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Abstract. In this paper we describe a novel attack method on product ciphers, the reflection attack.
The attack method exploits certain similarities among round functions which have not been utilized in
previous self similarity attacks. We give practical examples illustrating the power of the reflection attack
on several ciphers such as GOST, DEAL and some variants of DES and Magenta. Many interesting and
exceptional properties of the attack are also presented in these examples. In addition, we discuss new
design criteria that make product ciphers resistant to self similarity attacks and introduce a definition
of similarity degree.
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1 Introduction

Only two attack methods independent of round numbers have been discovered since the first attempt
by Grossman and Tuckerman in 1978 [12]: Slide attacks [6, 7] and related key attacks [3]. Both of
them exploit some degree of self similarity of round functions. In this paper, we introduce a novel
attack method, which we call the reflection attack1. This attack method is related to slide attacks
and related key attacks as it is also a kind of self similarity analysis. However, the principle is novel
and its assumptions are different from those in [6, 7] or in [3]. Therefore, it is applicable to some
ciphers resistant to previous self similarity attacks.

The reflection attack exploits similarities of some round functions of encryption process with
those of decryption. The main principle behind the attack consists of exploiting a biased distribution
of the fixed points, and extending these properties to the full cipher. The reflection attack works
especially well for ciphers containing involutions, since the fixed points of intermediate rounds are
likely extended to full cipher through the involutions.

The assumptions are weaker than those of previous self similarity attacks in some cases. In
consequence, reflection attacks are not limited to ciphers with simple key schedules. We give an
example for the cipher DEAL, which has a complicated key schedule. Certain weak keys of DEAL
are extracted.

We also apply the attack on GOST, 2K-DES (a variant of DES defined in [6]) and MagentaP2
(a new variant of Magenta which is expected to be stronger than Magenta itself). We introduce a
chosen plaintext attack on full-round GOST. The attack works on approximately 2224 keys and its
complexity is 2192 steps with 232 chosen plaintexts. In addition, we introduce a known plaintext
attack on 30-round GOST. This attack works for any key. The key is recovered with 2224 steps
by using only 232 known plaintexts. In another example, we recover 2K-DES key faster than one
encryption step by using 233 known plaintexts. Moreover, we detect that certain classes of DEAL
keys are vulnerable to reflection attacks. Their numbers are 216, 280 and 288, and they can be
recovered in 272, 2136 and 2200 steps for 128-bit, 192-bit and 256-bit key lengths respectively. The

1 This should not be confused with the reflection attack on challenge response authentication protocols or distributed
reflection denial of service, which are subjects of different domains.



data complexity is around 266 known plaintext in all cases. Finally, we attack MagentaP2, a new
variant of Magenta which is a double encryption of Magenta including two more rounds. The
workloads are 264.8, 2131.1 and 2196 encryptions using 265, 265.6 and 266 known plaintexts for 128
bit, 192 bit and 256 bit key lengths respectively. Note that MagentaP2 is expected to resist any
analyses including the attack in [5] since its number of rounds is 2r+2 when Magenta has r rounds.

Reflection attacks have several interesting and unusual properties. We list some of them:

1. Weaknesses of round functions are not exploited in most cases. Hence, the attack works for any
round function in these cases. In this paper, we analyze four ciphers and we do not exploit any
weaknesses in their round functions.

2. The workload is independent of the number of rounds in some cases. For example, for all the
ciphers analyzed here, except DEAL, the workload is independent of the number of rounds.

3. It is quite unusual that in some cases, increasing the number of rounds may cause weakness in
terms of reflection analysis. Magenta is strong against reflection analysis. However, reflection
attack works quite well on MagentaP2.

4. It is realistic and open to generalizations. The reflection attack is realistic since it breaks actual
ciphers and generalization of its assumptions is possible. In this paper, the most trivial similarity
exploited is equality. We introduce a novel definition of similarity degree which generalizes
equality and also diffusion properties of functions. The attack can be applicable to more general
class of ciphers in this case.

5. In some cases, it is more powerful than previous self similarity analyses in terms of both com-
plexity and assumptions. We reduce the complexity of the attack in [6] mounted on 2K-DES.
Furthermore, the assumptions are much weaker. If 32 different round keys were used in 2K-DES
by repeating in reversing order, then the reflection attack would still work whereas slide attacks
[6, 7] would possibly fail. In addition, MagentaP2 is expected to resist to all known attacks in-
cluding previous self similarity attacks. Moreover, the reflection attacks on GOST are the best
known attacks so far. These examples exhibit the power of the reflection attack.

6. It is extraordinary for modern ciphers that a component of a cipher designed in order to resist
against an attack causes weakness that could be exploited in some other attacks. We give an
interesting example: The twist in the order of round keys in last eight rounds of GOST thwarts
slide attacks [7]. Existence of the twist is discussed in [7] and it is concluded that GOST is less
secure without it. In contrast, it is amazing that the known plaintext reflection attack exploits
twist property of GOST. If the twist were canceled, the reflection attack would probably not
work.

7. Unlike previous self similarity attacks, it is possible to mount reflection attack on ciphers having
strong and complicated key schedules. As an illustration, we show existence of weak keys in
DEAL.

This paper is organized as follows. We introduce notations and summarize previous self similarity
analyses given in [6, 7] and in [3] in Section 2. The fundamental idea of reflection attacks and general
statements are given in Section 3, including the assumptions and description of typical attack on
Feistel networks. In the following four sections, we give attack examples on four different ciphers.
In Section 8, we generalize the attack idea and introduce a definition of self similarity degree of
two functions. This new definition can be considered as a generalization of several diffusion criteria
such as those given in [13, 33, 28, 31, 24]. Then, several questions related to exploiting more general
forms of self similarity follow. Finally, we impose two new security criteria. One of them is about
key schedule and the other is on block length.



2 Notations and Previous Self Similarity Analyses

Let EK : GF (2)n → GF (2)n be an encryption function defined by a key material K and DK :
GF (2)n → GF (2)n be its inverse mapping. Assume that EK is a composition of some functions:

EK(x) = Fkr
Fkr−1

· · ·Fk1
(x), x ∈ GF (2)n,

where r is the number of rounds, k1, ..., kr are subkeys (round keys) and Fki
is the i-th round

function. Define the composite of j − i + 1 functions FK [i, j] starting from i as

FK [i, j] = Fkj
· · ·Fki

for 1 ≤ i < j ≤ r (1)

and as identity map for i > j. Such functions can be called intermediate functions. Let UK(i, j) be
the set of fixed points of the function FK [i, j]. More explicitly,

UK(i, j) = {x ∈ GF (2)n : FK [i, j](x) = x}.

We use these notations throughout the paper.
One of the generic attack methods that exploits some degree of self similarity is the slide attack

[6, 7]. The typical slide attack can be applied if the sequence of round keys has a short period, such
as 1, 2 or 4. For instance, if all the round keys are equal, ki = K, then the encryption function will
be EK(x) = F r

K(x) = y. Let FK(x) = x′. Encrypting x′ we have EK(x′) = y′. Then, from these
two encryptions we obtain two equations which are probably much easier to solve: FK(x) = x′ and
FK(y) = y′. Such (x, x′) pairs are called slid pairs. The laborious part of the attack is to identify
slid pairs. This basic attack can be generalized if the period of sequence of round keys is 2 (i.e.,
ki = ki+2) or 4 (i.e., ki = ki+4) [7].

Related key attacks proposed by Biham [3] are based on a powerful assumption that the attacker
knows a relation between several keys and can access encryption function with these related keys.
The goal is to find the keys . The most basic type of relation defined over a pair of keys is that the
i-th subkey of one is equal to the (i + 1)-th subkey of the other.

3 Description of The Basic Attack

The reflection attack makes use of high level self similarity. We compose a new function whose
output matches that of encryption function on a large subset of input space by exploiting a biased
distribution of fixed points of a properly chosen intermediate function and by extending its prop-
erties through certain involutions. The following statement plays a crucial role in the basic attack.
Moreover, we illustrate the principle in the statement in Figure 1.

Lemma 1. Let i, j be given such that 0 < j − i < i + j ≤ r. Assume that Fki−t
= F−1

kj+t
for all

t : 1 < t < i. If FK [i − t, i − 1](x) ∈ UK(i, j), then x ∈ UK(i − t, j + t) for all t : 1 < t < i. In

addition, if x ∈ UK(i − t, j + t) for some t : 1 < t < i, then FK [i − t, i − 1](x) ∈ UK(i, j).

Proof. Assume that FK [i − t, i − 1](x) ∈ UK(i, j). Then we have

FK [i − t, j + t](x) = FK [j + 1, j + t] · FK [i, j] · FK [i − t, i − 1](x)

= FK [j + 1, j + t] · FK [i − t, i − 1](x), since FK [i − t, i − 1](x) ∈ UK(i, j),

= x, since Fki−t
= F−1

kj+t
for all t : 1 < t < i.



Fki−t
Fki−2

Fki−1 FK [i, j] Fkj+1
Fkj+2

Fkj+t

PtP2P1P0P0P1P2Pt

FK [i − 2, j + 2]

FK [i − t, j + t]

Fig. 1. The reflection property given in Lemma 1. The fixed point, P0, of the intermediate function FK [i, j] is extended
to the fixed point, Pt, of FK [i − t, j + t] through the involutions.

Hence x ∈ UK(i− t, j + t). On the contrary, assume that x ∈ UK(i− t, j + t) for some t : 1 < t < i.
Then the input of FK [i, j] is FK [i − t, i − 1](x) and the output of FK [i, j] is F−1

K [j + 1, j + t](x).
However, F−1

K [j +1, j + t] = FK [i− t, i− 1] since we assume that Fki−t
= F−1

kj+t
. Hence, FK [i− t, i−

1](x) ∈ UK(i, j). ⊓⊔

One immediate result can be deduced from Lemma 1 by taking the parameter t as i − 1:

Corollary 1. Assumptions in Lemma 1 imply that x ∈ UK(1, j+i−1) if and only if FK [1, i−1](x) ∈
UK(i, j).

Another corollary can lay the groundwork for an attack on product ciphers whose some round
functions in encryption equal some round functions in decryption:

Corollary 2. Let i, j be given such that 0 < j − i < i + j ≤ r. Assume that we have Fki−t
= F−1

kj+t

for all t : 1 < t < i. Then the encryption function EK is equal to the function FK [i + j, r] on the

set F−1
K [1, i − 1](UK(i, j)).

Proof. The set F−1
K [1, i− 1](UK(i, j)) is equal to UK(1, j + i− 1) by Lemma 1. On the other hand,

we have FK [1, j + i − 1](x) = x for x ∈ UK(1, j + i − 1) by definition. Thus,

EK(x) = Fkr
· · ·Fk1

(x) = FK [i + j, r] · FK [1, i + j − 1](x) = FK [i + j, r](x).

⊓⊔

Corollary 2 states that there exists another function which equals to encryption function on some
special subset of the encryption space. This function is probably much weaker then the encryption
function since its number of rounds may be much less than r. Then, the attack below can recover
the round keys ki+j , ..., kr by solving the system of equations

FK [i + j, r](x) = EK(x) = y. (2)

This is a typical reflection attack. There are three main parameters which specify the complexity
of the attack:

1. m: The number of required pairs (x, y) to solve Equation 2. By solving, we mean a unique
solution if all the m equations are correct and a contradiction (no solution) otherwise.

2. |UK(i, j)|: The cardinality of UK(i, j).



3. Pr(FK [1, i − 1](x) ∈ UK(i, j) |EK (x)): The probability that FK [1, i − 1](x) is in UK(i, j) given
EK(x).

The probability that FK [1, i − 1](x) is in UK(i, j) is |UK(i,j)|
2n for randomly chosen x. However,

for given particular values of EK(x), the probability may be much greater or less than |UK(i,j)|
2n

depending on the structure of a cipher. This structure is crucial in determining time complexity.
We have observed that some conditional probabilities are extremely large for some recent ciphers
and have successfully mounted reflection attack by exploiting this deviation. For example, the
probability Pr(FK [1, i−1](x) ∈ UK(i, j) |EK (x)) is one half for 2K-DES. We give the details in the
next section.

Theorem 1. Assume that we need m pairs to solve Equation 2 and let C be the time, the number of

encryptions, required for solving it. Then the attack recovering the round keys ki+j, ..., kr has a data

complexity of m·2n

|UK(i,j)| known plaintexts. Assume the probabilities Pr(FK [1, i](x) ∈ UK(i, j) |EK (x))

are pre-calculated and the greatest ℓ probabilities are chosen among m·2n

|UK(i,j)| plaintexts so that

ℓ
∑

s=1

Pr(FK [1, i](xs) ∈ UK(i, j) |EK (xs)) ≈ m. (3)

Then the attack has time complexity bounded above by
( ℓ
m

)

· C encryptions.

Proof. We need m elements of F−1
K [1, i− 1](UK(i, j)) for solving Equation 2. The expected number

of elements of F−1
K [1, i − 1](UK(i, j)) among randomly chosen t plaintexts is t · |UK(i,j)|

2n . So, t
should be approximately m·2n

|UK(i,j)| to get about m elements of F−1
K [1, i−1](UK (i, j)). Each plaintext

ciphertext pair gives an equation like Equation 2. However, only approximately m of them are
correct equations. One might try all the plaintexts for solving Equation 2 exhaustively. However,
if Pr(FK [1, i](x) ∈ UK(i, j) |EK (x)) are large enough for some x, then it is more likely that the
corresponding equations are correct. Choose ℓ plaintexts, x1, ..., xℓ such that Equation 3 holds. Then,
the expected number of correct equations is m among these ℓ equations. The correct equation set
can be obtained by trying all subsets of m elements of {x1, ..., xℓ}. Since the search should be sorted
according to the probabilities of subsets, we get an upper bound,

( ℓ
m

)

· C, for time complexity. ⊓⊔

Let us note that false alarm probability is disregarded in the theorem since we assume that the
solution set is empty if at least one of the equations is incorrect.

Remark 1. In this section, we give only the general idea of the attack. This is a general description
and open to straightforward improvements in some special examples. For instance, the attack
is explained only for encryption function. One may repeat the attack for decryption function and
improve the complexity. In addition, the success of the attack depends on the number of fixed points
of chosen intermediate function. This function does not have to be composite of some consecutive
rounds. For instance, it seems that it is appropriate to take the intermediate function as 1.5 rounds
in Feistel ciphers (including two swaps) since 1.5 rounds have many fixed points.

3.1 Reflection Attack on Feistel Network

Let a plaintext x ∈ GF (2)n be given as x = (x0, x1);x0, x1 ∈ GF (2)n/2. The Feistel structure can
be stated as a recursive function defined as xi = Rki−1

(xi−1)⊕xi−2 with the initial conditions given



by x = (x0, x1). The function R : GF (2)n/2 → GF (2)n/2 is the encryption function and ⊕ is the
“XOR” operation. The i-th round operation is defined as

(xi, xi+1) = Fki
(xi−1, xi) = (xi, Rki

(xi) ⊕ xi−1) (4)

for i < r. In general, the swap operation is excluded in the last round and (xr+1, xr) is the corre-
sponding ciphertext. With some abuse of terminology, R is also called the round function. We call
the stream x0, x1, ..., xr , xr+1 the encryption stream of x = (x0, x1) with respect to K.

Proposition 1 ([9]). For a given natural number m < r, assume that km−i = km+i, ∀i : 1 ≤ i ≤
min{r − m,m − 1}. Let x = (x0, x1) be encrypted and x0, x1, ..., xr , xr+1 be its encryption stream.

If Rkm
(xm) = 0 then xm−i = xm+i, ∀i : 1 ≤ i ≤ min{r − m,m − 1}. Conversely, if xm−i = xm+i

and xm−i+1 = xm+i−1 for some i then Rkm
(xm) = 0.

Proposition 1 had already been known during the studies on cycle structures of DES (see [9,
26]). Hence, the notion of the fixed points of the weak keys of DES is well known. However, the
studies were focused on algebraic properties of DES permutations and their short cycles rather
than developing a key recovery attack [9, 26, 17, 25]. The following corollary points out the opposite
direction of this old phenomenon.

Corollary 3. Assume that each round key ki determines a round function Rki
randomly. Let x =

(x0, x1) be encrypted and x0, x1, ..., xr , xr+1 be its encryption stream. Assume the round number

r is even, r = 2r′, and kr′−i = kr′+i ∀i : 1 ≤ i < r′. Then, Pr(x0 = xr) = 2−
n
2
+1 − 2−n and

Pr(Rkr′
(xr′) = 0 |x0 = xr) = 1

2−2−
n
2
.

Proof. Assume that the round function is random. Then, the probability that x0 = xr is given as

Pr(x0 = xr) = 1 · 2−n/2 + 2−n/2(1 − 2−n/2) = 2−
n
2
+1 − 2−n since it is equal to

Pr(x0 = xr |Rkr′
(xr′) = 0)Pr(Rkr′

(xr′) = 0) + Pr(x0 = xr |Rkr′
(xr′) 6= 0)Pr(Rkr′

(xr′) 6= 0).

On the other hand, Pr(x0 = xr |Rkr′
(xr′) = 0) = 1 by Proposition 1. Hence, we conclude that

Pr(Rkr′
(xr′) = 0 |x0 = xr) =

Pr(x0 = xr |Rkr′
(xr′) = 0) · Pr(Rkr′

(xr′) = 0)

Pr(x0 = xr)
=

2−
n
2

2−
n
2
+1 − 2−n

.

⊓⊔

Theorem 2. Assumptions are as in Corollary 3. Then the equality x0 = xr implies that the fol-

lowing equation is true with probability 1

2−2−
n
2
.

x1 = Rkr
(xr) ⊕ xr+1. (5)

Proof. Assume that x0 = xr. Then by Corollary 3, we have Rkr′
(xr′) = 0 with probability

1

2−2−
n
2
.Thus the equality x1 = xr−1 is true with probability 1

2−2−
n
2

by Proposition 1. On the

other hand xr+1 = Rkr
(xr) ⊕ xr−1. Thus, the probability that x1 = Rkr

(xr) ⊕ xr+1 is 1

2−2−
n
2
. ⊓⊔



Reflection Attack on Feistels. Note that the parameters in Theorem 2 are all public except the
last round key. (x0, x1) forms the plaintext and (xr+1, xr) forms the corresponding ciphertext. So,
Theorem 2 leads to a straightforward attack: Encrypt plaintexts and collect those such that x0 = xr.
If the round keys satisfy that k r

2
−i = k r

2
+i, then the corresponding equations, x1 = Rkr

(xr)⊕xr+1,
are correct with probability nearly one half for the collected plaintexts by Theorem 2. Most probably,
these equations are easy to solve. Solving them recovers the last round key. One may apply the
attack several times with properly chosen parameters or use key schedule for recovering the main
key.

4 Cryptanalysis of 2K-DES

2K-DES is one of the modified DES examples given in [6]. 2K-DES uses two independent 48 bit
keys K1 and K2 and has no key schedule. K1 is used in the odd rounds and K2 is used in the even
rounds. The total number of rounds is 64. It is most likely that 2K-DES resists to the conventional
differential [4] and linear attacks [23] due to its increased number of rounds. Biryukov and Wagner
have proposed a slide attack with complexity independent of the number of rounds [6]. The attack
uses 232 known plaintexts and its time complexity is 250 2K-DES encryptions.

Observe that k32−i = k32+i and k33−i = k33+i for i = 1, ..., 31 (note that this condition is weaker
than that of slide attack in [6]). Hence, one can apply reflection attack to both encryption function
and decryption function.

We need to find one plaintext x = (x0, x1) satisfying x64 = x0 and another plaintext x′ = (x′
0, x

′
1)

satisfying x′
65 = x′

1. The former gives the equation x1 = RK2
(x64) ⊕ x65 and the latter gives x′

64 =
RK1

(x′
1)⊕x′

0 . Each equation is true with probability nearly one half and one needs approximately
232 known plaintexts to get approximately four equations by Theorem 2. Two equations deduced
from x64 = x0 will give at most 217 candidates for K2 whereas other two equations deduced from
x′

65 = x′
1 will give at most 217 candidates for K1. One may get the correct K1 and the correct K2

by searching over these solution sets exhaustively. It costs 234 2K-DES encryptions. As a result the
reflection attack on 2K-DES uses 232 known plaintexts and recovers the keys in 234 steps.

It is obvious that the attack can be improved further by increasing the amount of plaintexts. If
we use 233 plaintexts, then we expect four equations for each key and two of them to be correct.
It is most likely that two correct equations out of four give a unique solution and we get no
solution for any other two equations. Hence, the time complexity is 2 ·

(4
2

)

·C by Theorem 1 where
C = 2/64 = 2−5 encryption. Therefore, time complexity will be less than one.

5 Cryptanalysis of GOST

GOST, the Russian encryption standard [32], is a 32 round 64 bit Feistel network with 256 bit key.
It has a simple key schedule: 256 bit key is divided into eight 32 bit words k0, ..., k7 and the sequence
of round keys is given as k0, ..., k7, k0, ..., k7, k0, ..., k7, k7, k6, ..., k1, k0. The round key is included by
modular addition in the round function. We do not consider details of the round function. We only
assume that it is bijective.

There is no known attack better than exhaustive search. A related key differential cryptanalysis
is shown in [19]. The attack is impractical for properly chosen S-boxes with not too bad difference
distributions. A slide attack has been mounted on 20 round GOST⊕, a variant of GOST defined in
[7]. This attack uses 233 known texts and 265 memory space with 270 encryptions. Another related



key differential attack given in [29] has been mounted on 21 round GOST and it has data complexity
as 256 chosen plaintexts. A recent related key differential attack is mounted on GOST in [20], by
developing the idea of Seki and Kaneko in [29]. The attack is on full-round GOST and recovers 12
bits of the key with 235 chosen plaintexts and 236 steps. However, the attack is based on a powerful
assumption that the attacker knows that the two related keys differ in only eight specific bits.

Denote the first eight rounds of GOST as FK [1, 8]. Note that, FK [1, 8] ends with a swap oper-
ation. Then, the GOST encryption function is given as

EK(x) = F−1
K [1, 8] · S · F 3

K [1, 8](x)

where S is the swap operation of the Feistel network. We mount two reflection attacks on GOST.
The former is a chosen plaintext attack on full-round GOST and it is successful if the key has
certain properties. The number of such keys is roughly 2224. The latter attack is a known plaintext
attack on 30-round GOST.

5.1 Chosen Plaintext Attack on Full-Round GOST

Assume that there exists a fixed point of the function FK [1, 8] whose left half is equal to its right
half. That is, assume ∃ x such that x is a fixed point of both FK [1, 8] and S: FK [1, 8](x) = x
and S(x) = x. Then, x is also a fixed point of the encryption function EK . This plain observation
leads to the following attack: Encrypt all the 232 plaintexts whose left halves equal their right
halves and collect the fixed points in a set, say U . If U is empty, then the attack is not applicable.
Otherwise, for any x in U , solve the equation FK [1, 8](x) = x for K. Note that there are 2192

solutions and each of the solutions may be obtained by guessing k0, k1, ..., k5 and then determining
k6 and k7. Guessing k0, k1, ..., k5, we construct a two-round Feistel network with unknown keys k6

and k7 and an input/output pair given as (FK [1, 6](x), x). Then, solving the system for k6 and k7

is straightforward since the round functions,Fk6
and Fk7

, are bijective and we know their outputs.
Reversing Fk6

and Fk7
, we obtain the inputs and then k6 and k7. Consequently, we obtain 2192

candidates for the key by solving FK [1, 8](x) = x. We recover the correct key by searching over all
the candidates by roughly 2192 encryptions. We solve FK [1, 8](x) = x for each x ∈ U . However, it is
most likely that U is empty if there exists no fixed point of FK [1, 8] with equal halves. On the other
hand, the number of keys satisfying that ∃ x such that FK [1, 8](x) = x and S(x) = x is roughly
2224. Because, the expected number of fixed points is one (see appendix) and the probability that
any arbitrary value is a fixed point of S is 2−32.

5.2 Known Plaintext Attack on 30-Round GOST

Consider 30-round GOST by eliminating first two rounds. Then, the encryption function, E
(30)
K , is

given as

E
(30)
K (x) = F−1

K [1, 8] · S · F 2
K [1, 8] · FK [3, 8](x).

Recall that S has 232 fixed points and they are all the vectors whose left halves equal their right
halves. Take S as the intermediate function. Then, F−1

K [1, 8] · S · FK [1, 8] has also 232 fixed points
by Lemma 1. Therefore, if we encrypt 232 arbitrary plaintexts, then we expect that one of the
ciphertexts is a fixed point of F−1

K [1, 8] ·S ·FK [1, 8]. Assume that y is a fixed point of F−1
K [1, 8] · S ·

FK [1, 8] and x is the corresponding plaintext. Then, we have E
(30)
K (x) = y = FK [1, 8] · FK [3, 8](x).

Solve the equation, y = FK [1, 8] · FK [3, 8](x) for K. Note that the equation has 2192 solutions.



Guessing the subkeys, k2, k3, ..., k7, we obtain a two-round Feistel network with keys k0 and k1, and
an input/output pair given as (FK [3, 8](x), F−1

K [3, 8](y)). Then, as in the case of chosen ciphertext
attack, recover k0 and k1 by reversing the round functions. Then, one immediate check is whether
y is a fixed point of F−1

K [1, 8] · S · FK [1, 8] by checking FK [1, 8](y) has equal halves. All the 232

plaintext/ciphertext pairs are checked and we expect that one of the ciphertexts is a fixed point
and hence the corresponding equation, y = FK [1, 8] · FK [3, 8](x), is correct. Then, the correct key
will be among the 2192 candidates. In conclusion, we recover the key with at most 2224 encryptions
by using only 232 known plaintexts.

Remark 2. It is believed that GOST is less secure without the twist in the order of round keys. In
[7], it is concluded that the twist of GOST hinders the slide attacks. However, it is surprising that
reflection attack exploits this twist property.

6 Weak Keys of DEAL

DEAL is a 128 bit block cipher designed by Knudsen [21] and submitted for the AES contest. It is
a Feistel network and accepts three different key sizes, namely 128-bit (for 6 rounds), 192-bit (for
6 rounds) and 256-bit (for 8 rounds). DEAL makes use of DES as its round function.

There are some impractical attacks against DEAL. The attack by Knudsen [21] is a meet-in-
the-middle attack and requires unrealistically many chosen plaintexts and unrealistic amount of
memory. In [22], Lucks uses similar techniques and mounts chosen ciphertext attack on DEAL. A
trade-off is given between the number of plaintext/ciphertext pairs and the time complexity. In
[18], Kelsey and Schneier discuss the existence of equivalent keys and mount a related key attack.
All the attacks require memory and we will not discuss about their workloads.

We mount the reflection attack on DEAL when the key satisfies some conditions . We briefly
describe DEAL and explain the attack for 128 bit key-length. The attacks are quite similar for the
other cases of key lengths. DEAL-128 uses 128 bit key K, divided into two 64-bit parts as K1 and
K2. The six round keys, RK1, ..., RK6, are computed by using DES as RKi = EC(K(i mod 2)+1 ⊕

RKi−1 ⊕ si) where E is the DES encryption, C is a 56-bit public constant used as a DES key in
the key schedule and RK0 = 0. Here si’s are 64-bit constants. Only 56 bits of each RKi is used in
the i-th round of DEAL which we denote RED(RKi) (reduction of RKi to 56 bits). Note that the
final round ends with a swap.

Assume that RED(RK2) = RED(RK6) and RED(RK3) = RED(RK5). The probability that
these equalities hold is roughly 2−112. In this case, the last five rounds of DEAL has 264 fixed points
(without the last swap). Applying the reflection attack similar to 2K-DES, we obtain around eight
equations for the first round encryption by collecting the plaintexts whose left parts are equal to
the left parts of their corresponding cipher texts among 266 known plaintexts. This will be enough
to decide that the equalities RED(RK2) = RED(RK6) and RED(RK3) = RED(RK5) hold since
otherwise, we would expect around four plaintexts whose left parts are equal to the left parts of
their corresponding cipher texts.

Four of the eight equalities are expected to come from fixed points. Hence, we can recover 56
bits of RK1 by making search over all possible values of RED(RK1) and checking whether around
four of the equations, ERK1

(x) = y, hold. Recovering 56 bits of RK1 yields 56- bit information
about the first 64 bit part of the main key, K1. The remaining unknown key bits may be obtained by
applying several attacks on 5-round DEAL (see [21, 22]). However, the simplest way is just making
search on remaining bits. So, the time complexity is around 272 steps.



We have the same data complexity for DEAL-192 and DEAL-256. On the other hand, the
time complexities are around 2136 and 2200 steps respectively (this is the complexity of searching
remaining bits after recovering 56 bits of a key). Note that we have three equalities instead of two
when the key length is 256 bits. Hence, the probability that the equalities hold is roughly 2−168 in
this case.

7 Cryptanalysis of MagentaP2

Magenta is a block cipher submitted for the AES contest by Deutsche Telekom AG [16]. It is a
Feistel cipher with 128 bit block size and 128, 192 or 256 bit key sizes. In this section we give a high
level description of Magenta and construct a distinguisher for the whole cipher. This distinguisher
does not assist key recovering. We modify Magenta and call it MagentaP2 (meaning Magenta Plus
2). MagentaP2 is double encryption of Magenta plus two more rounds. The modified Magenta is
expected to be more secure then Magenta against most of the attack methods including the attack
in [5] on Magenta. However, it is surprising that MagentaP2 is weaker than Magenta itself in terms
of reflection attacks.

We give a short description of Magenta. We do not enter into details of round function since
we do not exploit it in cryptanalysis. When the key length of Magenta is of 128, 192 or 256 bits
then it is divided into two, three or four equal parts as (K1,K2), (K1,K2,K3) or (K1,K2,K3,K4)
respectively. The encryption functions are

EK =











FK1
FK1

FK2
FK2

FK1
FK1

if key size is 128,
FK1

FK2
FK3

FK3
FK2

FK1
if key size is 192,

FK1
FK2

FK3
FK4

FK4
FK3

FK2
FK1

if key size is 256.

Each round function FKi
is defined as

FKi
: GF (2)128 −→ GF (2)128

FKi
(x, y) = (y,RKi

(y) ⊕ x). (6)

Magenta was cryptanalyzed during the AES conferences by Biham et. al. [5] and hence elimi-
nated. The attack is a divide and conquer type attack. One can extract the outer keys, independently
from the inner key. The complexity is 2lk−31 encryptions for a known plaintext attack where lk is
the key length.

7.1 Description of MagentaP2 and Reflection Attack

Define an intermediate function

IKi
: GF (2)128 −→ GF (2)128

IKi
(x, y) = (RKi

(RKi
(y) ⊕ x) ⊕ y,RKi

(y) ⊕ x). (7)

The function IKi
is indeed two rounds of encryption with key Ki such that the second swap is

ignored: IKi
is FKi

FKi
without the last swap. We use this function as the intermediate function. It

has many fixed points:

Lemma 2. The function IKi
has 264 fixed points.



Proof. The fixed points of the function IKi
are those (x, y) ∈ GF (2)128 such that

x = RKi
(RKi

(y) ⊕ x) ⊕ y and y = RKi
(y) ⊕ x. (8)

These are the same equations and the points (RKi
(y) ⊕ y, y) are fixed points of IKi

∀y ∈ GF (2)64.
⊓⊔

The modified Magenta, called MagentaP2 is a double encryption of Magenta including two

more rounds. Let E
(M)
K and E

(MP2)
K denote the encryption functions of Magenta and MagentaP2,

respectively. Then MagentaP2 encryption is defined as

E
(MP2)
K (x) = F(Kt≪m)E

(M)
K E

(M)
K FKt(x) (9)

where F is the round function of Magenta and

Kt =











K2 if key size is 128,
K2 ⊕ K3 if key size is 192,
K2 ⊕ K3 ⊕ K4 if key size is 256.

≪m is cyclic rotation to left by m bits where m can be chosen any positive integer less then 64.
The new cipher depends on m but we call all the ciphers simply as “MagentaP2” by abuse of
terminology.

The intermediate function of MagentaP2 chosen as

IK1
(x, y) = (RK1

(RK1
(y) ⊕ x) ⊕ y,RK1

(y) ⊕ x) (10)

also has 264 fixed points by Lemma 2. If the first half of a plaintext is equal to first half of its
corresponding ciphertext through encryption of Magenta, then the other halves are also equal with
probability nearly one half by Theorem 2. This distinguisher does not depend on the number of
Magenta encryptions.

The reflection attack on MagentaP2 is to get an equation similar to Equation 5 and solve it to
extract the subkey Kt. The following proposition leads to a reflection attack on MagentaP2.

Proposition 2. Assume that Magenta is a random function. Let a plaintext x = (x0, x1) be en-

crypted by MagentaP2 and the ciphertext y = (y0, y1) be obtained. Assume that x1 = y1. Then x
and y satisfy the equation

RKt(x1) ⊕ RKt≪m
(y1) = x0 ⊕ y0. (11)

with probability 1
2−2−64 .

Proof. Observe that the equations RKt(x1)⊕RKt≪m
(y1) = x0⊕y0 and x1 = y1 together come from

a fixed point (RKt(x1) ⊕ x0, x1) of double encryption Magenta function E
(M)
K E

(M)
K . We have the

equality of probabilities:

Pr(FKt(x) is fixed point |x1 = y1) =
Pr(FKt(x) is fixed point)

Pr(x1 = y1)

since Pr(x1 = y1 |FKt(x) is fixed point) = 1. On the other hand, Pr(x1 = y1) = 2−63 − 2−128 by
Theorem 2 and the result follows.

⊓⊔



Equation 11 leads to a divide and conquer type attack that can be mounted on MagentaP2.
Encrypt a plaintext x = (x0, x1) and obtain the corresponding ciphertext y = (y0, y1). If x1 = y1

then Equation 11 is satisfied for x and y with probability nearly one half. Solve the equation and
extract the subkey Kt and then recover the remaining key bits by searching exhaustively. Let the
key length be 64 · i for i = 2, 3, 4. Then by using i · 264 plaintexts we obtain approximately 2i
equations of the form Equation 11 and expect half of them to be correct by Proposition 2. By
collecting the subsets of i equations and solving them we obtain a unique solution for Kt. Note
that false alarm probability is almost zero since the probability that a false key is a solution of all
the i equations is 2−64i. The time complexity of recovering Kt is

(2i
i

)

i·264i−63

r by Theorem 1 where
r is the number of rounds, namely 14 or 18 depending on the key size. The remaining key material
(i.e., K1) can be deduced by exhaustive search. As a result, one can recover the key by 264.78, 2131.1

and 2196.96 encryptions using 265, 265.58 and 266 known plaintexts for 128 bit, 192 bit and 256 bit
key lengths respectively.

Remark 3. The algorithm Magenta is doubled in the modified version. Indeed, the number of Ma-
genta encryption does not affect the attack complexity. Therefore, one may use triple or more
Magenta encryptions. Still, the attack will work. It is also interesting that other self similarity
attack methods whose complexities are independent of round number, such as related key attacks
or slide attacks probably do not work for MagentaP2.

8 Generalization and Questions

We give a novel definition which can be considered as a benchmark for similarity degree.

Definition 1. Let F1, F2 : GF (2)n → GF (2)m be two functions. Then F1 and F2 are called similar

of degree (d1, d2) with probability p if the number of ordered pairs (x, x′) ∈ GF (2)n × GF (2)n

satisfying

HW (x ⊕ x′) ≤ n − d1 ⇒ HW (F1(x) ⊕ F2(x
′)) ≤ m − d2

is p · 2n ·
∑n−d1

i=0

(n
i

)

where HW () is the Hamming Weight of binary vectors 2.

This definition generalizes the equality of functions. Two functions are equal if and only if they are
similar of full degree with probability one. Note that this is also a generalization of several criteria
on diffusion of a single function such as those in [13, 33, 28, 31, 24]. A function F is self similar
(similar to itself) of degree (d1, d2) with probability p means changing n− d1 or less number of bits
of an input would cause a change of at most n−d2 bits of its corresponding output with probability
p.

Likewise, we can generalize the notion of fixed points of a function in the following definition:

Definition 2. Let F : GF (2)n → GF (2)n be a function. The points x ∈ GF (2)n satisfying HW (x⊕
F (x)) ≤ d are called semi-fixed points of degree d.

Remark that semi-fixed points of degree d are also semi-fixed points of degree d′ for d ≤ d′.

The assumptions of Lemma 1 can be extended by using the definitions of similarity and semi-
fixed notions. Thus, we can obtain a statement with generalized assumptions. However, the corre-
sponding reflection attack may be much weaker since similarity probability is expected to diminish

2 This notion may be considered as a generalization of Lipschitz condition.



at each iteration. On the other hand, similarity may be high with high probability in some subsets
of a key space which leads to a weak key space with respect to reflection attacks.

The most interesting generalization of the reflection attack may be combining the attack with
several statistical attack methods such as differential attacks and linear attacks. Another interesting
question is whether reflection attacks can be mounted on SPN structures or stream ciphers.

9 New Security Criteria

Some security criteria have been imposed on lengths of parameters of a stream cipher such as IV
length [15] and internal state size [1, 11]. The corresponding criterion on block ciphers is that block
length should be at least as large as key length if it is operated in a stream mode in order to supply
resistance to tradeoff attacks. This is necessary also against distinguishing attacks. Besides, observe
that relatively much smaller block length of GOST is also exploited in the reflection attack.

We illustrate some examples supporting that assumptions about the independence of round
functions in the security proofs given in [30, 2] are not only sufficient but also necessary. The
functions producing round keys can be tested whether they are similar of degree (d1, d2) with
large d1 and d2 as a “pseudo-independence” test. Some classifications of key schedules have been
proposed in [8, 14] according to independence degree of round keys. It was argued that AES key
schedule was surprisingly poor and a new key schedule was proposed for AES in [14]. A poor key
schedule has round key producing functions which are highly similar (similar of high degree) with
high probability. For instance, the key scheduling process of Blowfish is complex (see [?]) but, some
self similarity attacks work in some special cases [6]. This is due to high degree of similarity of the
functions producing round keys even though these functions themselves are highly complicated and
nonlinear.
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A Fixed Points of Random Permutations

Let π ∈ Sn be a random permutation (a permutation chosen randomly from the set of permutations)
of the symmetric group Sn. Then the probability that it is a derangement (a permutation having
no fixed point) is given by the formula

n
∑

i=0

(−1)i

i!
≈

1

e
. (12)

This formula comes from an example of the inclusion exclusion principle which gives the number
of derangements:

D(n) =
n
∑

i=2

(

n

i

)

(−1)i(n − i)!. (13)



One immediate consequence is that the probability that a random function has a fixed point is
approximately e−1

e ≈ 0.6321. One can count the number of permutations having at least two fixed
points by a similar argument and can get

n
∑

i=2

(

n

i

)

(−1)i(i − 1)(n − i)! (14)

and the probability that it has at least two fixed points is

n
∑

i=2

(−1)i(i − 1)

i!
≈ 26.42%. (15)

Similarly, the probability that a random permutation has more than two fixed points is 8.03%. So,
if a permutation has fixed points, then the most probable number of fixed points is 1 or 2 (with
probability 87.3%). Indeed, a random permutation of length not smaller than m, on the average,
contains 1

m cycles of length m. So, the average number of fixed points is one and if we exclude
derangements, then the average will be 1/0.6321 ≈ 1.58. See [27] for details on fixed points.


