation of Lemma 2 gives ~�

j

= 1.

�

Lemma 4: The mean ~� and varian
e ~� satisfy

~�

2

+ ~�

2

< q
: (20)

Proof: From the de�nitions of ~�, ~� (17) and A

C

, A

(i)

C

(9) it follows that

~�

2

= m

�1

E

yXp

[A

2

C

℄�m~�

2

= m

�1

0

�

m

X

i=1

E

yXp

[fA

(i)

j

g

2

℄ +

X

i 6=j

E

yXp

[A

(i)

j

℄E

yXp

[A

(k)

j

℄

1

A

�m~�

2

= E

yXp

[fA

(i)

C

g

2

℄� ~�

2

: (21)

Using the idempoten
y of the Krone
ker delta, we write

fA

(i)

C

g

2

=

q�1

X

�=0

Æ

�y

[b

�

g

1

(p

�

) + (
� b

�

)g

0

(p

�

)℄

2

: (22)

We apply the total average E

yXp

as des
ribed in Se
tion 3.3, by �rst performing E

y

, then E

X

and

�nally E

p

. We get

E

yXp

[fA

(i)

C

g

2

℄ =

q�1

X

�=0




X

b

�

=0

�




b

�

�

�

E

p

h

p

b

�

�

(1� p

�

)


�b

�

E

bnb

�

[P

b

(�)℄ fb

�

g

1

(p

�

) + [
� b

�

℄g

0

(p

�

)g

2

i

: (23)

Here the notation E

bnb

�

indi
ates averaging over all degrees of freedom in b ex
ept b

�

. Note that

the expression in E

p

[� � � ℄ is always nonnegative. So, using E

bnb

�

[P

b

(�)℄ � 1 we 
an bound the
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r.h.s. of (23) by

E

yXp

[fA

(i)

C

g

2

℄ <

q�1

X

�=0

E

p

"




X

b

�

=0

�




b

�

�

p

b

�

�

(1� p

�

)


�b

�

fb

�

g

1

(p

�

) + [
� b

�

℄g

0

(p

�

)g

2

#

=

q�1

X

�=0

E

p

[
℄ = q
: (24)

The �rst equality is obtained by observing, as in [9℄, that the b

�

-sum represents the result of a

random walk 
onsisting of 
 steps, ea
h of whi
h has zero mean and unit varian
e. (This follows

from Lemmas 2 and 3). �

Remark: In Se
tion 5 it will be shown that ~� does not in
rease as a fun
tion of 
. Lemma 4

then shows that ~� = O(

p


) for 
 ! 1. This asymptoti
 behaviour of ~� will play an important

role in Se
tion 6.

4 Lower bound on the 
ode length in the proposed symmetri
 s
heme

Here we analyze the symmetri
 s
heme des
ribed in Se
tion 2.2. We provide a lower bound on

the 
ode length m, as a fun
tion of the maximum 
oalition size 


0

and the maximum tolerable FP

and FN error probabilities "

1

, "

2

. We de�ne the following two properties:

Property 1: We say that a �ngerprinting s
heme that generates a list � of a

used users has

Property 1 for a 
ertain �xed value "

1

if, for all inno
ent users j, all 
oalitions C with j =2 C, and

all 
oalition strategies, the following holds:

P[False Positive℄ = P[j 2 �℄ < "

1

: (25)

Property 2: We say that a �ngerprinting s
heme that generates a list � of a

used users has

Property 2 for 
ertain �xed values 


0

, "

2

, if, for all 
oalitions C of size 
 � 


0

, and all 
oalition

strategies, it holds that

P[False Negative℄ = P[C \ � = ;℄ < "

2

: (26)

Our bound on the 
ode length is an asymptoti
 result for 


0

� 1. We formulate it as follows:

Theorem 1: Let the 
ode length m and the a

usation threshold Z of our symmetri
 �nger-

printing s
heme be 
hosen as

m = A


2

0

dln "

�1

1

e ; Z = B


0

dln "

�1

1

e (27)

with "

1

2 (0; 1℄ a �xed parameter and

A = 4~�

�2

(1 + Æ)

2

; B = 4~�

�1

(1 + Æ); (28)

where ~� is de�ned in (17). Let "

2

2 (0; 1℄ be a �xed parameter. For all Æ > 0 there exists a

suÆ
iently large 


0

su
h that the symmetri
 �ngerprinting s
heme has Property 1 for parameter

"

1

and Property 2 for parameters 


0

; "

2

.

Thus, a

ording to Theorem 1, for large 


0

a 
ode length

m > 4~�

�2




2

0

dln "

�1

1

e (29)

guarantees resistan
e against 
oalitions of size 
 � 


0

.

In Se
tions 4.1, 4.2 and 4.3 we present a proof of Theorem 1 following the approa
h of [7℄,

with minor modi�
ations. First, 
onditions on A, B and 


0

are derived for a
hieving Properties

1 and 2. Then the lowest value of A is identi�ed within the spa
e of allowed parameters. The

value of ~� is determined in Se
tion 5. At this point we already mention that 0 < lim




0

!1

~� <1.

Hen
e (29) has the asymptoti
 behaviour m = O(


2

0

).
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4.1 Conditions for satisfying Property 1

We 
onsider a �xed inno
ent user j. We introdu
e an auxiliary variable �

1

> 0 that allows us to

use the Markov inequality,

P[j 2 �℄ = P[A

j

> Z℄ = P[e

�

1

A

j

> e

�

1

Z

℄ �

E

X

j

[exp(�

1

A

j

)℄

exp(�

1

Z)

: (30)

Due to the independen
e of the 
olumns of X we 
an write E

X

j

[exp(�

1

A

j

)℄ =

n

E

X

j

[exp(�

1

A

(i)

j

)℄

o

m

. In what follows, we will always restri
t �

1

su
h that �

1

A

(i)

j

� 1:7. This

allows us to use the following (easily veri�ed) inequality

e

u

< 1 + u+ u

2

for u � 1:7; (31)

so that we 
an write

E

X

j

[e

�

1

A

(i)

j

℄ < 1 + �

1

E

X

j

[A

(i)

j

℄ + �

2

1

E

X

j

[fA

(i)

j

g

2

℄: (32)

We enfor
e the restri
tion �

1

A

(i)

j

� 1:7 for all realisations of the sto
hasti
 p, X and y. For

negative A

(i)

j

all �

1

> 0 are allowed. For positive A

(i)

j

we must have �

1

< 1:7=g

1

(p

y

). As g

1

is a

monotonously de
reasing fun
tion, the strongest restri
tion on �

1

o

urs for p

y

= p

min

= t=(q�1).

Hen
e we restri
t �

1

to the interval (0; 1:7=g

1

(

t

q�1

)℄.

From Lemmas 2 and 3 we know that E

X

j

[A

(i)

j

℄ = 0 and E

X

j

[fA

(i)

j

g

2

℄ = 1 for inno
ent j; thus

(32) yields E

X

j

[e

�

1

A

(i)

j

℄ < 1 + �

2

1

. Next we apply the inequality

1 + u < e

u

for u 6= 0 (33)

to write E

X

j

[exp(�

1

A

j

)℄ < exp(m�

2

1

). Substitution into (30) gives

P[j 2 �℄ < min

�

1

2(0;1:7=g

1

(

t

q�1

)℄

e

�

1

(m�

1

�Z)

: (34)

Filling in the expli
it form for m and Z (27) into (34) we get

P[j 2 �℄ < min

�

1

2(0;1:7=g

1

(

t

q�1

)℄

"




0

�

1

(B�


0

A�

1

)

1

: (35)

The minimum lies at �

�

1

= B=(2


0

A), provided that the upper bound on �

1

is large enough. The


ondition 1:7=g

1

(

t

q�1

) � �

�

1


an be rewritten as




0

�

"

�

B

3:4 �A

�

2

q � 1

T

#

1

2�a

�

1�

T


�a

0

q � 1

�

1

2�a

�

"

�

B

3:4 � A

�

2

q � 1

T

#

1

2�a

; (36)

where we have used the parametrisation t = T


�a

0

. Substituton of �

�

1

into (35) gives

P[j 2 �℄ < "

B

2

=4A

1

: (37)

Hen
e a suÆ
ient 
ondition for Property 1 to be satis�ed is that (36) holds and that

B

2

=4A � 1: (38)
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4.2 Conditions for satisfying Property 2

We start with a lemma that helps us to upper bound the FN error rate.

Lemma 5: Let C be a 
oalition of size 
 � 


0

. We have

P[C \ � = ;℄ � P[A

C

< 
Z℄ � P[A

C

< 


0

Z℄ (39)

Proof: The event C \ � = ; implies A

C

< 
Z. �

Remark: A

C

< 
Z does not imply C \ � = ;. It 
an happen that A

C

< 
Z while somebody in

the 
oalition does get a

used.

Next we introdu
e an auxiliary variable �

2

> 0 that allows us to use the Markov inequality,

P[A

C

< 


0

Z℄ = P[e

��

2

A

C

> e

��

2




0

Z

℄ <

E

yXp

[exp(��

2

A

C

)℄

exp(��

2




0

Z)

: (40)

The 
olumns of X are independently generated, and the 
olluder strategy is the same for ea
h


olumn. This allows us to write E

yXp

[exp(��

2

A

C

)℄ = fE

yXp

[exp(��

2

A

(i)

C

)℄g

m

. We restri
t �

2

su
h that ��

2

A

(i)

C

� 1:7, allowing us to apply inequality (31) to bound the exponential. This

gives

E

yXp

[e

��

2

A

(i)

C

℄ < 1 + �

2

~�+ �

2

2

(~�

2

+ ~�

2

); (41)

where we have used the de�nitions (17). The restri
tion ��

2

A

(i)

C

� 1:7 holds for any realisation

of p and X. The smallest (most negative) a
hievable value of A

(i)

C

is 


0

g

0

(p

max

y

) = 


0

g

0

(1 � t) =

�


0

p

(1� t)=t. Hen
e the 
ondition on �

2

is satis�ed for

�

2

� �

max

2

= 1:7


�1

0

p

t=(1� t): (42)

From Lemma 4 we know that ~�

2

+ ~�

2

< q
. Thus we have from (41)

E

yXp

[e

��

2

A

C

℄ < (1� �

2

~�+ �

2

2

q


0

)

m

< e

�m�

2

~�(1��

2




0

q=~�)

: (43)

In the last inequality we have made use of (33). Substitution of (43) into (40) and minimizing

over �

2

gives

P[A

C

< 


0

Z℄ < min

�

2

2(0;�

max

2

℄

e

��

2

[m~�(1��

2




0

q=~�)�


0

Z℄

: (44)

We 
hoose m and Z su
h that m~�(1 � �

max

2




0

q=~�) > 


0

Z. Hen
e the minimum in (44) o

urs

at �

2

= �

max

2

. Substitution of (27) into (44) and evaluation at �

max

2

gives

P[A

C

< 


0

Z℄ < "

1:7


0

p

t

1�t

[A~�(1� 

1

)�B℄

1

; (45)

where we have introdu
ed the notation  

1

= 1:7

q

t

1�t

q=~�. To satisfy Property 2, (45) must not

be larger than "

2

. Hen
e Property 2 is satis�ed if

A~�(1�  

1

)�B �  

2

; (46)

where we have de�ned

 

2

=

p

1� t

1:7


0

p

t

�

ln "

2

ln "

1

: (47)

Note that the parameters  

1

and  

2

go to zero for 


0

!1.
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4.3 Final step in the proof of Theorem 1

We use the results of Se
tions 4.1 and 4.2 to prove Theorem 1. The 
onditions (38) and (46) 
an

be rewritten as an interval for A su
h that Properties 1 and 2 are both satis�ed,

B +  

2

~�(1�  

1

)

� A �

B

2

4

: (48)

A solution exists only if the r.h.s. is not smaller than the l.h.s. in (48). We wish to identify the

smallest value of A for with a solution exists. This o

urs when the l.h.s. is equal to the r.h.s.

Solving the quadrati
 equation in B gives

B =

4

~�

(1 + �) with � :=

1 +

p

1 +  

2

~�(1�  

1

)

2(1�  

1

)

� 1 (49)

A =

B

2

4

=

4

~�

2

(1 + �)

2

: (50)

Finally, Theorem 1 follows by setting the parameter Æ in (28) equal to the expression � in (49),

whi
h goes to zero in the limit 


0

!1. �

5 The expe
tation of the 
olle
tive a

usation sum

As was shown in Se
tion 4, the average 
olle
tive a

usation ~� plays a 
entral role in determining

the 
ode length m required for 
ollusion resistan
e. In this se
tion we 
ompute the value of ~� in

the restri
ted digit model. (Other atta
k models are dis
ussed in Se
tion 7.2). Unfortunately the


omputations are tedious. We �rst derive a general result in Se
tion 5.1, for all alphabet sizes q,

all values of the steepness parameter � and all 
olluder strategies. This result takes the form of a

(q� 1)-dimensional sum over all possible symbol frequen
ies b re
eived by the 
olluders. Then, in

Se
tion 5.2 we investigate the spe
ial 
ase (q = 2; � =

1

2

), pre
isely 
orresponding to the 
hoi
e of

parameters of Tardos [9℄ (but not the same a

usation method). It turns out that our symmetri


a

usation method yields an improvement of a fa
tor 4 in the 
ode length. In Se
tion 5.3 we study

the 
ase q = 2 for arbitrary �. It turns out that for q = 2, the 
hoi
e � =

1

2

is optimal, a result

that was obtained for the original Tardos 
onstru
tion in [7℄. Finally, in Se
tion 5.4, we 
ome ba
k

to the nonbinary 
ase q > 2.

5.1 Sum representation of ~�

A

ording to the de�nition (17), ~� is de�ned as the expe
tation value E

yXp

[A

(i)

C

℄. We follow

the pro
edure outlined in Se
tion 3.3: We �rst 
ompute the expe
tation value with respe
t to

the 
olluder strategy, then w.r.t. the matrix X

C

and �nally w.r.t. the ve
tors p

(i)

. Sin
e it is

understood that the results are identi
al for ea
h 
olumn of X

C

, we will omit the 
olumn index i

on the quantities y, p and b for notational simpli
ity.

We regard y as a (possibly sto
hasti
) strategy-dependent fun
tion of b =

(b

0

; � � � ; b

q�1

) only. The 
olluders' strategy � 
annot depend on p, sin
e they do not know p. We

assume that � is not in
uen
ed by the 
olluders' identities, i.e. their de
isions are purely based

on how many instan
es of ea
h symbol were re
eived, not by whom they were re
eived. Using the

notation introdu
ed in (15), we have

E

y

[A

(i)

C

℄ =

q�1

X

�=0

P

b

(�) fb

�

g

1

(p

�

) + [
� b

�

℄g

0

(p

�

)g =

q�1

X

�=0

P

b

(�)

b

�

� 
p

�

p

p

�

(1� p

�

)

: (51)

Next we average over b and p. Applying (13) and (10) to (51), we obtain

~� =

X

b

�




b

�

q�1

X

�=0

P

b

(�)

Z

J(t;q)

d

q

p F (p)

q�1

Y

�=0

p

b

�

�

b

�

� 
p

�

p

p

�

(1� p

�

)

: (52)
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We further evaluate the integral

R

d

q

p for t = 0. As dis
ussed in Se
tion 3.1, the error resulting

from integration over J(0; q) instead of J(t; q) is small. Furthermore, we will see in Se
tion 7.1 that

setting t = 0 is allowed for q � 3 in the Gaussian approximation. First we split the integration

into two parts: p

�

and the remaining q � 1 
omponents

Z

J(0;q)

d

q

p =

Z

1

0

dp

�

Z

1�p

�

0

d

q�1

p Æ(1� p

�

�

X

� 6=�

p

�

): (53)

Note that the upper bound on the se
ond integration interval is redu
ed from 1 to 1� p

�

. This

prevents us from dire
tly applying Lemma 1. For all 
 6= � we write p




= (1 � p

�

)s




, with

s




2 (0; 1) and

P


 6=�

s




= 1. This substitution has the following e�e
t,

Z

J(0;q)

d

q

p =

Z

1

0

dp

�

(1� p

�

)

q�2

Z

1

0

d

q�1

s Æ(1�

X


 6=�

s




)

F (p) = N

�1

q�0

p

�1+�

�

� (1� p

�

)

(�1+�)(q�1)

Y


 6=�

s

�1+�




q�1

Y

�=0

p

b

�

�

= p

b

�

�

(1� p

�

)


�b

�

Y

� 6=�

s

b

�

�

: (54)

Here we have used the property Æ(ax) = jaj

�1

Æ(x) for 
onstant a 6= 0. Substituting (54) into (52)

and applying Lemma 1 to the q � 1 degrees of freedom s




we obtain

~� = N

�1

q�0

X

b

�




b

�

q�1

X

�=0

P

b

(�)

Q


 6=�

�(�+ b




)

�(
 � b

�

+ �[q � 1℄)

�

Z

1

0

dp

�

p

b

�

�

3

2

+�

�

(1� p

�

)


�b

�

�

3

2

+�[q�1℄

(b

�

� 
p

�

): (55)

Finally, the p

�

-integral is evaluated as well, yielding ordinary Beta fun
tions,

~� =

�(�q)

[�(�)℄

q


 � 
!

�(
+ �q)

X

b

[

q�1

Y


=0

�(�+ b




)

�(1 + b




)

℄� (56)

q�1

X

�=0

P

b

(�)

�(b

�

�

1

2

+ �)

�(b

�

+ �)

�(
� b

�

�

1

2

+ �[q � 1℄)

�(
� b

�

+ �[q � 1℄)

�

1

2

� ��

b

�




(1� �q)

�

:

Here we have used (8) for the normalisation 
onstant N

q�0

. Expression (56) is rather 
ompli
ated.

One property of (56) 
an be seen easily, however: For 
 � 1, the leading order terms of ~� are of

order 1, and do not depend on 
. This is readily seen by writing b




= 
 � w




, with w




2 [0; 1℄,

then applying the Stirling approximation �(x + 1) �

p

2�x(x=e)

x

to all Gamma fun
tions and


olle
ting powers of 
. For the quotients of Gamma fun
tions appearing in (56) we have the

proportionality �(b

�

+ v

1

)=�(b

�

+ v

2

) / 


v

1

�v

2

and �(
 � b

�

+ v

1

)=�(
 � b

�

+ v

2

) / 


v

1

�v

2

for


onstants v

1

; v

2

� 
. The sum

P

b

gives rise to a fa
tor 


q�1

, sin
e it 
an be approximated by

an integral

R




1

d

q

b Æ(
 �

P

�

b

�

) � 


q�1

R

1

0

d

q

w Æ(1 �

P

�

w

�

). The 
orre
tions arising from the

summation terms where the 
ondition b




� 1 does not hold are negligible, sin
e the support is

negligible 
ompared to the full summation

P

b

.

The fa
t that ~� has a �nite value in the limit 
!1 shows that the asymptoti
 behaviour of

(27) is given by m / 


2

0

, without further dependen
e on 


0

arising from ~�.

5.2 The 
ase q = 2, � =

1

2

This 
ase 
orresponds to the probability density fun
tion in the original Tardos 
onstru
tion,

F (p

0

; p

1

) / (p

0

p

1

)

�1=2

Æ(1�p

0

�p

1

). Note that for q = 2, � =

1

2

the fa
tor between 
urly bra
kets
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in (56) vanishes. However, ~� does not 
ompletely vanish, sin
e for (q = 2; b

�

= 
) the expression

�(
� b

�

�

1

2

+ �[q � 1℄) is divergent in the limit �!

1

2

. We have

lim

�!1=2

(�

1

2

+ �)�(�

1

2

+ �) = lim

�!1=2

�(

1

2

+ �) = 1: (57)

Hen
e, the only terms 
ontributing in the b-sum in (56) are those where b

�

= 
. Be
ause of

the marking 
ondition, P

b

(�) = 1 for these terms, as the 
oalition only sees the symbol �. The


ompli
ated expression (56) redu
es to a 
onstant:

~� =

�(1)

[�(

1

2

)℄

2

1

X

�=0

1 =

2

�

: (58)

Substitution into (27,28) gives the following asymptoti
 bound on the 
ode length,

m > �

2




2

0

dln "

�1

1

e: (59)

This bound is 4 times lower than the bound obtained in [7℄ and 10 times lower than the bound

in [9℄.

5.3 The 
ase q = 2, � 6=

1

2

Next we study how the symmetri
 binary s
heme performs for � 6=

1

2

. Substitution of q = 2 into

(56) gives

~� =

�(2�)

[�(�)℄

2

(

1

2

� �)



� 1 + 2�




X

b

1

=0

�




b

1

�

B(b

1

�

1

2

+ �; 
� b

1

�

1

2

+ �)

�

�

�1 +

2




[b

1

P

b

(0) + (
� b

1

)P

b

(1)℄

�

; (60)

where B denotes the Beta fun
tion. From (60) we 
an identify whi
h 
olluder strategy � for
es

the 
ontent owner to use the longest possible 
ode. We denote this `extremal' strategy as �

�

2

. We

remind the reader that m / ~�

�2

. Hen
e, in order to maximize m, the strategy �

�

2

has to minimize

the summand in (60) for ea
h b. Note that the b

1

= 0 and b

1

= 
 
ontributions to the summation

are not a�e
ted by the strategy. For 1 � b

1

� 
� 1 the Beta fun
tion in (60) is positive. Hen
e,

the fa
tor (

1

2

��) in front of the summation determines the overall sign of the strategy-dependent


ontributions. For � <

1

2

, this fa
tor is positive, so the 
olluders wish to minimize the expression

[b

1

P

b

(0)+(
� b

1

)P

b

(1)℄. They a
hieve this by 
hoosing the symbol that appears most frequently,

i.e. by applying `majority voting' to the 0s and 1s that they re
eive in a 
olumn. For � >

1

2

, the

fa
tor

1

2

� � has the opposite sign and the extremal strategy �

�

2

is minority voting.

Note that �

�

2

is not ne
essarily the strategy that the 
oalition a
tually applies. However, the

distributor has to take into a

ount that the 
olluders 
ould be using �

�

2

, and he has to 
hoose

his 
ode length m a

ordingly. We are interested in this `extremal' strategy be
ause our aim is to

derive a sharp lower bound on m.

Fig. 1 shows ~� as a fun
tion of � for the strategy �

�

2

. The dashed line 
orresponds to the value

2=� obtained in the previous se
tion. It is 
lear that � =

1

2

is the optimum. At the optimum we

have ~� = 2=�, independent of 
. The part of the 
urve with � <

1

2

hardly depends on 
. The part

with � >

1

2

be
omes steeper with in
reasing 
.

5.4 Non-binary alphabet

We now return to the general expression for ~� given in (56). We work in the restri
ted digit

model, where, at ea
h position, the 
olluders 
an output only the symbols they have available. (In

Appendi
es A and B we dis
uss the unreadable digit and arbitrary digit model).
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0.35 0.4 0.45 0.5 0.55 0.6
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2/π

Fig. 1: ~� as a fun
tion of � for q = 2, 
 = 80, given the `extremal' strategy �

�

2

.

Note that the sum

P

�

P

b

(�)(� � � ) in (56) represents an average over �. We obtain a lower

bound for the sum from the fa
t that an average is at least as big as the smallest element in the

summation. Thus we have

~� �

�(�q)

[�(�)℄

q


 � 
!

�(
+ �q)

X

b

[

q�1

Y


=0

�(�+ b




)

�(1 + b




)

℄ (61)

min

�jb

�

6=0

�(b

�

�

1

2

+ �)

�(b

�

+ �)

�(
� b

�

�

1

2

+ �[q � 1℄)

�(
� b

�

+ �[q � 1℄)

�

1

2

� ��

b

�




(1� �q)

�

:

As we have assumed the restri
ted digit model, the minimum is taken only over those symbols

that the 
olluders have re
eived.

Eq.(61) allows us to identify the `extremal' 
olluder strategy �

�

q

, whi
h for
es the distributor

to use the largest 
ode length m. For ea
h b separately, the 
olluders 
hoose � su
h that the

expression following `min

�

' is minimized.

For q � 10 and a �xed 
oalition size 
 = 20 we have numeri
ally 
omputed ~� as a fun
tion

of � for the �

�

q

strategy, i.e. taking the equality in (61). For large q and 
 the numeri
s are


omputationally expensive, sin
e the number of terms in the b-summation is of order 


q�1

. Fig. 2

shows ~� as a fun
tion of the steepness parameter �. For q � 7 the maximum of the 
urve lies

slightly to the right of � = 1=q. For q � 8 an extra hump is visible. The hump is a `�nite 


e�e
t'; it does not exist when the ratio q=
 is small. Fig. 3 shows how ~� varies when 
 is in
reased:

The part of the 
urve at � < 1=q is una�e
ted, while for � > 1=q the 
urve goes downward and


onverges to a �nite value.

We use the numeri
al results for ~� to estimate the required 
ode length (m / ~�

�2

). We give

estimates for the advantage that a q-ary 
ode gives over the symmetri
 binary 
ode with � = 1=2.

The 
omparison with the binary 
ase 
an be done in several ways, depending on the details of the

watermark embedding. We give the two extreme 
omparison methods:

1. Counting the number of symbols. A q-ary symbol o

upies as mu
h spa
e in the 
ontent as a

binary symbol, regardless of q. Fig. 4 shows the

q�ary 
ase

binary 
ase

ratio for the number of symbols.

This ratio is given by 4=(�

2

~�

2

).

2. Counting the number of bits. A q-ary symbol o

upies log

2

q times more spa
e in the 
ontent

than a binary symbol. In this 
ase it is not fair to 
ompare 
ode length expressed in symbols.

One has to 
ount bits. Fig. 5 shows the

q�ary 
ase

binary 
ase

ratio for the number of bits. This ratio is

given by log

2

q � 4=(�

2

~�

2

).
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Fig. 2: ~� as a fun
tion of � for several alphabet sizes q. The 
oalition size is 
 = 20. The 
olluders

employ the `extremal' strategy.
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Fig. 3: ~� as a fun
tion of � for q = 6 at several 
oalition sizes. The 
olluders employ the `extremal'

strategy. The dashed horizontal line lies at (2=�)

p

log

2

6. When ~� lies above this line, the

spa
e (in bits) o

upied in the q = 6 s
heme is smaller than in the binary s
heme.
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Fig. 4: Number of symbols in the 
odewords, relative to the binary 
ase, for several alphabet

sizes q. The 
oalition size is 
 = 20. The 
olluders employ the `extremal' strategy.
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Fig. 5: Number of bits in the 
odewords, relative to the binary 
ase, for several alphabet sizes q.

The 
oalition size is 
 = 20. The 
olluders employ the `extremal' strategy.
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Type 1 is the most optimisti
 
omparison possible, in the sense that it allows for the largest im-

provements w.r.t. the binary s
heme. Type 2 
omparison is the most pessimisti
 possible. Without

giving a full argument, we state that in the 
ase of video watermarking type 1 is more appropriate,

even for large alphabets. When, for instan
e, symbols are embedded using a spread-spe
trum wa-

termark, where ea
h spreading sequen
e 
orresponds to a di�erent symbol in the alphabet, then

the segment length 
an be kept almost independent of q without de
reasing dete
tion performan
e.

For 
ompleteness we give the results for both 
omparisons. The horizontal dotted line in Fig. 2

indi
ates the threshold for 
omparison of type 1. When ~� rises above this threshold, the q-ary

s
heme needs fewer symbols than the binary s
heme. The thi
k pie
e of ea
h 
urve indi
ates the

region where the q-ary s
heme is better than the binary, using 
omparison type 2. Fig. 4 shows

the 
ode length m (the number of symbols) as a fun
tion of �, for a number of q values, and Fig. 5

similarly shows m log

2

q, the number of bits. Both graphs have their verti
al axis normalised su
h

that lengths are divided by 
orresponding lengths in the binary s
heme. In both graphs the �nite-


humps are visible. Not taking the humps into a

ount, we see that for 3 � q � 10 the number of

symbols is redu
ed by 40%{80% w.r.t. the binary 
ase, while the redu
tion in the number of bits

is 11%{30%. Finite-
 e�e
ts further improve these results. We 
on
lude that in our symmetri


s
heme it is advantageous to use the largest possible alphabet allowed by the watermarking method

employed.

6 The Gaussian approximation

6.1 Motivation

In this se
tion we analyse the performan
e of the symmetri
 s
heme using what we 
all the

`Gaussian approximation'. By this we mean the assumption that the a

usation A

j

for inno
ent

j has a Gaussian probability density fun
tion. The assumption is motivated by the Central Limit

Theorem (CLT): when a large number of i.i.d. variables are summed, the distribution of the sum


onverges to the normal distribution. The CLT applies when the moments of the summands'

distribution meet 
ertain 
onditions. The moments also determine the rate of 
onvergen
e to the

normal form.

The a

usation A

j

is 
omputed by taking the sum over m independent a

usations, ea
h of

whi
h is based on a single symbol y

i

in the unauthorized 
opy. All the separate a

usations

have the same probability distribution. The number of symbols, m, is large enough to guarantee

`suÆ
iently fast' 
onvergen
e to the normal form. This informal statement is made more pre
ise

in Appendix C, where we derive a lower bound on 


0

as a fun
tion of q. When 


0

is above this

bound, the deviations from the normal form be
ome `small enough' in the 
entral region of the

A

j

-distribution fun
tion. It turns out that the bound approximately lies between 


0

= 10 and




0

= 20. Hen
e 
onvergen
e is fast enough in many pra
ti
al situations.

In Se
tion 6.2 we analyse the symmetri
 s
heme under the assumption that A

j

has a Gaussian

distribution. We obtain a lower bound on m that is a fa
tor 2 smaller than Theorem 1.

In the dis
ussion of the CLT in Appendix C it turns out that for q � 3 the 
uto� parameter

t 
an be sent to zero without 
ausing any divergen
es. The 
uto� parameter is dis
ussed in

Se
tion 7.1.

6.2 Lower bound on the 
ode length

Theorem 2: Let A

j

have a Gaussian probability density. For all Æ > 0 there exists a

suÆ
iently large 


0

su
h that Property 1 is satis�ed for parameter "

1

and Property 2 is satis�ed

for parameters 


0

; "

2

when the 
ode length is

m > 2~�

�2

(1 + Æ)


2

0

ln "

�1

1

: (62)

Note that this 
ode length is a fa
tor 2 lower than the one in Theorem 1. We �rst give an informal

argument why a bound of the form (62) follows from the Gaussian probability density. Then we

give a formal proof.
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ε
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ε
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0

Fig. 6: Sket
h of the probability density of A

j

=

p

m (left) and

1




A

C

=

p

m (right). The a

usation

threshold Z and the error rates "

1

and "

2

are also shown.

Informal argument: If the probability density of A

j

is known, then that knowledge allows us

to 
ompute the FP and FN error rates as a fun
tion of ~�

j

, ~�

j

, ~�, ~�, m and Z. This is sket
hed in

Fig. 6. The left 
urve is the probability density of the quantity A

j

=

p

m. It has mean ~�

j

= 0 and

varian
e ~�

j

= 1 (see Lemmas 2 and 3). The error rate "

1

is given by the area to the right of the

(res
aled) threshold Z=

p

m. The right 
urve is the probability density of the quantity

1




A

C

=

p

m.

It has average

1




~�

p

m and varian
e ~�=
. The error rate "

2

is given by the area to the left of

Z=

p

m. The horizontal axis is s
aled su
h that the A

j

-
urve does not depend on 
 and m. If we

set ourselves the goal of having �xed error rates for arbitrary 
, two observations 
an be made

from Fig. 6:

� In order to have a �xed "

1

for all 
, the threshold line Z=

p

m must not shift. Hen
e Z must

be 
hosen as Z /

p

m as far as the dependen
e on 
 is 
on
erned.

� When 
 in
reases, the rightmost 
urve be
omes narrower and shifts to the left. In order to

prevent "

2

from vanishing, m must be 
hosen proportional to 


2

.

From this informal argument we obtain the proportionality m / 


2

0

in (62), but not the 
onstants

and the logarithmi
 dependen
e on "

1

.

Proof of Theorem 2: Let �

1

and �

2

be the density fun
tions ofA

j

andA

C

, respe
tively, res
aled

su
h that they both have zero mean and unit varian
e. We de�ne 
umulative distributions in the

tails,

G

1

(x) =

Z

1

x

dx

0

�

1

(x

0

) ; G

2

(x) =

Z

x

�1

dx

0

�

2

(x

0

): (63)

Lemma 6: In order to a
hieve a False Positive error rate � "

1

and a False Negative error rate

� "

2

against any 
oalition of size 
 � 


0

, it is suÆ
ient to set the 
ode length m a

ording to

m � 


2

0

�

~�

j

~�

G

inv

1

("

1

)

�

2

�

1�

~�




0

~�

j

G

inv

2

("

2

)

G

inv

1

("

1

)

�

2

: (64)

Here the supers
ript `inv' denotes the inverse fun
tion.
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Proof: The proof is 
ompletely analogous to the derivation in Se
tion 3.4 of [7℄. �

Note that G

inv

2

("

2

) < 0. Note further that the dependen
e of (64) on "

2

vanishes in the limit




0

! 1. (Remember that ~�

j

= 1 a

ording to Lemma 3 and that ~� = O(

p




0

) as a 
onsequen
e

of Lemma 4). If A

j

and A

C

have Gaussian distributions, then G

1

and G

2

are error fun
tions

2

and

we have G

inv

1

("

1

) =

p

2Erf


inv

(2"

1

), G

inv

2

("

2

) = �

p

2Erf


inv

(2"

2

). Substitution into (64), using

~�

j

= 1, gives

m �

2

~�

2




2

0

h

Erf


inv

(2"

1

)

i

2

(

1 +

~�




0

Erf


inv

(2"

2

)

Erf


inv

(2"

1

)

)

2

: (65)

In the regime "

1

� "

2

, whi
h is the relevant regime for e.g. movie distribution, the dependen
e of

(65) on "

2

is rather weak even for �nite 


0

, sin
e Erf


inv

("

2

) < Erf


inv

("

1

). We use the asymptoti


form of the inverse error fun
tion for small arguments, Erf


inv

(") =

p

ln "

�1

[1 � O(

ln ln "

�1

ln "

�1

)℄, to

write

m �

2

~�

2




2

0

ln

1

"

1

�

1�O(

ln ln "

�1

1

ln "

�1

1

)

�

(

1 +O

 

1

p




0

s

ln "

�1

2

ln "

�1

1

!)

: (66)

For large 


0

the result (62) follows

3

. �

Hen
e for large enough 


0

a 
ode length m = 2~�

�2




2

0

ln "

�1

1

suÆ
es. This is shorter by a fa
tor

2 than the result obtained in Se
tion 4.

7 Dis
ussion

7.1 The 
uto� parameter t

In this se
tion we dis
uss the the e�e
ts of the 
uto� t = T


�a

0

introdu
ed in Se
tion 2.2. The

probabilities p

�

lie in the restri
ted interval [t=(q � 1); 1 � t℄. It is 
lear from Se
tion 4 that the

presented proof of Theorem 1 does not work for t = 0. In the limit T # 0, the allowed intervals

for the auxiliary variables �

1

and �

2

(34,42) vanish, while both intervals need to be �nite for the

proof that Properties 1 and 2 are satis�ed.

The speed of the 
onvergen
e to the asymptoti
 result A = 4=~�

2

, B = 4=~� depends on the way

in whi
h the parameters a 2 (0; 2) and T are 
hosen. The small parameters  

1

and  

2

(45,47)

asymptoti
ally behave as

 

1

� 1:7

q

~�

p

T




a=2

0

;  

2

�

ln "

2

ln "

1

1

1:7

p

T


1�a=2

0

: (67)

Furthermore, 
ondition (36), ne
essary for Property 1 to hold, 
an be written as




0

'

�

q � 1

T

(

~�

3:4

)

2

�

1=(2�a)

: (68)

For pra
ti
al reasons, we wish both  

1

and  

2

to be
ome small at a reasonably low value of 


0

,

while the bound (68) also should not be too high. However, in the limit T # 0, both the 


0

-bound

(68) and the expression for  

2

in (67) diverge. Hen
e, when t tends to zero, the approa
h of

Se
tions 4.1{4.3, based on the Markov inequality, 
an prove Properties 1 and 2 only for extremely

large 


0

.

The role of the 
uto� t is 
ompletely di�erent in the analysis using the Gaussian approximation.

2

To avoid ambiguities due to 
on
i
ting de�nitions in the literature, we mention that we use the de�nition

Erf
(x) = 1� (2=

p

�)

R

x

0

e

�u

2

du.

3

For proving Theorem 2 we do not have to assume that A

C

has a Gaussian form. The "

2

-term in (64) vanishes

for all fun
tions G

inv

2

be
ause of the fa
tor ~�=


0

= O(1=

p




0

). However, the 
omputation of A

C

involves even more

summed 
ontributions than A

j

, so it is safe to assume that when A

j

is Gaussian, then A

C

is Gaussian as well.
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� The 
ase q = 2. It was shown in [7℄ for the original Tardos s
heme that the CLT 
an only be

applied if t > 0. The probability distribution of the a

usation U

i

(for inno
ent users) due

to the symbol y

i

is proportional to 1=(1 + U

2

i

)

2

. The 3rd moment is zero. For distributions

with vanishing 3rd moment, the CLT only holds when the 4th moment does not diverge.

However, for t = 0 the 4th moment does diverge. Hen
e we need t > 0. Exa
tly the same

reasoning applies to the symmetri
 s
heme with q = 2.

� The 
ase q � 3. For q � 3, the 3rd moment of the probability distribution of A

(i)

j

(for

inno
ent j) is always nonzero, no matter what the value of t is. This is shown in Appendix C,

Eq.(74). Hen
e the CLT applies even if we set t = 0. In the Gaussian approximation, there

is no reason to have a 
uto� t for q � 3.

7.2 Di�erent atta
k models

Up to this point we have only 
onsidered the restri
ted digit model. However, it is easy to obtain

results for the other atta
k models listed in Se
tion 1.2. As 
an be seen from (64), the bound on

the 
ode length is proportional to ~�

2

j

=~�

2

.

4

The di�eren
es between the various atta
k models give

rise to di�erent values ~�

j

, ~�, but the form (64) is independent of the atta
k model. Hen
e, in

order to see the di�eren
es between the atta
k models, it is suÆ
ient to 
ompare the ratio ~�

j

=~�.

The unreadable digit model is dis
ussed in Appendix A. It is assumed that the 
olluders

output an erasure symbol `?' whenever they 
an, and that the distributor gives zero a

usation

to lo
ations with an erasure. It turns out that for large alphabets (q ' 7) the 
olluder strategy

of outputting erasures is good, and the distributor has to use longer 
odes than in the restri
ted

digit model. However, for small alphabets it is better for the 
olluders not to use an erasure at

ea
h dete
table position, as a `?' informs the distributor that the position is dete
table.

Results for the arbitrary digit model are derived in Appendix B. Unsurprisingly, with this

atta
k model a nonbinary s
heme always performs worse than the symmetri
 binary s
heme;

the 
olluders have ample opportunity to in
riminate inno
ent users while avoiding a

usation

themselves.

8 Summary

In this paper we have proposed a new 
onstru
tion for a randomized digital �ngerprinting 
ode,

whi
h is similar to a re
ent 
onstru
tion by Tardos but 
an be used with arbitrary size alphabets.

We have analyzed the performan
e of our s
heme, in the restri
ted digit model, in two ways.

First, we have proved a lower bound on the 
ode length m su
h that the desired False Positive

and False Negative error probabilities are a
hieved against any 
oalition of size 
 � 


0

. Due to a

di�erent way of 
omputing a

usations, the proposed 
ode allows for 10 times shorter 
odes (with

respe
t to [9℄) in the 
ase of a binary alphabet. Moving to a 
ode over a q-ary alphabet allows a

further redu
tion of the 
ode length of 35% at q = 3 and 80% at q = 10.

Se
ond, we have analyzed our s
heme under the assumption that the a

usation sum A

j

follows

a Gaussian distribution. This `Gaussian approximation' is valid at 
oalition sizes 


0

of approxi-

mately 10{20 and larger. We have shown that, in this approximation, the 
ollusion resistan
e of

the s
heme is retained for a 
ode length m that is twi
e as short as the bound obtained using no

assumptions.
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4

Theorem 1 is formulated after the substitution ~� ! 1 has been done. If appli
ation of Lemma 3 is postponed

in the analysis in Se
tion 4, we get the proportionality to ~�

2

j

in Theorem 1 as well.
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A Unreadable digit model

In this appendix we 
onsider the 
ase of the unreadable digit model. In this atta
k model, the


olluders are allowed to output the erasure symbol `?' in dete
table positions. For simpli
ity we

make two assumptions: (i) The 
olluders generate an erasure whenever they 
an, and (ii) The

distributor gives zero a

usation in 
ase of an erasure symbol.

The quantities ~�

j

and ~� are both a�e
ted by these assumptions. They are easily 
omputed,

sin
e all dete
table positions (leading to `?') are dis
arded by the distributor. This leaves only

the undete
table positions, 
hara
terized by ve
tors b that 
onsist of q � 1 zero 
omponents and

one 
omponent equal to 
. We have

~�

2

j

=

q�1

X

�=0

Z

J(0;q)

d

q

p F (p)p




�

= q

�(�q)�(
+ �)

�(�)�(
+ �q)

(69)

and

~� =

q�1

X

�=0

Z

J(0;q)

d

q

p F (p)p




�

� 
g

1

(p

�

) = 
q

�(�q)�(
�

1

2

+ �)�(

1

2

+ �[q � 1℄)

�(�)�(�[q � 1℄)�(
+ �q)

: (70)

Re
all from (64) that the required 
ode length is proportional to ~�

2

j

=~�

2

. Using (69) and (70) we

obtain

~�

2

j

~�

2

=

1

q


2

�(
+ �)�(
+ �q)

[�(
�

1

2

+ �)℄

2

�(�)

�(�q)

�

�(�[q � 1℄)

�(

1

2

+ �[q � 1℄)

�

2

�




�1+�[q�1℄

q

�(�)

�(�q)

�

�(�[q � 1℄)

�(

1

2

+ �[q � 1℄)

�

2

: (71)
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The last expression is obtained using the Stirling approximation of the Gamma fun
tion for large 
.

For � = 1=q the large q asymptoti
 behaviour is given by

lim

q!1

~�

2

j

=~�

2

= 4=�: (72)

Note that the result does not depend on 
. Consequently the asymptoti
 relation m / 


2

0

holds not

only in the restri
ted digit model, but also in the unreadable digit model. Eq. (72) demonstrates

that it is unfavorable for the distributor to use a very large alphabet in the unreadable digit model,

sin
e the 
ode length in bits (m log

2

q) then grows as log

2

q.

A graph of the (normalized) 
ode length in bits / log

2

(q)~�

2

j

=~�

2

, similar to the graphs in

Se
tion 5.4, is shown in Fig. 7 for q = 3 and q = 7. The number of bits in
reases as a fun
tion of

q for the unreadable digit model, but it de
reases in the restri
ted digit model. Apparently, the


olluder strategy of outputting erasures whenever possible makes sense for large alphabets (the

distributor has to use a longer 
ode than in the restri
ted digit 
ase), but not for small alphabets.

Depending on the employed value of �, the 
rossover value of q lies between approximately 5 and 8.
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1

1.5

2
c=20; q=3 and q=7

κ
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la

ti
v
e

 #
b

it
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q=3

q=7q=7

Fig. 7: Code length in bits as a fun
tion of � in the unreadable digit model (solid lines), relative

to the q = 2 restri
ted digit model. The 
olluders output an erasure whenever allowed by

the marking 
ondition. The dotted lines are the results for the restri
ted digit model (see

Fig. 5).

B Arbitrary digit model

In this appendix we 
onsider the 
ase of the arbitrary digit model. In this atta
k model, the


olluders are allowed to output any symbol y 2 f0; : : : ; q�1g (but not `?') in dete
table positions.

This 
hoi
e of atta
k model in
uen
es only ~�. The quantity ~�

j

is una�e
ted by going from the

restri
ted to the arbitrary digit model. We 
ompute ~� from expression (61) with one modi�
ation:

The minimisation `min

�

' now also in
ludes symbols � for whi
h b

�

= 0 (provided, of 
ourse, that

none of the other symbols o

urs 
 times).

Numeri
al results are shown in Fig. 8. For ea
h q, the ~� 
urve of the arbitrary digit model (solid


urves) always lies below the 
urve of the restri
ted digit model (dotted 
urves). Note further that

the nonbinary s
heme is always worse than the binary in the arbitrary digit model. (The 
urves

lie below 2=�). Hen
e, if the arbitrary digit model applies, the distributor's best option is to use

the binary s
heme of Se
tion 2.2.
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Fig. 8: ~� as a fun
tion of � in the arbitrary digit model (solid lines). The dotted lines are the

results for the restri
ted digit model.

C Convergen
e to the normal distribution

In this appendix we study how fast (as a fun
tion of m) the distribution of A

j


onverges to the

normal distribution. We primarily study the 
ase q � 3, sin
e for q = 2 the analysis of [7℄ suÆ
es.

We set t = 0. We use a theorem from [2℄ that gives the width of the 
entral region where the normal

form is a good approximation. This 
entral region 
ontains a fra
tion 1 � 2"

1

of the probability

mass. By `good approximation' it is meant that the deviation from the normal form, everywhere

in the 
entral region, is smaller than the value of the Gaussian at the edge of the 
entral region.

Applied to our a

usation sum A

j

, the theorem gives the following width, expressed in standard

deviations,

#sigmas =

 

6~�

3

j

j�

3

j

!

1=3

m

1=6

; where �

3

:= E [fA

(i)

j

g

3

℄: (73)

Here E stands for averaging �rst over X

ji

, then y, then X

C

and �nally p. The third moment is

given by

�

3

=

�(�q)

[�(�)℄

q

q�1

X

�=0

X

b

P

b

(�)

�




b

�

Q

� 6=�

�(�+ b

�

)

�(
� b

�

+ �[q � 1℄)

�

Z

1

0

dp

�

p

b

�

�1+�

�

(1� p

�

)


�b

�

�1+�[q�1℄

"

(1� p

�

)

3=2

p

p

�

�

p

3=2

�

p

1� p

�

#

: (74)

The integrals are all 
onvergent

5

if the inequality � > 1=[2(q�1)℄ holds. (We remind the reader that

b

�

� 1 due to the marking 
ondition. Hen
e, the integrals always 
onverge at p

�

= 0). From Fig. 2

we see that our region of interest lies at � > 1=q, whi
h means that the inequality indeed holds.

Noti
e that for q = 2 the integral is antisymmetri
 under the mapping (p

�

! 1�p

�

; b

�

! 
� b

�

),

yielding �

3

= 0. Noti
e too that we have set t = 0 without running into any divergen
es. In the

proof of Theorem 1 it is impossible to set t = 0.

5

We also have E[jA

(i)

j

j

3

℄ < 1, and hen
e the Berry-Ess�een theorem holds, stating that there is uniform 
on-

vergen
e to a Gaussian distribution, with errors of order 1=

p

m = O(1=


0

). Eq.(73) gives a sharper bound on the

width of the 
entral region than the Berry-Ess�een theorem.
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If the `extremal' strategy of Se
tion 5.4 is employed by the 
olluders, then (74) 
an be written

as

�

3

=

�(�q)

[�(�)℄

q


 � 
!

�(
+ �q)

X

b

[

q�1

Y


=0

�(�+ b




)

�(1 + b




)

℄ (75)

�(b

y

�

1

2

+ �)

�(b

y

+ �)

�(
� b

y

�

1

2

+ �[q � 1℄)

�(
� b

y

+ �[q � 1℄)

�

1�

2b

y




+

�[q � 2℄




�

:

Here y is a fun
tion of b, namely the symbol 
hosen by the 
olluders after they have observed b,

su
h that ~� is minimized. Noti
e that (75) has the same form as (61); the only di�eren
e lies in

the fa
tor between the 
urly bra
kets. Numeri
al results for (75) are shown in Figs. 9 and 10. It

is 
lear from Fig. 9 that �

3

hardly depends on 
.
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q=6; c=20,30,40,50,60,70,80 

κ

c=20

c=80

1/q

λ
3

Fig. 9: Third moment �

3

as a fun
tion of � for various 
oalition sizes 
, for q = 6. The 
olluders

employ the `extremal' strategy.

Finally we substitute some numeri
al values into (73). From Lemma 3 we have ~�

j

= 1. We

use the result (62), m = (2=~�

2

)


2

0

ln "

�1

1

. We set "

1

= 10

�15

, 
orresponding to the probability of

an 8-sigma event. We wish the CLT to apply in a 
entral region with #sigmas� 8. A

ording to

(73), this requirement is satis�ed for 


0

' 10 � �

3

~�.

We use Fig. 10 to read o� the value of �

3

at the �-value where ~� (61) is in the optimal range (as

shown in Fig. 2). Setting � slightly larger than 1=q, we see that j�

3

j < 1. Hen
e, for q � 10, given

the ~�-values plotted in Fig. 2, we 
on
lude that the Gaussian approximation applies when the


ode is built to resist 
oalitions of size 


0

larger than some threshold lying between approximately

10 and 20. The larger 


0

, the better the Gaussian approximation.
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Fig. 10: Third moment �

3

as a fun
tion of � for various alphabet sizes q, for 
 = 20. The 
olluders

employ the `extremal' strategy.


