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Abstract. Security and privacy in RFID systems is an important and active research area. A
number of challenges arise due to the extremely limited computational, storage and communica-
tion abilities of a typical RFID tag. This work describes two families of simple, inexpensive, and
untraceable identification protocols for RFID tags. The proposed protocols involve minimal inter-
action between a tag and a reader and place low computational burden on the tag, requiring only
a pseudo-random generator. They also impose low computational load on the back-end server.
The paper also describes a universally composable security model tuned for RFID applications.
By making specific setup, communication, and concurrency assumptions that are realistic in the
RFID application setting, we arrive at a model that guarantees strong security and availabil-
ity properties, while still permitting the design of practical RFID protocols. We show that our
protocols are provably secure within the new security model. The security supports, availability,
authentication, forward-secure anonymity and key exchange, and modularity. The last attribute
is most appropriate for ubiquitous applications.
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1 Introduction

While admittedly a new technology, radio-frequency identification devices (RFID)s have great potential
for business automation applications and as smart, mass-market, embedded devices. However, several
security and privacy concerns have been identified in connection with the use of RFIDs. In this paper,
we concentrate on the use of RFIDs as authentication devices. We start by elaborating on the significant
characteristics that distinguish RFID authentication models from general-purpose authentication.

– Lightweight. RFID authentication protocols must be lightweight. Many RFID platforms can only
implement highly optimized symmetric-key cryptographic techniques.

– Anonymity. General-purpose authentication protocols may or not have support for anonymity. On
the other hand, many proposed RFID applications typically require anonymity fundamentally, for
instance for devices embedded in human bodies or their clothes, documents, etc. So anonymity
should be considered a core requirement of RFID authentication protocols.

– Availability. RFID authentication protocols are not only vulnerable to classical attacks on authentication—
impersonation, man-in-the-middle, etc—but also to attacks that force the RFID device to assume
a state from which it can no longer successfully authenticate itself. Such vulnerabilities are often
exacerbated by the portable nature of RFID devices, allowing them to be manipulated at a distance
by covert readers.

– Forward-security. RFID devices may be discarded, are easily captured, and may be highly vulnerable
to side-channel attacks on the stored keys. Forward-security is important to guarantee the privacy
of past transactions if the long-term key or current session key are compromised.

– Concurrent Security. Current RFID devices support only sequential execution. However, overall
security system using RFIDs are nearly always highly concurrent.1 Therefore, it is important to

1 Indeed, commercialization of RFID systems emphasize the ability of readers to simultaneously identify multiple
devices (up to a few hundred/second) as an important economic factor that makes RFID deployment cost-
effective when compared with systems that scan barcodes.
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address security of the overall protocol (involving the RFIDs and other system entities) in concurrent
environments, where it is assumed that adversary can adaptively modify communications.

Our goals are to design authentication protocols that will be used as sub-protocols in ubiquitous
applications, or as standalone applications in combination with other applications. As such, we seek
to develop protocols that can be analyzed only once and then applied universally. In order to achieve
this, we adopt a specific approach to the formalization of protocol security know as the Universal
Composability (UC) framework. Protocols shown to be UC-secure remain secure under concurrent and
modular composition, and therefore are easily plugged into more complex protocols without requiring
security reassessment with each new use.

1.1 Universally Composable Security

UC security is based on notions of interactive indistinguishability of real from ideal protocol executions.
This approach requires the following components:

1. A mathematical model of real protocol executions. In this model, honest parties are represented
by probabilistic polynomial-time Turing machines (PPT) that correctly execute the protocol as
specified, and adversarial parties that can deviate from the protocol in an arbitrary fashion. The
adversarial parties are controlled by a single PPT adversary that (1) has full knowledge of the state of
adversarial parties, (2) can arbitrarily schedule the communication channels and activation periods
of all parties, both honest and adversarial, and (3) interacts with the environment in arbitrary ways,
in particular can eavesdrop on all communications.

2. An idealized model of protocol executions, where the security properties do not depend on the
correct use of cryptography, but instead on the behavior of an ideal functionality, a trusted party
that all parties may invoke to guarantee correct execution of particular protocol steps. The ideal-
world adversary is controlled by the ideal functionality, to reproduce as faithfully as possible the
behavior of the real adversary.

3. A proof that no environment can distinguish (with better than negligible accuracy) real- from ideal-
world protocol runs by observing the system behavior, including exchanged messages and outputs
computed by the parties (honest and adversarial). The proof works by translating real-world protocol
runs into the ideal world.

An important separation between theory and practice is efficiency. We design our protocols to min-
imize security overhead when the system is not under attack (optimistic behavior). Achieving this goal
together with availability and forward-security in a lightweight manner suitable for RFIDs is a nontrivial
task, as witnessed in the literature. (A review of prior work is provided in Section 2.)

Our contributions.

– A new UC authentication framework, that extends the model introduced in [9] to include anonymity
and forward-security, in Section 4.

– New protocols that provide for optimistic, forward-anonymous authentication and that guarantee
availability and minimize security overhead in the honest case, in Section 4.

– Lightweight implementation of the protocols in a wide-variety of RFID architectures by using only
PRGs, in Section 6.

– Featherweight PRG-based protocols that achieve identical security guarantees with a simpler ar-
chitecture under the assumption that the adversary has only time-limited opportunities to interact
with tags (“fly-by” attacks), in Section 7.

– Security proofs for the protocol families, in Sections 5, 6, and 7.
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Functionality Faauth

Faauth has session identifier sid and only admits messages with the same sid.

Upon receiving input Initiate from protocol party p : if party p is corrupted then ignore this message.
Else generate a unique subsession identification s, record init(s, p) and send init(s, type(p), active(p))
to the adversary.

Upon receiving message Accept(s, s′) from the adversary: if there are two records init(s, p)
and init(s′, p′) such that parties p and p′ are feasible partners, then remove these records, record
partner(s′, p′, s, p) and write output ACCEPT(p′) to party p. Else if there is a record partner(s, p, s′, p′)
then remove this record and write output ACCEPT(p′) to party p.

Upon receiving message Impersonate(s, p′) from the adversary: if there is a record init(s, p) and
party p′ is corrupted then remove this record and write output ACCEPT(p′) to p.

Upon receiving message Corrupt(s) from the adversary: if there is a record init(s, p) or
partner(s, p, s′, p′) such that p is corruptible then mark p as corrupted and remove state(p).

Fig. 1. Ideal anonymous authentication

2 Previous work

The need for lightweight security mechanisms in RFID applications does not imply that one can afford to
provide security under limited attack models, since attackers may have additional resources. For instance,
Green et al. [8] have shown how realistic, simple attacks can compromise tags that use encryption with
small keys—even though only brief interactions between attackers and the target tag ever take place—we
shall call such limited-interaction attacks fly-by attacks. Proposed protocols, some very ingenious [26],
and which moreover enjoy strong security properties under limited attack models [28] have been shown
to be vulnerable to man-in-the-middle-attacks [19] that could be implemented as fly-by attacks. Other
interesting protocols, such as YA-TRAP [37], use timestamps. While effective in reducing complexity, the
use of timestamps leaves the tags vulnerable to denial-of-service attacks that can permanently invalidate
the tags, as pointed out by G. Tsudik in [37].

The research literature in RFID security, including anonymous authentication protocols, is already
quite extensive and growing—for reference, a fairly comprehensive repository is available online at [2].
Here, we shall refrain from a comprehensive review and focus consideration on those works most directly
related to our construction. Ohkubo et al. [33] proposed a hash-based authentication protocol that bears
close resemblance to our protocols. However, the scheme in [33] is vulnerable to certain re-play attacks.
The proposed modifications in [3] address the replay-attack problem but does not consider the issue of
availability, and their scheme is vulnerable to attacks where the attacker forces an honest tag to fall out
of synchronization with the server so that it can no longer authenticate itself successfully. Dimitriou [18]
also proposes an anonymous RFID protocol vulnerable to desynchronization attacks against availability.

Another hash-based authentication protocol is introduced by Henrici et al. [23]. Their solution does
not provide full privacy guarantees, in particular, the tag is vulnerable to tracing when the attacker
interrupts the authentication protocol mid-way. Molnar et al. [31] propose a hash-tree based authenti-
cation scheme for RFIDs. However, the amount of computation required per tag is not constant, but
logarithmic with the number of tags in the hash-tree. Also, if a tag is lost, anonymity for the rest of
the hash-tree group may be compromised. Finally, the scheme does not provide for forward-anonymity.
A scheme by Juels [25] only provides security against “fly-by” attacks where the attacker is allowed to
interact with the tag for a fixed time budget but does not provide protection in the case of tag capture.

There is comparatively little work on RFID protocols where security is provided in a unified model
(for examples, see [1, 9]). Admittedly, in the RFID setting, one should be aggressive in making simpli-
fications to security models that are justified, as in such a constrained environment some tradeoffs are
needed in order to minimize the complexity and maximize the efficiency of the designed solution. One
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such restriction that we adopt is to prohibit tags from parallel execution of authentication protocols
(note that the prohibition does not extend to corrupt parties or non-tag entities). This restriction is
readily relaxed when tags use multiple separate keys for concurrent executions.

In this paper we articulate security models for anonymous RFID authentication and key exchange
protocols. These models extend the framework introduced in [9] in several ways. In particular, we
support session-key compromise and replacement, extending the model in that paper to key-exchange
protocols ([9] considers only authentication). Note that Juels and Weiss [27] propose an alternative
anonymity definition following a traditional adversary-game approach (i.e., without consideration for
composability issues).

The proposed model defines security in terms of indistinguishability between real and ideal protocol
simulations, an approach first outlined by Beaver [7, 6, 5], and extended by Canetti as the universal com-
posability framework [10–12]. A similar approach has also been pursued by Pfitzmann and Waidner [35,
36], under the name reactive systems. Several protocols have been proposed under the UC framework,
including authentication and key-exchange [15, 24, 14], zero-knowledge proofs [13, 16], and other cryp-
tographic primitives [29]. More recently, an RFID privacy-oriented protocol has been proven in the UC
setting [1].

3 UC formalization

As noted in Section 1.1, the UC model requires both a model of real protocol executions (familiar from
traditional Byzantine security models) as well as a model of ideal protocol executions. The real-world
model of protocol executions simply has the honest parties execute the protocol, while adversarial parties
are centrally controlled by an adversary. As in other Byzantine settings, all real-world parties, including
the adversary A, are probabilistic polynomial-time Turing machines (PPTs). The real-world adversary
can eavesdrop into and schedule all communication channels. It can moreover schedule the activation
order of parties.

In both the real and ideal world simulations, the adversary interacts with a PPT,2 the environment

Z . In the UC framework, the context of a protocol execution is captured by a session identifier sid.
The sid is controlled by Z , and reflects external aspects of execution, as for example, temporal and/or
locational issues, shared attributes and/or keys, etc. All parties involved in a protocol execution instance
share the same sid. In particular, the security proof cannot make any assumptions about extraneous
knowledge that may or not be available to Z through interactions with other entities (including other
instances of the protocol). The environment Z is the first party to become active in any simulation, and
it activates the adversary next. If the adversary (and all other parties) become inactive, control passes
to the environment. The adversary and Z may interact in arbitrary ways, and the real-world simulation
halts when the environment halts.

The ideal world, however, departs considerably from the real world, in that honest parties are con-
trolled by an ideal functionality. We now describe the ideal functionalities corresponding to forward-

secure anonymous authentication and forward-secure anonymous key exchange, respectively. We also
describe an extra functionality, that we call anonymous wireless communication. This last functionality
captures an (implicit) assumption in all protocols for anonymous RFID authentication, namely that the
RFID communication layers provide for anonymous communication channels. In the following, each of
these functionalities is described in detail.

Observe that the ideal functionality security is unconditional, and does not rely on any cryptograph-
ically primitives that are computationally secure. This is because, in the UC framework, the security
supports concurrent executions.
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Functionality Faake

Faake has session identifier sid and only admits messages with the same sid.

Upon receiving input Initiate from protocol party p : if party p is corrupted then ignore this message.
Else generate a unique subsession identification s, record init(s, p) and send init(s, type(p), active(p))
to the adversary.

Upon receiving message Accept(s, s′) from the adversary: if there are two records init(s, p) and
init(s′, p′) such that parties p and p′ are feasible partners, then remove these records, generate a random
key k, record partner(s′, p′, s, p, k) and write output ACCEPT(p′, k) to party p. Else if there is a record
partner(s, p, s′, p′, k) then remove this record and write output ACCEPT(p′, k) to party p.

Upon receiving message Impersonate(s, p′, k′) from the adversary: if there is a record init(s, p)
and party p′ is corrupted then remove this record, and write output ACCEPT(p′, k′) to p.

Upon receiving message Corrupt(s) from the adversary: if there is a record init(s, p) or
partner(s, p, s′, p′, k) such that p is corruptible then mark p as corrupted and remove state(p).

Fig. 2. Ideal anonymous authenticated key exchange

3.1 Anonymous Entity Authentication

Entity authentication is a process in which one party is assured of the identity of another party by
acquiring corroborative evidence. Anonymous authentication is a special type of entity authentication
where the identities of the communication parties remain private to third parties that may eavesdrop on
their communication or even invoke and interact with the parties. In the UC framework, it is captured
by the parties having ideal access to an anonymous entity authentication functionality, which we denote
by Faauth. This functionality is presented in Figure 1.

Parties There are two types of protocol parties, server and tag. In each session, there is a single instance
of a party of type server and arbitrarily many instances of type tag. The function type(p) returns the
type of party p in the current session. The UC entities, such as adversary A and the environment Z ,
are not parties per se, though the A may control several protocol parties.

Sessions A single session spans the complete life-time (simulation instance) of our authentication scheme.
It consists of many concurrent subsessions, which are initiated by protocol parties upon receiving input
Initiate from the environment Z . While the server and tags initiate subsessions, the adversary controls
the concurrency and interaction between these subsessions. Two protocol parties are feasible partners in
authentication if they are, respectively, a server and a tag. Upon successful completion of a subsession,
each party accepts its corresponding partner as authenticated. The environment Z may read the output
tapes of the tags and server at any moment during the session, which terminates when the environment
Z stops. The environment Z may contain many other sessions of arbitrary protocols, thus allowing our
protocol to start and run concurrently with arbitrary others. All parties involved in a subsession of the
authentication scheme are given a unique session identifier sid by the environment Z .

Authenticity Successful authentication in the real world is a result of sharing common secrets—one
party can corroborate the values produced by another as functions of the shared secrets. The choice
of authentication partners is decided by the real adversary, who has full control of the network. In the
ideal world, this is emulated by invocations of the command Accept, one for each partner. The true
identity of the partner is given to the authenticating parties, regardless of the action of the adversary.
This limits the adversary to invocation of the protocols and scheduling of the output of each party only.

2 While the UC framework can accommodate unconditional security settings, we focus on computational secu-
rity.
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Anonymity The only information revealed to the adversary by the functionality is the type of the party,
whether it is a tag or server. The difference between tag and server is observable since the real server
always starts the protocol.

Forward-security The real adversary may corrupt activated tags—the server is considered incorruptible—
obtaining keys and any persistent memory values. These may compromise the anonymity of the current
subsession and earlier incomplete ones by the same corrupted party. In order to corrupt a tag not ac-
tively running, the environment Z may request the tag to start a new subsession and then inform the
adversary to corrupt it.

The effect of corruption in the ideal world, via command Corrupt, is that the adversary can imper-
sonate corrupted tags, via Impersonate command. Upon corruption, the adversary may also link all
incomplete subsessions of the same party, up to the last successfully completed, through acquiring knowl-
edge of active(p)—the list of identifications of all preceding incomplete subsession, returned from the
functionality after a Initiate command. Once a subsession is successfully completed in the ideal world,
this subsession and all earlier subsessions of the same party are protected against all future corruptions
of any party. Therefore, the ideal world provides forward-security only for completed subsessions.

In the functionality, state(p) is the list of all subsession records maintained by the functionality
concerning party p in the current session. This list is removed from the memory of ideal functionality
up on corruption of the tag p, and effectively leaves control of the corrupted tag to the adversary. The
only information retained is the fact that p is corrupted.

Activation sequence In our protocols and functionalities, the receiving party of any message or subroutine
output is activated next. If no outgoing message or subroutine output is produced in the processing of
an incoming message, then by convention the environment Z is activated next.

3.2 Anonymous authenticated key-exchange

Functionality Fcom

Fcom has session identifier sid. It only admits messages with the same sid.

Upon receiving input Channel from party p: generate a unique channel identification c, a record
Channel(c, p) and write output c to and reactivate party p.

Upon receiving input Listen(c) from party p: if there is a record Channel(c, p) then record Listen(c, p)
and send message Listen(c) to the adversary.

Upon receiving input Broadcast(c, m) from party p: send message Broadcast(c, m) to the adversary.
Upon receiving message Deliver(c, m) from the adversary: if there is a record Listen(c, p) then

remove this record and write output m to and reactivate party p.

Fig. 3. Ideal anonymous communication

The functionality for anonymous key-exchange Faake is presented in Figure 2. This functionality is a
fairly straightforward extension of Faauth. Authentic keys are computed as an additional, private output
at the result of a successful subsession.

Faake is activated by an Initiate input from a party belonging to the session. The list of existing
subsessions since its last successfully completed subsession are released to the adversary via message
init(s, type(p), active(p)), where s is a newly created subsession identification. Faake also stores locally
the record init(s, p).
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Ideal adversary S

S simulates interactions between { bA, ŝerver, ctags,
bFcom} and between bA and Z as specified in Figures 3 and 5.

In addition, interactions between {ŝerver, ctags,
bFcom} and Z are emulated as follows:

Upon receiving init(s, server, list) from Faake:

Create a new subsession s for ŝerver and send init(s, server, list) to bA.
Upon receiving init(s, tag, list) from Faake:

Create a new tag subsession s on a new tag named ctags. If list is empty then generate a random key
(rs, k

a
s , kb

s), else copy the key from a subsession identified in list. Add the specified key (rs, k
a
s , kb

s) to

database bD using identity ctags. Send init(s, tag, list) to bA.

Upon ŝerver outputting ACCEPT(bp, k) during subsession s (bp ∈ bD):
If bp is corrupted then send Impersonate(s, bp, k) to ideal functionality Faake. Else let bp = ctags′ , generate
a record partner(s, s′) and send Accept(s, s′) to ideal functionality Faake.

Upon ctags′ outputting ACCEPT(ŝerver, k):

Remove ctags′ ’s key from database bD, lookup record partner(s, s′) and send Accept(s′, s) to ideal
functionality Faake.

Upon bA sending Corrupt to ctags′ :

Mark ctags′ as corrupted and store its key in bD permanently. In particular, instead of being regenerated,
the key is updated in future executions as normally specified by the protocol. Send message Corrupt(s′)
to ideal functionality Faake.

Fig. 4. The ideal adversary S for Faake

Corruption is as in the entity authentication functionality. It is achieved by the adversary invoking
the command Corrupt. Again, successful authenticated key exchange in the real world is a result of
sharing secrets. This is achieved in the ideal world by invocations of the command Accept by the ideal
adversary, one for each partner in the pair. This only succeeds if the two parties are both requesting
authentication. Successful subsessions result in each party accepting the partner’s true identity and
generating a shared subsession key.

As before, the adversary can impersonate parties in the ideal world by invoking the command
Impersonate, which only succeeds if the impersonated party is corrupted.

Session-key indistinguishability The anonymous authenticated key-exchange functionality Faake pro-
vides for session-key indistinguishability, in addition to all the security properties provided by Faauth.
More specifically, if the adversary were to be given either (i) a random value, or (ii) a recently exchanged
session key corresponding to a fresh authentication key, it could not distinguish the two cases. This is so
because Faake generates session keys at random when the authentication key is fresh—i.e., being used
for the first time since the last successful authentication session completed.

3.3 Wireless Communication

RFIDs are transponders that communicate in a wireless medium. In such a medium, communication has
the potential of being anonymous, as location, network topology, and routing strategies do not disclose
the identity of the communicating parties. Accordingly, our protocols require that only the type of a
communicating party–server or transponder (tag)—is revealed through the use of communication.

Any RFID security protocol that provides anonymity must assume the existence of anonymous chan-
nels. To model this requirement in the UC framework, we introduce the ideal anonymous communication
functionality Fcom (Figure 3). As the communication anonymity requirement applies to both the real
and idealized protocols, our description of the real protocol in Section 4 also makes use of Fcom.
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4 Protocols

In this section we define two novel optimistic RFID authentication protocols: O-FRAP and O-FRAKE.
Both protocols offer forward-anonymity, while requiring only minimal overhead when the system is not
under attack. Our protocols rely on a trusted setup and on the wireless communication functionality
described earlier.

These protocols are lightweight enough for RFID deployments, yet provide strong UC security and
therefore are suitable in other ubiquitous application contexts, such as sensor networks. The only restric-
tion is that the each component playing the role of a single tag must use separate keys when performing
parallel authentications/key-exchanges.

4.1 Trusted Setup and the Server Database

The following trusted setup is done in a physically secure environment. For each tag, a fresh, unique
key triple (r, ka, kb) is randomly generated and stored both at the tag and the server. The value r

is a one-time-use pseudonym for the tag that is used for optimistic key-retrieval. Value ka is the tag’s
authentication key (updated after each successful authentication), and kb is a secondary, communication
channel protection key that is re-computed after each successful authentication in the key-exchange
variant of the protocol.

The tag stores the key triple in its non-volatile (re-writable) memory, while the server initializes
a database D whose entries are of the form 〈i, previousi, currenti〉. At setup, previousi = (⊥,⊥,⊥),
while currenti = (ri, k

a
i , kb

i ). The server must maintains a pair of key triples for each tag to preserve
consistency though key updates in the presence of active adversaries: Since the server computes the
updated triple before the tag, an adversary could tamper with the communication channel and prevent
the tag from computing the updated key. During an authentication attempt by the tag i, the server
detects whether the tag is using previousi or currenti. If the tag uses currenti, the server will replace
previousi with currenti and currenti with a newly computed value. If the tag uses previousi instead,
then currenti is replaced with newly computed value, while previousi is preserved. This operation is
denoted D.update(i).

We assume that the database is (doubly) indexed by the values of the previous ri, denoted previousi(r),
and the current ri, denoted currenti(r). Therefore, database entries 〈i, previousi, currenti〉 can be effi-
ciently retrieved from either value. We denote this operation by D.retrieve(r).

4.2 RFID entity authentication

Our first protocol, O-FRAP, is an Optimistic Forward-secure RFID Authentication Protocol. In this
protocol, rsys and rtag are values generated pseudo-randomly by the server and the tag, respectively,
so as to anonymize the session and to prevent replays. The value rtag is generated pseudo-randomly for
optimistic identification of the tag. Value ka

tag is the tag’s current key and is updated by the server after
the tag is authenticated, and by the tag after the server is authenticated.

On activation by the server, the tag computes four values ν1, ν2, ν3, ν4 by applying the pseudo-
random function F to (ka

tag , rtag ||r
′

sys ). We use the following convention: If the sender writes the value
x to a channel, it is observed as x′ by the receiver. The value x′ may differ from x if corrupted by the
adversary while in transit.

In O-FRAP, ν1 is used to update the pseudo-random value rtag ; ν2 is used for authentication of
the tag; ν3 is used to authenticate the server; ν4 is used to update ka

tag . In our protocols we use the
following convention: the four values computed by the server by applying the pseudo-random function
F to (ka

j , r′tag‖rsys ) are denoted by ν∗

1 , ν∗

2 , ν∗

3 , ν∗

4 . When the adversary is passive, these values correspond

to the non-starred values. In particular ν∗

2 = ν′

2 and ν∗

3
′ = ν3, and the server and tag output ACCEPT.

Observe that the tag key ka
tag is updated after each server authentication, giving strong separation

properties between sessions. In particular, if a tag is compromised, it cannot be linked to transcripts of
earlier sessions. This guarantees forward-anonymity.
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Fig. 5. O-FRAP and O-FRAKE: Optimistic Forward-secure RFID tag Authentication and Authenticated Key
Exchange Protocols, respectively. O-FRAKE differs from O-FRAP only in the generation of an additional value

to be used as session key (shown inside a box )

Server(D) Tag(rtag , k
a
tag , kb

tag )

csys ← Fcom.Channel ctag ← Fcom.Channel

Fcom.Broadcast(csys , rsys)

rsys
-

r′sys ← Fcom.Listen(ctag)

ν ← F (ka
tag , rtag‖r

′

sys)

(ν1, ν2, ν3, ν4, ν5 )
parse
←− ν

(rtag , rtag)← (rtag , ν1)

Fcom.Broadcast(ctag , rtag‖ν2)

rtag‖ν2
�

(r′tag‖ν
′

2)← Fcom.Listen(csys)

if D.retrieve(r′tag) returns 〈i, previousi, currenti〉

SearchRange ← [i, i]

else

SearchRange ← [1, n]

endif

for j in SearchRange

and instance in {previous, current}

do

ν∗ ← F (instancej(k
a), r′tag ||rsys )

(ν∗

1 , ν∗

2 , ν∗

3 , ν∗

4 , ν∗

5 )
parse
←− ν∗

if ν′

2 = ν∗

2 then

output ACCEPT(tag(j), instancej(k
b) )

D.update(j)

Fcom. Broadcast(csys , ν
∗

3 )

ν∗

3
-

endif ν∗

3
′ ← Fcom.Listen(ctag)

enddo if ν3 = ν∗

3
′

then

output ACCEPT(server, kb
tag )

(ka
tag , kb

tag )← (ν4, ν5 )

endif

4.3 RFID authenticated key exchange

We next describe O-FRAKE, an Optimistic Forward-secure RFID Authenticated Key Exchange (AKE)
protocol—see Figure 5. The protocol is essentially the same as O-FRAP except that five random values
ν1, ν2, ν3, ν4, ν5 are generated by the pseudo-random function F . The output value kb

tag is an agreed
subsession key for securing the communication channel between the server and the tag, for example



10

to protect transmission of private information collected by the tag. Corruption or replacement of kb
tag

(either during the authentication protocol or during later use) is an attack on the exchanged key and has
no effect on the authentication key ka

tag . Furthermore, even if the adversary corrupts the tag, prior session
keys are protected and prior session transcripts are unlinkable. This enforces separation of sessions and
provides forward-anonymity, authenticity and secrecy.

5 Proof of security

Theorem 1. O-FRAP and O-FRAKE UC-securely implements the anonymous RFID authentication

and anonymous RFID authenticated key exchange ideal functionalities, respectively.

Proof. We shall prove the theorem for O-FRAKE. O-FRAP then follows similarly. Observe that if F

in the protocol is a true random function then the keys used in all fully completed tag subsessions
are uniformly random and mutually independent. This means that conversations in fully completed tag
subsessions are independently and identically distributed. The independence also holds for all subsessions
separated by at least a fully completed subsession, where the key is refreshed. Our simulation is as follows:

– Simulate a copy Â of the real adversary A, a copy ŝervers of the real server, a copy t̂ags of a real tag

for each tag subsession s and a copy F̂com of ideal functionality Fcom (Figure 3). Forward messages

among simulated parties {ŝerver, t̂ags, Â, F̂com} and also between Â and Z faithfully (Figure 5).

– The database D̂ of ŝerver contains persistent keys of corrupted tags and transient keys of active
tags. Keys are added to and removed from D̂ on demand.

– The secret key of t̂ags is copied from the immediately preceding incomplete subsession, if there is
one, or is randomly generated, if the immediately preceding incomplete subsession of the tag is fully
completed. This key is temporarily added to D̂ during simulation of the subsession s, and is removed
from D̂ after successful completion of the subsession s.

– If t̂ags is corrupted during the execution of subsession s then its key will be marked as corrupted

and will never be removed from D̂. This allows corrupted tags to be impersonated by the adversary
Â. In this case, the corrupted key is updated accordingly to the protocol after each successful
impersonation of t̂ags by Â.

– Emulate the externally visible part of the protocol, i.e., its interactions with Z . More specifically,
invoke Faake with messages Corrupt(s), Accept(s, s′) and Impersonate(s, p′), when the real-
world adversary corrupts a tag, forwards unmodified inputs between simulated tags and server, or
impersonates simulated tags, respectively.

We describe the simulations in Figure 4. It is straightforward to verify that if the following two
conditions hold then keys used in real executions and ideal simulations are statistically identical:

1. F is a truly random function.
2. Each verification done by the server succeeds with at most one key in the database.

Consequently, the real messages and the simulated messages are also statistically identical, i.e., the
real and ideal world simulations are identical. The first condition fails if F is distinguishable from true
random function. The second condition fails while the first holds if there are two keys that verify the
random challenge rsys and reply (rtag , ν2). For each given tag subsession, this happens with probability
at most n21−κ, where κ is the security parameter, i.e. the minimum bit length of rsys , rtag and ν2, and
n is total number of tags managed by this server. Therefore the probability that the second fails while
the first holds is at most nL21−κ, where L is the total number of tag subsessions. Since both conditions
fail with negligible probabilities (as functions of the security parameter κ), the real and ideal worlds are
computationally indistinguishable by the environment Z .
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The server and tags in our protocols are kept key-synchronized as follows. First, as the initiator of
the protocol, the server is always at most one step ahead of the tag in updating the key. Therefore,
if the server stores the previous value of the key until the new key value is observed in use by the
corresponding tag, the protocol will accommodate tags that fail to update their keys due to interference
by the adversary.

Session identifiers In our proof, we do not explicitly state the nature of the session identifier sid. We
now rectify this. In the protocol in Figure 5, the sid provided by the UC framework includes the tag
names and their corresponding keys ka

i . This guarantees that the server and the tag share the same
secret key in the same session. Without this trusted setup assumption, neither the the security nor the
functionality of our protocols is guaranteed.

Security reduction and concrete complexity A concrete security reduction must relate distinguishing real-
vs-ideal worlds to distinguishing pseudo-vs-true randomness. To accomplish this, faithfully simulate
the real world and use Z as the distinguisher. When a truly random function F is used in the real
simulation, we obtain exactly the ideal simulation, modulo a negligible probability event, namely that
the second condition in the proof of Theorem 1 fails when F is truly random. Therefore, the advantage
of distinguishing real from ideal is at most:

AdvF (nL, T + nL) + nL21−κ,

where AdvF (q, t) is the advantage of distinguishing F from a true random function by making at most
q queries to F and using at most t computational steps (execution time); L is the number of tag
subsessions; n is the number of tags; and T is the combined time complexity of the environment Z and
the adversary A.

6 Lightweight constructions

In this section we show how to achieve a very efficient, practical construction of O-FRAP and O-
FRAKE by using only a pseudo-random generator (PRG). Estimation of the hardware requirements of
a prototypical specification are of the order of 2000 gates.

6.1 Lite pseudo-random function families

We describe how to achieve a very efficient, practical construction of large-length output pseudo-random
function families. First, we design a large-length output pseudo-random function (PRF) from a fixed-
length output PRF and a PRG. Using ideas from [21] one can then implement the protocols by using a
PRG only. For the sake of completeness we include a proof of security of the lemma below.

Lemma 1. If PRG is a pseudo-random generator and PRF is a pseudo-random function then F =
PRG ◦ PRF is a pseudo-random function.

Proof. Let X , Y , W , and Z be efficiently sampleable domains and let PRF : X ×Y → W be a pseudo-
random function and PRG : W → Z be a pseudo-random generator. We show that F = PRG ◦ PRF :
X × Y → Z is a pseudo-random function. Indeed, let y1, y2, . . . , yn ∈ Y be distinct values and let
x ∈R X . We show that z = (F (x, y1), . . . , F (x, yn)) is indistinguishable from a random vector in Zn.
Notice that F (x, yi) = PRG(wi) where wi = PRF (x, yi). Since PRF is a pseudo-random function, the
vector w = (w1, . . . , wn) is pseudo-random in W n. This implies that z = (PRG(w1), . . . , PRG(wn)) is
indistinguishable from z

∗ = (PRG(w∗

1), . . . , PRG(w∗

n)), where w∗

1 , . . . , w
∗

n are randomly and indepen-
dently selected from W . By pseudo-randomness of the distribution of PRG(w∗

i ) and the multi-sample
indistinguishability theorem of Goldreich [20] and Yao [38], z

∗ is indistinguishable from a random vector
in Zn.
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6.2 Practical Implementation

For practical RFID implementations a very efficient hardware implementation of a PRG should be used.
In general a PRG can be implemented much more efficiently than a standard cryptographic pseudo-
random function. For instance, the shrinking generator3 of Coppersmith, Krawczyk, and Mansour [17]
can be implemented with fewer than 2000 gates with approximately 80-bit security [4], which is feasible
for a wide range of RFID architectures. The best known attacks on the shrinking generator are not
practical in this range of the security parameter [4]. Alternatively, other secure stream ciphers suitable
for constrained hardware architectures could be used—some candidates have been submitted to the
European eStream project [32]. However, designing such highly efficient stream ciphers remains chal-
lenging. For example, the proposed Grain [22] family of stream ciphers has recently been shown not to
achieve full security [30].4

Standard cryptographic constructions, such as those based on HMAC (with the extra property that
the cryptographic hash function in the construction should pseudo-random), or CBC-MAC with a block
cipher (for instance, AES) would require around 10-15K gates. These constructions are suitable only for
a narrow range of higher cost RFID tags. However, using our constructions, one obtains a full-fledged
implementation of the O-FRAP and O-FRAKE protocols using approximately 2000–3000 gates, which
covers a much wider range of RFID architectures.

7 Featherweight Authentication

In this section we consider a family of RFID authentication and key exchange protocols secure against
fly-by attacks, named A-TRAP after Optimistic “Absolutely” Trivial RFID Authentication Protocols,
to emphasize their minimalist structure and overhead. These protocols only require a PRG and a Time-

Delay Scheduler (TDS).
The TDS is a very simple hardware device that controls the time-delay between authentication

sessions. The time-delay is minimal, say t0, between complete authentication sessions—i.e., sessions
that terminate with the tag’s key update. After each incomplete session, the time delay is doubled. So,
after m successive incomplete sessions there will be a time-delay of 2mt0. The TDS is used to thwart
attacks in which the adversary triggers incomplete sessions to desynchronize the key updates of the
tag and the server. A limited number of time-delay doublings can be easily achieved using capacitors,
acquiring enough energy before running the protocol, and/or counters. During this delay, the whole tag
is powered down except for a counter and the clock rate is reduced to minimal, only enough to run the
counter. These have the potentials to extend the delay by few orders of magnitude.

7.1 A-TRAP

A-TRAP is a mutual RFID authentication protocol in which, the tag and the server exchange values
ν1, ν2, ν3, respectively, generated by the pseudo-random generator gtag—see Figure 6. The server checks
that the received value g′

tag is in its database D = {di,j}: if di,j = gtag
′ then it accepts the tag as

authentic. In this case it updates the i-th row of it directory D by: (a) discarding its first j entries, (b)
shifting the remaining entries to the front, and finally (c), filling the empty cells with the next j values

g
(1)
i , . . . , g

(j)
i extracted from the pseudo-random generator gi (see Figure 7). If the value g′

tag is not in
D then the tag is rejected. A variant of A-TRAP achieves authenticated key exchange by generating

3 Using the shrinking generator requires care (buffering) to avoid the introduction of vulnerabilities to timing
and side-channel attacks.

4 The attack succeeds in O(254) steps, while Grain promises 80-bit security. However, the attack requires con-
siderable amount (O(251) bits) of keystream (alternatively, plaintext/ ciphertext pairs), an unrealistic amount
of data in the context of RFID applications.
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Fig. 6. A-TRAP: an Absolutely Trivial RFID Authentication or AKE Protocol. The AKE version uses an

additional value, shown inside a box

Server(D) Tag(gtag)

cs ← Fcom .Channel ct ← Fcom .Channel ; νtag ← gtag

ν1||ν2||ν3|| ν4
parse
←− νtag
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ν1

�

ν′
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if exists di,j = ν′

1||ν
∗

2 ||ν
∗

3 || ν
∗

4 in D

Fcom .Broadcast(cs, ν
∗

2 )

ν∗

2
-

ν∗

2
′ ← Fcom .Listen(ct)

if ν∗

2
′ = ν2 then Fcom .Broadcast(ct, ν3)

ν3
�

ν′

3 ← Fcom .Listen(cs) output(ACCEPT, ν4 )

if ν′

3 = ν∗

3 then update(D, i, j) else output (REJECT,⊥)

output(ACCEPT, ν∗

4 ) endif

endif

endif

output(REJECT,⊥)

a fourth value ν4 using the pseudo-random generator gtag . The security of the A-TRAP protocol is
discussed next.

7.2 Security considerations

A-TRAP protocols offer limited protection against desynchronization attacks: a tag that is “interro-
gated” more than an upper bound of m successive times will become permanently invalidated. However,
for attacks that interact with a tag for a time period shorter than 2mt0 time units (a fly-by attack), these
protocols offer provably secure authentication, forward-anonymity, availability, and key-indistinguisha-
bility. The A-TRAP protocols are therefore secure against attacks in which the adversary surreptitiously
desynchronizes the tag (with a limited time budget for the attack), but will not protect against attacks
in which a tag is captured.

8 Further considerations

In this paper we have not addressed attacks that exploit side-channel vulnerabilities of the tags. These
attacks are likely avenues for corruption—e.g., extremely powerful power-analysis attacks that result
in full key-recovery have been implemented against current RFID architectures [34]. Ultimately, the
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Fig. 7. The effect of D.update(i, j) in the A-TRAP server database

d1,1 . . . d1,m−j d1,m−j+1 . . . d1,m

...
...

...
...

di,j+1 . . . di,m g
(1)
i . . . g

(j)
i

...
...

...
...

dn,1 . . . dn,m−j dn,m−j+1 . . . dn,m

effectiveness of such attacks demonstrate that secure RFID applications will require advances beyond
protocol design. It will be necessary to modify the physical characteristics of these devices to make
them more shielded against side-channel cryptanalysis. However, by introducing protocols that achieve
forward-security, we mitigate the consequences of corruption and key extraction: Our protocols guarantee
that past, successful sessions remain anonymous and private after key compromise.

Our introduction of the ideal wireless functionality is a first step into capturing assumptions about
lower network layers into the security analysis of RFID protocols. A natural extension of our work
would be to relax the anonymity guarantees provided by Fcom to model information leaks by lower
communication layers—including the physical layer where side-channel attacks operate. An interesting
issue in this direction would be to determine the maximum side-channel leakage bandwidth that would
still permit the design of anonymous authentication protocols with strong (and composable) security
properties.

8.1 Conclusion

We present highly practical RFID authentication and authenticated key-exchange protocols that are
provably secure in the Universal Composability framework, and that provide for forward-anonymity,
authenticity, availability, and session-key indistinguishability.

Additionally, we describe how to implement our protocols using only pseudo-random generators.
Therefore, the proposed implementations are feasible for a wide range of RFID architectures.
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