
Authorship Proof for Textual Document

J. Wu? and D. R. Stinson??

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario, N2L 3G1, Canada

Abstract. In this paper, we investigate the problem of how to prove the authorship of textual docu-
ments. First we define the basic functionalities of an authorship proof scheme (APS) based on natural
language watermarking, and identify two essential security requirements for an APS to be secure against
various attacks. We review existing natural language watermarking schemes, and we propose two new
schemes with improved security.

1 Introduction

The Internet has provided a new publishing channel for writers. Now many writers put their work online
before officially publishing them in traditional media. Such practice benefits the writers by allowing feedback
from readers and by promoting their works to publishers. This creates a new problem about protecting
authors’ rights, specifically, their authorship. Usually authors do not care if their work is reprinted online
elsewhere, as long as the correct authorship is stated. However, someone may copy a text and reprint it
online, or publish it in official channels, in his or her own name. Such cases have been observed. When this
happens, it is difficult for the true authors to dispute their authorship.

The same problem for digital multimedia such as image, audio, and video can be solved by using digital
watermarking techniques. Some researchers have tried to solve the problem for textual documents with
similar approaches. One approach is to transform a textual document to an image, and then apply image
watermarks [5], [4], [9]. Another approach embeds information in a text by modifying the appearance of its
elements such as the fonts, space between lines and words, etc. (see [7], [6], [11], [13]). A common problem
of the above two approaches is that the watermark can be erased by reformatting or re-typing the text
document.

In this paper we use natural language watermarks (see [18], [17], [2], [19], [1], [8], [10]) to solve the
problem. Our contributions in this paper are as follows:

– Identify and define the properties of an authorship proof scheme (APS) (section 2).
– Investigate existing natural language watermark schemes that are possible candidates for APS (section

3).
– Propose two schemes that are robust against watermark erasure attacks (section 4).

In addition, we discuss remaining problems and further improvements for APS in section 5.

2 Authorship Proof Scheme

2.1 Functionalities and Security

First we identify the basic functionalities of an APS, the components it must have, the attacks it may be
confronted with, and the security properties it has to provide. We assume that an author has several texts
to protect, and the author has one master key, K. For each of the texts T , the author can generate a secret
key KT from K and T , e.g., KT = h(K||T) where h() is a cryptographic hash function and K||T is the
concatenation of K and T . An APS enables the author to watermark T and prove his or her authorship on
the watermarked text. The APS consists of two processes:
? research supported by an NSERC post-graduate scholarship

?? research supported by NSERC discovery grant 203114-06

1. E(KT , T), the embedding process, which takes the text T and the secret key KT as inputs, and outputs
the watermarked text Tw which is embedded with information about KT ;

2. V (KT , Tw), the verification process, which takes Tw and KT as inputs, and outputs true if Tw is generated
by E() using the same KT , otherwise it outputs false.

Given the above APS, we identify several possible attacks. We assume an adversary with polynomially
bounded computational ability, i.e., the adversary cannot break secure cryptographic hash functions. The
adversary has several copies of watermarked texts from one author. The attacks are as follows.

1. The adversary may try to find out the author’s master key, K.
2. The adversary may try to extract a specific secret key, KT .
3. The adversary may try to declare authorship on a Tw by computing a K ′ such that V (K ′, Tw) = true

while K ′ 6= KT (we call this an impersonation attack).
4. The adversary may try to erase the watermark in Tw by making some changes on Tw to produce T ′w

which has essentially the same content as Tw, but where V (KT , T ′w) = false (we call this an erasure
attack).

5. The adversary may watermark a text Tw with his or her own key to produce a T ′w and declare authorship
on T ′w (we call this a double watermark attack).

For the above APS, K is secure since it is only used as a seed to compute some hash values KT using
a cryptographic hash function. Since each text T will be different, the keys KT = h(K||T) can be regarded
random and independent of each other. It is not difficult to show that knowing some other watermarked
texts does not help to attack a certain Tw or its KT . Therefore we only need to analyze, when an adversary
is given one Tw, if he or she is able to find out the corresponding KT , or succeed in an impersonation attack,
erasure attack, or double watermark attack on the given Tw.

Next we show that if an APS satisfies the following two basic security requirements, then it is secure
against all the attacks described above:

1. Low false negative probability
A false negative occurs if an adversary can edit Tw by inserting/deleting/modifying some sentences
to produce T ′w such that V (KT , T ′w) = false. False negative probability indicates robustness of the
embedded watermark.

2. Low false positive probability
A false positive is the event that V (K ′, Tw) = true, while Tw = E(KT , T) and K ′ 6= KT .
False positive probability must be very small to prevent impersonation attacks. In this paper, we stipulate
that false positive probability is less than ε = 1/256, which is the security level of a well-chosen password
consisting of eight ASCII characters.

Low false negative probability implies the embedded watermark is secure (otherwise the adversary can
easily erase the watermark with certainty), which in turn implies KT is secure (otherwise the adversary
can find out the watermark using KT). In the case of a double watermark attack, the adversary produces
T ′w = E(K ′, Tw) using his or her own K ′. The adversary can prove authorship on T ′w but not on Tw (because
of the low false positive probability), while the true author can prove authorship on both Tw and T ′w (because
of the low false negative probability). This indicates that T ′w is produced by modifying Tw, which resolves
the dispute.

Since low false negative probability and low false positive probability indicate the security of an APS
against all the attacks we have identified, in the following parts, we only need to analyze these two properties
of an APS.

2.2 APS Evaluation

For an APS, its false positive probability must be lower than the pre-defined security level ε, but we do not
mind if the false positive probability of one scheme is lower than that of another, as long as they are both

2

lower than ε. That is, as long as the schemes are secure, it does not matter so much if one is more secure. For
false negative probability, we hope that it is as low as possible. Therefore, to compare two schemes, first we
tune their settings so that their false positive probabilities are all close to and lower than ε, then we compare
their false negative probabilities to see which one is more robust.

3 Related Works

3.1 Natural Language Watermarking

Natural language watermarking embeds information using linguistic transformations such as synonym sub-
stitution, syntactic transformations and semantic transformations (see [18], [17], [2], [19], [1], [8], [10]). It
embeds a bitstream as a watermark in a text document, while preserving the meaning, context, and flow
of the document. The modifications to the text are imperceptible. A natural language watermark scheme
consists of two processes, a watermark embedding process and a watermark extraction process. The rightful
owner has the original text and a secret key. The embedding process takes the text, the key, and some
watermark information as inputs and produces a watermarked text, which is published. The watermark can
be extracted from the watermarked text only with the knowledge of the key. The basic requirement of these
schemes is that the watermark should not be perceivable, otherwise an adversary can easily erase the the
watermark. As general-purpose watermark schemes, some other requirements, e.g., resistance to collusion
attacks, are also considered in such schemes.

3.2 Previous Schemes

We briefly analyze the robustness of existing natural language watermarking schemes that can be used for
authorship proof. There have only been a few such schemes, e.g., [2], [1] and [8], that are suitable for this
purpose. In [2] Atallah et al. treat a text as a collection of sentences. The syntactic structure of a sentence
is used to embed the watermark. Suppose a text T consists of m sentences, and an n-bit watermark is to
be embedded in n sentences (i.e., we have one watermark bit for each of the watermarked sentences). A
secret rank is computed for each sentence in T . The n sentences with least ranks are chosen as markers.
Each sentence following a marker is transformed to carry one bit of the watermark. Both rank computing
and watermark insertion are based on a secret key. Without the key, the probability that an adversary can
forge a text with a valid n-bit watermark is 2−n, i.e., the false positive probability of this scheme is 2−n.
When the adversary tries to erase the watermark, he or she cannot locate the markers or the watermarked
sentences without the key. So the adversary can only randomly insert/delete/modify some sentences. When
an inserted sentence happens to have a small rank, or it happens to be inserted right after a marker, the
watermark will be damaged. When a deleted sentence happens to be a marker or a watermarked sentence,
the watermark will also be damaged. When a modified sentence is a marker or a watermarked sentence, or
the rank of the modified sentence becomes one of the n least ranks, the watermark will be damaged too.
The probability that one random sentence insert/delete/modify operation can destroy the watermark is no
more than 3n/m. Therefore, when c sentences are inserted/deleted/modified, the false negative probability
is 1− (1− 3n

m)c. For example for n = 56, m = 2000, when the adversary randomly edits eight sentences, the
false negative probability is 0.5, i.e., there is a 50% chance the watermark will be erased.

A follow-up paper [1] improves upon [2] in terms of the number of watermark bits embedded in one
sentence. The algorithms used in [1] are the same as in [2], but the algorithms are applied to the sematic
structure of a sentence, instead of the syntactic structure, to embed the watermark bits. Since the semantic
structure is much larger and richer than the syntactic structure, this allows transformations of a large number
of elements they contain, and therefore it achieves more watermark bits in one sentence. In view of robustness,
the probability that one sentence insert/delete/modify can destroy the watermark in [1] is the same as [2],
therefore its false negative probability is also the same as [2].

In [8] Gupta et al. proposed a scheme to improve the robustness. The scheme treats the text as a
collection of paragraphs, each of which consists of number of sentences. In the scheme, the paragraphs

3

are ordered according to the number of the sentences in it. Although the scheme is robust against various
possible attacks, these attacks do not cover all possible attacks (from a cryptanalyst’s point of view) which
can effectively erase the watermark, e.g., insert/delete a paragraph, or insert/delete sentences in a paragraph
such that its order is changed. In such cases, the false negative probability is rather high.

To the best of our knowledge, the most robust APS we can find in previous works are the ones from [2]
or [1]. We use the scheme in [2] as an example and refer to it as APS1 hereafter.

4 Proposed Schemes

In this section we propose two new robust authorship proof schemes, APS2 and APS3. The building blocks
of our schemes include:

– Cryptographic hash functions.
A cryptographic hash function takes a variable length input and produces a fixed length output which
can be considered to be randomly uniformly distributed on the function domain.

– Text-meaning representation.
A text meaning representation (TMR) is a language-independent description of the information conveyed
in natural language text. The theory and methodology of TMR have been studied and applied in machine
translation systems. For more about TMR, we refer to [15], [14], [3], [16]. In this paper, we do not go
into the details of TMR. We simply assume the existence of a TMR system M() which takes as input
a sentence s and outputs its meaning representation M(s). For literally different sentences which have
the same meaning, their meaning representations are the same, so when s is rewritten to s′, which is
literally different but has the same meaning, its meaning representation does not change, i.e., we have
s′ 6= s, but M(s) = M(s′).

– Edit distance.
The edit distance, also named Levenshtein Distance, between two strings is the minimum number of
character insert/delete/modify operations on one string to produce the other string. We use DLev(S1, S2)
to denote the edit distance between the strings S1 and S2. Given two strings, their edit distance can be
computed using dynamic programming algorithms [12].

4.1 APS2

Following are the parameters and functions defined in APS2:

T : a text document consisting of m sentences s0, · · · , sm−1.
K = {0, 1}k: the key set.
h0 : {0, 1}∗ → K, a hash function to generate a key.
h1 : K → {0, 1}n, a hash function with n-bit output.
h2 : K × {0, 1}∗ → {0, 1}160, a keyed hash function with 160-bit output.
h3 : {0, 1}∗ → {0, 1}, a hash function with 1-bit output.
dmax: a pre-defined threshold. If the edit distance between a damaged watermark and the original
watermark is no greater than dmax, then the damaged one is considered valid.

We note that h0, h1, h2 and h3 can be easily constructed from standard cryptographic hash functions such
as SHA-1.

APS2 Watermark Embedding. Given an original text document T , the author computes KT = h0(K||T)
where K is the master key, then performs the following embedding process:

1. Compute an n-bit pseudo-random string W = h1(KT). W = w0 · · ·wn−1 is the watermark to be embed-
ded.

4

2. Compute oi = h2(KT ,M(si)) for each sentence si. Here oi is used as a secret rank of si. For simplicity,
we assume each sentence has a different meaning, and therefore there will not be conflicting oi values.

3. In the text T , rewrite the n sentences {sj0 , · · · , sji
, · · · , sj(n−1)} with least rank to {s′j0 , · · · , s′ji

, · · · , s′j(n−1)
}

such that h3(s′ji
) = wji and M(sji) = M(s′ji

). The produced textual document Tw is then made public.
After sji

is rewritten to s′ji
, its literal expression is changed such that the watermark bit wji

is “em-
bedded”, meanwhile, its meaning does not change, and hence ranks of the rewritten sentences do not
change, either.

APS2 Authorship Verification. To prove the authorship of Tw, the author presents KT and runs the
verification process V (KT , Tw) as follows:

1. compute oi = h2(KT ,M(si)) for each sentence in Tw.
2. compute an (n + dmax)-bit string W ′ by hashing the n + dmax sentences with least oi values using h3.
3. If there is a prefix W ′′ of W ′ such that DLev(W ′′, h1(K)) ≤ dmax, then output true, otherwise output

false. Clearly n− dmax ≤ |W ′′| ≤ n + dmax.

The prefix search in step 3 guarantees that if the watermark is damaged by at most dmax insert/delete/modify
bit operations, the verification process outputs true, otherwise it outputs false.

Example. Here we give a small toy example to show how APS2 works. In this example, n = 4 and dmax = 1.
We use the first paragraph in Section 1 as the text T . There are eight sentences in the paragraph, which are
denoted as s1, · · · , s8 respectively. Let h1(KT) be the last four bits of SHA-1(KT), h2(KT , s) be the last four
hex digits of SHA-1(KT , s) and h3(KT , s) be the last bit of SHA-1(KT , s).

First we define a TMR based on the following synonym dictionary:

1 provide offer 2 new novel
3 channel outlet 4 nowadays today
5 many lots of 6 put place
7 benefit assist 8 feedback response
9 promote advertise 10 meanwhile at the same time
11 problem issue 12 specifically especially
13 usually generally 14 care worry
15 correct true 16 however but
17 someone somebody 18 official formal
19 case situation 20 observe notice
21 happen take place 22 hard difficult
23 dispute argue

Each row of the table contains a set of two synonyms and a number as their meaning representation.
The TMR of a sentence is defined as a string in which a word is replaced by its meaning representation.
For example, the TMR of the sentence, “The Internet has provided a new publishing channel for writers”, is
“The Internet has 1 a 2 publishing 3 for writers”.

Suppose KT computed for this text is 123. Then the watermark is W = 1111.
Next the author computes the ranks of the sentences using h2 and the TMR defined above. Suppose the

results are (in hex format) dd21, dab6, 298c, 1b27, 3064, 2539, 04f0, and 6bc9 respectively. The seventh,
fourth, sixth and third sentences are selected to embed the four watermark bits since they have the least
ranks.

The author then rewrites the four sentences (if necessary) to embed the watermark. For example, the
author checks h3(KT , s3). Since the result is 0, the author replaces feedback with response. Now the result is
1, which means the watermark bit is embedded. The outputted Tw is as follows:

(1) The Internet has provided a new publishing channel for writers. (2) Nowadays many writers put their
works online before officially publishing them in traditional media. (3) Such practice benefits the writers by

5

allowing response from readers and by promoting their works to publishers. (4) Meanwhile it incurs a new
problem about protecting the right of the author, specifically, the authorship. (5) Usually the authors do not
care if their works are reprinted online elsewhere, as long as the correct authorship is stated. (6) However,
someone may copy the text and reprint it online, or publish it in formal channels, in his or her own name.
(7) Such situations have been observed. (8) When this happens, it is hard for the true authors to dispute
for their authorship.

We include the numbers of the sentences in the above paragraph for easy reading. In the third sentence,
feedback is replaced with response. In the seventh sentence, cases is replaced with situations. The resulting
Tw is published.

Suppose the adversary rewrites the first sentence as The Internet has offered a novel publishing channel
for writers, and deletes the seventh sentence.

In the verification process, the author supplies the key KT = 123 to the versification process. Since
n+dmax = 5, the five sentences in Tw with least ranks, i.e., sentences 4, 6, 3, 5 and 8, are selected. A five-bit
string 111xx (x could be either 0 or 1) is extracted using h3. A prefix, 111, and the watermark 1111 have an
edit distance at most 1, so the verification process will output true.

Remark on the example. Note we provide a very simple TMR to make a concrete example of our scheme.
TMR is a research topic in natural language processing and is not the focus of this paper. In practice, we
may need TMR more sophisticated than that in the example in order to support desired transformations.

APS2 Watermark and Key Secrecy. Given Tw, the adversary can compute h3(si) for each sentence.
The string {h3(si)} includes the watermark which is a pseudo-random string generated by h1(KT). For the
sentences not rewritten in the watermark embedding process, their h3 values can be regarded as random
bits. It is not difficult to show that, given Tw, it is infeasible for the adversary to tell what is the watermark,
which sentences carry the watermark, nor can the adversary infer any information about the key KT .

APS2 False Positive Probability. Since the adversary cannot infer any information about KT , when
trying to impersonate the true author, he or she cannot do better than present a randomly chosen K ′. The
adversary wins if V (K ′, Tw) = true.

Now we consider if the adversary presents a random K ′, when K ′ 6= KT , what the probability is that
Pr[V (K ′, Tw) = true]. Let Al = {S : |S| = l,Dlev(S,W) ≤ dmax}, the set of strings whose lengths is l, and
whose edit distances from W = h1(K ′) are at most dmax. Any string in Al can be produced by applying
d ≤ dmax insertion/deletion/modifcation operations on W . We can assume these operations affect disjoint
bits. Also it is easy to check that the order of the operations does not affect the result. Given n, l, and dmax,
we have

|Al| ≤
∑

di−dd=l−n,di+dd+dm≤dmax

(
n

dm + dd

)(
n− dd + di

di

)
2di+dd+dm . (1)

In the above inequality, di can be interpreted as the number of insertions, dd the number of deletions, and
dm the number of modifications.

(
n

dm+dd

)
2dm+dd is the number of ways to delete dd bits and modify dm bits

in an n-bit string.
(
n−dd+di

di

)
2di is the number of ways to insert di bits into an (n− dd + di)-bit string.

If Tw is not produced by using K ′, then we can assume that W = h1(K ′) and the n + dmax bits W ′

generated from Tw and K ′ are independent random strings. In the verification process, if any prefix of W ′

is in A, the verification process will output true, and a false positive event happens. There are 2dmax + 1
different prefixes of W ′ whose edit distances from W are possibly no more than dmax. The lengths of these
prefixes range from n− dmax to n + dmax. Therefore, the false positive probability is

Pfp ≤
∑

n−dmax≤l≤n+dmax

|Al|
2l

. (2)

6

APS2 False Negative Probability. Since given Tw, the adversary does not know which sentences carry
the watermark nor what is the watermark, when the adversary changes Tw in order to erase the watermark,
he or she can do it only in a random way . When the adversary inserts a new sentence, the probability that
one bit is inserted into the watermark, which is the same as the probability that the rank of the new sentence
is among the n least ranks of all the m ranks, is n/m. When the adversary modifies (without change the
meaning1) or delete a sentence, the probability that one bit in the watermark is changed or deleted is n/m.
So when c sentences are inserted/deleted/modified in Tw, the false negative probability of APS2 is

Pfn ≤ 1−
dmax∑

d=0

(
c

d

) (n

m

)d (
1− n

m

)c−d

. (3)

Other edit operations, such as moving/switching sentences, do not damage the watermark.

APS2 Parameters. In this part we use some concrete parameters to check the performance of APS2.
Suppose k = 100 is fixed first. The false positive probability of APS2 is determined by n and dmax. Given
m and c, the false negative probability of APS2 is determined by n and dmax too. Different pairs (n, dmax)
may result in the same false positive probability and different false negative probability. So we hope to find
the (n, dmax) such that false positive probability ≤ ε, while the false negative probability is the least.

We set m = 2000, c = 200, and compute the minimum n such that the false positive probability ≤ ε =
2−56, and the corresponding false negative probability. The results are shown in Figures 1 and 2 respectively.

100

150

200

250

300

M
in

im
um

 n

0 10 20 30 40
dmax

Fig. 1. APS2: minimum n that satisfies false positive probability ≤ ε = 2−56 under different dmax when m = 2000, c =
200.

The results suggest that a large value of dmax is beneficial. In the above example, such an (n, dmax) pair,
say (321, 40), results in both small false negative probability (0.06) and false positive probability (< ε). We
can use bigger dmax to achieve smaller false negative probability. The cost is a longer watermark, which
means more effort is required to embed the watermark.

Now we set n = 321, dmax = 40 for APS2, and n = 56 for APS1. In such a setting, the false positive
probabilities of both APS1 and APS2 are close and no more than ε. We compare their false negative proba-
bilities as a function of c in Figure 3, which shows a significant improvement of APS2, as compared to APS1,
in robustness.
1 If a modification changes the meaning a sentence, it can be considered as one delete operation plus one insert

operation.

7

0.2

0.4

0.6

0.8

1

Fa
ls

e
N

eg
at

iv
e

Pr
ob

ab
ili

ty

0 10 20 30 40
dmax

Fig. 2. APS2: false negative probabilities under different dmax when m = 2000, c = 200.

APS1
APS2

0

0.2

0.4

0.6

0.8

1

Fa
ls

e
N

eg
at

iv
e

Pr
ob

ab
ili

ty

100 200 300 400
c

Fig. 3. False negative probabilities of APS1 and APS2.

Remarks on Design of APS2. The design of APS2 uses two approaches to improve the work in [2]
and [1]. First, in the previous schemes, two sentences, a marker and a carrier, are necessary to carry one
watermark bit. The reason that a marker itself cannot carry a watermark bit is that if it is changed to carry
the watermark, its rank will be changed and is no longer a valid marker. We solve this dilemma by using
TMR to compute the rank, and inserting the watermark bits in the marker sentences by changing their
literal expression without changing their TMR. Thus, we not only lower the probability that the watermark
is damaged when one sentence is inserted/deleted/modified (from 3n

m to n
m), but we also get rid of the

watermark damage caused by moving/switching the sentences.

Another approach used in APS2 to improve the robustness is based on the simple idea of error-tolerance:
when a small number of bits are damaged in a long watermark, the damaged watermark should still be
regarded as valid. We use edit distance to quantify the extent to which a watermark is damaged. It turns
out that this measure significantly improves the robustness of the scheme.

8

4.2 APS3

APS2 relies on TMR systems. In this section, we design a lightweight scheme, denoted APS3, without using
TMR systems. APS3 uses the same building blocks as APS2, except that it does not use the functions M()
or h2().

APS3 Watermark Embedding. In APS3, the author first computes KT = h0(K||T), then performs the
following embedding process:

1. Compute an n-bit pseudo-random string W = h1(KT), and choose a random number p ∈ [0,m − 1].
W = w0 · · ·wn−1 is the watermark and p indicates where in T to insert W .

2. In T , starting from the pth sentence sp, rewrite the following n sentences such that h3(sp+i) = wi, 0 ≤
i ≤ n− 1. The resulting text Tw is then published.

Authorship Verification. To prove authorship on Tw, the author presents KT and runs the verification
process V (KT , Tw) as follows:

1. Compute an m-bit string S by hashing each sentence in Tw using h3.
2. If S has a contiguous substring whose edit distance from W = h1(KT) is no more than dmax, then output

true, otherwise output false.
Note that the value of p is not used in the verification process.

APS3 Watermark and Key Secrecy. When an adversary applies h3 to each sentence in Tw, he or she
gets an m-bit string S which contains the watermark W starting from the pth bit in S. S consists of three
parts: a p-bit random string (from bit 0 to bit p−1), followed by an n-bit pseudo-random string W , followed
by an m− p− n bit random string (from bit p + n to bit m− 1). Given such a string, assume h1 is a secure
pseudo-random bit generator, then it is infeasible for the adversary to determine which part is W , i.e., the
watermark is imperceptible to the adversary.

In APS3, the watermark will be damaged only when the adversary deletes/modifies sentences in the
n-sentence block that carries the watermark, or inserts sentences in that block. Since the adversary does not
know where in Tw the block is, when the adversary tries to erase the watermark by editing Tw, he or she
cannot do better than rewrite/delete randomly chosen sentences in Tw, or insert new sentences at random
locations in Tw.

Note that unlike APS2, APS3 is not immune to sentence move/switch. Such attacks can be regarded as
combination of multiple sentence insert/delete.

Since the adversary cannot find the watermark in Tw, he or she can compute nothing about the secret
key KT which is used to generate Tw (in fact, since h1 is a secure hash function, even given the watermark
W = h1(KT), the adversary cannot find KT).

APS3 False Positive Probability. Since the adversary knows nothing about KT , to prove he or she is
the true author of Tw, the adversary cannot do better than choosing a random K ′. If V (K ′, Tw) happens
to output true, a false positive event happens and the adversary wins. Next we analyze the false positive
probability of APS3.

In (1) we have computed |Al|, the number of strings whose lengths are l, and whose edit distances from
W are at most dmax where W = h1(K ′). If any of the contiguous substrings of the m-bit string S is in any
Al, a false positive event happens. Since there are at most m different contiguous substrings of any given
length l in S, and only the substrings of length n− dmax ≤ l ≤ n + dmax can possibly be in an Al, the false
positive probability is

Pfp ≤
∑

n−dmax≤l≤n+dmax

m|Al|
2l . (4)

9

APS3 False Negative Probability. As we have analyzed, the best way an adversary can damage the
watermark is to delete/modify sentences randomly chosen from Tw, or insert new sentences at randomly
chosen locations in Tw. Given m, n, dmax, and c, the false negative probability of APS3 is the same as that
of APS2, i.e.,

Pfn ≤ 1−
dmax∑

d=0

(
c

d

) (n

m

)d (
1− n

m

)c−d

. (5)

APS2 and APS3 Comparison. We compare the minimum n to achieve false positive probabilities ≤ ε,
and corresponding false negative probabilities of APS2 and APS3 in Figure 4 and 5 respectively. It shows
with the same dmax, APS3 needs a larger value of n to achieve the same false positive probability, and
the corresponding false negative probability is higher. It is consistent with the intuition that, since APS3
searches the watermark in a wider range, it needs a smaller dmax or a larger n to keep the same false positive
probability. Then the smaller dmax or larger n results in a higher false negative probability.

APS3
APS2

50

100

150

200

250

300

350

M
in

im
um

 n

0 10 20 30 40
dmax

Fig. 4. Comparison of minimum n of APS2 and APS3 that satisfies false positive probability ≤ ε = 2−56 under
different dmax when m = 2000, c = 200.

Although APS3 is not as robust as APS2, it does not rely on TMR and is much simpler. It may be an
alternative to APS2 in occasions where simplicity is more important.

5 Conclusion

In this paper, we investigated the problem of how to prove the authorship of a textual document. We
identified and defined the general requirements for authorship proof schemes (APS). We studied existing
natural language watermark techniques to solve the problem, and we proposed two new schemes which are
more robust than the previous ones.

There are two techniques in our schemes which improved the robustness:

1. We used the meaning representation of a sentence to generate the rank, and we used the literal represen-
tation to embed the watermark bit. With this approach, we can use a sentence as both a marker and as a
watermark carrier. Thus we reduced the probability that the watermark is damaged when one sentence
is inserted/deleted/modified, and we eliminated the damage caused by sentence moving/switching.

2. We used edit distance for error-tolerant watermark search.

10

APS3
APS2

0.2

0.4

0.6

0.8

1

Fa
ls

e
N

eg
at

iv
e

Pr
ob

ab
ili

ty

0 10 20 30 40
dmax

Fig. 5. Comparison of false negative probabilities of APS2 and APS3 under different dmax when m = 2000, c = 200.

These two techniques can also be applied to general purpose natural language watermark schemes to improve
their robustness.

An issue for our scheme and most other natural language watermark schemes is that they are suitable
only for long text. This is because the basic element to carry the watermark is a sentence. Designing schemes
for shorter text would be of interest in further research.

References

1. M. Atallah, V. Raskin, C. F. Hempelmann, M. Karahan, R. Sion, U. Topkara, K. E. Triezenberg, Natural
Language Watermarking and Tamperproofing, Fifth Information Hiding Workshop, IHW 2002, LNCS 2578,
pages 196–212, Springer Verlag, Noordwijkerhout, The Netherlands, 2002.

2. M. Atallah, V. Raskin, M. Crogan, C. Hempelmann, F. Kerschbaum, D. Mohamed, and S. Naik, Natural language
watermarking: design, analysis, and a proof-of-concept implementation. In Proc. of 4th International Workshop
on Information Hiding, IH 2001. LNCS, volume 2137, pages 185-199. Springer-Verlag, Heidelberg, 2001.

3. S. Beale, S. Nirenburg, and K. Mahesh, Semantic Analysis in the MikroKosmos Machine Translation Project.
Proc. of the 2nd SNLP-95, Bangkok, Thailand, 1995.

4. J. Brassil, S. Low, N. Maxemchuk, and L. O’Gorman, Marking text features of document images to deter illicit
dissemination. In Proc. of the 12th IAPR International Conference on Computer Vision and Image Processing,
volume 2, pages 315 - 319, Jerusalem, Israel, 1994.

5. J. Brassil, S. Low, N. F. Maxemchuk, and L. O’Gorman, Hiding information in documents images. In Conference
on Information Sciences and Systems (CISS-95), 1995.

6. N. Chotikakamthorn, Electronic document data hiding technique using inter-character space. In Proc. of The
1998 IEEE Asia-Pacific Conference on Circuits and Systems, IEEE APCCAS 1998, pages 419-422, Chiangmai,
Thailand, 1998.

7. N. Chotikakamthorn, Document image data hiding techniques using character spacing width sequence coding,
Proc. IEEE Intl. Conf. Image Processing, Japan, 1999.

8. G. Gupta, J. Pieprzyk, and H.X. Wang, An attack-localizing watermarking scheme for natural language docu-
ments. Proceedings of the 2006 ACM Symposium on Information, computer and communications security. Taipei,
Taiwan, 2006.

9. H. Ji, J. Sook, and H. Young, A new digital watermarking for text document images using diagonal profile. In
Proc. of Second IEEE Pacific Rim Conference on Multimedia, PCM 2001. LNCS, volume 2195, pages 748 -,
Beijing, China. Springer-Verlag, Heidelberg, 2001.

10. M.S. Kankanhalli and K.F. Hau, Watermarking of electronic text documents. Electronic Commerce Research,
2(1-2):169-187, 2002.

11

11. Y. Kim, K. Moon, and I. Oh, A text watermarking algorithm based on word classification and inter-word space
statistics. In Conference on Document Analysis and Recognition (ICDAR03), 1995.

12. V.I. Levenshtein, Binary codes capable of correcting deletions, insertions, and reversals. Dokl. Akad. Nauk SSSR
163 845–848 (Russian); translated as Soviet Physics Dokl. 10 1965 707–710.

13. S. Low, N. Maxemchuk, J. Brassil, and L. O’Gorman, Document marking and identification using both line and
word shifting. In Fourteenth Annual Joint Conference of the IEEE Computer and Communications Societies.
Bringing Information to People, INFOCOM 1995, volume 2, pages 853-860, Boston, USA, 1995.

14. K. Mahesh and S. Nirenburg, Meaning Representation for Knowledge Sharing in Practical Machine Translation.
Proe. the FLAIRS-96 Track on Information Interchange. Florida AI Research Symposium, 1996.

15. S. Nirenburg, Application-Oriented Computational Semantics. Computational Linguistics and Formal Semantics,
R. Johnson and M. Rosner (eds.), 1991.

16. B. Onyshkevych, An Ontological- Semantic Framework for Text Analysis. Ph.D. Diss., School of Computer
Science, Carnegie Mellon University. 1997.

17. X. Sun, G. Luo , and H. Huang, Component-based digital watermarking of Chinese texts, Proceedings of the 3rd
international conference on Information security, Shanghai, China, 2004.

18. M. Topkara, G. Riccardi, D. Hakkani-Tur, and M.J. Atallah, Natural Language Watermarking: Challenges in
Building a Practical System, Proceedings of the SPIE International Conference on Security, Steganography, and
Watermarking of Multimedia Contents, San Jose, CA, 2006.

19. M. Topkara, C. Taskiran, and E.J. Delp, Natural Language Watermarking, Proceedings of the SPIE International
Conference on Security, Steganography, and Watermarking of Multimedia Contents, San Jose, CA, 2005.

12

