Forward-Secure Sequential Aggregate Authentication

Di Ma, Gene Tsudik

University of California, Irvine
{dnal, gts}@cs. uci . edu

Abstract. Wireless sensors are employed in a wide range of applications. One @ofieature of most sensor
settings is the need to communicate sensed data to some collection point ditéinsommunication can be direct
(to a mobile collector) or indirect — via other sensors towards a remote Isigither case, a sensor might not be
able to communicate to a sink at will. Instead it collects data and waits (for atlg long time) for a signal to
upload accumulated data directly.

In a hostile setting, a sensor may be compromised and its post-compideataesean be manipulated. One important
issue isforward security — how to ensure that pre-compromise data cannot be manipulated?sSiypieal sensor

is limited in storage and communication facilities, another issue is how to minirg&irce consumption due to
accumulated data. It turns out that current techniques are insuffcieddress both challenges. To this end, we
explore the notion offorward-Secure Sequential Aggregate (FssAgg) authentication Schemes. We consiBissAgg
authentication schemes in the contexts of both conventional and publiayewpgraphy and constructssAgg
MAC scheme and &ssAgg signature scheme, each suitable under different assumptions. Titkisepoesents the
initial investigation of Forward-Secure Aggregation and, although theqsed schemes are not optimal, it opens a
new direction for follow-on research.

KEYWORDS: sensors, sighature schemes, authentication schemes, key congprfamigrd security, aggregate
signatures.

1 Introduction

Wireless sensors can enable large-scale data collection in many diffetéings, scenarios and applica-
tions. Examples abound in all kinds of tracking and monitoring applicationstim dwilian and military
domains. A Wireless Sensor Network (WSN) might contain hundreds orahdssf low-cost sensors and
one or more sinks or data collectors. Individual sensors obtain measote from the environment and (pe-
riodically or upon request) forward the accumulated data to the sink. A sinfitrbéga gateway to another
network, a powerful data processing or storage center, or ansggoi for human interface. (Some WSNs
support user-driven data queries and commands through the sink.)
In this paper, we are motivated by two types of envisaged sensor gtenar

A Sensors do not communicate with each other, i.e., there sensor network as such. Instead, a mobile
device that we call aollector.® A collector might not be fully trusted; it might be nothing more than an
intermediary between sensors and an off-line (trusted) sink.

B Sensors communicate but they do not actually “network”, i.e., communicatiogsisated to mere
forwarding of information from other sensors towards a sink or sirkshis context, a sink is a fully
trusted entity.

In either case, a sensor might not be able to communicate to a sink at will.dngteallects data and waits
(potentially, for a long while) either for a signal — or some pre-determined tineeupload accumulated
data to a collector or a sink. Put another way, there is no real-time repoftggnsed information between
sensors and a collector or a sink.

Data integrity and (sensor) authentication are essential security sermeggsed in most sensor appli-
cations [19] since sensors are often used in unattended and aleraaironments. They interact closely

1 We use the terms “collector” and “sink” to distinguish between entities thaegatta in the two scenarios.

with the physical environment and with people, thus being subject to a witdge raf security risks. An
attacker may inject its own data as well as modify and delete data producemsyrs. As a result, sensor
data must be authenticated before being processed and used forevipatgaoses. Particularly in critical
settings (e.g., radiation, seismic or intrusion monitoring) strong data integrityathenticity guarantees
are needed. Standard textbook techniques, such as MACs (Mesgtmpn#ication Codes) or digital signa-
tures, can be used in applications where data integrity/authenticity is regHioeaver, several obstacles
hinder straight-forward usage of these standard techniques.

One important issue is the threat sgnsor compromiseand the consequent exposure of secret keys
used for MACs or signaturésKey exposure makes it easy for the adversary to produce fraudddgat
ostensibly sensed after the compromise. Moreover, it also allows thesadyéo produce fraudulent data
before the compromise, assuming it has not been reported to a sink or a collector. This is cleatbgirable.
Fortunately, there are so-calléalward-secure cryptographic techniques that allow the signer (sensor, in
our case) to periodically evolve its secret key such that compromise afentsecret key cannot lead to
compromise of secret key(s) used in past periods. It is therefosgipp@so mitigate the effects of sensor
compromise by using a sense-and-sign approach. In other wordsser sikves not wait to sign (or MAC)
ALL sensed data until it has to send it, since doing that would @tletollected datato attack. Instead, it
signs data as soon as it is sensed and evolves the signing key.

Another important issue storage and communication overhead<Clearly, on-board storage is a lim-
ited commodity in most sensor settings and it is natural to minimize its size and consuuriptiosoth
scenarios A and B outlined above, a sensor gradually accumulates eledan@s, measurements), stores it
locally and — at some later time — sends it to a sink. We are not concerned in mirgraipirage consumed
by the actual data; that is an interesting topic in its own right. Instead, we &ested in minimizing
storage due to authentication tags (i.e., MACs or signatures) since thegeappure overhead. If key com-
promise and forward security were not an issue, minimizing storage @acksaeuld be trivial — a sensor
simply signs or MACs all accumulated data once, before forwarding it tamkeAt the same time, forward
security forces us to compute authentication tags per sensed unit of diédth, we refer to as anessage
from now on® Therefore, a sensor accumulates as many authentication tags as mesgskgisvaits for
a time or a signal to off-load the data. This is problematic since even the siz€lACaand certainly of a
signature) can easily exceed the size of actual data, i.e., messagestmithem, each 128 bits per MAC
or 160 bits per signature would need to be allocated.

Communication overhead is a related, though perhaps not as critical, matseerario A, a sensor
uploads accumulated messages directly to the collector. Thus, the communicatibead due to sending
multiple authentication tags is less problematic than in Scenario B where the sarheau/affects all
sensors that forward information from other sensors towards the @& refer to the oft-cited folklore
in [3] which claims that wireless transmission of a single bit can consumelooee times of the energy of
a single 32-bit computation.)

Reconciling the need to minimize storage (and communication) overhead with ¢detmenitigate
potential key compromise (i.e., obtain forward security) is precisely the tépigsopaper.

Contributions: We explore Forward Secure Sequential AggregassAgg) authentication schemes that
simultaneously mitigate the threat of key compromise and achieve optimal storigeramunication efg-
ciency. AnFssAgg authentication scheme allows a signer to combine multiple authentication tagstgdnera
in different key/time periods into a single constant-size tag. Compromise ofithent key does not allow

2 Building an inexpensive tamper-proof, or even tamper-resistargpséna much greater challenge.
3 Note that the duration of the key evolvement period in a forward-sestiieme does not have to match the time between
successive sensor readings; however, to simplify the discussicassuene that it does.

the attacker to forge any aggregate authentication tag containing elemendtstipgethe compromise. Any
insertion of new messages, modiEcation and deletion (including truncatioisting messages makes
the aggregate tag demonstrably invalid. We consider this topic in both convainéind public key cryp-
tographic settings and construct two practical schemes:safigg MAC scheme as well as aRssAgg
signature scheme.

Organization: After a brief overview of related work in Section 2, we introduce the moddIlsecurity
requirements in Section 3. Next, we presentagdgg MAC scheme in Section 4 and &$sAgg signature
scheme in 5. Section 6 concludes the main body of the paper. Appendixsantsea brief performance
evaluation of thd-ssAgg signature scheme, followed by appendices B and C that contain, reghgdtie
security model and a proof sketch for the same scheme.

2 Related Work

NOTE: this section is kept brief due to dire space limitations.

The topic of this paper is quite distinct from data aggregation in sensor net\W& 11, 12, 20, 21]. In
an FssAgg authentication scheme, authentication objects are aggregate while datisrgoessages) are
kept intact. In a data aggregation scheme, individual data information iardshe aggregate value is used
to provide or derive statistical information, such as mean, median or max/mia.gggregation schemes
are very useful, but unsuitable for applications, where the availabilitydifitual sensed data records is
required (e.g., temperature pattern sensing in a nuclear reactor).

The notion of forward security was introduced in the context of keyrarge protocols [10] and lagter
adapted to signature schemes. Forward-secure signatures wenepostqul by Anderson in [2] and subse-
guently formalized by Bellare and Miner in [4]. The main challenge is efEciemntydeal scheme must have
constant (public and secret) key size, constant signature size asswaglhatant signing, verif£cation, and
(public and secret) key update operations. Several schemes pidpdke literature satisfy some or most
of these requirements [1,4,13-15]. Also, in [5], Bellare and Yee exafoinward security in the context of
conventional cryptography.

Several aggregate signature schemes have been proposed in thedifstatting with the initial seminal
result by Boneh, et al. [6, 16, 17]. An aggregate signature schembinesk signatures generated by
signers £ > n) into a single and compact aggregate signature that, if verifed, simultangetilys every
component signature. Interestingly, our goal is to aggregate signdtyitbe same signer (e.g., a sensor),
however, these signatures are computed in different periods, andifféttedt keys. Thus, our goals impose
no additional restrictions on existing de£nitions of aggregate sighatures.cAlsenvisaged schemes do not
require simultaneous aggregagqtion of multiple signatures as in [6]; insteatked sequential (incremental)
aggregation as in [17] or [16].

3 De£nitions and Properties

In this section we present some informal de£nitions and propériesFssAgg signature scheme is com-
posed of the following algorithms. They are quite similar to those in sequengjedgated signature schemes,
notably, the recent scheme of Lu, et al. [16].

The key generation algorithiissAgg.Kg is used to generate public/private key-pairs. Unlike the one
used in [16], it also takes as inplit— the maximum number of time periods (key evolvements).

4 Our presentation is informal to conserve very limited space.

The sign-and-aggregate algoritifesAgg.Asig takes as input a private key, a message to be signed and
a signature-so-far (an aggregated signature computed up to this poaanputes a new signature on the
input message and combines it with the signature-so-far to produce aggesgated signature. As the £nal
step ofFssAgg.Asig, it runs a key update subroutifesAgg.Upd which takes as input the signing key for the
current period and returns the new signing key for the next periodefraeedingl’.) We make key update
part of the sign-and-aggregate algorithm in order to obtain strongerigeguarantees (see below).

The verify algorithmFssAgg.Aver, on input of a putative aggregate signature, a set of presumably
signed distinct messages and a public key, outputs whether the aggregalid.igThe distinction from
non-forward-secure schemes is that we use a single public key, asslwny one signer.)

The key update algorithriAssAgg.Upd takes as input the signing key for the current period and returns
the new signing key for the next period (provided that the current geli@s not exceetl — 1.)

A secureFssAgg scheme must satisfy the following properties:

1. Correctness. Any aggregated signature produced witks A gg. Asig must be accepted lyssAgg. Aver.

2. Unforgeability: Without the knowledge of any signing keys (for any period), no adwgrsan compute
an aggregate signature on any message or set of messages.

3. Forward-security: No adversary who compromises the signéfth signing key can generate a valid
aggregate signature containing a signed message — for any petiotd— except the aggregate-so-far
signature generated by the signer before the compromise, i.e., the agdremmature the adversary
£nds upon compromise.

Note that the last property subsumes security against truncation or del#tioks. An adversary who com-

promises a signer has two choices: either it includes the intact aggregitessgnature in future aggre-

gated signatures, or it ignores the aggregate-so-far signature compledestart a brand new aggregated
signature. What it cannot do is selectively delete components of an wlgemdrated aggregate signature.

4 A Forward-Secure Sequential Aggregate MAC Scheme

We now present a triviaFssAgg MAC scheme. It can be used to authenticate multiple messages when
public (transferrable) veriEcation is not required. As such, it is well-dditescenario B in Section 1 where
a sensor communicates (via other sensors) to the sink. We £rst presenhéme and then show how to
apply it to the envisaged sensor environment.
The scheme uses the following cryptographic primitives:
— 'H: a collision resistant one-way hash function with domain restrictéetd strings:H : {0,1}* —
0,1}*.
— i{a: ;collision resistent one-way hash function with arbitrary length irfit: {0, 1}* — {0, 1}*.
— h:asecure MAC schene: {0,1}* x {0,1}* — {0, 1}! that, on input of &-bit key z and an arbitrary
messagen outputs a-bit MAC h,(m).

FssAgg.Kg Any symmetric key generation algorithm can be used to generate an knaliiabecret keys.
We setsky = vk = s.

FssAgg.Asig At time periodi, the signer is given a messagé; to be signed and an aggregate-so-far
MAC o,;—1 on messages/,--- , M;_1. The signer £rst generates a MAGon M; with h usingsk;:
o = hg,(M;). It then computes ; by folding o; ontooy ;1 throughH,: 01; = Ha(o1,i-1]|03). Ha
acts as the aggregation function. Alternatively we can computes follows®

015 = Ha(Hal-+ Ha(Halon]lo2)ll03) |-l wherer; = b, (Mj)¥j =1, i (1)

)

® Note that hash functions are generally designed as an iterative pfd8ksEhat is, a hash functiok : {0,1}* — {0, 1}* with
arbitrarily long £nite input is executed by iteratively invoking an internal fdeck) functionf : {0,1}"* — {0,1}* (r > k&

4

Finally, the signer executes the key update subroutine de£ned as:
FssAgg.Upd We de£ne the-th signing keysk; as the image undét of the previous kegk; 1:
sk; = H(sk;—1), 1 > 0. (This part is the same as the forward-secure MAC scheme in [19].)
FssAgg.Aver To verify a candidater; ; over messages/y, - - -, M;, the verifer (who has the verifying
key vk which is the same as the initial signing keky) computes keysk, - - -, sk; through the public
key update function. It then mimics the signing process and re-compfijend compares it withr ;.
If the two values match, it outputalid. Otherwise it outputévalid. ’

5 A Forward-Secure Sequential Aggregate Signature Scheme

If public (transferrable) veriEcation is required we nedesaAgg signature scheme to check the authenticity
of data records. Trivially, all aggregate signature schemes [6,]1@&alVbe used as BssAgg signature
scheme if we treat the key of signeas the key used (by the same signer) in the time peridtbwever

a trivial construction is useless for our purposes since a signer (esgnsar) would nee@(7") storage to
store its secret keys.

The overall efEciency of &ssAgg signature scheme depends on the following metrics: 1) size of the
aggregate signature; 2) size of the signing key; 3) complexity of keytapda complexity of aggregate
signing; 5) size of verifcation key; 6) complexity of aggregate verifyinige Erst four represersigner
ef£ciency and the last two represevdrifer ef£ciency; the size parameters (aggregate signature, signing key
and veri£cation key) represestace ef£ciency and the complexity parameters (sign, verify and key update)
representime ef£ciency. In our envisaged sensor scenarios, signer efEciency is much moreamiibran
verifer efEciency and space efEciency more important than time efEciency.

Focusing on the signer and space efEciency, we prop&seAgg signature scheme based on the BLS
signhature scheme [6]. BLS signatures can be aggregated through EClicatltp by anyone [7]. We £rst
introduce the BLS scheme and then show how to modify it to BssAgg signature scheme.

The BLS scheme works in groups with bilinear maps. A bilinear map is aana@y x Gy — G,
where: (a)G; and G2 are two (multiplicative) cyclic groups of prime order (b) |G1| = |G2| = |G7|;

(c) g1 is a generator ofr; andgs is a generator of72. The bilinear mag : G; x G2 — G satisfes the
following properties:

1. Bilinear: for allz € G1,y € G2 anda, b € Z, e(x, yb) = e(x,y)“b;
2. Non-degenerate{g;, g2) # 1

The BLS scheme uses a full-domain hash funcfiorf-): {0,1}* — G;. Key generation involves picking
a randomz € Z, for each signer, and computing = g5. The signer’s public key i € G and her
secret key isc. Signing a messag#/ involves computing the message hdsh= H; (M) and then the
signatures = h*. To verify a signature one computes= H; (M) and checks that(c, g2) = e(h,v). The

veri£cation costs amount to 2 bilinear mappings.
To aggregate: BLS signatures, one computes the product of individual signhatureslaws$:

o1 =[] o @
=1

as a hash function compresses its input) with £xed-size input. A hashimatrbitrary £nite length is divided into £xed-length
r-bit blocksz;. In each iterationf takes on the current input bloak and the intermediate resulf;_, produced byf in the
previous iteration. We can thus modify the aggregation function as follfamst an input block with several MACs and then
fold the block into the aggregate in one round. This way; can be represented asi ; = Ha(o1||o2|| - - - ||os). Compared
with 1, this aggregation function in is more efEcient.

whereo; corresponds to the signature on messa&feThe aggregate signatuse ,, is of the same size as

an individual BLS signature and aggregation can be performed inctatllyesnd by anyone.
Veri£cation of an aggregate BLS signaturg,, includes computing the product of all message hashes
and verifying the following match:

elorn) = H e(hi,vi) 3)
i=1
whereuw; is the public key of the signer who generate®n messageé/;.

FssAgg.KgThe signer picks a randomy, € Z, and computes a paits;,v;) (¢ = 1,---,T) asiz; =
H(zi—1), v; = g5'. The initial signing key iso and the public key is{v1, -+ ,vr) = (g5, -+ , 957).
Note that, in our sensor scenarios, a sensor (signer) would notagerisrown keys. Instead, the sink
(or some other trusted party) would generate all public and secret kel fsensors. The collector,
however, would be given the public keys only.

FssAgg.AsigWith inputs of messag#/; to be signed, an aggregate-so-far signatyre ; over messages
M, ---, M;_; and the current signing key;, the signer £rst computes a BLS signatureMdnusing
x;: 0; = H" (index||M;) whereindex denotes the position df/; in the storage. The purpose of this
index is to provide message ordering, since the original BGLS aggredatiation does not impose
any order on aggregate elements. Next, the signer aggregatedo o; ;—; through multiplication:
01,4 = 01,i—1 - 0;. Finally, the signer updates the key.

FssAgg.UpdA signer evolves its secret signing key through the hash funétiony = H(x;—1).

FssAgg.AverThe verifer uses Equation 3 and the public kéyto verify an aggregate signatuse ;

The security of ouFssAgg signature scheme is based on the underlying BLS scheme and no othmpassu
tions is needed. The following theorem summarizes the security oFssfigg signature scheme and is
strait-forward to prove. For completeness, a formal description of tterise model and the proof of the
theorem can be found in Appendix B and C.

Theorem 1. If BLSisa (¢, qn, ¢, €)-secure signature scheme, our construction aboveisa (t, g, gs, T, €)-
secure FssAggsignature schemewheret’ =t + O(qu + qs), € = ¢/T, and ¢ = qs/T.

A proof sketch for this theorem is presented in Appendix C. (Appendirmains the security model).
See Appendix A for some performance results.

6 Summary and Future Work

In this paper we motivated the need for Forward-Secure Sequentiagtidhtion to address both key ex-
posure and storage efEciency issues. We constructed two skesplgg schemes (one MAC-based and one
signature-based). While our trivial MAC-based scheme is near-optinkatrims of efEciency, the signature-
based scheme is not. Although it is both signer- and space-efEcient, itveni@er-friendly as the verifer
needsO(T') space to store the public key and the veri£cation is fairly expensive tecélmslinear map
operations. Constructing a more efEcient scheme — with either (or both) copyigic keys or lower verif-
cation complexity — is a challenge for future work. And, a more carefumé&treatment of Forward-Secure
Sequential Authentication is certainly needed.

References

1. M. Abdalla, and L. Reyzin. “A new forward-secure digital signatscheme.” IPAS ACRYPT 2000, pp. 116-129, 2000.

2. R. Anderson. “Two remarks on public-key cryptology - Invited fLee”. Fourth ACM Conference on Computer and Commu-
nications Security, Apr. 1997.
3. K. Barr, and K. Asanovic. “Energy aware lossless data comioresén Proc. of MobiSys 03. San Francisco, CA, May 2003.
4. M. Bellare, and S. K. Miner. “A forward-secure digital signatureesoe”. InProc. of Adances in Cryptology - Crypto 99,
LNCS Vol 1666:431-448, Aug. 1999.
5. M. Bellare, and B. Yee. “Forward-Security in Private-Key Cryp&gy”. In Proceedings d€T-RSA' 03, LNCS Vol. 2612, M.
Joye ed, Springer-Verlag, 2003.
6. D. Boneh, B. Lynn, and H. Shacham. “Short signatures from te#é pdiring”. J. Cryptology, 17(4):297-319, Sept. 2004.
Extended abstract iRroceedings of Asiacrypt 2001.
7. D.Boneh, C. Gentry, B. Lynn, and H. Shacham. “Aggregate andably encrypted signatures from bilinear maps"Ptnoc.
of Eurocrypt 2003, LNCS 2656:416-432, May 2003.
8. C. Castelluccia, E. Mykletun, and G. Tsudik. “Effcient aggregatioenafypted data in wireless networks”. Mobile and
Ubiquitous Systems: Networking and Services MobiQuitous 2005. July 2005.
9. Y. Frankel, P. Gemmell, P.D. MacKenzie, and M. Yung. “Optimallie®ce proactive public-key cryptosystems”. ROCS,
1997.
10. C. G. Gunther. “An identity-based key-exchange protodadvances in Cryptology - EuroCrypt’89. LNCS 434, pp. 29-37,
1990.
11. L. Hu, and D. Evans. “Secure aggregation for wireless netwdrk®\brkshop on Security and Assurance in Ad Hoc Networks,
20083.
12. C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemanrp&tmof network density on data aggregation in wireless
sensor networks”. IRCDCS 02, pp. 457-458. 2002.
13. G. ltkis, and L. Reyzin. “Forward-secure signatures with optingalisg and verifying”. InProc. of Advancesin Cryptology -
Crypto’' 01, LNCS 2139:332-354, Aug. 2001.
14. A. Kozlov, and L. Reyzin. “Forward-secure signatures with Kestupdate”. InProf. of the 3rd International Conference on
Security in Communication Networks (SCN’02), 2002.
15. H. Krawczyk. “Simple forward-secure signatures from anyaigre scheme”. IProc. 7th ACM Conference on Computer and
Communication Security (CCS), pp. 108-115, Nov. 2000.
16. S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and B. Waters.u&s@l aggregate signatures and multisignatures without
random oracles”. IfProf. of Eurocrypt 2006, May 2006.
17. A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham. “Setjaleaggregate signatures from trapdoor permutations”. In
Proc. of Eurocrypt 2004, LNCS 3027:245-254, Nov. 2001.
18. A.J. Menezes, P. C. van Oorschot, and S. A. Vanstone. “Herkdtf applied cryptography'CRC Press, 1997. ISBN 0-8493-
8523-7.
19. A. Perrig, J. Stankovic, and D. Wagner. “Security in wirelessaemstworks”. ACM Commun., 47(6):53-57, 2004.
20. D. Wagner. “Resilient aggregation in sensor networksVwnkshops on Security of Ad Hoc and Sensor Networks. 2004.
21. Y.Yang, X. Wang, S. Zhu, and G. Cao. “SDAP: a secure hopdyydata aggregation protocol for sensor networksAGQM
MOBIHOC' 06. May 2006.

A Performance

In this section, we evaluate the performance of the proposed BLS-Bas&gh signature scheme. We begin
by accessing the cost in terms of basic cryptographic operations(e.g, lrnatigns, exponentiation, etc).
Then we show the actual overhead incurred through experiment.

We use the notation in Table 1. We consider the generation and veri£catidrseAgy signaturer ..
wheret denotes the number of periods occupiedy.., andk denotes the number of signatures generated
per time period. Table 2 illustrates the overhead (computation, storage addidéh) associated with the
scheme in terms of cryptographic operations.

We used a £eld, where|p| = 512 and we choose the size of group ordeff@s= 160. We test our
scheme on a Pentium 1.86GHz machine with 512M memory. The experimentischstiéd in Table 3.
Signature generation is quite efEcient and it costs an average 7.64ms tatgenBLS signature (1.5ms on
the map-to-point operation and 6.14ms on the scalar multiplication operatioanatiter 0.05ms to fold it
into the aggregate. Aggregation imposes little overhead on the overall tirAsipieriEcation cost is quite

7

Table 1. Notations.

MtP*(H1(+)) | t map-to-point operations
SclMultt, (1) | t scalar multiplications with modulus of size and exponent of size
SclAddt, | t scalar additions with modulus of size
BM(t) | t bilinear mappings
Hash*(1)(H(-)) | t hash operations with input size bf

Table 2.Operation Cost in Terms of Cryptographic Operations.
Table 3.Operation Cost in msecs.

| Parameters \ Cost| Complexity |

Aggregate Signature SiZe Ip| o(1) BLS Sign Aggregation
Secret Key Size lql o(1) Asig | 1 signature | M¢P' | SciMul,(q) | SclAdd,
Key Update Time Hash(|q|) 0(1) 15 6.14 0.05

Aggregate Signing Timg MtP' + Expfp‘ (I o(1) 1 signature 53.62

+Mult* (|p|) Aver | k=1000,t=1 54.40

Public Key Size T x |q| o(T) k=100,t=10 295.71

Aggregate Verifying Time BM(t+ 1)+ O(t) k=10,t=100 2708.79

+Mult** ! (|p])

expensive because of the involvement of pairing operations. Wheruthber of time periods increases to
100, it takes the veriEer more than 2 seconds to verify. The veriEcatiomiglst impose an upper ceiling
on the total number of time periods

B Security Model

The security of &ssAgg signature scheme is defned as the nonexistence of an adversarye cajtain
the conf£nes of a certain game, of existentially forgingssAgg signature even in the event of exposure
of the current secret key. Becausé-ssAgg signature scheme combines security properties from both a
aggregate signature scheme and a forward-secure signature seleedescribe a security model for it that
is a hybrid of the aggregate chosen key model for aggregate signfituiledd and the break-in model for
forward-secure signatures [4].

This new security model recects the wayssAgg scheme is used. In this model, the adversdry
£rst conducts an adaptive chosen message attack, requesting sigoatumessages of its choice for as
many time periods as it desires. Whenever it chooses, it “breaks in” ajideis the secret keyk;, for the
current time period. Its goal is the existential forgery of BssAgg sighature pertaining to any past time
periods before the break-in time period. A forgety; over messages, - - - ,m; under keysk;, - - - , sk;
is considered as a valid forgery if at least one messagél < i < ¢ < b) is not queried by4 during the
chosen message attack phase. To make explanation easy, ive seind the attackers’s goal is to forge a
signaturery ; such thatn, is not queried in the chosen message attack phase. The advantged#£ned
to be its probability of success in the following game.

Setup. The FssAgg forger A is provided with the public kepk andT.

Queries. The initial time period is = 1. Proceeding adaptively, at time perigdA gets access to a
signing oracle?; under the current secret kay;. For each query, it also supplied=asAgg signature
oi—1 ON messages, - - - ,m;_1 Signed by secret keys:y, - - - , sk;_1, and an additional message
to be signed by the oracle under kéy. A queries this as often as it wants until it indicates it is done for
the current time period. Thed moves into the next time periadt- 1 and it is provided with a signing
oracleQ; 1 under the secret kesk; 1. The query process repeats undichooses to break in.

Break — in. At time periodb, .A chooses to break in and is given the break-in privilege, the currerdtse
key sky,.

Response. Finally, A outputs &ssAgg signatures; ; on messagesy, - - - , m; under keysk, - - - , sky.
The forger wins if (1)t < b; (2) the FssAgg signatureo ; is a valid FSsAgg signature on messages
mi,---,my under keyssky, -- -, sk;, and (3)oy, is nontrivial, i.e.,A did not askO; for signature
query on message; at timei. The probability is over the coin tosses of the key-generation algorithm
and of A.

De£nition 1. A FssAgdforger A (t,qm,qs, T, €)-breaks a T-time-period FssAggsignature scheme in the
FssAggbreak-in model if: A runsin time at most ¢; .4 makes at most ¢z queries to the hash function and
at most ¢g queries to the signing oracle; the advantage of A is at least ¢; and the forged signature is taken
over at most T time periods. A FssAggscheme is (¢, ¢, qs, T, €)-secure against existential forgery in the
FssAggbreak-in model if no forger (¢, qx, qs, T, €)-breaksiit.

C Proof of Theorem 1

Our proof is similar to the proof in [15].

Proof. Suppose there exist a forgdragainst the BLS-basdtssAgg signature scheme that succeeds with
We build a simulatoi3 to play the forgeability game against the BLS scheme. Given the chosemdiagje
public keycpk, forger B interacts withA as follows.

Setup. ForgerB £rst selects a random time peribbetween 1 and’, hoping.A’s eventual forgery will be
for thet-th time period B setspk as the public key of time periad pk; = cpk. Itis given an oracl®),,,
that given a message returns a signature on that message under th&@ypkc Forger3 generates
information corresponding to the other time periods as followsB(@¢nerates independently- 1 pairs
of BLS public/secret key pairspk;, sk;), i = 1,--- ,t — 1 for time period 1 tat — 1; (2) B generates
a random BLS public/private key pair and sets the pair as the key pair foptmead: + 1. It uses the
key update function to generate out offit— ¢ — 1 pairs of public/private keys. These pairs are set as
keys for periods + 1,--- ,T. B providesA with pk = {pky,--- ,pkr} andT .

Forward-secure Aggregate Sighature QueriesA is allowed to query for any¥ssAgg signature corre-
sponding to any period of its choice except for the following restrictionedéverA asks for a=ssAgg

signature corresponding to a perigdt cannot later ask for a signature corresponding to a previous

period.
At time periodi, when A requests d&ssAgg signature, it supplies a messagg of its choice and an
aggregate-so-far signatuse ;_; on messages:y, - -- ,m;—1. If ¢ is different thart thenB generates

a BLS signaturer; on m; with its knowledge of the signature keys for those periods (these keys wer
chosen byB). If i = ¢, B goes to its oraclé),,; to get the corresponding signaturgonm;. Finally B
returnso; ; = o1,i—1 X o; to A as theFssAgg signature at time period

Break-in. When.A decides to break in and query the secret information for setheperiod thens does
the following. Ifb < ¢ then it aborts its run (i.e., in this cagfails to forge). Ifb > ¢ then5 providesA
the secret information for that perio knows it).

Output. Finally A outputs a forgeryr; , over messagesy, - - - ,m; under keysski, - - - , sky. B acts
as follows. Ift’ # ¢, B aborts its run failing to forge. Otherwise #f = ¢, B outputs a forgeryr; =
o1t - H§:1 az.‘l whereg; is a BLS signature over messagg under keysk;, 1 < i < t (B knowssk;
and so it can generatg). Then

t—1 t—1 t t—1

e(o1,92) = e(ori-[[o' 92) = elors, g2)-e([[o' 92) = [[e(has pi)-e(J [o7t 92) = e(hu, phe)

i=1 i=1 i=1 i=1
(4)

Thato ; is a validFssAgg forgery meansn, is not queried by4 during time period, so in particular
B did not ask for that signature from,.,;,. Henceo; is a valid forgery for3.

Algorithm B makes as many as hash queriesdamakes. Algorithm5 makes at most /7" signature
qgueries as4 makes. AlgorithmB’s running time is that of4, plus the overhead in handling's hash and
signature queries.

If A succeeds with probability af in forging, B succeeds at least with probability roughlyT’. The
argument is outlined as follows. First, the view.dfthat 5 produces is computationally indistinguishable
from the view of A interacting with a reaFssAgg signing oracle (where all secret keys are produced out
of a single initial seed from the forward-secure hash functinindeed, if a distinguisher exists for these
two views of A then, we can construct a distinguisher tér Next, conditioned o8 choosing the value of
t as the period for whichd eventually output a forgery, we have the probability tBabutputs a forgery
against the choosing public key: is the same probability thadl succeeds in forging, i.e., probability
Since choosing the “right? happens with probability /7" we get thak /7" is an approximate lower bound
on the forging probability oB.

10

