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Abstract

An elliptic curve random number generator (ECRNG) has been approved in a NIST stan-
dards and proposed for ANSI and SECG draft standards. This paper proves that, if three
conjectures are true, then the ECRNG is secure. The three conjectures are hardness of the
elliptic curve decisional Diffie-Hellman problem and the hardness of two newer problems, the
x-logarithm problem and the truncated point problem.

The x-logarithm problem is shown to be hard if the decisional Diffie-Hellman problem is
hard, although the reduction is not tight. The truncated point problem is shown to be solvable
when the minimum amount of bits allowed in NIST standards are truncated, thereby making it
insecure for applications such as stream ciphers. Nevertheless, it is argued that for nonce and
key generation this distinguishability is harmless.
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1 Introduction

Certain random number generator (RNG) algorithms, such as the Blum-Micali [BM84] and Kaliski
[Kal86] generators, have been proven secure — assuming the conjectured hardness of associated
number-theoretic problems. Recently, a new random number generator has been undergoing stan-
dardization (see [BK06, Joh04, Bar07, Sta06]). In this paper, this new generator is called the
Elliptic Curve Random Number Generator (ECRNG). Like Kaliski’s generator, the ECRNG is
based on elliptic curves and is adapted from the Blum-Micali generator. Compared to many other
number-theoretic RNGs, the ECRNG is considerably more efficient, because it outputs more bits
per number-theoretic operation. The ECRNG is different from the Kaliski RNG in two major
respects:

• The ECRNG uses ordinary elliptic curves, not the supersingular elliptic curves of Kaliski
RNG. Supersingular curves can make the state transition function a permutation, which is
advantageous for making the Blum-Micali proof work, but is disadvantageous because of
the Menezes-Okamoto-Vanstone (MOV) attack, which requires a larger curve to make the
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proof give a useful assurance.1 For ordinary curves, the state transition function is many-
to-one, often two-to-one. This paper adapts the Blum-Micali proof by introducing the x-
logarithm problem to overcome the obstacle introduced by state transition function not being
a permutation.

• The ECRNG produces at each state update an output with almost as many bits as in the
x-coordinate of an elliptic curve point, whereas the Kaliski ECRNG outputs just a single bit.
Therefore the ECRNG is considerably more efficient than the Kaliski RNG if operated over
the same elliptic curve. The Kaliski RNG outputs a single bit that is a hardcore predicate
for the elliptic curve discrete logarithm problem (ECRNG). The ECRNG output function
essentially uses a conjectured hardcore function of the ECDLP. The basis of this conjecture
is the elliptic curve DDHP, and the TPP.

This paper proves that ECRNG is secure if the following problems are hard:

• The elliptic curve version of the well known decisional Diffie-Hellman problem (DDHP). The
DDHP for certain groups is now widely accepted. These groups includes most nearly prime
order elliptic curve groups defined over finite fields, such as the NIST curves. Boneh [Bon98]
gives an excellent survey about the DDHP.

• The x-logarithm problem (XLP): a new problem, which is, given an elliptic curve point,
determine whether its discrete logarithm is congruent to the x-coordinate of an elliptic curve
point. The XLP is discussed further in §5. We provide some evidence that the XLP is almost
as hard as the DDHP. The evidence takes the form of loose reduction between a related
problem, the AXLP and the DDHP.

• The truncated point problem (TPP): a new problem, which is, given a bit string of a certain
length, determine whether it is obtain by truncating the x-coordinate of a random elliptic
curve point. The TPP concerns extraction of pseudorandom bits from random elliptic curve
points. El Mahassni and Shparlinski [MS02] give some results about extraction of pseudo-
random bits from elliptic curve points. Gürel [Gür05] also gives some results, although with
fewer bits extracted than in the ECRNG. We discuss the TPP in §7. We find that if too few
bits are truncated, then the result is distinguishable from a random bit string. Schoenmakers
and Sidorenko [SS06] independently found a similar result.

Naor and Reingold [NR97] constructed pseudorandom functions secure as the hardness of the
DDHP, while Gertner and Malkin constructed such a pseudorandom number generator based on
the same assumption. Farashahi, Schoenmakers and Sidorenko [FSS06] recently constructions pseu-
dorandom number generators following a modified version of the ECRNG, which are secure as the
DDHP over certain groups.

This paper does not attempt to analyze the various issues surrounding entropy of the secret
state of the RNG. Prediction resistance is the ability of RNG to add additional entropy into the
secret state to recover completely from a circumstance where an adversary has information about
the previous state. Initialization and prediction resistance are general RNG issues, and indeed
the standards specifying the ECRNG do not treat the ECRNG especially different from other
RNGs with respect initialization and prediction resistance. This paper deliberately restricts itself
to ECRNG specific issues.

1This is not to say that MOV attack could be applied against the Kaliski RNG for smaller sized curves.
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2 The Elliptic Curve Random Number Generator

Let Fq be a finite field with q elements. An elliptic curve E over Fq is defined by a nonsingular
cubic polynomial in two variables x and y with coefficients in Fq. This paper considers only cubics
in a specially reduced Weierstrass form

E(x, y) = y2 + cxy − (x3 + ax1+c + b) = 0 (1)

where c = 1− q + 2bq/2c, since these are most often used in cryptography, and particularly in the
ECRNG. We define the rational points of the curve to be

E(Fq) = {(x, y) ∈ F2
q : E(x, y) = 0} ∪ {0}. (2)

An addition law is defined on E(Fq) using the well-known chord-and-tangent law. For example,
(u, v)+(x, y) = (w, z) is computed as follows. Form a line through (u, v) and (x, y), which intersects
the curve E(x, y) = 0 in three points, namely (u, v), (x, y) and some third point (w,−z), which
defines the desired sum by negating the ordinate.

In the ECRNG, and in elliptic curve cryptography more generally, one defines some base point
P on the curve. One assumes that P has prime order n in the elliptic curve group, so that nP = 0.
Generally, the number of points in E(Fq) is hn, where the cofactor h is usually quite small, typically
with h ∈ {1, 2, 4}. We say that a point Q is valid if it is an additive multiple of P . We will generally
only consider valid points in this paper, so when we say a random point, we mean a random valid
point.

The ECRNG maintains a state, which is an integer si ∈ [0,max{q − 1, n − 1}]. The iteration
index i increments upon each each output point of the ECRNG. The ECRNG is intended to be
initialized by choosing the initial state s0 uniformly at random from Z ∩ [0, n− 1].

For a point P = (x, y) ∈ E(Fq), we write x(P ) = x̄, where x̄ ∈ Z is obtained by taking the
bit representation of the x ∈ Fq and considering this is as the bit representation of an integer.
When q is prime, we essentially have x̄ = x, but when q is not a prime, the value of x̄ depends
on the representation used for the finite field Fq. (We may arbitrarily define x(0) = 0, but we
will encounter this case negligibly often in our analysis.) Therefore, to fully specify the ECRNG,
one needs to define a field representation, because the function x(·) has an important rôle in the
ECRNG, as we see below.

The ECRNG has another initialization parameter, which is a point Q. The point should ideally
be chosen at random, preferably verifiably at random, such as by deriving it from the output of
secure hash function or block cipher.

When the state is si, the (raw) output point is defined as

Ri = siQ. (3)

The actual output of the ECRNG applies further processing to Ri. The final output is ri = t(x(Ri)),
where t is a function that truncates certain bits from the bit string representation of an elliptic
curve point. The purpose of t is to convert the x-coordinate of a pseudorandom EC point to a
pseudorandom bit string.

After generating an output point Ri, the state is updated as

si+1 = x(siP ). (4)
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It is convenient to adopt the following notation. We define the prestate at iteration i + 1 as
Si+1 = siP . Note that si+1 = x(Si+1). We may think of the prestate being updated as

Si+2 = x(Si+1)P. (5)

The following notation for the ECRNG will be convenient. Let s0 be the initial state. We define
gm(Q, s0) = (R0, R1, . . . , Rm) inductively by

g0(Q, s0) = (s0Q) and gm(Q, s0) = (s0Q, gm−1(Q, x(s0P ))),

where we use the convention that a comma indicates concatenation of point sequences. We shall
continue to use this convention for the remainder of the paper.

3 Lemmas on Indistinguishability

Random variables X and Y are computationally indistinguishable if, given a sample value u that has
probability 1

2 of coming from X and 1
2 from Y , an adversary cannot distinguish2, with a feasible cost

of computation and reasonable success rate, whether u comes from X or from Y . Pseudorandomness
is indistinguishability from a uniform (equiprobable) distribution. Indistinguishability is a well
known notion in cryptology, but for completeness, this section introduces some general notation
and lemmas on indistinguishability that are convenient for the proofs of the main theorems.

We write X ∼ Y to indicate that random variables X and Y are indistinguishable. Where
needed, we write X

σ∼ Y to quantify the indistinguishability by some parameters σ, such as success
rate or computational cost. We write X ∼= Y when random variables X and Y are identically
distributed. Obviously, X ∼= Y implies X ∼ Y .

Intuitively, one expects indistinguishability (∼) to be an equivalence relation. Certainly, ∼ is
reflexive and symmetric, and more interestingly, it is transitive ([Lub96, Ex. 27], for example).
This is such a fundamental point it is worth repeating here.
Lemma 1. If X ∼ Y and Y ∼ Z, then X ∼ Z.

A second lemma, which one also intuitively expects, makes proofs cleaner through separating
complicated constructions from indistinguishability.
Lemma 2. If f is an efficiently computable function, and X ∼ Y , then f(X) ∼ f(Y ).

It is worth noting that the converse to this lemma does not necessarily hold: generally, f(X) ∼
f(Y ) does not imply X ∼ Y , with f a constant function as a trivial counterexample. Nontrivial
counterexamples exist too, such as f being a bijection whose inverse is not efficiently computable.

A third lemma, which one again intuitively expects, allows one to analyze distributions by
analyzing independent components.
Lemma 3. If X ∼ Y and W ∼ Z, and X and W are independent variables, as are Y and Z, and
that X and Z can be efficiently sampled, then (X, W ) ∼ (Y, Z).

This lemma also applies under our notational convention that if X and Y are sequences, then
(X, Y ) is their concatenation.

2One might, like the first author once did, at first think that distinguishing between X and Y is the problem of
being given two values, one from X and one from Y and determining which is which. This kind of indistinguishability
(left-or-right) may be written as (X, Y ) ∼ (Y, X), and can easily be shown to be equivalent to X ∼ Y (real-or-fake).
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4 The Decisional Diffie-Hellman Problem

The decisional Diffie-Hellman problem (DDHP) for a given elliptic curve E and a base point P
is to distinguish between a triple (Q,R, S) = (qP, rP, qrP ) and a triple (Q,R, Z) = (qP, rP, zP )
where q, r, z are integer random variables uniformly distributed in the interval [0, n− 1]. (Note this
q is not to be confused with the field order.) The triple (Q,R, S) is often called a Diffie-Hellman
triple. For certain elliptic curves, it is conjectured that DDHP is a hard problem.
Conjecture 1. If q, r and z are independent random integers uniformly distributed in [0, n − 1],
then (qP, rP, qrP ) ∼ (qP, rP, zP ).

This provides a nontrivial counterexample to the converse to Lemma 2 because random variables
X = (q, r, qr) and Y = (q, r, z) are distinguishable, but if one applies the function f defined by
f(x, y, z) = (xP, yP, zP ), then the conjecture says f(X) ∼ f(Y ).

The conjectured hardness of the DDHP, for certain groups, is widely believed among cryptolo-
gists. One should be aware that for certain elliptic curves, however, there are efficiently computable
so-called pairings that can be used to distinguish Diffie-Hellman triples. Pairings exist for all ellip-
tic curves, but only for a very few are they known to be efficiently computable. For most elliptic
curves, one can verify that the known pairings are extremely inefficient and infeasible to use in
practice. This has been confirmed for most of the NIST recommended elliptic curves.

5 The x-Logarithm Problem

The x-Logarithm Problem (XLP) for elliptic curve E(Fq) and base point P is to distinguish between
dP and xP where: d is an integer chosen uniformly at random in [0, n − 1]; and x = x(Z) for a
point Z chosen uniformly at random in E(Fq). We conjecture that the x-logarithm problem is hard
for most elliptic curves:
Conjecture 2. If d and z are random integer uniformly distributed in the interval [0, n− 1], then
dP ∼ x(zP )P .

Now d and x = x(zP ) are generally distinguishable. Firstly, known tests on x quickly determine
whether there exists a y ∈ Fq such that (x, y) ∈ E(Fq). Secondly, when the cofactor h > 1, we
have x > n for at least about half of the x-coordinates x of random points, which is not true for d.
Therefore, this conjecture gives another counterexample to the converse of Lemma 2.

An intuitive reason for the plausibility of the XLP conjecture is that given public key dP , one
expects that nothing substantial is leaked about the private key d. This intuition derives from the
conjectured hardness of the elliptic curve discrete logarithm problem (ECDLP). However, a formal
argument that the ability to determine whether dP = x(zP )P for some z, implies an ability to find
d is not known to the authors. In fact, conceivably, the ECDLP could be hard, even though certain
information about the discrete logarithm, such as whether it is congruent to an x-coordinate, is
easily discernible.

Certain bits in the binary representation of the d have been shown by Kaliski [Kal86] to be as
hard to find as the whole of d. A bit of information with such a property is known as a hardcore
predicate for the ECDLP. Kaliski’s proof that certain bits of the binary representation of the discrete
logarithm are hardcore predicate works with a reduction, as follows. Given Q = dP , determine
from Q a bit of information about d. Then transform Q to some Q′ = d′P in such a way that
there is an known relation between d and d′, and d′ has one less bit of freedom than d. Next
determine a bit of information about d′, then d′′ and so on. The transformation is such that all bits
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of information learnt are independent and can be easily be reconstituted to learn d in its entirety.
What would be ideal to make Conjecture 2 into a theorem, would be another transformation

with comparable properties to Kaliski’s for determining the discrete logarithm d using an oracle
for solving the XLP. Instead we have the following result, which is not ideal in that it

1. is not a tight reduction,

2. concerns of harder variant of the XLP.

The Arbitrary-base x-Logarithm Problem (AXLP) for elliptic curve E(Fq) is to distinguish between
(P, dP ) and (P, xP ) where: d is an integer chosen uniformly at random in [0, n− 1]; and x = x(Z)
for point P and Z chosen uniformly at random in E(Fq). The distinction between the AXLP and
XLP is that in the XLP, the adversary needs only to succeed for fixed base P , whereas in the
AXLP, the adversary must succeed for any base P .

We may assume that the output of any adversary A against AXLP on input (P,Q) only depends
on logP Q, not on P or Q, and hence the quantities

fi = Pr[A(P, iP ) = 1] and f =
1
n

n−1∑
i=0

fi (6)

can be taken to be independent of P .
Lemma 4. For any adversary A against AXLP, there exists an adversary B against DDHP with
advantage

ε =
2
n

n−1∑
i=0

(fi − f)2. (7)

Proof. The idea is that for a DDH triple (Q,R, S), logP Q = logR S. If we run A with the pairs
(P,Q) and (R,S) as input, the output should be correlated. But if (Q,R, S) is a random triple,
the output should be uncorrelated.

Let B be the algorithm that on input of (Q,R, S) samples u and v uniformly at random from
0, 1, ..., n− 1, then runs A on (uP, uR) and (vQ, vS). If the outputs are equal, B outputs 1,
otherwise 0.

We compute the advantage of B in distinguishing DDH tuples from random tuples as ε =
|δ0 − δ1|, where δ0 is the probability that B outputs 1 on input of a DDH triple, and δ1 is the
probability that B outputs 1 on input of a random triple.

For a DDH triple, the two runs of A will have “essentially” the same input and the output will
be dependent. We need to deal with each possible logarithm separately and get

δ0 =
∑

i

(Pr[A(P, iP ) = 1]2 + Pr[A(P, iP ) = 0]2)/n

=
∑

i

(f2
i + (1− fi)2)/n

=
∑

i

(1 + 2f2
i − 2fi)/n.

(8)
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For a random triple, the two runs of A will be independent, and we get

δ1 = Pr[A(P, jP ) = 1 | j random]2 + Pr[A(P, jP ) = 0 | j random]2

= f2 + (1− f)2 = 1 + 2f2 − 2f

=
∑

i

(1 + 2f2 − 2fi)/n.
(9)

Summing up, we get

ε =

∣∣∣∣∣∑
i

(1 + 2f2
i − 2fi − (1 + 2f2 − 2fi))/n

∣∣∣∣∣
= (2/n)

∣∣∣∣∣∑
i

(f2
i − f2)

∣∣∣∣∣ = (2/n)
∑

i

(fi − f)2
(10)

which completes the proof.

We now need to show that this adversary against DDHP has a significant advantage if the
AXLP adversary has a significant advantage.

Let ai be the probability that the x-coordinate of a random point Z of order n is i modulo n,
that is

ai = Pr[x(Z) ≡ i (mod n) | Z random of order n]. (11)

The signed advantage of an adversary A against AXLP is

ε′ = Pr[A(P, iP ) = 1 | i = x(Z), Z random of order n]− Pr[A(P, iP ) = 1 | i random]

=
∑

i

Pr[A(P, iP ) = 1](ai − 1/n)

=
∑

i

fi(ai − 1/n).

(12)

Since
∑

i(ai − 1/n) = 0, we can write

ε′ =
∑

i

(fi − f)(ai − 1/n). (13)

Next, let t be the maximal number of points on a curve with the same x-coordinate modulo n.
(That is, t is at most twice the cofactor.) Then |ai − 1/n| 6 (t− 1)/n, or alternatively

|ai − 1/n| n

t− 1
6 1. (14)

Lemma 5. For any adversary A against AXLP, we have

2
n

∑
i

(fi − f)2 >
2

t− 1
(ε′)2, (15)

where fi, f , t and ε′ are as defined above.
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Proof. We multiply each term in the sum with ((ai − 1/n) n/(t− 1))2 6 1, getting

2
n

∑
i

(fi − f)2 >
2

(t− 1)2
1
n

∑
i

(fi − f)2(ai − 1/n)2n2 = µ. (16)

Using the fact that the average sum of squares is greater than the square of the average (Jensen’s
inequality applied to z 7→ z2), we get that

µ >
2

(t− 1)2

(∑
i

1
n

(fi − f)(ai − 1/n)n

)2

=
2

(t− 1)2
(ε′)2, (17)

which concludes the proof.

Theorem 6. If the DDHP is hard and the cofactor is small, then the AXLP is hard.

Proof. If there exists an adversary A against AXLP with advantage |ε′|, then by Lemma 4 and 5
there exists an adversary against DDHP with advantage

ε >
2

(t− 1)2
(ε′)2. (18)

If |ε′| is non-negligible and the cofactor (and hence t) is small, then ε is non-negligible.

This reduction is not tight. If |ε′| ≈ 1
2 and the cofactor is 1, then ε ≈ 1

2 . On the the other
hand, if |ε′| ≈ 2−40, then ε ≈ 2−80. It may be the case that a feasible distinguisher for the DDHP
exists with this advantage, in which case an efficient distinguisher for the AXLP with advantage
2−40 could not be ruled out.

In practice, the bound given by t is not sharp. For the cofactor two NIST curves, one can prove
that for almost all d ∈ [0, n−1], at most one of d and d+n can be the x-coordinate of a valid point.
This is because a valid x-coordinate has a certain trace, and in trinomial or pentanomial basis
representation, the trace depends on a few bits of the x-coordinate including the least significant
bit. From this we see that t = 2 would work. For cofactor four curves, we only have a heuristic
estimate for t, which presumably could be confirmed (or denied) by further analysis.

The advantage of B in the proof above can possibly be increased by also comparing A’s run
on (T, V ) and (U,W ) and other such pairings, although one does not expect a significant increase
compared to increased runtime.

Because the AXLP appears to be a hard problem, it seems quite reasonable to conjecture that
the XLP is also a hard problem. It should be noted that the hardness of the XLP suggests that
the output of the ECRNG, before truncation, is suitable to use for the generation of an ECC
private key. One would conjecture that it would therefore be just as sensible to concatenate enough
output of the properly truncated ECRNG, and use these as a ECC private key, since presumably
truncation and concatenation should not decrease the security.

6 Security of the Raw ECRNG Outputs Points

The traditional notion of security for an RNG is that its output is indistinguishable from random.
We prove below in Theorem 7 that the raw output points of the ECRNG are indistinguishable from
random points, that they are pseudorandom as points. Furthermore, we prove that the points are
forward secure, as defined below.
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The following proof is not substantially different than the proof for the Blum-Micali generator
[BM84] or the Kaliski generator [Kal86]. However, unlike these generators, which used a hardcore
bit of the discrete logarithm, the ECRNG uses a hardcore function — as suggested, for example,
in [Gol01] — which yields greater efficiency provide that one accepts hardness of the corresponding
problem, the DDHP to ensure the function is hardcore. A second reason for providing the proof
anew here is that the state update transition function is not a permutation. This issue is addressed
via recourse to the hardness of the x-logarithm problem. Roughly speaking, hardness of the XLP
ensures that the state transition function is indistinguishable from a permutation.

In cryptology, forward secrecy refers to the following property: present secrets remain secret
into the future, even from an adversary who acquires all future secrets. So, in forward secrecy, the
secrecy of present secrets extends forward into the future indefinitely and without depending on
protection of some future secrets. Many key agreement schemes, and even some digital signature
schemes, claim forward secrecy. When implementing these schemes, one likely needs to ensure that
any RNGs used have forward secrecy too. In [Bar07, BK06], forward secrecy has been renamed3

backtracking resistance to convey the notion that an adversary cannot use future secret to backtrack
to present secrets.

To model forward secrecy, we let adversary see the latest prestate, but still it cannot distinguish
previous output points from random points.
Theorem 7. If the DDHP and XLP are hard, and Q,Z0, . . . , Zm, Zm+1 are independent and uni-
formly distributed random points, and s0 is a random integer uniformly distributed in [0, n − 1],
and gm(Q, s0) = (R0, . . . , Rm), with the next prestate of the ECRNG being Sm+1, then

(Q,R0, . . . , Rm, Sm+1) ∼ (Q,Z0, . . . , Zm, Zm+1). (19)

Proof. The case of m = 0 is to show (Q,R0, S1) ∼ (Q,Z0, Z1). This follows directly from hardness
of the DDHP. Assume by induction that

(Q,R0, . . . , Rm−1, Sm) ∼ (Q,Z0, . . . , Zm−1, Zm). (20)

The current outputs and prestate are given by

(Q,R0, . . . , Rm−1, Rm, Sm+1) = (Q,R0, . . . , Rm−1, x(Sm)Q, x(Sm)P ) (21)

Combining (20) and (21), we get

(Q,R0, . . . , Rm−1, Rm, Sm+1) ∼ (Q,Z0, . . . , Zm−1, x(Zm)Q, x(Zm)P ). (22)

Hardness of the XLP gives x(Zm)P ∼ Zm+1. Writing Q = qP , Lemma 2 gives

(Q,Z0, . . . , Zm−1, x(Zm)Q, x(Zm)P ) ∼ (qP, Z0, . . . , Zm−1, qZm+1, Zm+1). (23)

Hardness of the DDHP gives (qP, qZm+1, Zm+1) ∼ (Q,Zm, Zm+1) where Q = qP , so Lemma 3 gives

(qP, Z0, . . . , Zm−1, qZm+1, Zm+1) ∼ (Q,Z0, . . . , Zm−1, Zm, Zm+1). (24)

Lemma 1 on transitivity connects (22) to (23) to (24) to complete the inductive step, getting us
our desired result.

3Breaking precedent not only with wider usage in cryptology but also with other ANSI standards such as X9.42
and X9.62, which use forward secrecy.
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This proof makes essential use of Q being random. The reason for this is more than just to
make the proof work. If Q is not random, then it may be the case the adversary knows a d such
that dQ = P . Then dRi = dSi+1, so that such a distinguisher could immediately recover the secret
prestates from the output. Once the distinguisher gets the prestates, it can easily distinguish the
output from random. Therefore, it is generally preferable for Q to be chosen randomly, relative to
P .

Although Theorem 7 says that hardness of the DDHP is one of the sufficient conditions for
indistinguishability of the ECRNG output points, it is not at all clear whether or not hardness of
the DDHP is a necessary condition. It is clear that hardness of the computational Diffie-Hellman
problem (CDHP) is a necessary condition in that Si+1 is the Diffie-Hellman product of P and Ri

to the base Q.
Hardness of the XLP, however, is necessary for indistinguishability of the raw output points.

Output R1 = s1P = x(S1)Q, so distinguishing it from random Z1 is essentially the XLP. Distin-
guishing output Rj = x(Sj−1)P from random is almost the XLP except that Sj−1 is not necessarily
a random point. However, if distinguishing algorithm A is an XLP solver, then one heuristically
expects that A could distinguish Rj from a random point. Algorithm A would only fail if the Sj−1

were distributed with a bias such that A reports that x(Sj−1)P was not of the form x(Z)P for
some valid point Z. Therefore one cannot hope to strengthen Theorem 7 by replacing the hardness
of the XLP with a weaker yet still natural assumption. One could improve the result, however, by
proving the the XLP is as hard as some other problems, such as the DDHP or ECDLP.

7 Truncated Point Problem and Security of the Full ECRNG

For appropriate choice of truncation function t(·), we conjecture the following.
Conjecture 3. Let R be a random point and b a random bit string of length matching the output
length of t(·). Then t(x(R)) ∼ b.

We call the problem of distinguishing between t(x(R)) and b, the Truncated Point Problem
(TPP). This paper does not substantially address this conjecture, but rather uses to prove some-
thing about the final output ECRNG, rather than just its raw output points.
Theorem 8. If DDHP, XLP and TTP are hard, then the ECRNG has forward secrecy.

Proof. Apply Theorem 7 to get that the raw outputs are indistinguishable. By the assumed hard-
ness of the TTP, each truncated point is indistinguishable from random bit strings. Apply the
lemmas as necessary and get that the ECRNG output bit strings are indistinguishable from ran-
dom bit strings, even from an adversary that gets to see the latest prestate.

Although hardness of the XLP is necessary for the raw output points to be pseudorandom, it
does not seem necessary for the full ECRNG output bit strings to be pseudorandom. Likewise,
hardness of the CDHP may not be necessary for security of the full ECRNG, even if it is necessary
for the indistinguishability of the raw output points. Truncation of the raw output points may
yield bit strings are that unusable even by an XLP distinguisher or a CDHP solver to distinguish
the ECRNG outputs.

We note that it is straight-forward to generalize the construction to any group G with suitable
maps x : G → Zn and t : G → {0, 1}l. If the corresponding DDHP, XLP and TTP problems are
hard, the generator will have forward secrecy. If the map x is a permutation, the XLP is trivially
hard.
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The proposed truncation function drops some number of the leftmost bits of the bit represen-
tation of the x-coordinate. The number of bits dropped is at least 13 + log2(h), where h is the
cofactor. The number of bits dropped must also be such that resulting length is a multiple of
eight. Current draft standards currently allows any number of bits to be dropped that meets these
conditions.

We consider if B ∼ t(x(R)) where R is a random point and B is a random bit string whose
output length l matches that of the truncation function. Let k be the number of bits truncated
from x(R), which has length m = k + l.

It is well-known that the advantage of any distinguisher is bounded above by the statistical
distance between the distributions B and t(x(R)), and that the optimal distinguisher has advantage
equal to the statistical distance. Let P (e) indicate the probability of an event e. Then the statistical
distance ∆ between B and t(x(R)) is by definition

∆ = ∆(B, t(x(R))) =
∑

b

|P (t(x(R)) = b)− P (B = b)| . (25)

The easier probability to compute is P (B = b) = 2−l because all 2l bit strings b are equally likely.
The other probability has theoretical formula given by P (t(x(R)) = n(b)

n , where n(b) is the number
of valid points R such that t(x(R)) = b. Note the n(b) is always even, if we ignore the negligibly
frequent case R = 0, because x(R) = x(−R). Also, as k bits of the x-coordinate are truncated, we
have 0 6 n(b)/2 6 2k. Let Bi be the number of b such that n(b) = 2i. Then

∆ =
2k∑
i=0

Bi

∣∣∣∣ in − 2−l

∣∣∣∣ . (26)

Now we make some heuristic assumptions. Assume that the set X of valid x-coordinates is a
random subset of bit strings of length k + l, such that each bit string belongs to X with probability
1/(2h), where h is the cofactor. Consider cofactor h = 1. Our first heuristic assumption implies Bi

has a binomial distribution, so its approximate expectation is:

E(Bi) ≈ 2l−2k

(
2k

i

)
, (27)

where E is not to be confused with the elliptic curve equation. This distribution is because there
are 2k bit strings of length k + l that truncate to a given bit string b of length l, and each of these
completions of b has probability 1

2 of belonging to X. Typically a few Bi may veer off considerably
from the expected value. Nevertheless, by linearity of expectation, we can substitute these expected
values into (25), getting expected statistical distance:

E(∆) ≈
2k∑
i=0

2l−2k

(
2k

i

) ∣∣∣∣ in − 2−l

∣∣∣∣ . (28)

Take the approximation n ≈ 2l+k−1, to get a second heuristic assumption that i
n ≈ i

2k+l−1 . Pulling
a common factor through the sum gives

E(∆) ≈ 2−2k−k+1
2k∑
i=0

(
2k

i

) ∣∣∣i− 2k−1
∣∣∣ . (29)
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The terms with 0 6 i 6 2k−1 are identical to those with 2k > i > 2k−1, and the term with i = 2k−1

is zero, so we can eliminate the absolute value signs, getting

E(∆) ≈ 2−2k−k+2
2k−1∑
i=0

(
2k

i

)(
2k−1 − i

)
. (30)

Using the general identity i
(
j
i

)
= j
(
j−1
i−1

)
, with a convention that

(
j−1
−1

)
= 0, gives

E(∆) ≈ 2−2k−k+2
2k−1∑
i=0

(
2k−1

(
2k

i

)
− 2k

(
2k − 1
i− 1

))
. (31)

Pulling out common factor 2k−1 from the sum and the general identity
(
j
i

)
=
(
j−1
i−1

)
+
(
j−1

i

)
gives

E(∆) ≈ 2−2k+1
2k−1∑
i=0

((
2k − 1

i

)
−
(

2k − 1
i− 1

))
. (32)

This summation telescopes, giving

E(∆) ≈ 2−2k+1

(
2k − 1
2k−1

)
(33)

For large even J , Stirling’s approximation gives a third heuristic assumption that
(

J
J/2

)
≈ 2J

√
2πJ

,

and clearly
(
J−1
J/2

)
= 1

2

(
J

J/2

)
. Applying this to (33) with J = 2k gives

E(∆) ≈ 1√
2π2k

(34)

as the heuristic value for the statistical distance. For k = 16, the heuristic for the expected statistical
distance is about 1

641 . Although this is just a heuristic, it may be prudent to pay the price of using
a larger k when a high degree of indistinguishability is desired. If only unpredictability is desired,
say if the ECRNG is used for nonces or keys, but not as one-time pads, then this may not be so
critical.

An optimal distinguisher can be constructed by computing n(b), which has a computational
cost of about 2k times the cost of validating a potential x-coordinate. If n(b)

n > 2−l report t(x(R)),
otherwise report B. Provided that k is small enough, then one heuristic expects that an efficient
distinguisher exists with advantage of about that given by (34).

Rather than making all these highly heuristic assumptions, one can also gather some empirical
data by sampling random B to infer an approximate distribution for n(B). The inferred distribution
can be used as estimates for the quantities Bi and thus the statistical distance ∆. An accurate
inference requires a large random sampling. In any case, the actual statistical distance ∆ may be
more, or may be less, than any given approximation.

One possibility for repairing the ECRNG is to use standard techniques for entropy extraction to
process the raw outputs. In order to increase the asymptotic output rate, one may want to extract
output from tuples of points instead of single points. This introduces a higher startup cost and
requires a buffer to hold the points, but this can be tolerated in many practical applications.
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A Unpredictability of the Next State from the Current Output

Unpredictability is a much weaker property than indistinguishability, but is also much more impor-
tant. If the ECRNG outputs are used as cryptographic keys, very little harm may come from them
being distinguishable. If they are predictable, however, then all may be lost. Indistinguishability
implies unpredictably, so in fact, we have already proven unpredictability.

The theorem below, however, proves a little bit of unpredictability under weaker, arguably more
accepted, conjectures, such as hardness of the CDHP instead of the hardness of the DDHP.
Theorem 9. If the CDHP and XLP are hard, and q and s0 are independent random integers
uniformly distributed in [0, n− 1], and gm(qP, s0) = (R0, . . . , Rm) and Q = qP , then an adversary
who gets to see only Q and Rm cannot compute the next prestate Sm+1.

Proof. Clearly S1 ∼ Z where Z = zP and z is a random integer uniformly distributed in [0, n− 1].
Indeed, s0

∼= z, so S1 = s0P ∼= zP = Z. Assume by induction that Sj−1 ∼ Z. Now Sj =
x(Sj−1)P ∼ x(Z)P ∼ Z, with the second indistinguishability flowing from the hardness of the
XLP. Therefore Sm+1 ∼ Z. Since q is independent of z, we have (Q,Sm+1) ∼ (Q,Z). Now
(Q,Rm) = (Q, qSm+1) ∼ (Q, qZ) ∼ (Q,Z), with the second indistinguishability flowing from Z
being able to absorb q by independence.

Suppose adversary A takes (Q,Rm) and outputs Sm+1 = q−1Rm. Then adversary can also take
(Q,Z) and output U = q−1Z, because otherwise A could distinguish (Q,Rm) from (Q,Z). Let
(X, Y ) = (xP, yP ) with x, y independent random integers uniformly distributed in [0, n − 1]. We
will use A to compute xyP . Pick a random integer u with the same distribution. Let U = uP .
Apply A to (X, U) to get V = x−1U = x−1uP . Let W = u−1V = x−1P = wP . Apply A to (W,Y )
to get w−1Y = (x−1)−1Y = xY = xyP , as desired. Because we assumed that CDHP is hard,
adversary A cannot find xyP , so we get a contradiction.

The simple proof techniques above do not seem to rule out an adversary who could use two
output points to find the next state, or one output point to find the next output point. The obstacle
in the first case seems to be that output points obey a relationship that needs to be simulated if we
wish to solve the CDHP. The obstacle in the second case is that the next output can be thought
of as a one-way function of the Diffie-Hellman product of public values, and we seem to need to
invert it to solve the CDHP.

B A Caution About the Truncated Point Problem for Binary
Curves

It should be noted that for the NIST recommended curves defined over the binary field F2409 ,
valid elliptic curve points have a fixed rightmost bit in their canonical representation. Therefore,
for the curves B-409 and K-409, the truncation function should also drop the rightmost bit. The
explanation for this phenomenon is that one of the conditions for a point to have the correct order
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can be characterized by the trace of the x-coordinate have a fixed value. The trace depends on
the field representation. For trinomial and pentanomial field representations, the trace simplifies
to a sum of just a few of the bits, the trace bits, in the representation. In all fields, the rightmost
bit is a trace bit. For the 409-bit field, the rightmost bit is the only trace bit. For the other four
NIST recommended binary fields, there is at least one trace bit among the leftmost truncated bits.
Consequently, the constant trace condition does not leak any information after truncation in these
cases.
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