
KATHOLIEKE UNIVERSITEIT LEUVEN

FACULTEIT INGENIEURSWETENSCHAPPEN

DEPARTEMENT ELEKTROTECHNIEK–ESAT

Kasteelpark Arenberg 10, 3001 Leuven-Heverlee

Cryptanalysis of Stream Ciphers

Based on

Arrays and Modular Addition

Promotor:

Prof. Dr. ir. Bart Preneel

Proefschrift voorgedragen tot

het behalen van het doctoraat

in de ingenieurswetenschappen

door

Souradyuti Paul

November 2006

KATHOLIEKE UNIVERSITEIT LEUVEN

FACULTEIT INGENIEURSWETENSCHAPPEN

DEPARTEMENT ELEKTROTECHNIEK–ESAT

Kasteelpark Arenberg 10, 3001 Leuven-Heverlee

Cryptanalysis of Stream Ciphers

Based on

Arrays and Modular Addition

Jury:

Prof. Dr. ir. Etienne Aernoudt, voorzitter

Prof. Dr. ir. Bart Preneel, promotor

Prof. Dr. ir. André Barbé

Prof. Dr. ir. Marc Van Barel

Prof. Dr. ir. Joos Vandewalle

Prof. Dr. Lars Knudsen (Technical University, Denmark)

Proefschrift voorgedragen tot

het behalen van het doctoraat

in de ingenieurswetenschappen

door

Souradyuti Paul

U.D.C. 681.3*D46 November 2006

c© Katholieke Universiteit Leuven – Faculteit Ingenieurswetenschappen
Arenbergkasteel, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag vermenigvuldigd en/of
openbaar gemaakt worden door middel van druk, fotocopie, microfilm, elektron-
isch of op welke andere wijze ook zonder voorafgaande schriftelijke toestemming
van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission
from the publisher.

D/2006/7515/88

ISBN 978-90-5682-754-0

To

my parents for their unyielding ambition to see me educated

and

Prof. Bimal Roy for making cryptology possible in my life ...

My Gratitude

It feels awkward to claim the thesis to be singularly mine as a great number of
people, directly or indirectly, participated in the process to make it see the light
of day. At the end of such a long and laborious process, it is, therefore, a great
pleasure for me to grab this opportunity to express my gratefulness.

First, I would like to express my sincere gratitude to my thesis supervisor
Prof. Bart Preneel who not only guided me with technical help through this
gestation period as a doctoral student, but also, most importantly, has shown me
very convincingly the qualities, which an academician should acquire in order to
reach the highest level of success. I strongly believe that I would continue in my
pursuit to reach the standards he has set before me in those four and a half years
of academic collaboration. I am also extremely indebted to him for putting up
with all my nonsensical, silly questions, my emails fired at him at odd hours – be
it academic or non-academic – with supreme patience and thereby, instilling in
me a strong sense of self-confidence – something which I would always treasure.
All in all, in hindsight, I feel that whatever little maturity that I have acquired
since the time of being an all nervous student around five years ago, is pretty
much due to the academic venture I was engaged with him in.

I am honored to have Prof.André Barbé, Prof. Lars Knudsen, Prof.Marc Van
Barel and Prof. Joos Vandewalle as the members of the jury and Prof. Etienne
Aernoudt as the chairman of the jury.

During the doctoral period, I was extremely lucky to have the opportunity to
supervise the theses of Gorka Munduate and Gautham Sekar. My own academic
benefit from the joint work with them was immense.

In the past years, I came in contact with many cryptographers in diverse fields
for their comments, remarks, opinions, suggestions on various topics. The list
includes Eli Biham, Paul Crowley, Scott Fluhrer, Ilya Mironov, Kenneth G. Pa-
terson, Palash Sarkar and Adi Shamir. I gratefully acknowledge their constructive
comments.

My expression of gratitude will forever remain incomplete if I do not mention
the name of Dai Watanabe who was the first to have made me appreciate the

v

subtleties of symmetric cryptography. I am also thankful to all the past and
present COSIC members for lending their helping hands in times of need; in
particular, I would like to mention Alex, An, Antoon, Christophe, Christopher,
Elena, Danny, Frederik, Gregory, Hirotaka, Hongjun, Jasper, Joe, Jongsung,
Jorge, Michael, Nessim, Özg̈ul, Robert, Stefaan, Taizo and Thomas.

Thanks are also due to Avishek Adhikari, Debrup Chakraborty, Kishan Chand
Gupta, Matthew E. McKague, Alexander Maximov, Partha Mukhopadhyay, Sou-
rav Mukhopadhyay, Mridul Nandi, Anirban Pal, Sankardas Roy and Sabyasachi
Saha for many useful discussions on various branches of computer science includ-
ing computer security.

Many thanks to Pela, Elvira and Ida for their priceless help with administra-
tive matters.

Finally, I express my thankfulness to my parents and my brother for their
constant encouragement and support without which the thesis would never have
been possible.

Souradyuti Paul,
Leuven, November 2006.

Abstract

In modern cryptography, stream ciphers are most useful in applications where
information needs to be encrypted/decrypted at high speed (e.g. high resolu-
tion streaming video data) or when low footprint (gates/memory) encryption is
required. In the literature, there exist plenty of stream ciphers whose internal
states are based on arrays and that they use modular additions to generate output
streams. The abundance of array-based stream ciphers with modular additions
can be attributed to the fact that, when implemented in software skillfully, they
are able to produce outputs at a very high speed. The main contribution of this
thesis is a unified analysis of stream ciphers based on arrays and modular addi-
tion. During the process, we detect cryptographic weaknesses in the designs of 9
widely known stream ciphers or pseudorandom bit generators (PRBGs).

At first, we show some theoretical results on solving an important class of
equations known as differential equations of addition (DEA) that combine mod-
ular additions over two different algebraic groups such as GF(2) and GF(232).
The results include,

• proof of the fact that the satisfiability of an arbitrary set of DEA is in the
complexity class P ,

• deriving all the solutions of an arbitrary set of DEA.

Next, we apply these results to attack a practical stream cipher named Helix
(designed by Ferguson et al.) with both chosen plaintexts and adaptive chosen
plaintexts.

In the second phase, the thesis closely scrutinizes a number of array-based
stream ciphers (or PRBGs) in order to estimate their resistance against dis-
tinguishing attacks. We eventually discover, counter-intuitively, that the cor-
relations between the array-indices and their associated array-elements, which
apparently seem to be useful from the point of view of implementation purposes,
can be exploited to mount distinguishing attacks on such type of ciphers if ade-
quate precautions are not taken. In support of our theoretical findings, we point
out distinguishing attacks on 8 practical array-based stream ciphers (or PRBGs),

vii

namely RC4 (designed by Rivest), RC4A (designed by Paul and Preneel), Py, Py6
(designed by Biham and Seberry), IA, ISAAC (designed by Jenkins Jr.), GGHN,
NGG (by Gong et al.); our attacks are based on the dependence of array-elements
on array-indices. In all the cases we work under the assumption that the key-
setup algorithms of the ciphers produce uniformly distributed internal states. We
detect flaws in the mixing of bits in the keystream generation algorithms. Our
analysis can be explained as the extension, development, adaptation and deeper
characterization of the fortuitous states attacks on the RC4 cipher by Fluhrer
and McGrew in 2000.

viii

Samenvatting

In de moderne cryptografie bewijzen stroomcijfers vooral hun nut in toepassingen
waar informatie op hoge snelheid ver- en ontsleuteld moet worden (bv. hoge-
resolutie videosignalen), of wanneer de beschikbare hardware onderworpen is aan
strenge beperkingen (maximaal aantal gates, geheugen, etc.). In de literatuur
bestaan er tal van stroomcijfers waarvan de interne toestand bestaat uit arrays,
en die gebruik maken van modulaire optelling om de uitgangsstroom te genereren.
Het zeer grote aantal array-gebaseerde stroomcijfers met modulaire optelling kan
toegeschreven worden aan het feit dat het gebruik van deze componenten in
software kan leiden tot zeer snelle implementaties. De voornaamste bijdrage van
deze thesis is een unificatie van de analyse van stroomcijfers die gebruik maken
van arrays en modulaire optelling. Gedurende dit proces werden cryptografische
zwakheden ontdekt in 9 wijdverspreide stroomcijfers en pseudo-willekeurige bit
generatoren (PRBGs).

Eerst geven we een aantal theoretische resultaten die toelaten om een be-
langrijke klasse van vergelijkingen op te lossen. Deze vergelijkingen, gekend on-
der de naam differentiële optellingsvergelijkingen (DEA) combineren modulaire
optellingen over twee verschillende algebräısche groepen zoals GF(2) en GF(232).
De resultaten omvatten:

• een bewijs dat de vraag naar oplosbaarheid voor een willekeurige verzamel-
ing DEA gelegen is in de complexiteitsklasse P ,

• een methode voor het afleiden van alle oplossingen van een willekeurige
verzameling DEA.

Vervolgens passen we deze resultaten toe op het concrete stroomcijfer Helix (ont-
wikkeld door Ferguson et al.), en voeren we een aanval uit gebruik makend van
zowel gekozen als adaptief gekozen klaarteksten.

In een tweede fase spitst de thesis zich toe op een aantal array-gebaseerde
stroomcijfers, met als doel hun weerstand tegen onderscheidingsaanvallen in kaart
te brengen. Uiteindelijk ontdekken we, ietwat tegen-intüıtief, dat de correlaties
tussen de array-indices en hun overeenkomstige array-elementen, hoewel nuttig

ix

voor implementatie-doeleinden, anderzijds ook uitgebuit kunnen worden om on-
derscheidingsaanvallen op te zetten, indien geen adequate voorzorgsmaatregelen
genomen werden. Als bevestiging van onze theoretische conclusies, tonen we
onderscheidingsaanvallen aan op 8 concrete array-gebaseerde stroomcijfers (of
PRBGs): RC4 (ontworpen door Rivest), RC4A (door Paul en Preneel), Py, Py6
(ontwikkeld door Biham en Seberry), IA, ISAAC (ontworpen door Jenkins Jr.),
GGHN, NGG (door Gong et al.). Al deze aanvallen berusten op de afhankelijk-
heid van array-elementen en array-indices, en gaan uit van de veronderstelling
dat de sleutel-initialisatie procedures van deze cijfers resulteren in een uniform
verdeelde initiële toestand. We ontdekken zwakheden in het mixen van bits in
de sleutelstroomgeneratie. Onze analyse kan gezien worden als een uitbreiding,
aanpassing, en verdere karakterisering van de fortuitous states aanvallen op RC4
ontwikkeld door Fluhrer en McGrew in 2000.

x

Contents

1 Introduction 1
1.1 The Scope of Cryptology . 4
1.2 Symmetric Cryptology . 5
1.3 Stream Ciphers . 6

1.3.1 Mathematical Formulation 6
1.3.2 Classification of Stream Ciphers 7
1.3.3 Different Types of Attacks on Stream Ciphers 10

1.4 Summary of the Results: Array and Modular Addition as Stream
Cipher Components . 14

2 Differential Equations of Addition and Applications to the Helix
Cipher 19
2.1 Introduction . 19

2.1.1 Model of Computation . 22
2.2 Solving an Arbitrary System of DEA 23

2.2.1 Computing the Character Set and the Useful Set 24
2.2.2 Precomputation . 24
2.2.3 Computation of ParametersGi, Si, 0 and Si, 1 from the Use-

ful Set Ã . 25
2.2.4 Satisfiability of DEA is in P 26
2.2.5 Computing All the Solutions to a System of DEA 29

2.3 Solving DEA in the Adaptive Query Model 29
2.3.1 The Power of the Adversary 30
2.3.2 The Task . 31
2.3.3 The Number of Solutions 32
2.3.4 Worst Case Lower Bounds on the Number of Queries 33
2.3.5 Optimal Algorithms . 38

2.4 Solving DEA with Batch Queries 40
2.4.1 The Power of the Adversary 42

xi

2.4.2 The Task: the Solution Set D̃-consistent 42
2.4.3 Lower Bounds on the Number of Queries 43
2.4.4 Algorithms . 47

2.5 Cryptographic Applications . 50
2.6 Conclusion and Further Research 51

3 Cryptanalysis of the RC4 Stream Cipher 53

4 Design and Analysis of RC4A 55
4.1 Introduction . 55
4.2 RC4A: An Attempt to Improve RC4 55

4.2.1 RC4A Description . 56
4.3 Security Analysis of RC4A . 57

4.3.1 Precluding the Backtracking Algorithm by Knudsen et al. . 57
4.3.2 Resisting the Fortuitous States Attack 60
4.3.3 Resisting the 2nd Byte Attack by Mantin and Shamir . . . 61

4.4 Attacks on the RC4A Stream Cipher 61
4.5 Open Problems and Directions for Future Work 61
4.6 Conclusions . 62

5 Cryptanalysis of Py 63
5.1 Introduction . 63
5.2 Description of Py . 64

5.2.1 Notation and Convention 65
5.2.2 Assumption . 66

5.3 Motivational Observation . 66
5.4 Bias in the Distribution of the 1st and the 3rd Outputs 68
5.5 The Distinguisher . 69
5.6 Biases among other Pairs of Bits and Distinguishers 71
5.7 Generalizing the Bias at Rounds t and t+2: A Distinguisher Using

a Single Keystream . 74
5.8 A More Efficient Hybrid Distinguisher 75
5.9 Do Our Distinguishers Break the Cipher Py? 75
5.10 Future Work . 77
5.11 Conclusion and Remarks . 77

6 Array-based Stream Ciphers with Short Indices and Large Ele-
ments: Attacks on Py6, IA, ISAAC, NGG, GGHN 79
6.1 Introduction . 79

6.1.1 Assumption . 82
6.2 Stream Ciphers Based on Arrays and Modular Addition 82

6.2.1 Basic Working Principles 82

xii

6.2.2 Weaknesses and General Attack Scenario 84
6.3 Distinguishing Attacks on Array-based Ciphers 87

6.3.1 Bias in the Outputs of Py6 88
6.3.2 Biased Outputs in IA and ISAAC 91
6.3.3 Biases in the Outputs of NGG and GGHN 93

6.4 Data and Time of the Distinguishing Attacks 96
6.5 A Note on IBAA, Pypy and HC-256 97
6.6 Conclusion . 97

7 Conclusions and Future Work 99
7.1 Results of the Thesis: In a Nutshell 99
7.2 Open Problems . 100

A Helix 113
A.1 Proofs of Lemma 2.6 and Lemma 2.7 113
A.2 Proof of Lemma 2.11 . 114
A.3 Construction of M from the Li’s 114

B RC4 117
B.1 Criteria for i to Reach an Index to Produce an Output 117
B.2 Evaluation of the Maximum Value of d2 118

C Py 119
C.1 Uniformity of Bits If L Does Not Occur 119

xiii

xiv

List of Figures

1.1 Encryption and Decryption: PT=Plaintext, CT=Ciphertext, K=
Secret Key, E=Encryption Algorithm, D=Decryption Algorithm . 2

1.2 Encryption and decryption mechanisms of a synchronous stream
cipher . 8

1.3 Encryption and decryption processes of an asynchronous stream
cipher . 9

1.4 Encryption and decryption in a self-synchronizing stream cipher . 10
1.5 Regular distinguisher: adversary collects keystream produced by

a single key/IV . 12
1.6 Prefix distinguisher: adversary collects a few fixed bytes from

keystreams produced by many key/IVs 13

2.1 An arbitrary path P in the subtree (black node indicates value 1
and white node 0) . 45

4.1 PRBG of RC4A . 57

5.1 (a) P1[26] = 1 (condition 5): G and H are used in O1,1, (b) Y2

(i.e., Y after the 1st round), (c) P3[208] = 254 (condition 6): G
and H are used in O2,3 . 67

6.1 Internal State at (a) round t and (b) round t′ = t+ δ 83
6.2 Py6: (a) P1[8] = 1 (condition 5): G and H are used in Z1,1, (b)

Y2 (i.e., Y after the 1st round), (c) P3[21] = 62 (condition 6): G
and H are used in Z2,3 . 89

6.3 IA: (i) at round t when mt[it + 1] = a, (ii) at round t+ 1 92
6.4 ISAAC: at round t . 93
6.5 NGG: (a) the array S at the end of round t, (b) the array S just

before output generation at round t+ 1 94
6.6 GGHN: (a) the array S at the end of round t, (b) the array S at

the end of round t+ 1 . 96

xv

B.1 A non-fortuitous state of length 3 with d2 = 2: (a) Round 1: after
production of the 1st output, X indicates known value; (b) Round
2: no output; (c) Round 3: we reach Finney’s forbidden state as
j3 = i3 + 1 and S3[j3] = 1 . 118

C.1 Representations of Group 1 and Group 3 120
C.2 Group 2(a): I ↔ K, J ↔ L, M ↔ H , N ↔ G; Group 2(b):

I ↔ L, J ↔ K, M ↔ H , N ↔ G 121

xvi

List of Tables

2.1 The values of γ̃(i+1) corresponding to (x(i), y(i), c(i)) (tabulated in
column k = 0) and (α(i), β(i), γ̃(i)) (tabulated in row r = 0). A
row and a column are denoted by R(r) and Col(k). R(r)×Col(k)
denotes the element in the table corresponding to row r and col-
umn k. 25

2.2 New CP and ACP attacks on the Helix cipher 51

5.1 Truth table for (5.17). The last column in each row indicates the
probability of the occurrence of that row 73

6.1 Pros and cons of the RC4 Cipher 81
6.2 Data and time of the distinguishers with advantage exceeding 0.5 . 96

xvii

xviii

List of Symbols

≪ cyclic left shift
≪ left shift
≫ cyclic right shift
≫ right shift
⇒ implies
⇔ implies and implied by
⊕ bitwise exclusive-or of two n-bit integers
∧ bitwise product of two n-bit integers
∨ bitwise or of two n-bit integer
⊙ multiplication of two n-bit integers modulo 2n

+ addition of two n-bit integers modulo 2n

− subtraction of two n-bit integers modulo 2n

ab a ∧ b
GF(q) finite field with q elements
l(i) the ith bit of an n-bit integer l (l(0) is the lsb)
n a positive integer
O order of complexity denoting asymptotic upper bound
Θ order of complexity denoting asymptotic tight bound
Ac complement of the event A
[p, q] the set of integers {p, p+ 1, . . . , q}
P [A] probability of occurrence of the event A
P [A|B] conditional probability of A given B
PD[F(z) = c] probability of F(z) = c where z follows distribution D
|S| the cardinality of the set S
X(m,n) the segment of m− n+ 1 bits between the mth and the

nth bits of the variable X
Zq the set {0, 1, 2, . . . , q − 1}
Z
p
q p-fold Cartesian product of the set Zq, i.e., Zq × Zq × · · ·Zq

︸ ︷︷ ︸

p times

xix

xx

List of Abbreviations

ACP adaptive chosen plaintext
AES Advanced Encryption Standard
CP chosen plaintext
DC differential cryptanalysis
DEA differential equation(s) of addition
DES Data Encryption Standard
DTM deterministic Turing machine
ECRYPT European network of excellence for cryptology
eSTREAM ECRYPT stream cipher project
IV initialization vector
KSA key scheduling/setup algorithm
lsb least significant bit
MAC message authentication code
msb most significant bit
NESSIE New European Schemes for Signatures, Integrity and Encryption
NP class of problems solvable in polynomial time by an NTM
NPC class containing the hardest problems in NP
NTM non-deterministic Turing machine
P class of problems solvable in polynomial time by a DTM
PRBG pseudorandom bit generator
RAM random access machine
RSA Rivest-Shamir-Adleman
S-box substitution box (or vectorial Boolean function)
SSL secure sockets layer
TLS transport layer security/secure sockets layer
WEP wired equivalent privacy
XOR bitwise exclusive-or

xxi

xxii

Chapter 1

Introduction

To begin is half the work..
– Ausonius (310-395)

Cryptology is the science of hiding information from unauthorized users, and
making them available to the legitimate ones. The word cryptology is derived
from two Greek words: kryptós which means ‘hidden’ and logos meaning ‘word’.
Historically, the art of secret writing is as old as the time of Pharaos of ancient
Egypt. Julius Caesar (100 BC – 44 BC) is known to have had used some specific
techniques, known as Caesar cipher, to protect messages of high military worth.
In fact, the emergence of classical cryptology as a well structured scientific dis-
cipline from a mere black art of middle ages has been greatly influenced by the
growing military needs of modern times to disguise sensitive information from the
enemy. It is still debated whether the breaking of the German secrecy system
Enigma by the Allied cryptologists (one of them was the famous British mathe-
matician Alan Turing who is deemed the father of modern computer science) had
shortened the duration of the World War II significantly. Interested readers are
highly recommended to look at the classical book The Codebreakers by David
Kahn that traces the evolution of cryptology since the dawn of civilization till
the age of the modern computer science [43].

Modern cryptology is all about protecting sensitive information on the Inter-
net from several forms of abuses. As a result the scope of cryptology is no longer
limited to just military applications. As Internet banking, Electronic money
transfer (e.g. payment through credit cards), Internet Shopping (e.g. ordering
books on the amazon.com) are being widely used all over the world nowadays,
the subject of cryptology has evoked unprecedented interest and enthusiasm in
both industry and academia.

1

2 CHAPTER 1. INTRODUCTION

K

E DPT CT CT PT

(a) Encryption (b) Decryption

K

Figure 1.1: Encryption and Decryption: PT=Plaintext, CT=Ciphertext, K=
Secret Key, E=Encryption Algorithm, D=Decryption Algorithm

Encryption and Decryption Algorithms. At the heart of cryptology, there
are two mathematical functions E and D which are used for encryption and
decryption respectively (schematic diagram in Fig. 1.1). Another component,
known as the secret key K, also plays an important role in cryptologic applica-
tions. The functions E and D are publicly known but the secret key is known
only to the sender and the receiver of the message. Let us take an example.
Suppose Alice wants to send a confidential email to Bob through an unprotected
path which can be accessed by all. In other words, the email sent by Alice to
Bob can be captured midway by a third party whose name is, say Oscar. Alice
(the sender) will encrypt the email (technically called message) using the func-
tion E and a secret key K. Thus, if the message is PT then Alice generates the
encrypted code E(K,PT) = CT . The encrypted code CT is then sent out on an
insecure channel. At the receiving end Bob gets CT and decrypts it to recover
the original message using the function D and the shared secret key K, i.e., by
performing the operation D(K,CT) = PT . When Oscar captures the encrypted
message on the way, he tries to recover PT from CT without the knowledge of
the secret key K. The system fails if Oscar succeeds. The system is consid-
ered secure if the recovery of the original message from the encrypted message is
‘impossible’ without the knowledge of the secret key.

The main research in cryptology centers around designing the mathematical
functions E and D such that the communication is secure in a manner argued in
the previous paragraph. An unconditionally secure cryptosystem is the classical
Vernam Cipher or one-time pad. The encryption and the decryption functions
of the Vernam cipher are as follows (more on the perfect security of the Vernam
cipher in [86]).

Encryption: CT = PT ⊕K,

Decryption: PT = CT ⊕K.

Unfortunately, the Vernam cipher requires the key to be of the same size as that

3

of the plaintext. This condition renders this cipher completely impractical as,
in most applications, long messages are required to be encrypted. In fact, no
practical cryptosystem has so far been proved to be secure. Scores of cryptosys-
tems are proposed at the conferences and in the journals every day and they are
broken, sometimes more quickly than they are designed. This alternate making
and breaking of secrecy systems, unlike any other scientific research, keep the
practitioners of this subject always on an adrenalin rush.

A Few Notable Encryption/Decryption Algorithms. One of the most
widely used cryptographic algorithms, known as the DES Cryptosystem (abbre-
viation for Data Encryption Standard) designed by a team of IBM and selected as
an official Federal Information Processing Standard (FIPS) for the United States
in 1976, was once thought to be secure for a long time. DES has a block size of
64 bits and a key size of 56 bits. However, with the emergence of faster machines,
the 56-bit key length of DES turned out to be too short to be secure against brute
force attack. In addition, new sophisticated mathematical techniques were also
developed to even to improve the brute force attack. Those methods are known
as (1) Differential Cryptanalysis, publicly invented by Biham, Shamir in 1992 [9],
and (2) Linear Cryptanalysis discovered by Matsui [54] in 1993. After its fail-
ure, the DES Cryptosystem is being gradually replaced by a new standard called
the AES Encryption Algorithm (Advanced Encryption Standard), also known
as Rijndael named after its two Belgian designers Rijmen and Daemen of the
Katholieke Universiteit Leuven [19]. The block size of AES is 128 bits. There
are three possible key sizes for AES: 128, 192 and 256 bits. Till now, barring a
few occasional rumors, AES-Rijndael has survived all attacks and is considered
to be exceptionally strong.

Invention of Public Key Cryptology. As explained before, one way of se-
curing cryptographic systems is to make the sender and the receiver share the
same secret key K. However, it is often difficult for the receiver and the sender,
located wide apart on the globe, to share the same secret key because the transfer
of the key over the Internet makes it prone to capture by a third party. There-
fore, the question that arises naturally is: how can one design the functions E
and D (as explained before) securely without the shared component K? Diffie
and Hellman in 1976, initiated a new direction in cryptography by inventing a
Public-key encryption algorithm for which it was no more necessary to share a
key in secret communication [22]. Since the publication of this landmark paper,
the problem of designing a practical and secure cryptosystem without the condi-
tion of sharing of a key, became a hot pursuit by the mathematicians. Three MIT
scientists Ronald Rivest, Adi Shamir and Leonard Adleman, in 1978, first gave a
practical algorithm – RSA Encryption Algorithm – for a Public-Key Cryptosys-

4 CHAPTER 1. INTRODUCTION

tem which is based on the hardness of a well known number theoretic problem of
factoring large integers [78]. Discussion of how this type of cryptosystems works
is out of the scope of this thesis, however, the underlying mathematical problem,
which is the lifeblood of this type of secrecy system, can be described in a few
words. If l = mn where m and n are large prime numbers then, given l, it is
hard to determine the prime factors m and n quickly. Another very popular
public key encryption system is the El Gamal cryptosystem which is based on
the hardness of the discrete logarithm problem. The discrete logarithm problem
is: given two elements g and h in a finite group G, find an integer x such that
gx = h. For example, the solution to the problem 3x = 10 (mod 17) is 3, because
33 = 27 = 10 (mod 17). This problem is assumed to be hard when considered
over some groups of large orders. Discrete logarithm problem, when considered
in a slightly complex setting such as an elliptic curve group, can be used to build
another important public key cryptosystem, known as Elliptic Curve Cryptosys-
tem (ECC). Many other algebraic hard problems such as solving multivariate
polynomial equations are also under investigation for the purpose of information
hiding [94]. An elaborate discussion of the above cryptosystems can be found in
[56, 88].

1.1 The Scope of Cryptology

Today the scope of cryptology is not limited to data encryption and decryption
only as mentioned above. The boundary of the subject is in continuous process
of expansion and modification. The main purposes of cryptology are threefold:
(i) confidentiality of message, (ii) message authentication and (iii) entity authen-
tication.

• Confidentiality

– Alice wants to send a message to Bob through an insecure channel.
Oscar, who captures the message midway, should not be able to learn
any information about the contents.

– Cryptographic tools or primitives used to protect confidentiality are
encryption algorithms and decryption algorithms.

– Examples: RC4 [76], AES [19].

• Message Authentication

– This service detects unauthorized alteration of data.

– Alice wants to send a message to Bob. Oscar, on capturing the mes-
sage in transit, should not be able to alter the contents and get them

1.2. SYMMETRIC CRYPTOLOGY 5

accepted by Bob as original. For example, let the message sent from
Alice to Bob be “India is a friend of Belgium.” The message during
transmission should not become “India is an enemy of Belgium.” and
be received by Bob as original.

– Cryptographic tools or primitives used to secure message authentica-
tion are hash functions (e.g. MD4 [74], MD5 [75], RIPEMD-160 [23],
SHA-0 [83], SHA-1 [84], SHA-2 [85]), message authentication codes
(MAC) [71] and digital signatures (e.g. DSS [24]).

• Entity Authentication

– Alice is communicating with Bob. Alice (claimant) will be able to
prove her identity to Bob (verifier) by demonstrating knowledge of a
secret known to be associated with her, without revealing the secret
itself to Bob.

– Challenge-response protocols (e.g. Kerberos [62]), zero-knowledge pro-
tocols (e.g. Fiat-Shamir [28] protocol) prove the identity of one party
to the other.

The reader is kindly referred to [56] and [88] for extensive discussions on
various subareas in cryptology.

1.2 Symmetric Cryptology

According to the nature of the secret keys used in the encryption or decryption
algorithms, cryptology can be divided into two broad classes. If both the en-
cryption and decryption algorithms use the same shared key, then they come
under symmetric cryptology. The encryption and decryption algorithms shown
in Fig. 1.1 use the same secret key. Under symmetric cryptology, there are two
ways in which information or data can be encrypted and decrypted: one is using
a block cipher and the other is using a stream cipher. It is, however, worth not-
ing that the distinctions between the functionalities of stream ciphers and block
ciphers are not very sharp; they are partly quantitative and partly qualitative.
These two types of ciphers should be viewed as two concrete points on a contin-
uous design spectrum [82].

Stream Cipher. Stream cipher is an algorithm where

• both the encryption and the decryption functions use the shared secret key,

• the encryption/decryption function to encrypt/decrypt a unit of message
(usually message of short length) varies with time,

6 CHAPTER 1. INTRODUCTION

• the processing of data is usually fast,

• key processing is completely separate from the plaintext processing,

• plaintext processing is remarkably simple.

Block Cipher. Block cipher is an algorithm where

• both the encryption and the decryption functions use the shared secret key,

• encryption/decryption function to encrypt/decrypt a unit of message (usu-
ally a large block of message) does not vary with time,

• key and plaintext are processed together in a relatively complex function.

Elaborate discussion on mathematical formalization of block ciphers and stream
ciphers can be found in [56] and [88].

As most of the thesis deals with cryptanalysis of various stream ciphers, a
brief discussion on different types of stream ciphers sounds justifiable.

1.3 Stream Ciphers

1.3.1 Mathematical Formulation

Typically a stream cipher consists of two phases: (i) a key setup algorithm (KSA)
and (ii) a pseudorandom bit generation algorithm (PRBG). The KSAs on both
the encryption and decryption sides are identical. However, the PRBG on the
encryption side is slightly different from the one on the decryption side.

(i) Key Setup Algorithm. The inputs to the KSA are a secret key K and a
known initialization vector IV. The output from the KSA is the initial internal
state of the cipher, denoted by S0. Mathematically,

KSA(K, IV) = S0. (1.1)

(ii) Pseudorandom Bit Generation Algorithm. In this phase random look-
ing stream of bits are generated sequentially. At any round t of the PRBG, the
memory of a stream cipher consists of (1) an internal state St, (2) the key K
and (3) the initialization vector IV. Henceforth, the K/IV pair will be denoted
by Kc. It is also possible that the Kc does not exist as a separate entity at some
round t; rather, after going through a transformation it becomes a part of the
internal state St. Typically, at a round t, a stream cipher produces output Zt

which is XORed with the plaintext Pt to produce the ciphertext Ct.

1.3. STREAM CIPHERS 7

In general, three functions are executed at any round of the PRBG. The
operations on the encryption side is as follows:







Zt = g(St,Kc),
Ct = Zt ⊕ Pt,
St+1 = f(St,Kc, X).

(1.2)

Similarly, the operations on the decryption side is:







Zt = g(St,Kc),
Pt = Zt ⊕ Ct,
St+1 = f(St,Kc, X).

(1.3)

The variable X in the above equations is either Pt or Ct. The value of S0 can be
computed from Kc.

Asymptotic Definition of a PRBG. Theoretically, the behavior of a crypto-
graphically strong pseudorandom bit generator (CSPRBG) is analyzed asymp-
totically in terms of the length of key (also known as seed). Note that, for most
of the practical stream ciphers, such as RC4, Helix, the key lengths are fixed.
From the theoretical point of view, a CSPRBG is an algorithm A that, on being
given a random seed k as input, generates a sequence of pseudo-random bits a1,
a2, a3, · · · . The function A possesses the following properties (see Blum and
Micali [11]):

1. Each bit ai can be produced in time polynomial in the length of seed k.

2. Given the algorithm A and the first s output bits generated by an unknown
seed k, it is computationally infeasible to predict the s+1st bit with biased
probability. The string s is polynomial in the length of the seed k.

1.3.2 Classification of Stream Ciphers

Depending on the usage of different variables involved in the functions f and g
of the PRBG, as shown in (1.2) and (1.3), stream ciphers are broadly classified
into three categories: (1) synchronous, (2) asynchronous and (3) self-synchronous.

Synchronous Stream Cipher

A synchronous stream cipher is one which generates Zt (known as keystream)
independently of the plaintext and the ciphertext. Therefore, the encryption

8 CHAPTER 1. INTRODUCTION

function for this case becomes






Zt = g(St,Kc),
Ct = Zt ⊕ Pt,
St+1 = f(St,Kc).

(1.4)

Similarly, the decryption function is






Zt = g(St,Kc),
Pt = Zt ⊕ Ct,
St+1 = f(St,Kc).

(1.5)

Example: Py [6]. Working principles of a synchronous stream cipher are shown
in Fig. 1.2. Some interesting properties of a synchronous stream cipher are worth

tKc
S

f

g

f

g

StKc

St+1
St+1

tZ
tC tCPt

tZ
Pt

Figure 1.2: Encryption and decryption mechanisms of a synchronous stream
cipher

noting.

• The modes of operation of a synchronous stream cipher only allows for
known plaintext or known ciphertext attacks as the keystream is produced
independently of the plaintext or the ciphertext. Chosen plaintext or chosen
ciphertext attacks are not possible here.

• If some bits are deleted from or inserted into the ciphertext accidentally
during message transmission, it is imperative to restart transmission with a
new pair of key/IV to establish synchronization at both the encryption and
the decryption ends. This process is known as resynchronization mecha-
nism. Evidently, resynchronization is quite expensive in this type of ciphers.

• If some ciphertext bits are accidentally flipped during message transmission
then the error does not affect the decryption of other ciphertext bits. This
is a positive aspect of a synchronous stream cipher.

1.3. STREAM CIPHERS 9

• A secure synchronous stream cipher is a suitable candidate to be used as a
PRBG.

Asynchronous Stream Cipher

An asynchronous stream cipher is one where the generated keystream depends
on the plaintext or the ciphertext. Example: Helix [33]. Working principles of
an asynchronous stream cipher are shown in Fig. 1.3. The encryption function
for the cipher in Fig. 1.3 is:







Zt = g(St,Kc),
Ct = Zt ⊕ Pt,
St+1 = f(St,Kc, Pt).

(1.6)

Similarly, the decryption function is:







Zt = g(St,Kc),
Pt = Zt ⊕ Ct,
St+1 = f(St,Kc, Pt).

(1.7)

Two important features of this class of ciphers are as follows.

tKc
S

f

g

f

g

StKc

St+1
St+1

tZ
tCPt

tZ
tC Pt

Figure 1.3: Encryption and decryption processes of an asynchronous stream ci-
pher

• In general, the main disadvantage of this type of ciphers is that, if few
bits of the ciphertext are altered then the error propagates through other
ciphertext bits too.

• This type of ciphers admit of both chosen plaintext/chosen ciphertext and
known plaintext/known ciphertext attacks unlike a synchronous stream ci-
pher which only permits known plaintext/known ciphertext attacks.

10 CHAPTER 1. INTRODUCTION

Self-synchronizing Stream Cipher

Self-synchronizing stream ciphers are a special case of asynchronous stream ci-
phers. A self-synchronizing stream cipher is one where the keystream Zt is com-
pletely determined by the key/IV pair and a fixed of number preceding cipher-
text bits. Example: MOSQUITO [42]. Working principles of a self-synchronizing
stream cipher are shown in Fig. 1.4.

The advantages of a self-synchronizing stream cipher over a synchronous stream

c

Pt
Pt

Kc

S

tS tS

K

g g

tZ
tC tC

tZ

tS t+1

......

+1

Figure 1.4: Encryption and decryption in a self-synchronizing stream cipher

cipher are listed below.

• As the internal state depends only on a fixed number of preceding ciphertext
bits, the state can be fully recovered even after alteration, modification,
deletion or insertion of some ciphertext words during transmission.

• For the same reason as above, error in some ciphertext bits only affects the
decryption process for a limited number of subsequent bits.

However advantages the ciphers may have over others, design of a secure self-
synchronizing stream cipher has so far turned out to be a difficult task. This
fact has been reflected in the weaknesses discovered in all of this type of ciphers
(SSS, MOSQUITO) of the ongoing ECRYPT eSTREAM project [18, 42].

1.3.3 Different Types of Attacks on Stream Ciphers

Broadly a stream cipher is analyzed against three types of attacks: (i) key recov-
ery attack, (ii) distinguishing attack and (iii) related key attack.

(i) Key Recovery Attack. From the above discussion it is clear that the
inputs to the publicly known encryption and decryption algorithms of a stream
cipher are some or all of the following parameters,

1.3. STREAM CIPHERS 11

• secret key,

• an initialization vector (IV) (explained before),

• plaintext,

• ciphertext.

Note that except the secret key an adversary can select all the other parameters
suitably to attack the cipher. Therefore, the ultimate target of the adversary is to
derive the secret key by properly selecting the other parameters. Depending on
the power of adversary, the modes of attacks on stream ciphers are listed below.

• Ciphertext Only Attack. This is the strongest form of attack. In this
case the adversary recovers the key from the ciphertext only, no matter
what the other parameters are.

• Chosen Ciphertext Attack. In this case the adversary chooses the ci-
phertext and observes the corresponding plaintext. From the ciphertext-
plaintext pair the adversary finally recovers the key using the decryption
algorithm. One variant of chosen ciphertext attack is the adaptive chosen
ciphertext attack. In such type of attacks, the adversary collects a number
of ciphertext-plaintext pairs where the next ciphertext is determined from
the previous ciphertext-plaintext pairs.

• Known Plaintext Attack. As the title suggests, the key is recovered
from the known plaintext and the corresponding ciphertext.

• Chosen Plaintext Attack. In this case the adversary chooses the plain-
text and recovers the key using the plaintext-ciphertext combination. In
adaptive chosen plaintext attack, the adversary collects a set of plaintext-
ciphertext pairs where the next plaintext is computed from the previous
plaintext-ciphertext pairs.

• Known IV Attack. In this mode of attack, only the IV and the ciphertext
is known.

• Chosen IV Attack. In this case the adversary chooses the IV and recovers
the key using the IV-ciphertext combination. In a similar way as described
above, adaptive chosen IV attack is also possible.

• Combination of the above.

(ii) Distinguishing Attack. Apart from key recovery attack, another type of
attack, known as distinguishing attack, is also possible on a stream cipher. A
distinguisher is an algorithm which distinguishes a stream of bits from a perfectly

12 CHAPTER 1. INTRODUCTION

random stream of bits, that is, a stream of bits that has been chosen according
to the uniform distribution. There are several ways a cryptanalyst may try to
distinguish between a string, generated by an insecure pseudorandom bit gener-
ator, and one from a perfectly random source.

(a) Regular or Weak Distinguisher. In this case, the adversary selects a single
key/IV randomly and produces keystream, seeded by the chosen key/IV, long
enough to distinguish it from random with high success probability. This attack

K

Key/IV

 key stream bytes

Figure 1.5: Regular distinguisher: adversary collects keystream produced by a
single key/IV

scenario is rather common and such distinguisher is called a regular distinguisher
(see Fig. 1.5). In this scenario the adversary is “weak” as she has a keystream
produced by a single key rather than many, and therefore the distinguisher is
also called a weak distinguisher.

(b) Prefix or Strong Distinguisher. In this scenario, to build a distinguisher,
the adversary may use many randomly chosen key/IVs rather than a single key
and a few specified bytes from each of the keystreams generated by those key/IVs
(see Fig. 1.6). The distinguisher, so constructed, is called a prefix distinguisher.
In this case the adversary is “strong” because she may collect outputs to her
advantage from many keystreams to detect a bias. Therefore, the distinguisher
so constructed is also termed a strong distinguisher. A bias present in the output
at time t in a single stream may hardly be detected by a regular distinguisher
but a prefix distinguisher can easily discover the anomaly with a few bytes. This
fact was nicely demonstrated by Mantin and Shamir [53] to detect a strong bias
toward zero in the second output byte of RC4.

(c) Hybrid Distinguisher. In addition to that, there exist hybrid distinguish-
ers that may fall between the above two extreme cases, that is, the adversary
may use many key/IVs and for each key/IV she collects long keystream.

1.3. STREAM CIPHERS 13

 keystream bytes

K

K

K

K

K

1

2

3

4

5

n

Key/IV Fixed Bytes

K

Figure 1.6: Prefix distinguisher: adversary collects a few fixed bytes from
keystreams produced by many key/IVs

The idea of constructing distinguishers using many randomly chosen key/IVs
has been a well studied subject. Goldreich has shown that a distribution which
is computationally indistinguishable from the uniform distribution based on a
single sample is also computationally indistinguishable from the uniform distri-
bution based on multiple samples [34].

Advantage of a Distinguisher. The advantage of a distinguisher F is a mea-
sure which indicates the efficiency of the algorithm F to distinguish a distribution
D0 from another distribution D1. It is given by the following formula [3]:

AdvF =
∣
∣PD0

[F(z) = 1]− PD1
[F(z) = 1]

∣
∣ . (1.8)

(iii) Related Key Attack. Apart from the above two attacks, related key
attack (or related IV attack) sometimes proves to be very crucial for a stream
cipher. In a related key attack it is found that, if some relation exists among a
group of key/IVs (known as weak key/IVs), the corresponding outputs are also

14 CHAPTER 1. INTRODUCTION

related. This relation can be used to recover secret key if some other conditions
are satisfied [30].

1.4 Summary of the Results: Array and Modular

Addition as Stream Cipher Components

The discourse on the rudiments of cryptology now lead us gradually to move
deeper into the main contribution of this thesis. One of the major inspirations for
working on stream ciphers for a Ph.D. thesis is to catch up with the recent flurry of
activities and increased interests among the cryptologists to design sophisticated
stream ciphers and to develop powerful cryptanalytic techniques to analyze them.
This recent such enthusiasm in the areas of stream ciphers is largely attributed to
two European projects: (1) NESSIE which stands for New European Schemes for
Signatures, Integrity and Encryption [61] and (2) ECRYPT which is a Network
of Excellence within the Information Societies Technology (IST) Programme of
the European Commission [25]. The NESSIE project, which lasted four years
(from 2000 till 2004), is ironically a failed one with respect to stream ciphers,
as none of the submitted stream ciphers could be included in the final portfolio.
However, this project indubitably established the requirements for deeper and
more comprehensive study of stream ciphers. As a result, another European
project eSTREAM (under the umbrella of ECRYPT), which called for primitives
on stream ciphers only, was started in February 2004. In April 2005, ECRYPT
received 34 candidate stream ciphers for its eSTREAM project.

This thesis scrutinizes a special class of stream ciphers which use arrays as
internal states and modular additions as the main operations to produce output
streams. In the course of our investigation, we show cryptanalytic attacks on
9 well known practical stream ciphers. Below we summarize the results of the
thesis chapter by chapter.

Chapter 2. The first contribution of the thesis is some theoretical results on
a class of equations known as DEA. Mixing addition modulo 2n (+) and exclusive-
or (⊕) has a host of applications in symmetric cryptography as the operations are
fast and nonlinear over GF(2). We deal with a frequently encountered equation
(x+ y)⊕ ((x⊕α)+ (y⊕ β)) = γ. The difficulty of solving an arbitrary system of
such equations – named differential equations of addition (DEA) – is an important
consideration in the evaluation of the security of many ciphers against differential
attacks. We show that the satisfiability of an arbitrary set of DEA – which has so
far been assumed hard for large n – is in the complexity class P . We also design
an efficient algorithm to obtain all solutions to an arbitrary system of DEA with
running time linear in the number of solutions. The next contribution is solving
DEA in an adaptive query model where an equation is formed by a query (α, β)

1.4. SUMMARY OF THE RESULTS 15

and oracle output γ. The challenge is to optimize the number of queries to
solve (x + y) ⊕ ((x ⊕ α) + (y ⊕ β)) = γ. Our algorithm solves this equation
with only 3 queries in the worst case. Another algorithm solves the equation
(x + y) ⊕ (x + (y ⊕ β)) = γ with (n − t − 1) queries in the worst case (t is the
position of the least significant ‘1’ of x), and thus, outperforms the previous best
known algorithm by Muller – presented at FSE ’04 [59]– which required 3(n− 1)
queries. Most importantly, we show that the upper bounds, for our algorithms,
on the number of queries match worst case lower bounds. This, essentially, closes
further research in this direction as our lower bounds are optimal. We also solve
the above equations with a set of batch queries. Our algorithms require 6 and
2n−2 queries to solve the above equations where the lower bounds are 3

4 · 2n−2

(theoretically proved) and 4 (based on extensive experiments) respectively.

The above results are used to cryptanalyze a recently proposed cipher, namely
Helix [33], which was a candidate for consideration in the 802.11i standard. We
recover the secret key of the cipher with 210.6 adaptive chosen plaintexts which is
an improvement on the previous best known attack by a factor of 3 (the attack
can be improved by a factor of 46.5 in the best case). Furthermore, for the first
time, we show a key-recovery attack with 235.6 chosen plaintexts rather than
adaptive chosen plaintexts. All the above attacks assume reuse of nonce similar
to the assumptions of all previous attacks.

The results of this chapter have been published in the volumes 3574 and 3797
of Lecture Notes in Computer Science [66, 67].

Chapter ??. Next, we analyze the RC4 stream cipher which is the most
widely used software based stream cipher. The cipher is based on a secret internal
state of N = 256 bytes and two pointers. This thesis proposes an efficient
algorithm to compute a special set of RC4 states named non-fortuitous predictive
states. These special states increase the probability to guess part of the internal
state in a known plaintext attack and present a cryptanalytic weakness of RC4.
The problem of designing a practical algorithm to compute them has been open
since it was posed by Mantin and Shamir in 2001. We also formally prove a
slightly corrected version of the conjecture by Mantin and Shamir of 2001 that,
using only a known elements along with the two pointers at some round, the RC4
pseudorandom generation algorithm cannot produce more than a outputs in the
next N rounds. Then, we present a new statistical bias in the distribution of the
first two output bytes of the RC4 keystream generator. The number of outputs
required to reliably distinguish RC4 outputs from random strings using this bias
is only 225 bytes. Most importantly we show that the bias does not disappear
even if the initial 256 bytes of the keystream are dropped.

The results of this chapter have been published in the volumes 2904 and 3017
of Lecture Notes in Computer Science [64, 65].

Chapter 4. This chapter proposes a new stream cipher (or PRBG), named

16 CHAPTER 1. INTRODUCTION

RC4A, which is based on RC4’s exchange shuffle model. It is shown that the new
cipher offers increased resistance against most attacks that apply to RC4. RC4A
uses fewer operations per output byte and offers the prospect of implementations
that can exploit its inherent parallelism to improve its performance further. We
also mention two distinguishing attacks on this cipher.

The results of this chapter have been included in the volume 3017 of Lecture
Notes in Computer Science [65].

Chapter 5. After RC4, RC4A and Helix, we focus our attention on another
array-based stream cipher Py which was designed by Biham and Seberry. Py
is also a submission to the ECRYPT stream cipher competition. The cipher is
based on two large arrays (one is 256 bytes and the other is 1040 bytes) and
it is designed for high speed software applications (Py is more than 2.5 times
faster than the RC4 on Pentium III). In the thesis we show a statistical bias in
the distribution of its output-words at the 1st and 3rd rounds. Exploiting this
weakness, a distinguisher with advantage greater than 50% is constructed that
requires 284.7 randomly chosen key/IV’s and the first 24 output bytes for each
key. The running time and the data required by the distinguisher are tini · 284.7
and 289.2 respectively (tini denotes the running time of the key/IV setup). We
further show that the data requirement can be reduced by a factor of about 3
with a distinguisher that considers outputs of later rounds. In such case the
running time is reduced to tr · 284.7 (tr denotes the time for a single round of
Py). The Py specification allows a 256-bit key and a keystream of 264 bytes per
key/IV. As an ideally secure stream cipher with the above specifications should
be able to resist the attacks described before, our results constitute an academic
break of Py. In addition we have identified several biases among pairs of bits; it
seems possible to combine all the biases to build more efficient distinguishers.

The results of this chapter have been published in the volume 4047 of Lecture
Notes in Computer Science [68].

Chapter 6. In this chapter, from the experience of the attacks on the
ciphers described above, we investigate the security of array-based stream ci-
phers against certain types of distinguishing attacks in a unified way. We argue,
counter-intuitively, that the most useful characteristic of an array, namely, the
association of array-elements with unique indices, may turn out to be the origins
of distinguishing attacks if adequate caution is not maintained. In short, an ad-
versary may attack a cipher simply exploiting the dependence of array-elements
on the corresponding indices. Most importantly, the weaknesses are not elim-
inated even if the indices and the array-elements are made to follow uniform
distributions separately. Exploiting these weaknesses we build distinguishing
attacks with reasonable advantage on five recent stream ciphers, namely, Py6
(2005, Biham et al.), IA, ISAAC (1996, Jenkins Jr.), NGG, GGHN (2005, Gong
et al.) with data complexities 268.61, 232.89, 216.89, 232.89 and 232.89 respectively.

1.4. SUMMARY OF THE RESULTS 17

Similar to the RC4 and the Py, in all the above cases also we worked under the
assumption that the key-setup algorithms of the ciphers produced uniformly dis-
tributed internal states. We only investigated the mixing of bits in the keystream
generation algorithms. In hindsight, we also observe that the previous attacks
on the other array-based stream ciphers (e.g. Py, etc.), can also be explained in
the general framework developed in this chapter. It seems that our analyses will
be useful in the evaluation of the security of stream ciphers based on arrays and
modular addition.

The results of this chapter will be published shortly in a volume of Lecture
Notes in Computer Science [69].

Chapter 7. Finally we conclude and leave some open problems as future
work.

18 CHAPTER 1. INTRODUCTION

Chapter 2

Differential Equations of

Addition and Applications

to the Helix Cipher

Science is a differential equation. Religion is a boundary condition.
-Alan Turing (1912-1954)

2.1 Introduction

Addition modulo 2n. Mixing addition modulo 2n (+) with other Boolean
operations such as exclusive-or (⊕), or (∨) and/or and (∧) is extensively used
in symmetric cryptography. The main motivation for including addition mod 2n

in cryptographic primitives is that it is a nonlinear transformation over GF(2)
and the operation is extremely fast on all present day architectures. Nonlinear
transformations are of paramount importance in the design of ciphers as they
make functions hard to invert. Helix [33], IDEA [50], Mars [12], RC6 [77], and
Twofish [81] which mix modular addition with exclusive-or are a few examples of
the application of addition. Very recently Klimov and Shamir also used an update
function for internal state, known as a T -function, where addition is mixed with
multiplication and or in a certain fashion to achieve many useful properties of a
secure stream cipher [45, 46].

Keeping with the trend of widespread use of addition in symmetric ciphers,
there is a large body of literature that studies equations involving addition from
many different angles. Staffelbach and Meier investigated the probability dis-
tribution of the carry for integer addition [87]. Wallén explained the linear ap-

19

20 2. DIFFERENTIAL EQUATIONS OF ADDITION

proximations of modular addition [93]. Lipmaa and Moriai [51] investigated the
equation (x+ y)⊕ ((x⊕ α) + (y ⊕ β)) = γ, where α, β are the input differences
and γ is the output difference, to compute many differential properties. The
dual of the above equation (x⊕ y) + ((x+α)⊕ (y+ β)) = γ was investigated for
differential properties by Lipmaa et al. [52].

Differential Cryptanalysis (DC). Differential Cryptanalysis, introduced by
Biham and Shamir [9], is one of the most powerful attacks against symmetric
ciphers. There are broadly two lines of attacks based on DC. The first line
of attack exploits the occurrences of input or output differences with nontrivial
probabilities. In a cipher that is secure against DC, input and output differences
should behave ‘pseudorandomly’, so that none of them can be guessed from any
known values with a nontrivial probability. This line of attack usually results in
distinguishing attacks [91]. A second line of attack is much stronger but more
difficult to implement than the other. It recovers secret information from known
input and output differences, akin to the algebraic attacks [59]. Note that this
second line of attack implies the first but the converse is not true. Therefore,
provable security against DC – introduced by Lai et al. [50] and first implemented
by Nyberg and Knudsen [63] – remained a key factor in the evaluation of the se-
curity of a cipher. However, the security of many complex modern ciphers against
DC is hard to evaluate because of lack of theory to evaluate the security of its
components. Our target is to mount a second line of attack (i.e., to recover secret
information) on the much used symmetric cipher component addition modulo 2n.

Definition of DEA. There are two basic addition equations under DC where
differences of inputs and outputs are expressed as exclusive-or.

(x+ y)⊕ (x+ (y ⊕ β)) = γ , (2.1)

(x+ y)⊕ ((x ⊕ α) + (y ⊕ β)) = γ . (2.2)

These equations are named differential equations of addition (DEA). While en-
gaged in cryptanalysis of MD5, Berson noted in 1992 that, for large n, it is hard
to analyze modular addition when differences are expressed as XOR [4]. This
may have motivated the use of addition in conjunction with XOR in many sym-
metric ciphers to increase resistance against DC.

Our Results. The results of this chapter can be divided into four parts.

(i) Solving an Arbitrary Set of DEA (elaborated in Sect. 2.2): we show that
the satisfiability of a randomly generated set of DEA is in the complexity class
P . In other words, a Turing machine can show in O(nk) time whether there
exists a solution to an arbitrary set of DEA (n denotes the bit-length of x, y and

2.1. INTRODUCTION 21

k > 0 is an integer-valued constant computed from the degree of the polynomial
(in n) which is an upper bound on the number of equations to be solved). This
result, on one hand, gives deeper insight into the behavior of addition under DC.
On the other hand this leaves a cautionary note for the cryptographers to be more
careful about using addition in the design. Outside cryptography, satisfiability of
a system of equations has a natural appeal to many areas such as computational
complexity, combinatorics, circuit optimization and computer algebra (remember
the most famous NP-Complete satisfiability problem: Boolean formula satisfia-
bility [14]). For example, if a large system of DEA is NOT satisfiable then the
whole circuit representing the system of DEA can be safely removed to optimize
the circuit complexity. Going beyond the satisfiability problem, we also give an
efficient algorithm to compute all the solutions to a randomly generated system
of DEA with running time linear in the number of solutions. Another subtle but
a noteworthy aspect of our work is the departure from the traditional technique
for solving multivariate polynomial equations over GF(2) [2]. We heavily benefit
from certain properties of DEA and solve such systems combinatorially.

(ii) Solving DEA with Adaptive Queries (elaborated in Sect. 2.3): next we extend
our work to solve DEA in a crypto-friendly adaptive query model. The aim is
to minimize the search space of the secret (x, y) using a minimum number of
adaptive queries (α, β). Such an optimization problem – typically used to re-
duce data complexity of adaptive chosen plaintext attacks – was first tackled by
Muller [59] for (2.1). But an optimal solution has been elusive until now. We
achieve optimal solutions for both the equations. We show that a worst case
lower bound on the number of queries (0, β) to solve (2.1) is (n − t − 1) where
(n − t) > 1 with t being the bit-position of the least significant ‘1’ of x. A
worst case lower bound on the number of queries (α, β) to solve (2.2) is 3 for
n > 2. Most importantly, for solving the above equations we also design algo-
rithms whose upper bounds on the number of queries match worst case lower
bounds. Note that our algorithm outperforms the previous best known algo-
rithm by Muller to solve (2.1) – presented at FSE ’04 – which required 3(n− 1)
queries [59]. Over and above, our results essentially close further investigation
in this particular direction as the equations are solved with an optimal number
of queries in the worst case. It is particularly interesting to note that, for (2.2),
although the number of all queries grows exponentially with the input size n, an
optimal lower bound to solve (2.2) is 3 for all n > 2, i.e., constant asymptotically.

(iii) Solving DEA with Batch Queries (elaborated in Sect. 2.4): from crypto-
graphic point of view, batch queries are more practical than the adaptive queries.
Attacks based on batch and adaptive queries are equivalent to chosen plaintext
(CP) attack and adaptive chosen plaintext (ACP) attack respectively. In a CP

22 2. DIFFERENTIAL EQUATIONS OF ADDITION

attack, the queries are submitted all at once, where in an ACP attack the queries
are submitted adaptively, i.e., the next query is submitted based on the answers
to the previous queries – a situation which is difficult to implement in practice.
There is a large number of research papers launching CP and ACP attacks on
many practical ciphers. For example, the boomerang attack introduced by Wag-
ner is an ACP attack [92] and, therefore, less practical. The slide attacks by
Biryukov and Wagner can be implemented using both CP and ACP but with
different amount of data and time [10]. The time-memory trade-off attack by
Hellman [39] and the differential attack on DES by Biham and Shamir [9] are
CP attacks; so they are attributed more practical importance.

Therefore, it is also important to solve DEA with batch queries where the
adversary has access to only one computing oracle (note that, with adaptive
queries, the attacker has access to two computing machines). Our algorithm
solves (2.1) with 2n−2 queries submitted in a batch, where a lower bound on the
number of queries is 3

4 · 2n−2 (for all n > 3), i.e., our lower bound is optimal up
to a constant factor of 4

3 . This exponential lower bound constitutes an impor-
tant theoretical reference point which endorses the equations’s strong resistance
against DC. On the other hand, (2.2) has been solved with only 6 (for all n > 2)
batch queries which is two more than a conjectured lower bound (note that the
total number of queries is 22n) – this fact shows a major cryptographic weakness
of addition under DC and therefore, this component should be used with caution.

(iv) Cryptanalysis of the Helix Cipher (elaborated in Sect. 2.5): our results can be
used to cryptanalyze a recently proposed cipher, namely Helix [33], which was a
candidate for consideration in the 802.11i standard. We recover the secret key of
the cipher with 210.6 adaptive chosen plaintexts. This attack is an improvement
on the previous best known attack by a factor of 3 [59]. We also show that the
attack can be improved by a factor of 46.5 in the best case. In addition, we also
demonstrate, for the first time, that the Helix cipher can also be attacked with
235.6 chosen plaintexts rather than adaptive chosen plaintexts. Note that both of
the above attacks are built under the assumption of reuse of nonce similar to the
previous attack on it by Muller [59].

2.1.1 Model of Computation

The purpose of the chapter is to solve (2.1) and (2.2) for (x, y) using triples
(α, β, γ) where x, y, α, β, γ ∈ Z

n
2 . The operation ‘+’ over Z2n will be viewed as

a binary operation over Zn
2 using the bijection that maps (l(n−1), · · · , l(0)) ∈ Z

n
2

to l(n−1)2
n−1 + · · · + l(0)2

0 ∈ Z2n . Therefore, ‘+’ : Zn
2 × Z

n
2 → Z

n
2 .

The algorithms, described in this chapter, can be implemented on a generic

2.2. SOLVING AN ARBITRARY SYSTEM OF DEA 23

one-processor Random Access Machine (RAM) (i.e., instructions are executed
sequentially) with a memory that is composed of an unbounded sequence of reg-
isters each capable of containing an integer. Typically, RAM instructions consist
of simple arithmetic operations (addition and bitwise XOR in our case), stor-
ing, addressing (direct and indirect) and branching, each of which is a constant
time operation. However, the choice of RAM instructions is relatively less im-
portant because algorithms based on two reasonable sets of instructions will have
the same asymptotic complexity. A detailed analysis of RAM can be found in
[1, 32]. It can be shown that a polynomial-time solvable problem on a RAM is
also polynomial-time solvable on a Turing Machine and vice versa.

2.2 Solving an Arbitrary System of DEA

Our aim is to solve for (x, y) from the following set of differential equations of
addition over Zn

2 ,

(x+ y)⊕ ((x⊕ α[k]) + (y ⊕ β[k])) = γ[k] , k = 1, 2 · · ·m. (2.3)

We observe that the ith bit of γ[k] can be written as

γ[k](i) = x(i) ⊕ y(i) ⊕ c(i) ⊕ x̃(i) ⊕ ỹ(i) ⊕ c̃(i), i ∈ [0, n− 1] , (2.4)

where x̃(i) = x(i) ⊕ α[k](i) and ỹ(i) = y(i) ⊕ β[k](i) and c(i), c̃(i) are computed
from the following recursion,

c(0) = c̃(0) = 0,

c(j+1) = x(j)y(j) ⊕ x(j)c(j) ⊕ y(j)c(j),

c̃(j+1) = x̃(j)ỹ(j) ⊕ ˜x(j)c̃(j) ⊕ ỹ(j)c̃(j), where j ∈ [0, n− 2] . (2.5)

Thus we see that γ[k](i) is a function of the least (i + 1) bits of x, y, α[k] and
β[k]. More formally,

γ[k](i) = Fi(x(0), · · · , x(i), y(0), · · · , y(i),
α[k](0), · · · , α[k](i), β[k](0), · · · , β[k](i)) . (2.6)

Therefore, from a system of m differential equations of addition, a total of mn
multivariate polynomial equations over GF(2) can be formed by ranging (k, i)
through all values in (2.6).

Plenty of research has been undertaken to design efficient ways to solve ran-
domly generated multivariate polynomial equations. The classical Buchberger’s
Algorithm for generating Gröbner bases [2] and its variants [26] are some of them.
This problem is NP-complete (NPC) over GF(2). Many other techniques such

24 2. DIFFERENTIAL EQUATIONS OF ADDITION

as relinearization [44] have been proposed to solve a special case of overdefined
systems of multivariate polynomial equations. Note that, in our case, the number
of unknowns and equations are 2n and mn respectively (if m > 2 then the system
of equations is overdefined). However, taking full advantage of the specific nature
of the differential equations of addition, we shall use a combinatorial technique
to prove that, although the satisfiability of an arbitrary multivariate polynomial
equation over GF(2) is NP-complete, this special cryptographically important
subclass of equations is in the complexity class P (see [14], [40] for definitions
of NP , P , NPC). Finally, we also derive all the solutions to a system of such
equations.

2.2.1 Computing the Character Set and the Useful Set

From (2.3) we construct A = {(α[k], β[k], γ[k]) | k ∈ [1, m]} assuming (α[k],
β[k], γ[k])’s are all distinct.1 We call A the character set for that particular set
of equations. Our first step is to transform the system of equations defined in
(2.3) into a new set of equations over Zn

2 as defined below,

(x+ y)⊕ ((x ⊕ α[k]) + (y ⊕ β[k])) ⊕ α[k]⊕ β[k] = γ̃[k] , k = 1, 2 · · ·m ; (2.7)

where γ̃[k] = γ[k]⊕ α[k]⊕ β[k]. Now, we construct Ã,

Ã = {(α, β, γ̃ = α⊕ β ⊕ γ) | (α, β, γ) ∈ A} . (2.8)

We call Ã the useful set. Let all the solutions for (2.3) and (2.7) be contained in
the sets A-consistent and Ã-consistent respectively. It is direct to show that

A-consistent = Ã-consistent . (2.9)

Our aim is to compute Ã-consistent from Ã.

2.2.2 Precomputation

Take an arbitrary element (α, β, γ̃) ∈ Ã (n > 1). Observe that γ̃(i+1) can be
computed using x(i), y(i), c(i), α(i), β(i), γ̃(i), ∀ i ∈ [0, n − 2], from the following
three equations:

γ̃(i+1) = c(i+1) ⊕ c̃(i+1),

c(i+1) = x(i)y(i) ⊕ x(i)c(i) ⊕ y(i)c(i),

c̃(i+1) = x̃(i)ỹ(i) ⊕ x̃(i)c̃(i) ⊕ ỹ(i)c̃(i)

where c(i) is the carry at the ith position of (x + y), x̃(i) = x(i) ⊕ α(i), ỹ(i) =
y(i) ⊕ β(i) and c̃(i) = c(i) ⊕ γ̃(i). Table 2.1 lists the values of γ̃(i+1) as computed
from all values of x(i), y(i), c(i), α(i), β(i), γ̃(i).

1This can be obtained by taking one of the identical equations in (2.3).

2.2. SOLVING AN ARBITRARY SYSTEM OF DEA 25

Table 2.1: The values of γ̃(i+1) corresponding to (x(i), y(i), c(i)) (tabulated in
column k = 0) and (α(i), β(i), γ̃(i)) (tabulated in row r = 0). A row and a
column are denoted by R(r) and Col(k). R(r)×Col(k) denotes the element in
the table corresponding to row r and column k.

22 · α(i) + 2 · β(i) + γ̃(i) r
(x(i), y(i), c(i)) 0 1 2 3 4 5 6 7 0

(0,0,0) 0 0 0 1 0 1 1 1 1
(1,1,1)
(0,0,1) 0 0 1 0 1 0 1 1 2
(1,1,0)
(0,1,0) 0 1 0 0 1 1 0 1 3
(1,0,1)
(1,0,0) 0 1 1 1 0 0 0 1 4
(0,1,1)

0 1 2 3 4 5 6 7 8 k

2.2.3 Computation of Parameters Gi, Si, 0 and Si, 1 from the

Useful Set Ã

We now determine an important quantity, denoted by Gi, for a nonempty useful
set Ã. In Gi, we store the ith and (i+ 1)th bits of γ̃ and the ith bit of α and β
for all (α, β, γ̃) ∈ Ã. We call Gi the ith core of the useful set Ã. More formally
(suppose n > 1),

Gi = {(α(i), β(i), ˜γ(i), γ̃(i+1)) | (α, β, γ̃) ∈ Ã}, i ∈ [0, n− 2] . (2.10)

In the subsequent discussion we will often use the expression “Gi → (x(i), y(i),
c(i))”. The meaning of the expression becomes clear in the following steps where
we compute (x(i), y(i), c(i)) such that Gi → (x(i), y(i), c(i)).

1. Let |Gi| = g. Take an element (α(i), β(i), γ̃(i), γ̃(i+1)) ∈ Gi.

2. In Table 2.1, find the row(s) of the fourth coordinate γ̃(i+1) in the column
specified by the first three coordinates (α(i), β(i), γ̃(i)) in R(0) and put them
in the set Fi1.

3. Find Fi1, · · ·Fig for all g elements of Gi.

4. Compute Fi =
⋂

j Fij .

26 2. DIFFERENTIAL EQUATIONS OF ADDITION

5. Let R(r)∈ Fi. If (x(i), y(i), c(i)) is in Col(0)×R(r) then we say Gi →
(x(i), y(i), c(i)). If Fi = φ then no such (x(i), y(i), c(i)) exists.

Now we compute,

Si, j = {(x(i), y(i)) |Gi → (x(i), y(i), c(i) = j)}, (i, j) ∈ [0, n− 2][0, 1]. (2.11)

The example below computesGi,Si, 0,Si, 1, following the method described above.

Example. (Gi,Si, 0,Si, 1) Let n = 3 and the useful set Ã = {((0, 1, 0), (1, 0, 1),
(0, 0, 0)), ((0, 0, 0), (1, 1, 1), (1, 0, 0)), ((0, 0, 1), (0, 1, 1), (1, 1, 0))}. There-
fore, G0 = {(0, 1, 0, 0), (1, 1, 0, 1)},G1 = {(1, 0, 0, 0), (0, 1, 0, 1), (0, 1, 1, 1)}
(see (2.10)). Now, from Table 2.1, F01 = {R(1), R(3)}, F02 = {R(1), R(2)},
F11 = {R(1), R(4)}, F12 = {R(2), R(4)}, F13 = {R(1), R(4)}. Therefore,
F0 = F01 ∩ F02 = {R(1)} and F1 = F11 ∩ F12 ∩ F13 = {R(4)}. Now G0 →
(0, 0, 0), G0 → (1, 1, 1) because (0, 0, 0), (1, 1, 1) are in Col(0)×R(1). Simi-
larly, G1 → (1, 0, 0), G1 → (0, 1, 1). Thus, S0, 0 = {(0, 0)}, S0, 1 = {(1, 1)},
S1, 0 = {(1, 0)}, S1, 1 = {(0, 1)}. �

We assume m = |Ã| = O(nl) for some nonnegative integer l. Observing that
the number of Gi’s (or Si’s) is O(n), the time and memory to compute all the
Gi’s and Si, j ’s are O(nk) each, because the size of Table 2.1 and |Gi| are O(1)
each (k = l + 1). Now, we show a relation between Si, 0 and Si, 1 that will be
used to obtain several results.

Proposition 2.1 For all nonempty useful set Ã and all n > 1, |Si, 0| = |Si, 1|
∀ i ∈ [0, n− 2].

Proof. In Table 2.1, we observe that each row R(r) (where r = 1, 2, 3, 4) corre-
sponds to two triplets of (x(i), y(i), c(i)), where one of them is bitwise complement
of the other (see Col(0) in Table 2.1). Therefore, from (2.11), for all j ∈ [0, 1],
the number of elements in Si, j is the same for all i ∈ [0, n− 2]. �

We set,

|Si, 0| = |Si, 1| = Si, ∀ i ∈ [0, n− 2]. (2.12)

2.2.4 Satisfiability of DEA is in P
In this section, we deal with a decision problem: does there exist a solution for
an arbitrary set of differential equations of addition, i.e., is a system of DEA
satisfiable?

We have already seen how to compute the character set A, the useful set Ã,
the core Gi’s and Si’s from a system of DEA in O(nk) (see Sect. 2.2.3). Now, we
prove an important theorem that characterizes the membership in Ã-consistent
which is, in fact, the solution set.

2.2. SOLVING AN ARBITRARY SYSTEM OF DEA 27

Theorem 2.2 Let the useful set Ã 6= φ and n > 1. The following two statements
are equivalent.
1. (x, y) ∈ Z

n
2 × Z

n
2 is such that Gi → (x(i), y(i), c(i)), ∀ i ∈ [0, n− 2].

2. (x, y) ∈ Ã-consistent.

Proof. The proof is divided into two parts: (i) proof of 1 ⇒ 2 and (ii) proof of
2 ⇒ 1.

(i) 1 ⇒ 2. From the construction of Table 2.1 and the Gi, any pair (x, y)
satisfying property 1 is a solution to the set of equations represented by the set
Ã . Therefore, 1 ⇒ 2.

(ii) 2 ⇒ 1. We prove this by contradiction. Suppose, there exists a pair
(x, y) ∈ Ã-consistent that does not satisfy property 1. Therefore, there ex-
ists Si, for some i ∈ [0, n − 2], which is empty. But, if (x, y) is a solution then
Si is non-empty for all i ∈ [0, n− 2]. Thus we reach a contradiction.

Combining (i) and (ii), the theorem is proved. �

Armed with the above theorem, we now formulate |Ã-consistent| (i.e., the
number of solutions) in the following proposition which will later answer our
satisfiability question.

Proposition 2.3 Let the useful set Ã 6= φ and S denote |Ã-consistent|. Then,

S =







0 if γ̃(0) = 1 for some (α, β, γ̃) ∈ Ã,

4 ·∏n−2
i=0 Si if γ̃(0) = 0, ∀(α, β, γ̃) ∈ Ã and n > 1,

4 if γ̃(0) = 0, ∀(α, β, γ̃) ∈ Ã and n = 1.

The Si’s are defined in (2.12).

Proof. We prove this result by considering all cases individually.

Case 1 If γ̃(0) = 1 for some (α, β, γ̃) ∈ Ã then c(0) = 1 which is impossible.

Case 2 If γ̃(0) = 0, ∀(α, β, γ̃) ∈ Ã and n > 1. From Theorem 2.2, S is the
number of solutions (x, y) ∈ Z

n
2 × Z

n
2 such that Gi → (x(i), y(i), c(i)), ∀i ∈

[0, n − 2]. Let Mk denote the number of solutions for ((x(k), · · · , x(0)), (y(k),
· · · , y(0))) such that Gi → (x(i), y(i), c(i)), ∀i ∈ [0, k] where k ∈ [0, n− 2]. Note
that Gk depends only on the least (k + 1) bits of x, y,α,β. We consider two
subcases.
Case 2(a): n > 2 . We determine |Ã-consistent| recursively. Let Ml = Ml, 0 +

28 2. DIFFERENTIAL EQUATIONS OF ADDITION

Ml, 1 such that Ml, 0 solutions produce c(l+1) = 0 and Ml, 1 solutions produce
c(l+1) = 1. Therefore, ∀ l ∈ [0, n− 3]

Ml+1 = Ml, 0 · |Sl+1, 0|+Ml, 1 · |Sl+1, 1|
= Sl+1 ·Ml . (2.13)

as |Si, 0| = |Si, 1| = Si, ∀ i ∈ [0, n − 2] (see Proposition 2.1). Following the
recursion in (2.13) we get,

Mn−2 =

n−2∏

i=0

Si (2.14)

asM0 = S0. Note that, for all (α, β, γ̃) ∈ Ã, γ̃ can be computed independently of
(x(n−1), y(n−1)); therefore, (x(n−1), y(n−1)) can take all possible 4 values. Thus,

S = 4 ·Mn−2 = 4 ·
n−2∏

i=0

Si if n > 2 . (2.15)

Case 2(b): n = 2 . Using a similar technique as above it can be shown that
S = 4 · S0 if n = 2 .

Case 3 If γ̃(0) = 0, ∀(α, β, γ̃) ∈ Ã and n = 1 . It is the trivial case. S = 4

when n = 1 since, for all (α, β, γ̃) ∈ Ã, γ̃ can be computed independently of
(x(n−1), y(n−1)) ; therefore, the number of solutions is equal to the all possible 4
values of (x(n−1), y(n−1)).

Thus the proof is complete. �

Using Proposition 2.3, we now answer the question of satisfiability of DEA in the
following claim.

Claim 2.4 (i) If γ̃(0) = 1 for some (α, β, γ̃) ∈ Ã, then the set of DEA is NOT

satisfiable. (ii) If γ̃(0) = 0, ∀(α, β, γ̃) ∈ Ã and n > 1, then the set of DEA is

satisfiable if and only if Si 6= 0 ∀i ∈ [0, n − 2]. (iii) If γ̃(0) = 0, ∀(α, β, γ̃) ∈ Ã
and n = 1, then the set of DEA is satisfiable.

Verification of (i), (ii) and (iii) take time O(1), Θ(n) and O(1) respectively.
Therefore, the overall time to decide whether a system of DEA is satisfiable is
O(nk) +O(1) + Θ(n) +O(1) = O(nk). Thus the satisfiability of DEA is in P .

2.3. SOLVING DEA IN THE ADAPTIVE QUERY MODEL 29

2.2.5 Computing All the Solutions to a System of DEA

Now the only part left unanswered is how to actually compute Ã-consistent, i.e.,
to extract all the solutions of a system of DEA which is satisfiable. Note, if n = 1
then Ã-consistent comprises all 4 values of (x, y). The Gi’s can be computed from
the useful set Ã in O(nk) (see Sect. 2.2.3). Now we compute an intermediate
parameter Li = {(x(i), y(i), c(i)) |Gi → (x(i), y(i), c(i))} for all i ∈ [0, n−2] (note
that the Li’s are different from the Fi’s which have been computed in Sect. 2.2.3).
Computation of the Li’s takes time and memory each Θ(n). We call the Li the
ith bit solution. Algorithm 1 computes Ã-consistent from the Li’s (n > 1).

Algorithm 1 Computing all the solutions to a system of satisfiable DEA

Input: Li, ∀i ∈ [0, n− 2]
Output: Ã-consistent
1: Compute

M = {((x(n−1), x(n−2), · · · , x(0)), (y(n−1), y(n−2), · · · , y(0)))
| (x(n−1), y(n−1)) ∈ Z

2
2, (x(i), y(i), c(i)) ∈ Li, i ∈ [0, n− 2],

c(0) = 0, c(i+1) = x(i)y(i) ⊕ x(i)c(i) ⊕ y(i)c(i)}.

2: Return (M).

The idea of the algorithm is to collect in M all (x, y) ∈ Z
n
2 × Z

n
2 such that

Gi → (x(i), y(i), c(i)), ∀i ∈ [0, n− 2]. Theorem 2.2 is the heart of the argument

to prove that M is essentially Ã-consistent.

Time and Memory. Algorithm 1 takes time Θ(S) and memory Θ(n ·S) where
S is the number of solutions (an explicit construction of M from the Li’s and its
complexity analysis are shown in Appendix A.3).

2.3 Solving DEA in the Adaptive Query Model

In the previous section we have examined how to solve an arbitrary set of DEA.
In this section, we deal with the following equations

(x + y)⊕ ((x ⊕ α) + (y ⊕ β)) = γ, (2.16)

(x+ y)⊕ (x+ (y ⊕ β)) = γ (2.17)

separately to solve them in an adaptive query model.
We, first, outline what is meant by solving (2.16). It means solving the set

of 22n equations generated by ranging (α, β) with the corresponding γ. The

30 2. DIFFERENTIAL EQUATIONS OF ADDITION

number of solutions satisfying 22n equations is less than that of any subset of the
equations. Therefore, solving these 22n equations reduces the search space of the
secret (x, y) to the minimum. This fact is the major motivation for dealing with
this problem. The task of a computationally unbounded adversary is to select
a subset A of all equations such that the solutions to the chosen subset A are
the same as that of the entire 22n equations. The target of the adversary is to
minimize |A|. A similar optimization problem can be asked of (2.17) where the
number of equations is 2n. Such an optimization problem for (2.17) has already
been tackled by Muller [59] in cryptanalysis of the Helix cipher but an optimal
solution has still been elusive. We reach optimal solutions for both equations.

The adaptive query model signifies that the adversary forms the set of equa-
tions by submitting queries (α, β)’s adaptively and collecting the corresponding
γ’s. More on that model is explained in the subsequent sections.

2.3.1 The Power of the Adversary

The power of an adversary that solves (2.16) is defined as follows.

1. An adversary has unrestricted computational power and an infinite amount
of memory.

2. An adversary can only submit queries (α, β) ∈ Z
n
2 × Z

n
2 to an honest

oracle2 which computes γ using fixed unknown (x, y) ∈ Z
n
2 × Z

n
2 in (2.16)

and returns the value to the adversary. We will often refer to that fixed
(x, y) as the seed of the oracle.

Such an oracle with seed (x, y) is viewed as a mapping Oxy : Zn
2 ×Z

n
2 → Z

n
2 and

defined by

Oxy = {(α, β, γ) | (α, β) ∈ Z
n
2 × Z

n
2 , γ = (x+ y)⊕ ((x ⊕ α) + (y ⊕ β))} . (2.18)

An adversarial model, similar to the one described above for (2.16), can be con-
structed for (2.17) by setting (α, β) ∈ {0}n × Z

n
2 and the mapping

Oxy : {0}n × Z
n
2 → Z

n
2 .

The model described above represents a practical adaptively chosen message
attack scenario where the adversary makes adaptive queries to an oracle. Based
on the replies from the oracle, the adversary computes one or more unknown
parameters.

2An honest oracle correctly computes γ and returns it to the adversary.

2.3. SOLVING DEA IN THE ADAPTIVE QUERY MODEL 31

2.3.2 The Task

Oxy, defined in (2.18), generates a family of mappings F = {Oxy | (x, y) ∈
Z
n
2 × Z

n
2 }. Note that, if D ∈ F then |D| = 22n for (2.16). Therefore, D ∈ F

is the character set with the number of equations m = 22n (see Sect. 2.2.1).
Our aim is to find all (x, y) satisfying these 22n equations, i.e., to compute D-
consistent from a subset of the character set D. If we deal with (2.17) then
|D| = 2n.

An Equivalent Task. From the character set D one can compute the use-
ful set D̃ using (2.8). Therefore, the task is equivalent to the determination
of D̃-consistent from a subset of the useful set D̃. We call D and D̃ the total
character set and the total useful set as their sizes are maximal and they are
generated from a satisfiable set 22n DEA (because we assumed the oracle to be
honest). Note that there is a bijection between D and D̃.

Adjusting the Oracle Output. If the oracle outputs γ on query (α, β), we
shall consider the oracle output to be γ̃ = α⊕ β ⊕ γ for the sake of simplicity in
the subsequent discussions.

Rules of the Game. Now we lay down the rules followed by the adversary
to determine the set D̃-consistent that, in turn, gives the essence of the whole
problem.

1. The adversary starts with no information about x and y except their size
n.

2. The adversary settles on a strategy (i.e., a deterministic algorithm) which
is publicly known. Using the strategy, the adversary computes queries
adaptively, i.e., based on the previous queries and the corresponding oracle
outputs, the next query is determined.

3. The game stops the moment the adversary constructs D̃-consistent. The
adversary fails if she is unable to compute D̃-consistent for some (x, y) ∈
Z
n
2 × Z

n
2 .

We search for an algorithm that determines D̃-consistent for all (x, y) ∈ Z
n
2 ×

Z
n
2 . Furthermore, there is an additional requirement that, in the worst case of

(x, y), the number of queries required by the algorithm is the minimum. We shall
elaborate on the meaning of worst case in Sect. 2.3.4 which focuses on worst case
lower bounds on the number of queries.

32 2. DIFFERENTIAL EQUATIONS OF ADDITION

2.3.3 The Number of Solutions

In this section we are interested to determine the number of solutions of (2.16)
and (2.17) in the adaptive query model. We have already developed a framework
where the set of all solutions in the adaptive query model is denoted by D̃-
consistent where D̃ is the total useful set. Therefore, formally, our effort will be
directed to formulate |D̃-consistent|. We will see in Theorem 2.10 that, for (2.17),
|D̃-consistent| depends on the least significant ‘1’ of x. However, for (2.16), |D̃-
consistent| = 4, ∀(x, y) ∈ Z

n
2 × Z

n
2 . We shall use these results in Theorem 2.10

and 2.12 of Sect. 2.3.4, to obtain lower bounds on the number of queries to
compute D̃-consistent and in Sect. 2.3.5, to prove the correctness of our optimal
algorithms.

Theorem 2.5 Let the position of the least significant ‘1’ of x in the equation

(x+ y)⊕ (x+ (y ⊕ β)) = γ

be t and x, y, β, γ ∈ Z
n
2 . Let the total useful set D̃ be given. Then |D̃-consistent|

is (i) 2t+3 if n− 2 ≥ t ≥ 0, (ii) 2n+1 otherwise.

Proof. (i) n − 2 ≥ t ≥ 0. Using the procedure described in Sect. 2.2.3, we
construct the ith core Gi, ∀ i ∈ [0, n− 2], from the total useful set D̃. We derive
that

Gi = {(0, 0, 0, a(i)), (0, 1, 0, b(i))}, ∀i ∈ [0, t], (2.19)

Gi = {(0, 0, 0, c(i)), (0, 0, 1, d(i)),
(0, 1, 0, e(i)), (0, 1, 1, f(i))}, ∀i ∈ [t+ 1, n− 2] . (2.20)

In the above equations, a(i), b(i), c(i), d(i), e(i), f(i) ∈ [0, 1]. Note that only (2.19)
is relevant if t = n− 2. The fact that we are able to extract only the first three
coordinates of the elements ofGi, ∀i ∈ [0, n−2], can be proved using the following
two auxiliary lemmas, the proofs of which are given in Appendix A.1.

Lemma 2.6 For all (0, β, γ̃) ∈ D̃, γ̃(i) = 0, ∀ i ∈ [0, t].

Lemma 2.7 For all i ∈ [t+ 1, n− 1] there exists (0, β, γ̃) ∈ D̃ with γ̃(i) = 1.

However, only the first three coordinates of the elements of the Gi’s are suf-
ficient to determine the Si’s (Si is defined in Sect. 2.2.3). It is easy to verify
from Table 2.1 that Si = 2, ∀i ∈ [0, t] and Si = 1, ∀i ∈ [t + 1, n − 2]. From
Proposition 2.3

|D̃-consistent| = S = 4 ·
n−2∏

i=0

Si = 4 · 1 · 1 · · · 1
︸ ︷︷ ︸

(n−t−2) times

· 2 · 2 · · · 2
︸ ︷︷ ︸

(t+1) times

= 2t+3 .

2.3. SOLVING DEA IN THE ADAPTIVE QUERY MODEL 33

(ii) The proof is similar to the above one using Proposition 2.3. �

Theorem 2.8 Let the total useful set D̃ be given for the equation

(x+ y)⊕ ((x⊕ α) + (y ⊕ β)) = γ

with x, y, α, β, γ ∈ Z
n
2 . Then |D̃-consistent|=4.

Proof. Our approach is the same as that of Theorem 2.5.

Case 1 When n ≥ 2. Corresponding to the total useful set D̃ we determine
Gi, ∀ i ∈ [0, n− 2].

G0 = {(0, 0, 0, a(0)), (0, 1, 0, b(0)), (1, 0, 0, c(0)), (1, 1, 0, d(0))}, (2.21)
Gi = {(0, 0, 0, e(i)), (0, 0, 1, f(i)), (0, 1, 0, g(i)), (0, 1, 1, h(i)),

(1, 0, 0, m(i)), (1, 0, 1, n(i)), (1, 1, 0, p(i)), (1, 1, 1, q(i))},
∀ i ∈ [1, n− 2] . (2.22)

In the equations a(0), b(0), c(0), d(0), e(i), f(i), g(i), h(i), m(i), n(i), p(i), q(i) ∈ [0, 1].
From Table 2.1 we see that Si = 1, ∀ i ∈ [0, n− 2] (see Sect. 2.2.3 to compute Si

from Gi). Therefore, from Proposition 2.3

|D̃-consistent| = S = 4 ·
n−2∏

i=0

Si = 4 · 1 · 1 · · · 1
︸ ︷︷ ︸

(n−1) times

= 4 .

Case 2 When n = 1. If n = 1 then |D̃-consistent| = 4. The proof is trivial using
Proposition 2.3. �

2.3.4 Worst Case Lower Bounds on the Number of Queries

Our target is to design an algorithm (for (2.16) or (2.17)) which computes D̃-
consistent for all seeds (x, y) ∈ Z

n
2 × Z

n
2 with adaptive queries. For such an

algorithm, the number of required queries may vary with the choice of (x, y). In
this section we concentrate on a lower bound on the number of queries in the
worst case of (x, y) under the “rules of the game” stated in Sect. 2.3.2. The
significance of the lower bound is that there exists no algorithm that requires less
queries in the worst case than the obtained lower bound.

We already noticed that more queries tend to reduce the search space of the
secret (x, y). In our formal framework, if A ⊆ B ⊆ D̃ then D̃-consistent ⊆ B-
consistent ⊆ A-consistent. This implies that |D̃-consistent| ≤ |B-consistent| ≤

34 2. DIFFERENTIAL EQUATIONS OF ADDITION

|A-consistent|. Note that our algorithm constructs A ⊆ D̃, ∀(x, y) ∈ Z
n
2 ×

Z
n
2 , using the submitted queries and the corresponding outputs such that |D̃-

consistent| = |A-consistent|. The algorithm fails if |D̃-consistent| < |A-consistent|,
for some (x, y) ∈ Z

n
2 × Z

n
2 . We will use the condition – |A-consistent| cannot be

strictly greater than |D̃-consistent| – to compute a lower bound on the number
of queries in the worst case. Similar to the previous section, in Theorem 2.9 we
identify a property of A, in terms of the ith core Gi, where the above condition
is violated. In Theorem 2.10, we use this fact to obtain a lower bound.

Theorem 2.9 We consider the equation

(x + y)⊕ (x+ (y ⊕ β)) = γ ,

where the position of the least significant ‘1’ of x is t with n − 3 ≥ t ≥ 0. Let
φ ⊂ A ⊆ D̃ and D̃ be the total useful set of the equation. Let the (n − 3)th
core Gn−3 contain no element (0, β(n−3), γ̃(n−3), γ̃(n−2)) with γ̃(n−2) = 1.3 Then

|A-consistent| = 2t+3+k for some k > 0.

Proof. If Gn−3 contains no element (0, β(n−3), γ̃(n−3), γ̃(n−2)) with γ̃(n−2) = 1
then Gn−2 contains no element (0, β(n−2), γ̃(n−2), γ̃(n−1)) with γ̃(n−2) = 1 .
Therefore, Gn−2 is of one of the following forms,

Gn−2 = {(0, 0, 0, a)} or {(0, 0, 0, a), (0, 1, 0, b)} .

Now, from Table 2.1, Sn−2 = 2l for either of the cases, where l > 0. Similarly,
using Theorem 2.5, Si ≥ 2, ∀ i ∈ [0, t]. Also Si ≥ 1, ∀ i ∈ [t + 1, n − 3] (when
n − 4 ≥ t). Therefore, from Proposition 2.3, |A-consistent| = 2t+3+k for some
k > 0. �

In the following theorem, we partition the entire seed space Zn
2 ×Z

n
2 and com-

pute a worst case lower bound for each partition. Note that a lower bound (say,
l) for any partition shows that, for any algorithm that computes D̃-consistent
∀(x, y) ∈ Z

n
2 × Z

n
2 , there exists at least one seed in that particular partition

which requires at least l queries.

Theorem 2.10 A lower bound on the number of queries (0, β) to solve

(x+ y)⊕ (x+ (y ⊕ β)) = γ

in the worst case of (x, y) is
(i) 0 if n = 1,
(ii) 1 if x = 0 and n > 1,

3This implies that there is no oracle output γ̃ with γ̃(n−2) = 1.

2.3. SOLVING DEA IN THE ADAPTIVE QUERY MODEL 35

(iii) 1 if n = 1 + t with t > 0,
(iv) (n− t− 1) if n− 2 ≥ t ≥ 0,
where n is the bit-length of x, y and t is the position of the least significant ‘1’
of x.

Proof. For (i), (ii) and (iii) the lower bounds are trivial.
(iv) n−2 ≥ t ≥ 0. Note that the submission of queries, generation of the useful set
A and the core Gi are the parts of an evolving process (i.e., with every submitted
query (0, β), A, Gi change). At any time, from the already submitted queries and
the outputs, we can always construct A ⊆ D̃ and the ith core Gi, ∀i ∈ [0, n− 2]
where D̃ is the total useful set. Note that A-consistent contains all the solutions
of the equations derived from the already submitted queries. We first divide the
case into four disjoint subcases.
Case 1 When n − 5 ≥ t ≥ 0. By Theorem 2.9, a necessary condition is that
∃(0, β(n−3), γ̃(n−3), γ̃(n−2) = 1) ∈ Gn−3 otherwise |A-consistent| = 2t+3+c >

|D̃-consistent| = 2t+3 (invoke Theorem 2.5).
We now define a quantity Vn, t which denotes the set of all (x, y) ∈ Z

n
2 × Z

n
2

such that the position of the least significant ‘1’ of x is t (Vn, t is a parti-
tion). We now define another quantity l(n, t)(k) for all k ∈ [t + 1, n − 2]. Let
l(n, t)(k) denote a lower bound on the number of adaptively chosen queries to
have (0, β(i), γ̃(i), γ̃(i+1) = 1) ∈ Gi for some i ∈ [k, n − 2] in the worst case of
(x, y) ∈ Vn, t . In other words, a worst case lower bound l(n, t)(k) means that,
for any algorithm A there exists a seed (x, y) ∈ Vn, t such that the adaptively
chosen sequence of l(n, t)(k) − 1 queries (l(n, t)(k) > 0) by A for the seed (x, y)
produces oracle outputs γ̃’s with γ̃(i+1) = 0, ∀ i ∈ [k, n− 2]). We will determine
l(n, t)(n− 3) which is a lower bound in this case. For easy reading, in the rest of
the proof, we shall denote l(n, t)(k) by l(k) .

Let p ∈ [t + 1, n − 3]. Now, for each algorithm, we always identify a seed
(x, y) ∈ Vn, t such that the adaptively chosen sequence of l(p)−1 queries produces
γ̃’s with γ̃(i+1) = 0, ∀ i ∈ [p, n−2] . From Table 2.1, we construct (a, b), (a′, b′) ∈
Vn, t for each (x, y) in the following fashion. The carry bit at the jth position of
(a+ b) is c(j) and similarly c′(j).

1. (Construction of a and b) a(i) = x(i) and b(i) = y(i), ∀ i ∈ [0, p]. If c(i) = 0
set a(i) = 0, b(i) = 0, ∀ i ∈ [p + 1, n − 1]. If c(i) = 1 set a(i) = 1, b(i) = 1,
∀ i ∈ [p+ 1, n− 1].

2. (Construction of a′ and b′) a′(i) = x(i) and b′(i) = y(i), ∀ i ∈ [0, p]. If c′(i) = 0

set a′(i) = 0, b′(i) = 1, ∀ i ∈ [p + 1, n − 1]. If c′(i) = 1 set a′(i) = 1, b′(i) = 0,

∀ i ∈ [p+ 1, n− 1].

We observe from the portion of Table 2.1 – cut off by the rows R(1) and R(3)
and the columns Col(1), Col(2), Col(3) and Col(4) – that the seeds (a, b) and

36 2. DIFFERENTIAL EQUATIONS OF ADDITION

(a′, b′) produce the same sequence of oracle outputs as (x, y) does on the selected
sequence of l(p)− 1 queries.

Now we consider each possible l(p)th query (0, β) and its output γ̃ for the
seed (x, y). If (β(p+1), γ̃(p+1)) = (0, 1) then (a, b) produces γ̃(i+1) = 0, ∀ i ∈ [p+
1, n− 2]. Similarly, if (β(p+1), γ̃(p+1)) = (1, 1) then (a′, b′) produces γ̃(i+1) = 0,
∀ i ∈ [p + 1, n − 2]. If (β(p+1), γ̃(p+1)) = (0, 0) or (1, 0) then both (a, b) and
(a′, b′) produce γ̃(i+1) = 0, ∀ i ∈ [p+ 1, n− 2]. Therefore, either (a, b) or (a′, b′)
produces oracle outputs with γ̃(i+1) = 0, ∀ i ∈ [p + 1, n − 2], for all the chosen
l(p) queries.

Thus, we establish that, for any algorithm there exists a seed (x, y) ∈ Vn, t

such that the adaptively chosen sequence of l(p) queries produces oracle outputs
γ̃’s with γ̃(i+1) = 0, ∀ i ∈ [p+1, n− 2]. Therefore, a lower bound on the number
of queries such that ∃(0, β(i), γ̃(i), γ̃(i+1) = 1) ∈ Gi for some i ∈ [p+1, n− 2] in
the worst case of (x, y) ∈ Vn, t is l(p) + 1. Therefore,

l(p+ 1) = l(p) + 1 .

Following the recursion,

l(n− 3) = n− t− 4 + l(t+ 1) . (2.23)

The following lemma computes a value of l(t + 1). See Appendix A.2 for an
elaborate proof.

Lemma 2.11 Let n − 4 ≥ t ≥ 0. For any algorithm A there exists a seed
(x, y) ∈ Vn, t such that the adaptively selected sequence of two queries by A for
that particular seed produces oracle outputs γ̃’s with γ̃(i+1) = 0, ∀ i ∈ [t+1, n−2].

From Lemma 2.11, l(t+ 1) = 3. Therefore, from (2.23), l(n− 3) = n− t− 1 .
Case 2 When n = t+ 4. A worst case lower bound is 3. The proof follows from
Lemma 2.11.
Case 3 When n = t + 3. A worst case lower bound is 2. From Table 2.1, it is
clear that, with only one query Sn−2 > 1; that makes the number of solutions
for this case greater than 2t+3 which is impossible from Theorem 2.5.
Case 4 When n = t+ 2. A worst case lower bound is 1 which is trivial. �

Theorem 2.12 A lower bound on the number of queries (α, β) to solve

(x+ y)⊕ ((x⊕ α) + (y ⊕ β)) = γ

in the worst case of (x, y) ∈ Z
n
2 × Z

n
2 is

(i) 3 if n > 2,
(ii) 2 if n = 2,
(iii) 0 if n = 1.

2.3. SOLVING DEA IN THE ADAPTIVE QUERY MODEL 37

Proof. (i) n > 2. Let the first two queries and the corresponding oracle outputs
be (α, β), (α′, β′), γ̃ and γ̃′. Depending on the two least significant bits of α, β,
α′ and β′, the oracle returns outputs (i.e., γ̃ and γ̃′) according to the following
rules.

1. If (α(0), β(0)) = (0, 0) then γ̃ = (0, 0, · · · , 0)n.

2. If (α(0), β(0)) 6= (0, 0) and (α(1), β(1)) = (1, 1) then γ̃ = (1, 1, · · · , 1, 0)n.

3. If (α(0), β(0)) 6= (0, 0) and (α(1), β(1)) 6= (1, 1) then γ̃ = (0, 0, · · · , 0)n.

4. If (α(0), β(0)) = (α′

(0), β
′

(0)) then γ̃ = γ̃′.

5. If (α(0), β(0)) 6= (α′

(0), β
′

(0)) = (0, 0) then γ̃′ = (0, 0, · · · , 0)n.

6. If (α(0), β(0)) 6= (α′

(0), β
′

(0)) 6= (0, 0) and (α′

(1), β
′

(1)) = (0, 0) then γ̃′ =

(0, 0, · · · , 0)n.

7. If (α(0), β(0)) 6= (α′

(0), β
′

(0)) 6= (0, 0) and (α′

(1), β
′

(1)) = (1, 1) then γ̃′ =

(1, 1, · · · , 1, 0)n.

8. If (α(0), β(0)) 6= (α′

(0), β
′

(0)) 6= (0, 0), (α′

(1), β
′

(1)) ∈ {(0, 1), (1, 0)} and

(α(1), β(1)) = (α′

(1), β
′

(1)) then γ̃′ = (0, 0, · · · , 0)n.

9. If (α(0), β(0)) 6= (α′

(0), β
′

(0)) 6= (0, 0), (α′

(1), β
′

(1)) ∈ {(0, 1), (1, 0)} and

(α(1), β(1)) 6= (α′

(1), β
′

(1)) then γ̃′

(0) = 0 and γ̃′

(i) = 1⊕γ̃(i) for all i ∈ [1, n−1].

Observing the oracle outputs produced according to the above rules on the
first two queries, it is seen from Table 2.1 that one of the following cases occurs.

1. S0 ≥ 2 and Si ≥ 1 ∀ i ∈ [0, n− 2].

2. S1 ≥ 2 and Si ≥ 1 ∀ i ∈ [0, n− 2].

3. S0 ≥ 2, S1 ≥ 2 and Si ≥ 1 ∀ i ∈ [0, n− 2].

Clearly, for any of the above cases, the number of valid solutions S, derived from
the results of the queries, is at least 8 which is not the case with this equation
(see Theorem 2.8). Therefore, a lower bound on the number of queries in the
worst case is 3.
(ii) n = 2. Using Table 2.1, a proof is similar to the proof for (i).
(iii) n = 1. A proof is trivial. �

38 2. DIFFERENTIAL EQUATIONS OF ADDITION

2.3.5 Optimal Algorithms

In this section, we concentrate on designing algorithms that solve (2.17) and (2.16)
in the adaptive query model. In the formal framework, if the oracle is seeded
with an unknown (x, y) then there is always a total useful set D̃ that the un-
known seed (x, y) generates. For a particular total useful set D̃, there exists a
set D̃-consistent containing all values of (x, y). Our algorithm makes adaptive
queries (α, β) to the oracle – which is already seeded with a fixed (x, y) – and
the oracle returns γ̃. The task of the algorithm is to compute D̃-consistent using
oracle outputs γ̃, for all seeds (x, y) ∈ Z

n
2 × Z

n
2 . The algorithm is optimal if the

number of queries in the worst case (i.e., the upper bound) matches the lower
bound derived in the relevant theorem (Theorem 2.10 or 2.12). Optimal algo-
rithms to solve (2.17) and (2.16) are presented in Algorithm 2 and 3. Below we
discuss the intuition behind the algorithms; while we omit many trivial details,
the pseudocode covers all cases.

Discussion: Algorithm 2. The inputs to Algorithm 2 are an oracle O
(which is set with the unknown seed and computes γ̃), n denoting the size of the
unknowns and the precomputed Table 2.1 denoted by the variable T . The output
of Algorithm 2 is a set of lists. This set contains the Li’s – the ith bit solution for
all i ∈ [0, n − 2] – similar to the ones computed in Sect. 2.2.5. The objective of
Algorithm 2 is to correctly compute the Li’s for the useful set D̃. The computed
Li’s will be given to Algorithm 1 which computes all the individual solutions.

Algorithm 2 works in a way that at first Gi’s are computed from the submitted
queries such that the number of solutions for them is the same as that for all
2n queries. Then the Li’s are computed from the Gi’s (Step 28). First, we
find t, the position of the least significant ‘1’ of x, by making the first query
(0, β) with β composed of all 1’s (Step 3, 10). Once the position of the least
significant ‘1’ of x is known, we can immediately compute Gi, ∀i ∈ [0, t], by
invoking Lemma 2.6 (Step 11 to 13). We see that Si = 2, ∀i ∈ [0, t]. This result
readily determines that Si = 1, ∀i ∈ [t+1, n−1] (see Theorem 2.5). To compute
Gi, ∀i ∈ [t+1, n−2] we will use a nice pattern observable in Table 2.1. Consider
Col(3) and Col(4) of the Table 2.1. Observe no two rows, contained in these two
columns, are identical. Therefore, if, for some queries, Gi contains two elements
of the form (0, 1, 0, a) and (0, 1, 1, b) then the corresponding Si = 1. Therefore,
the aim of Algorithm 2 is to submit queries such that Gi contains elements of
the form (0, 1, 0, a) and (0, 1, 1, b), for all i ∈ [t+1, n− 2]. Another interesting
pattern of Table 2.1 is that each row, cut off by Col(2), Col(3) and Col(4), has
at least one ‘1’. The algorithm uses this fact to get oracle output γ̃ with γ̃(i) = 1
if required (Step 25). However, it is always easy to get an oracle output γ̃ with
γ̃(i) = 0 by setting the least significant i bits of β to zero (Step 15 and 21). Note
that the algorithm submits the first two queries in Steps 3 and 15. In the loop
(from steps 19 to 27) one of the two previous queries is modified to get ‘0’ or

2.3. SOLVING DEA IN THE ADAPTIVE QUERY MODEL 39

Algorithm 2 Optimal Algorithm to solve the equation (x+y)⊕(x+(y⊕β)) = γ

Input: Oracle O, n, Table T
Output: a set of lists
1: If n ≤ 0 then exit with a comment “Invalid Input”;
2: If n == 1 then return an empty set φ indicating that all solutions are possible

and then exit;
3: β = (1, 1, · · · , 1, 1)n; /*The first query*/
4: γ̃ = O(β); /*Oracle output*/
5: if γ̃ == 0
6: For all i ∈ [0, n− 2]
7: Gi = {(0, 0, 0, 0), (0, 1, 0, 0)};
8: Go to Step 28;
9: t = Least-Significant-one(γ̃);/*Computing the least significant ‘1’ of the oracle

output*/
10: t = t− 1; /*Computing the least significant ‘1’ of x*/
11: For all i ∈ [0, t− 1] /*Computing Gi for all i ∈ [0, t− 1]*/
12: Gi = {(0, 0, 0, 0), (0, 1, 0, 0)};
13: Gt = {(0, 0, 0, 0), (0, 1, 0, 1)}; /*Computing Gt*/
14: If t == n− 2 then Go to Step 28;
15: β′ = (1, 1, · · · , 1, β′

(t+1) = 1, 0, 0, · · · , 0); /*Query to make γ̃′

(t+1) = 0*/

16: γ̃′ = O(β′); /*Oracle output*/
17: Gt+1 = {(0, 1, 1, γ̃(t+2)), (0, 1, 0, γ̃

′

(t+2))}; /*Computing Gt+1*/
18: If t == n− 3 then Go to 28;
19: For all i ∈ [2, n− t− 2], in increasing order /*Computing Gi for all

i ∈ [t+ 2, n− 2]*/
20: If γ̃(t+i) == γ̃′

(t+i) == 1 then

21: β′ = (1, 1, · · · , 1, β′

(t+i−1) = 0, 0, · · · , 0);/*Query to make

γ̃′

(t+i) = 0*/

22: γ̃′ = O(β′) and Go to Step 27; /*Oracle output*/
23: If γ̃(t+i) == γ̃′

(t+i) == 0

24: if γ̃(t+i−1) == 1 then swap ((β, γ̃), (β′, γ̃′));
25: β′ = (1, 1, · · · , 1, β′

(t+i−1) = 0, β′

(t+i−2), · · · , β′

(0));

/*Query to make γ̃′

(t+i) = 1*/

26: γ̃′ = O(β′); /*Oracle output*/
27: Gt+i = {(0, 1, γ̃(t+i), γ̃(t+i+1)), (0, 1, γ̃

′

(t+i), γ̃
′

(t+i+1))};
28: Li = {(x(i), y(i), c(i)) |Gi → (x(i), y(i), c(i))}, ∀i ∈ [0, n− 2] (Using the table

T); /*Computing Li’s*/
29: Return the set {Li|i ∈ [0, n− 2]};

40 2. DIFFERENTIAL EQUATIONS OF ADDITION

‘1’ at the required locations of the output. Thus we get Gi, ∀i ∈ [t + 1, n − 2],
for which Si = 1. Therefore, invoking Theorem 2.5, we get the number solutions
for the submitted queries is 2t+3 (omitting many trivial cases). This proves the
correctness of Algorithm 2. It can be easily verified from Theorem 2.10 that the
number of queries used by Algorithm 2 is worst case optimal.

Discussion: Algorithm 3. The basic idea of Algorithm 3 is the same as
that of Algorithm 2, i.e., we compute the Li’s for the total useful set D̃. But
here we use a different trick to optimize the number of queries. Note that, for all
i ∈ [0, n− 2], Si = 1 for (2.16) (see Theorem 2.8).

We first submit two queries as shown in Step 3 and 5. For these two queries
Gi = {(1, 0, γ̃(i), γ̃(i+1)), (0, 1, γ̃

′

(i), γ̃
′

(i+1))} if i even. Note that, in this case, if

γ̃(i) = γ̃′

(i) then Si = 1 otherwise Si = 2 (from Table 2.1). Gi = {(1, 0, γ̃(i), γ̃(i+1)),

(1, 0, γ̃′

(i), γ̃
′

(i+1))} if i odd. Note that, in this case, if γ̃(i) 6= γ̃′

(i) then Si = 1

otherwise Si = 2. Observe that Si = 2 ⇔ |Li| = 4 and Si = 1 ⇔ |Li| = 2. Now
if |Li| = 2, ∀i ∈ [0, n− 2] then we are done (Step 11). A combinatorial pattern
in the precomputed Table 2.1 shows that, if |Li| = 4 then |Li−1| = 2 (omitting
the proof). In Step 13 and 16, we change the second query (c, d) to obtain the
third query so that the new query can remove extra elements from the Li’s with
|Li| = 4. The rule is if |Li| = 4 then change the (i− 1)th bits of (c, d) “suitably”
(details in the pseudocode). In Steps 13 and 16, the relation operator “→” is
used in the same sense as in Sect. 2.2.3. Now L′

is are computed from the first
and the third queries (Step 21). If |Li| = 4 then we assign Li = L′

i (Step 23).
Now we get |Li| = 2, ∀i ∈ [0, n − 2]. Algorithm 3 is optimal because it uses
maximum 3 queries.

Time and Memory. For each of Algorithm 2 and 3, the memory and the
time are Θ(n) and O(n) respectively (the oracle takes O(1)-time to compute γ̃).

2.4 Solving DEA with Batch Queries

In Sect. 2.3, the following two differential equations of addition (DEA) over Zn
2

have been solved in adaptive query model.

(x+ y)⊕ ((x ⊕ α) + (y ⊕ β)) = γ, (2.24)

(x+ y)⊕ (x+ (y ⊕ β)) = γ , (2.25)

where x, y are the only fixed unknown variables. In Sect. 2.1, we have already
provided the motivation for solving the above equations with a set of batch queries
(i.e., queries which are submitted in a batch rather than adaptively). In the
following discussion, we follow an approach, similar to the one in Sect. 2.3 which
deals with adaptive queries, to solve the above two DEA with batch queries. What

2.4. SOLVING DEA WITH BATCH QUERIES 41

Algorithm 3 Optimal algorithm solving (x+ y)⊕ ((x⊕ α) + (y ⊕ β)) = γ

Input: Oracle O, n, Table T
Output: a set of lists
1: If n ≤ 0 then exit with a comment “Invalid Input”;
2: If n == 1 then return an empty set φ indicating that all solutions are possible

and then exit;
3: (a, b) = ((11 · · · 11)n, (00 · · · 00)n);/*First Query*/
4: γ̃ = O(a, b); /*Oracle Output*/
5: (c, d) = ((· · · 101010)n, (· · · 010101)n);/*Second Query*/
6: γ̃′ = O(c, d); /*Oracle Output*/
7: For all i ∈ [0, n− 2] /*Computing Gi’s*/
8: Gi = {(a(i), b(i), γ̃(i), γ̃(i+1)), (c(i), d(i), γ̃

′

(i), γ̃
′

(i+1))};
9: For all i ∈ [0, n− 2] /*Computing Li’s*/

10: Li = {(x(i), y(i), c(i)) |Gi → (x(i), y(i), c(i))}, ∀i ∈ [0, n − 2] (Using
the table T);

11: If |Li| == 2, ∀i ∈ [0, n− 2] then Go to step 25;
12: For all i ∈ [0, n− 2] and i even /*Checking even Li’s*/
13: If |Li| == 4 then collect (x(i−1), y(i−1), 0) ∈ Li−1 and

(1, 0, γ̃(i−1), γ̃(i)) ∈ Gi−1.
Select (α(i−1), β(i−1)) from the table T such that,
{(α(i−1), β(i−1), 0, γ̃(i)), (α(i−1), β(i−1), 1, γ̃(i))} → (x(i−1), y(i−1), 0);

14: (c(i−1), d(i−1)) = (α(i−1), β(i−1));
15: For all i ∈ [0, n− 2] and i odd /*Checking odd Li’s*/
16: If |Li| == 4 then collect (x(i−1), y(i−1), 0) ∈ Li−1 and

(1, 0, γ̃(i−1), γ̃(i)) ∈ Gi−1.
Select (α(i−1), β(i−1)) from T such that
{(α(i−1), β(i−1), 0, 1⊕ γ̃(i)), (α(i−1), β(i−1), 1, 1⊕ γ̃(i))}
→ (x(i−1), y(i−1), 0);

17: (c(i−1), d(i−1)) = (α(i−1), β(i−1));
18: γ̃′ = O(c, d);/*Oracle Output*/
19: For all i ∈ [0, n− 2] /*Computing Gi’s*/
20: Gi = {(a(i), b(i), γ̃(i), γ̃(i+1)), (c(i), d(i), γ̃

′

(i), γ̃
′

(i+1))};
21: For all i ∈ [0, n− 2] /*Computing L′

i’s*/
22: L′

i = {(x(i), y(i), c(i)) |Gi → (x(i), y(i), c(i))}, ∀i ∈ [0, n− 2] (Using
the table T);

23: For each i ∈ [0, n− 2]
24: If |Li| == 4, then assign Li = L′

i;
25: Return the set {Li|i ∈ [0, n− 2]};

42 2. DIFFERENTIAL EQUATIONS OF ADDITION

we essentially do in this section is modify the model of the previous section to suit
it for batch queries. The problem becomes clearer through the following sections.

2.4.1 The Power of the Adversary

The power of an adversary that solves (2.24) is defined as follows.

1. An adversary has unrestricted computational power and an infinite amount
of memory.

2. An adversary submits a set of queries {(α, β)} in a batch, to an honest
oracle4 which computes the γ’s using the fixed unknown (x, y) in (2.24)
and returns them to the adversary. We will often refer to that fixed (x, y)
as the seed of the oracle.

We recall from Sect. 2.3 that the above oracle with seed (x, y) can be viewed as
a mapping Oxy : Zn

2 × Z
n
2 → Z

n
2 and defined by

Oxy = {(α, β, γ) | (α, β) ∈ Z
n
2 × Z

n
2 , γ = (x+ y)⊕ ((x ⊕ α) + (y ⊕ β))} . (2.26)

An adversarial model, similar to the above, can be constructed for (2.25) by
setting (α, β) ∈ {0}n × Z

n
2 and the mapping Oxy : {0}n × Z

n
2 → Z

n
2 .

The above model represents a practical chosen message attack scenario (con-
trast it with the adaptive query model in Sect. 2.3 which represented an adaptive
chosen message attack scenario) where the adversary submits queries to an oracle
in a batch. Based on the replies from the oracle, the adversary computes one or
more unknown parameters.

2.4.2 The Task: the Solution Set D̃-consistent

Let

F = {Oxy | (x, y) ∈ Z
n
2 × Z

n
2}.

Any D ∈ F is called a character set (see Sect. 2.2 for a definition). The aim of the
adversary is to find all the solutions (x, y) satisfying the 22n equations contained
in the character set D. Note that the set of all such solutions constitutes the set
D-consistent. If we work with (2.25) then |D| = 2n.

Equivalent Task. Like the case with adaptive queries in Sect. 2.3, we ap-
ply the following transformation to the character set D to compute the useful
set D̃,

D̃ = {(α, β, γ̃ = α⊕ β ⊕ γ) | (α, β, γ) ∈ D} .
4An honest oracle correctly computes γ and returns it to the adversary.

2.4. SOLVING DEA WITH BATCH QUERIES 43

Note |D̃| = 22n if (2.24) is considered. An element (α, β, γ̃) ∈ D̃ corresponds to
the following equation:

(x + y)⊕ ((x ⊕ α) + (y ⊕ β)) ⊕ α⊕ β = γ̃.

Now the set D̃-consistent contains all (x, y)’s satisfying all 22n equations corre-
sponding to D̃. We already know that

D-consistent = D̃-consistent.

Therefore, the task is equivalent to determination of D̃-consistent from a subset
of the useful set D̃. When we deal with (2.25) then |D̃| = 2n.

Equivalent Oracle Output. In a way similar to the case with adaptive queries
in Sect. 2.3, the oracle output γ on query (α, β) will be adjusted to γ̃ = α⊕β⊕γ
for easy understanding of many deductions.

Rules of the Game. Below, we describe the rules followed by the adver-
sary who determines the set D̃-consistent. The essence of the whole problem is
brought out in the following points.

1. The adversary starts with no information about x and y except their size
n.

2. The adversary submits a set of queries (α, β)’s in a batch, irrespective of the
seed (x, y). The oracle returns to the adversary the set of γ̃’s corresponding
to the queries and the chosen (x, y).

3. The adversary fails if, with the submitted queries, she is unable to compute
D̃-consistent for some (x, y) ∈ Z

n
2 × Z

n
2 .

We search for an algorithm that determines D̃-consistent, for all (x, y) ∈ Z
n
2 ×

Z
n
2 , with the same set of submitted queries. Furthermore, there is an additional

challenge to reduce the number of required queries as much close as possible to
the minimum.

2.4.3 Lower Bounds on the Number of Queries

In this section we are mainly interested in lower bounds on the number of queries,
submitted in a batch, to solve DEA. Note that the trivial method is to submit all
possible queries and then solve them according to the method shown in Sect. 2.2,
however, the challenge lies with a nontrivial solution which uses fewer queries.
It is always regarded as an important theoretical benchmark as to how far it is

44 2. DIFFERENTIAL EQUATIONS OF ADDITION

possible to reduce the number of queries. The significance of a lower bound is
that no algorithm can solve the equations with less queries.

As noticed in the previous section, the size of search space of the secret (x, y)
decreases with the number of queries. Therefore we search for an algorithm that
constructs A ⊆ D̃, ∀(x, y) ∈ Z

n
2 ×Z

n
2 , using the submitted queries and the corre-

sponding outputs such that |D̃-consistent| = |A-consistent|. The algorithm fails
if |D̃-consistent| < |A-consistent|, for some (x, y) ∈ Z

n
2 × Z

n
2 . In Theorem 2.13,

which is similar to Theorem 2.9, a property of the set A is identified where the
above condition is not satisfied. In Theorem 2.14, we use this fact to obtain a
lower bound.

Theorem 2.13 We consider the equation

(x + y)⊕ (x+ (y ⊕ β)) = γ ,

where the position of the least significant ‘1’ of x is t with n − 3 ≥ t ≥ 0. Let
all the submitted queries and the oracle outputs be stored in the set A (note that
φ ⊂ A ⊆ D̃ where D̃ is a useful set). Suppose that there is no query (0, β)
for which the oracle output is γ̃ with γ̃(n−2) = 1. Then |A-consistent| > |D̃-
consistent|.
Proof. If there is no query (0, β) for which the oracle output is γ̃ with γ̃(n−2) = 1
then the (n−3)th coreGn−3 (corresponding to A) contains no element (0, β(n−3),
γ̃(n−3), γ̃(n−2)) with γ̃(n−2) = 1. This impliesGn−2 contains no element (0, β(n−2),
γ̃(n−2), γ̃(n−1)) with γ̃(n−2) = 1 . Therefore, Gn−2 is of one of the following forms,

Gn−2 = {(0, 0, 0, 0)} or {(0, 0, 0, 0), (0, 1, 0, b)} .

Now, from Table 2.1, Sn−2 = 2l for either of the cases, where l > 0. Similarly,
using Theorem 2.5, Si ≥ 2, ∀ i ∈ [0, t]. Also Si ≥ 1, ∀ i ∈ [t + 1, n − 3] (when
n − 4 ≥ t). Therefore, from Proposition 2.3, |A-consistent| = 2t+3+k for some
k > 0. From Theorem 2.5, |D̃-consistent| = 2t+3. Therefore, |A-consistent| > |D̃-
consistent|. �

Instead of establishing a lower bound for the entire seed space Z
n
2 × Z

n
2 , we

derive a lower bound for a subset of Z
n
2 × Z

n
2 , denoted by Vn, 0 which is the

collection of all (x, y)’s with x(0) = 1 (that is, the position of the least significant
‘1’ of x is zero). Note that |Vn, 0| = 22n−1. As Vn, 0 is a proper subset of Zn

2 ×Z
n
2 ,

the lower bound derived for Vn, 0 is also a lower bound for the entire seed space
Z
n
2 × Z

n
2 .

Theorem 2.14 A lower bound on the number of queries (0, β)’s, submitted in
a batch, to solve

(x+ y)⊕ (x+ (y ⊕ β)) = γ

2.4. SOLVING DEA WITH BATCH QUERIES 45

where (x, y) ∈ Vn, 0 is (i) 3 · 2n−4 if n ≥ 4, (ii) 2 if n = 3, (iii) 1 if n = 2 and
(iv) 0 if n = 1.

Proof. (i) When n ≥ 4. Let all the submitted queries and the oracle outputs be
stored in the set A (φ ⊂ A ⊆ D̃ where D̃ is a useful set) and |A-consistent| = |D̃-
consistent| for all (x, y) ∈ Vn, 0. By Theorem 2.13, a necessary condition is that
there must exist at least one query (0, β) for which the oracle output is γ̃ with
γ̃(n−2) = 1 otherwise |A-consistent| > |D̃-consistent|. We shall henceforth denote
a query (0, β) by β.

We first encode the bit-string of a query β as the edges and the corresponding
output γ̃ as the nodes (denoted by circles) on a path of the full binary tree as
shown in Fig. 2.1. The possible values of β(i) are denoted as the edges of the tree
between the depth i and the depth (i + 1) (the root of the tree is at depth 0).
Similarly the possible values of γ̃(i) can be assigned to the nodes at the depth i.
Note that all possible 2n queries are encoded in the tree.

1 0

1

0 1

A

B C

1
P

~
n−2

n−2

depth 0

depth 1

depth 2

depth 3

γ_0

γ_1

γ_3

~

~

~

~

β_1

0 1

0 0 1

β_2 0 1 0 1 0 1 0 1

β_0

γ_2

γ_
β_

depth (n−2)

D D’
0 10 1

Figure 2.1: An arbitrary path P in the subtree (black node indicates value 1 and
white node 0)

The Approach. We shall isolate a subtree and show that, if an arbitrary
path in that subtree is not present as the prefix of one of the submitted queries
then there exists a seed (x, y) ∈ Vn, 0 such that, on all other queries, the outputs
are γ̃’s with γ̃(n−2) = 0. Therefore a lower bound is the number of all paths

46 2. DIFFERENTIAL EQUATIONS OF ADDITION

present in that particular subtree.
Node Assignment Rule. The rule shows how to select the values of γ̃’s for

all the queries. In the nodes of the entire tree we now put the values of γ̃. We
select an arbitrary path P (which is a prefix of a query) in the subtree whose leaf
nodes are at the depth (n − 2) and whose first two edges are (0, 1) and (1, 0)
and (1, 1) (see Fig. 2.1). Note that the values at the nodes B and C will be 0
and 1 respectively because x(0) = 1. Now we put 1 in all nodes on the path P
from the depth 2 till the depth (n − 2). The two child nodes D and D′ of the
last node on P are assigned 0 and 1 arbitrarily. All other nodes in the tree are
assigned 0. The intuition that such an assignment rule gives a valid solution is
derived from an observation in Table 2.1 (see Sect. 2.2.2) that the matrix cut off
by rows R(1), R(2) and R(3) and columns Col(2), Col(3) and Col(4) has only
diagonal elements 1 (formally proved in Lemma 2.15).

Proof Resumed. Suppose P is not a prefix of any query in A. As shown in
Fig. 2.1, all nodes at depth (n− 2), except the one on the path P , are assigned
zero. Therefore, there is no query β in A such that the corresponding output γ̃
has γ̃(n−2) = 1. This leads to a contradiction. Therefore, there must be a query
in A whose prefix is P . Now P is an arbitrary path in the subtree constructed
above. Now the total number of paths (or prefixes of queries) in the subtree is
3 · 2n−4. The following lemma completes the proof.

Lemma 2.15 For any arbitrary P with the first two edges (0, 1) or (1, 0)
or (1, 1) in the tree constructed above, all queries and their outputs encoded
in the tree according to the Node Assignment Rule, produce a valid solution
(x, y) ∈ Vn, 0.

Proof. For any arbitrary P , the core Gi’s (0 ≤ i ≤ n− 2), computed from the
values of γ̃’s and β’s (according to the Node Assignment Rule), are of one of the
following forms:

G0 = {(0, 0, 0, 0), (0, 1, 0, 0)} ,
Gi = {(0, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, a(i)), (0, 1, 1, b(i))} , 1 ≤ i ≤ n− 2

where a(i), b(i) ∈ [0, 1] and a(i) = 1 ⊕ b(i). Now each Si > 0 (obtained from
Table 2.1 using the Gi’s). Therefore, the number of valid solutions S = 4 ·
∏n−2

i=0 Si > 0 (see Proposition 2.3). In fact the number solutions is 8 (verification
of a part of Theorem 2.5). �

The proofs of (ii), (iii) and (iv) are immediate from Table 2.1. �

Lower Bound for the equation (x + y) ⊕ ((x ⊕ α) + (y ⊕ β)) = γ. For the
equation lower bounds on the number of batch queries, for n = 2 and 3, are 2

2.4. SOLVING DEA WITH BATCH QUERIES 47

and 3 respectively. This can be proved by searching through all possible x, y, α,
β and γ̃ exhaustively. However, the situation becomes intractable when n ≥ 4
when the number of all possible x, y, α, β and γ̃ for only 3 queries becomes
extremely large (260 for n = 4). We did extensive experiments with many test
vectors and found that three queries were insufficient to solve the equations when
n ≥ 4. We state the following conjecture.

Conjecture 2.16 A lower bound on the number of queries (α, β), submitted in
a batch, to solve

(x+ y)⊕ ((x⊕ α) + (y ⊕ β)) = γ

is 4 if n ≥ 4.

2.4.4 Algorithms

In this section, we present two algorithms Algorithm 4 and Algorithm 5 to
solve (2.25) and (2.24) with a set of batch queries. The inputs to the algo-
rithms are the bit-length n, the oracle O and the Table 2.1. The outputs are
the Gi’s (defined in Sect. 2.2.3) computed from a set of queries and their replies.
Our target is to select a subset of all possible queries such that the set of so-
lutions derived from the Gi’s is the same as D̃-consistent, for all (x, y)’s. An
algorithm to compute the actual solution set from the set of Gi’s is described in
Sect. 2.2.5. Below we discuss the motivation and correctness of the algorithms;
we leave many smaller details, while the pseudocode covers all cases.

Discussion: Algorithm 4. The number of queries required by the algorithm
is 2n−2 which is one fourth of all possible 2n queries (note that a lower bound
in 3

4 · 2n−2). The two for loops (in steps 8-17 and 10-13) are the most important
parts of the algorithm. For easy understanding of the algorithm, let us see
how the algorithm works when the position of the least significant ‘1’, of x is
zero (i.e., x(0) = 1). Note that we have to submit queries such that the Gi’s
(0 ≤ i ≤ n−2) obtained from them correspond to S0 = 2 and Si = 1 ∀i ∈ [1, n−2]
(see Theorem 2.5). In the tth iteration of the bigger loop we submit a set of
queries which ensures that Gt = {(0, 1, 1, a), (0, 0, 1, b), (0, 1, 0, c)} which implies
that St = 1. The tth iteration also produces at least one output γ̃ with γ̃(t+1) = 1
which will be used in the next loop. If there is no output with γ̃(t+1) = 1
then St+1 > 1 and hence the algorithm fails (see Theorem 2.13). The proof of
correctness of the algorithm when x(0) 6= 1 is similar to the above argument.

Discussion: Algorithm 5. The number of queries required by the algorithm
is 6 which is two more than the best known lower bound (also note that the
number of all possible queries is 22n). The proof of correctness of this algorithm
is by showing that the submitted queries produce Si = 1 for all i ∈ [0, n − 2]

48 2. DIFFERENTIAL EQUATIONS OF ADDITION

Algorithm 4 Algorithm to solve the equation (x+ y)⊕ (x+ (y ⊕ β)) = γ with
batch queries

Input: Oracle O, n, Table T
Output: The core Gi’s
1: If n ≤ 0 then exit with a comment “Invalid Input”;
2: If n = 1 then return an empty set φ indicating that all 4 solutions are possible

and exit;
3: β = (1, 1, · · · , 1, 1)n; /*The first query*/
4: γ̃ = O(β); /*Oracle output*/
5: Q = {β} and A = {(0, β, γ̃)}; /*Collecting query and output*/
6: If n = 2 then Go to Step 20;
7: If n > 3 /*If n = 3, the execution automatically jumps to Step 18)*/
8: For all t ∈ [1, n− 3] in increasing order
9: {Initialize Q′ = φ

10: For all β ∈ Q
11: {β′ = (1, 1, · · · , β′

(t) = 0, β(t−1), · · · , β(0)); /*New

query*/
12: O(β′) = γ̃′; /*Oracle output*/
13: Q′ = Q′ ∪ {β′} and A = A ∪ {(0, β′, γ̃′)};}
14: β′ = (1, 1, · · · , β′

(t) = 1, 0, · · · , 0); /*New query*/

15: O(β′) = γ̃′; /*Oracle output*/
16: Q′ = Q′ ∪ {β′} and A = A ∪ {(0, β′, γ̃′)};
17: Q = Q ∪Q′;}
18: β′ = (1, 1, · · · , β′

(n−2) = 1, 0, · · · , 0); /*Last query*/

19: O(β′) = γ̃′ and A = A ∪ {(0, β′, γ̃′)}; /*Oracle output*/
20: Return the core Gi’s for all i ∈ [0, n− 2] computed from A.

2.4. SOLVING DEA WITH BATCH QUERIES 49

(Theorem 2.8). Six queries are submitted in steps 3, 5, 8, 10, 12, 14. Now we
consider only the first two queries in steps 3 and 5. For these queries, Gi =
{(1, 0, γ̃(i), γ̃(i+1)), (0, 1, γ̃

′

(i), γ̃
′

(i+1))} if i even. Note that, in this case, if γ̃(i) =

γ̃′

(i) then Si = 1 otherwise Si = 2 (from Table 2.1). Also observe that Gi =

{(1, 0, γ̃(i), γ̃(i+1)), (1, 0, γ̃
′

(i), γ̃
′

(i+1))} if i odd. In this case, if γ̃(i) 6= γ̃′

(i) then
Si = 1 otherwise Si = 2. Next, we observe a combinatorial pattern in the
precomputed Table 2.1 which shows that, if Si = 2 then Si−1 = 1 (proof is direct).
The 3rd and the 4th queries are generated from the second query assuming Si = 2
for some odd i’s. We change all the even numbered bits of the second query
(α[2], β[2]). It can be shown that making (α[2](i), β[2](i)) = (0, 0) and (1, 1) for
all even i’s ensures that Si = 1 for all odd i’s. Exactly the same way the 5th and
the 6th queries are generated from the second query (α[2], β[2]) assuming that
Si = 2 for some even i’s. Now we change the odd numbered bits of (α[2], β[2]) to
(0, 0) and (1, 1) to ensure that all Si = 1 for all even i’s. Therefore, the number

of solutions derived from these 6 queries is S = 4 ·∏n−2
i=0 Si = 4 as suggested in

Theorem 2.8.

Algorithm 5 Algorithm to solve the equation (x+ y)⊕ ((x+ α) + (y⊕ β)) = γ

Input: Oracle O, n, Table T

Output: the core Gi’s
1: If n ≤ 0 then exit with a comment “Invalid Input”;
2: If n = 1 then return an empty set φ indicating that all 4 solutions are possible and

exit;
3: (α[1], β[1]) = ((11 · · · 11)n, (00 · · · 00)n);/*First Query*/
4: γ̃[1] = O(α[1], β[1]); /*Oracle Output*/
5: (α[2], β[2]) = ((· · · 101010)n , (· · · 010101)n);/*Second Query*/
6: γ̃[2] = O(α[2], β[2]); /*Oracle Output*/
7: If n = 2 then Go to Step 16;
8: (α[3], β[3]) = ((· · · 101010)n , (· · · 000000)n);/*Third Query*/
9: γ̃[3] = O(α[3], β[3]); /*Oracle Output*/

10: (α[4], β[4]) = ((· · · 111111)n , (· · · 010101)n);/*Fourth Query*/
11: γ̃[4] = O(α[4], β[4]); /*Oracle Output*/
12: (α[5], β[5]) = ((· · · 000000)n , (· · · 010101)n);/*Fifth Query*/
13: γ̃[5] = O(α[5], β[5]); /*Oracle Output*/
14: (α[6], β[6]) = ((· · · 101010)n , (· · · 111111)n);/*Sixth Query*/
15: γ̃[6] = O(α[6], β[6]); /*Oracle Output*/
16: A = {(α[i], β[i], γ̃[i]) | for all i’s}
17: Return the core Gi’s for all i ∈ [0, n− 2] computed from A.

50 2. DIFFERENTIAL EQUATIONS OF ADDITION

2.5 Cryptographic Applications

In this section we discuss the practical implications of the results derived in the
earlier sections of this chapter.

Cryptographic implications of Modular addition under DC. The fact
that an arbitrary system of DEA is in the complexity class P , shows a major
differential weakness of modular addition which is one of the largely used block
cipher components. The weakness is more alarming because, with a maximum
of only 3 adaptively chosen queries the search space of the secret of one type
of DEA can be reduced from 22n to only 4 for all n ≥ 1 (see Theorem 2.8 and
Algorithm 3). In addition, we have also shown that only 6 queries submitted in
a batch5 are sufficient to reduce the search space of the secret (x, y) from 22n

to only 4, for all n ≥ 4 (see Algorithm 5). These facts should be recognized as
warnings to the designers who want to use combination of modular addition and
XOR in their primitives. On the other hand the high exponential lower bound
on the number of batch queries for solving another type of DEA (3 · 2n−4 for
all n ≥ 4) underlines an important theoretical reference point establishing it as
relatively stronger under DC (see Theorem 2.14). It is, however, not known at
this moment, how much influence these results have on many modern symmetric
ciphers that mix other nonlinear operations with addition, yet our results leave
promises to be used in evaluation of cryptographic strengths of many modern
symmetric ciphers. One direct application of our results in practical cryptanaly-
sis is described below.

Cryptanalysis of the Helix Cipher. Helix, proposed by Ferguson et al.
[33], is a stream cipher with a combined MAC functionality. This cipher was
a candidate for consideration in the 802.11i standard. The main component of
the primitive is the combination of addition and XOR. The fact that the inter-
nal state of Helix depends on the plaintext allows for cryptanalysis with chosen
plaintexts (CP) and adaptive chosen plaintext (ACP) both. The only attack so
far on the cipher is by Muller who mounted an ACP attack which recovered the
secret key of the Helix cipher with 212 adaptively chosen plaintexts under the
assumption that the nonce could be reused.

Here, we do not describe the details of the stream cipher Helix or Muller’s
attack on that. We refer the readers to [33] and [59] for an elaborate description of
the cipher and the attack by Muller. Our key recovery attack goes along the lines
of Muller’s attack. However, we pick out the part which is critical to our attacks.
The crux of the attacks is simply solving the equation (x+ y)⊕ (x+(y⊕β)) = γ
with β’s and the corresponding γ’s to recover the secret information (x, y), in

5Batch queries form a more practical attack scenario than the one by adaptive queries.

2.6. CONCLUSION AND FURTHER RESEARCH 51

Table 2.2: New CP and ACP attacks on the Helix cipher

Type Data (worst case) Improvement Date (best case) Improvement

ACP 50 · 31 = 210.6 factor of 3 50 · 2 = 100 factor of 46.5

CP 50 · 230 = 235.64 New - -

the frameworks described in Sect. 2.3 and 2.4. In [59], it is found that, to recover
the secret key of the Helix cipher, we need to solve the above equation 50 times.
Throughout the process, β corresponds to a CP or an ACP according to whether
the attack is built in a batch query model or an adaptive query model. Algorithm 2
and 4 solve the above equation with (n− 1) ACPs (when the lsb of x is ‘1’) and
2n−2 CPs respectively. Note that the previous best known algorithm by Muller
required 3(n− 1) ACPs to solve the equation. Therefore, to mount the attacks,
Algorithm 2 and 4 need to be run for 50 times. So, the total number of ACPs
and CPs required are 50 · (n − 1) and 50 · 2n−2 respectively. For the specified
block-size n = 32, the data complexities of our ACP and CP attacks are shown
in Table 2.2.

2.6 Conclusion and Further Research

In this chapter, we have shown the importance of solving DEA from both theoret-
ical and practical points of view. The chapter seals any further search to improve
lower bounds on the number of queries for solving DEA with adaptive queries.
We also established nontrivial lower bounds on the number of batch queries to
solve two types of DEA; in one case the lower bound is optimal up to a constant
factor and the other case it is optimal up to a constant difference. Moreover, our
algorithm improves the data complexity of an ACP attack on Helix cipher. We
also recover the secret key of the Helix cipher with chosen plaintexts rather than
adaptive chosen plaintexts which constitutes the only CP attack on this cipher so
far. Our work leaves room for further research. One possible research direction
may be to close the gap between the lower and upper bounds on the number
of queries to solve DEA with batch queries. Another way to extend the work
is to analyze components which combine more complex transformations such as
modular multiplication, T -functions with modular addition.

52 2. DIFFERENTIAL EQUATIONS OF ADDITION

Chapter 3

Cryptanalysis of the RC4

Stream Cipher

53

54 CHAPTER 3. CRYPTANALYSIS OF THE RC4 STREAM CIPHER

Chapter 4

Design and Analysis of

RC4A

4.1 Introduction

In Chapter ??, we have discussed the design principles and several weaknesses
of the RC4 cipher. In this chapter we modify the RC4 keystream generator,
within the scope of the existing model of an exchange shuffle, in order to achieve
better security. The new cipher is named RC4A. We compare its security to the
original RC4. Most of the known attacks on RC4 are less effective on RC4A.
Furthermore, the new cipher needs fewer instructions per byte and it is possible
to exploit the inherent parallelism to improve its performance.

4.2 RC4A: An Attempt to Improve RC4

As most of the existing known plaintext attacks on RC4 harness the stronger
correlations between the internal and external states (in generic term b-predictive
a-state attack which is described in Chapter ??), in principle, making the output
generation dependent on more random variables weakens the correlation between
them, i.e., the probability to guess the internal state by observing output sequence
can be reduced. The larger the number of the variables the weaker will be the
correlation between them. On the other hand, intuitively, the large number of
variables increases the time complexity as it involves more arithmetic operations.

55

56 CHAPTER 4. DESIGN AND ANALYSIS OF RC4A

4.2.1 RC4A Description

The KSA and PRBG of RC4A are described below.

1. KSA. First, we take one randomly chosen key k1 whose size is equal to
the key-size of RC4. Another key k2 of equal size is also generated from a
secure PRBG (e.g. PRBG of RC4) using k1 as the seed. Applying the keys
k1 and k2 to the KSA of RC4, we construct two S-boxes S1 and S2 from
the identity permutation on {0, 1 · · · , N − 1}. We assume that S1 and S2

are two random permutations on {0, 1, 2, . . . , N − 1}, i.e., after the KSA,
S1 and S2 are assumed to be uniformly distributed. Clearly the KSA of
RC4A is equivalent to two applications of KSA of RC4 (the KSA of RC4
is described in Fig. ??).

2. PRBG. In Fig. 4.1, we show the pseudo-code of the PRBG algorithm of
RC4A. Our efforts are focussed on the security of the PRBG only.

Convention. All the arithmetic operations are computed modulo N . The tran-
sition of the internal states of the two S-boxes are based on an exchange shuffle
as before. Here we introduce two variables j1 and j2 corresponding to S1 and
S2 instead of one. The only modification is that the index-pointer S1[i] + S1[j]
evaluated on S1 produces output from S2 and vice-versa (see steps 5, 6 and 9,
10 of Fig. 4.1). The next round starts after each output generation.

RC4A uses fewer instructions per output byte than RC4. To produce
two successive output bytes the i pointer is incremented once in case of RC4A
where it is incremented twice to produce as many output words in RC4.

Parallelism in RC4A. The performance of RC4A can be further improved
by extracting the parallelism latent in the algorithm. The parallel steps of the
algorithm can be easily found by drawing a dependency graph of the steps shown
in Fig. 4.1. In the following list the parallel steps of RC4A are shown within
brackets.

1. (3, 7).

2. (4, 5, 9).

3. (6, 10).

4. (8, 2).

The existence of many parallel steps in RC4A is certainly an important aspect
of this new cipher and it offers the possibility of a faster stream cipher if RC4A
is implemented efficiently.

4.3. SECURITY ANALYSIS OF RC4A 57

1. Set i = 0, j1 = j2 = 0

2. i++

3. j1 = j1 + S1[i]

4. Swap(S1[i], S1[j1])

5. I2 = S1[i] + S1[j1]

6. Output=S2[I2]

7. j2 = j2 + S2[i]

8. Swap(S2[i], S2[j2])

9. I1 = S2[i] + S2[j2]

10. Output=S1[I1]

11. Repeat from step 2.

Figure 4.1: PRBG of RC4A

4.3 Security Analysis of RC4A

The RC4A pseudorandom bit generator has passed all the statistical tests listed in
[70]. RC4A achieves two major gains over RC4. By making every byte depend on
at least two random values (e.g. O1 depends on S1[1], S1[j1] and S2[S1[1]+S1[j1]])
of S1 and S2 the secret internal state of RC4A becomesN !2×N3. So, forN = 256,
the number of secret internal states for RC4A is approximately 23392 when the
number is only 21700 for RC4.

In the following sections we describe how RC4A resists the two major at-
tacks on it: one attempts to derive the entire internal state deterministically and
another to derive a part of the internal state probabilistically.

4.3.1 Precluding the Backtracking Algorithm by Knudsen

et al.

As mentioned earlier that the “guess on demand” backtracking algorithm by
Knudsen et al. is so far the best algorithm to deduce the internal state of RC4
from the known plaintext [47]. Now we briefly discuss the functionality of the

58 CHAPTER 4. DESIGN AND ANALYSIS OF RC4A

variant of the algorithm to be applied for RC4A.
The algorithm simulates RC4A by observing only the output bytes in recursive

function calls. The values of S[i] and S[j] in one S-box are guessed from the
permutation elements to agree with the output and its possible location in the
other S-box. If they match then the algorithm calls the round function for the
next round. If an anomaly occurs then it backtracks through the previous rounds
and re-guesses. The number of outputs m, needed to uniquely determine the
entire internal state, is bounded below by the inequality, 2nm > (2n!)2. Therefore,
m ≥ 2N (note, N = 2n).

Theorem 4.1 (RC4 vs RC4A) If the expected computational complexity to
derive the secret internal state of RC4A from known 2N initial output bytes with
the algorithm by Knudsen et al. is Crc4a and if the corresponding complexity for
RC4 using N known initial output bytes is Crc4 then Crc4a is much higher than
Crc4 and Crc4a can be approximated to C2

rc4 under certain assumptions.1

Proof. According to the algorithm by Knudsen et al., the internal state of
RC4 is derived using only the first N output bytes, that is, simulating RC4 for
the first N rounds. The variant of this algorithm which works on RC4A uses the
initial 2N bytes, thereby runs for the first 2N rounds.

Let the algorithms A1 and A2 derive the secret internal states for RC4 and
RC4A respectively. At every round the S-boxes are assigned either 0, 1, 2, or 3
elements and move to the next round.

Let, at the tth round, A2 go to the next round after assigning k elements
an expected number of mk,t times. So the number of value assignments in the

tth round is
3∑

k=0

k ·mk,t. Note, each of the
3∑

k=0

mk,t iterations gives rise to an

S-box arrangement in the next round. It is possible that we reach some S-box
arrangements from which no further transition to the next rounds is possible
because of contradictions. In such case, we assume assignment of zero elements
in the S-box till the last round is reached. Let the number of S-box arrangements

at the tth round from which these
3∑

k=0

mk,t arrangements are generated is Lt.

Consequently,

3∑

k=0

mk,t = Lt+1 . (4.1)

Now we set,

3∑

k=0

k ·mk,t = k̃t ·
3∑

k=0

mk,t = k̃t · Lt+1 . (4.2)

1The complexity is measured in terms of the number of value assignments.

4.3. SECURITY ANALYSIS OF RC4A 59

In (4.2), k̃t is the expected number elements which are assigned to the S-boxes
in each iteration in that particular round. If each of Lt is assumed to produce
an expected L̃t+1 number of S-box arrangements in the next round then (4.2)
becomes,

3∑

k=0

k ·mk,t = k̃t · (L̃t+1 · Lt) . (4.3)

Denoting the total number of value assignments in the tth round by C(t), it is
easy to note from (4.3),

C(t) = k̃t · (L̃t+1 · Lt) . (4.4)

Proceeding this way we see that,

C(t+ s) = k̃t+s · Lt ·
t+s∏

i=t

L̃i+1 . (4.5)

If t = 1 then Lt = 1. Setting t+ s = n in (4.5), we get,

C(n) = k̃n ·
n∏

i=1

L̃i+1 . (4.6)

From (4.1) and (4.2), C(n) can be evaluated ∀n ∈ {1, 2, . . .2N} when mk,t is
known ∀(k, t) ∈ {0, 1, 2, 3}{1, 2, . . .2N}.

It is important to note that on a random output sequence k̃2f−1 ≈ k̃2f and

L̃2f ≈ L̃2f+1 ∀f ∈ {1, 2, . . .N}. The reason behind the approximation is that,
with the algorithm by Knudsen et al., the difference between the expected number
of assignments in the S-boxes in the (2f−1)th and the 2fth rounds is very small.
Therefore, the overall complexity Crc4a becomes,

Crc4a =

2N∑

n=1

C(n)

=

2N∑

n=1

(k̃n ·
n∏

i=1

L̃i+1)

= k̃1 · L̃2 +
N∑

i=1

(k̃2i ·
i∏

j=1

L̃2
2j+1) +

N∑

i=2

(k̃2i−1 · L̃2i ·
i−1∏

j=1

L̃2
2j)

= k̃1 · L̃2 +

N∑

i=1

(k̃2i−1 ·
i∏

j=1

L̃2
2j) +

N∑

i=2

(k̃2i−1 · L̃2i ·
i−1∏

j=1

L̃2
2j) .

60 CHAPTER 4. DESIGN AND ANALYSIS OF RC4A

Replacing k̃q and L̃q by x q+1

2

and g q

2
we get,

Crc4a =

N∑

i=1

(xi ·
i∏

j=1

g2j) + x1 · g1 +
N∑

i=2

(xi · gi ·
i−1∏

j=1

g2j) . (4.7)

Applying a similar technique as above it is easy to see that,

Crc4 =

N∑

i=1

(xi ·
i∏

j=1

gj) . (4.8)

Again we note that the difference between the expected number of elements that
are already assigned in S1 for RC4A at round (2t− 1) and the expected number
of elements in S for RC4 at round t is negligible. Therefore, the corresponding
k̃t and L̃t+1 for RC4 can be approximated to k̃2t−1 and L̃2t for RC4A.

As the gi’s are real numbers greater than 1 and the xi’s are non-negative real
numbers, from (4.7) and (4.8) it is easy to see that Crc4a ≫ Crc4.

We observe from the algorithm that xi ∈ {y : 0 ≤ y ≤ 3, y ∈ R}. It is clear
from the algorithm that xi decreases as i increases. Intuitively, xi is less than one
in the last rounds. Therefore, assuming Crc4a ≈ ∏N

i=1 g
2
i and Crc4 ≈

∏N

i=1 gi, we
get Crc4a ≈ C2

rc4. �

By Theorem 4.1, the expected complexity to deduce the secret internal state
of RC4A (N = 256) with the algorithm by Knudsen et al. is 21558 when the
corresponding complexity is 2779 for RC4.

4.3.2 Resisting the Fortuitous States Attack

Fluhrer and McGrew discovered certain RC4 states in which only m known con-
secutive S-box elements participate in producing the next m successive outputs.
Those states are defined to be Fortuitous States (see [31, 64] for a detailed analy-
sis). Fortuitous States increase the probability to guess a part of internal state in
a known plaintext attack (see (??)). The larger the probability of the occurrence
of a fortuitous state, the smaller will be the number of required rounds to obtain
one of them.

RC4A also weakens the fortuitous state attack to a large degree. A moment’s
reflection shows that RC4A does not have any fortuitous state of length 1. Now
we will compare the probability of the occurrence of a fortuitous state of length
2a in RC4A to that of length a in RC4. It is easy to note that a fortuitous state
of length 2a of RC4A implies and is implied by two fortuitous states of length
a of RC4 appearing simultaneously in S1 and S2. If C denotes the number of
fortuitous states of length a of RC4 then the expected number of fortuitous states

4.4. ATTACKS ON THE RC4A STREAM CIPHER 61

of length 2a in RC4A is C2/N . Let Pa denote the probability of the occurrence
of a fortuitous state of length a in RC4 and P2a denote the probability of the
occurrence of a fortuitous state of length 2a in RC4A. Then, for small values of

a, Pa = C
Na+2 and P2a = C2

N2a+4 which immediately implies P2a < Pa.

4.3.3 Resisting the 2nd Byte Attack by Mantin and Shamir

One may observe that the strong positive bias of the second output byte of RC4
toward zero [53] is also diminished in this new cipher RC4A as more random
variables are required to be fixed for the bias-producing state to occur. Unlike
the case with RC4, fixing a single S-box element did not yield any RC4A state
that made the Mantin and Shamir’s attack possible.

4.4 Attacks on the RC4A Stream Cipher

So far, two distinguishing attacks have been found on RC4A.

• The first attack was by Maximov who experimentally detected that the
distribution of tth and t+ 2th outputs of RC4A is not uniform [55]. Using
these weaknesses they built a distinguisher on RC4A which worked with 258

output bytes. The attack is based on determining a set of internal states
for which the outputs occur with a bias. These states are similar to the
predictive states as discussed in Chapter ??.

• The best distinguishing attack, so far, on RC4A is by Tsunoo et al. who
builds a distinguisher with 223 output bytes. The pivotal observation in
their distinguisher is that, if the second element of the first S-box of RC4A
is 2 then the first and the third outputs are always different. This bias-
producing RC4A state is captured formally, using the notation used in this
chapter, in the following claim.

Claim 4.2 For RC4A, if S1[1] = 2 then O1 6= O3.

See [90] for the detailed analysis of the distinguisher.

4.5 Open Problems and Directions for Future

Work

Although RC4A has an improved security over the original cipher against most
of the known plaintext attacks, it is still as vulnerable as RC4 against the attack
by Golić which uses the positive correlation between the second binary derivative

62 CHAPTER 4. DESIGN AND ANALYSIS OF RC4A

of the least significant bit output sequence and 1. The weakness originates from
the slow change of the S-box in successive rounds that seems to be inherent
in any model based on exchange shuffle. Therefore, this still remains an open
problem whether it is possible to remove this weakness from the output words
of the stream cipher based on an exchange shuffle while retaining all of its speed
and security.

Our work leaves room for more research. It is worthwhile to note that one
output byte generation in this existing model of exchange shuffle involves two
random pointers; j and S[i] +S[j]. In RC4 both the pointers fetch values from a
single S-box. We obtained better results by making S[i]+S[j] fetch value from a
different S-box. What if we obtain S[j] from another S-box and generate output
using three S-boxes?

4.6 Conclusions

In this chapter we attempted to improve the security of RC4 by introducing
more random variables in the output generation process thereby reducing the
correlation between the internal and the external states. However, we would like
to mention that the security of RC4A could be further improved. For example,
one could introduce key-dependent values of i and j at the beginning of the first
round, and one could address the weaknesses of the Key Scheduling Algorithm.
In this chapter, we have assumed that the original Key Scheduling Algorithm
produces a uniform distribution of the initial permutation of elements, which is
certainly not correct.

Chapter 5

Cryptanalysis of Py

Prediction is very difficult, especially of the future.
– Niels Bohr (1885-1962)

5.1 Introduction

In this chapter we look into another popular array-based stream cipher known
as Py. The cipher Py, designed by Biham and Seberry [6], was submitted to the
ECRYPT project [25] as a candidate for Profile 1 which covers software based
stream ciphers suitable for high-speed applications. In the last couple of years a
growing interest has been noticed among cryptographers to design fast and secure
stream ciphers because of weaknesses being found in many de facto standards
such as RC4 and also due to the failure of the NESSIE project [61] to find a
stream cipher that met its very stringent security requirements. The current
stream cipher, namely Py, is one of the attempts in this direction.

Py is the most recent addition to the class of stream ciphers whose design
principles are motivated by that of RC4 (see [36, 41, 65, 95, 98]). Like RC4, Py
also uses the technique of random shuffle to update the internal state. In addition,
Py uses a new technique of rotating all array elements in every round with a
minimal running time. The high performance (it is 2.5 times faster than the
RC4 on Pentium III) and its apparent security make this cipher very attractive
for selection to the Profile 1 of the ECRYPT project.

This chapter identifies several biased pairs of output bits of Py at rounds t
and t+2 (where t > 0). The weaknesses originate from the non-uniformity of the
distributions of carry bits in modular addition used in Py. Using those biases, we
have constructed a class of distinguishers. We show that the best of them works
successfully with 284.7 randomly chosen key/IVs, the first 24 bytes for each key

63

64 CHAPTER 5. CRYPTANALYSIS OF PY

(i.e., a total of 289.2 bytes) and running time tini · 284.7 where tini is the running
time of the key/IV setup of Py. We also show that a simple adjustment to the
above distinguisher reduces the number of key/IVs, the data complexity and the
running time to 228.7, a total of 287.7 bytes and tr · 284.7 respectively, where tr
is the running time of a single round of Py. Note that the allowable key-size
and keystream length of Py are 256 bits and 264 bytes respectively. Therefore,
these results imply that – even if our attack has a larger total complexity – Py
fails to provide the security level expected from an ideal stream cipher with the
parameter sizes of Py. Therefore, we believe that our results present a theoretical
break of the cipher; see Sect. 5.9 for an elaborate discussion on this issue. It is
important to note that the weaknesses of Py which are described in this chapter,
still cannot be implemented in practice in view of the its high time complexity.
However, the individual distinguishers open the possibility to combine them in
order to generate more efficient distinguishers.

5.2 Description of Py

Py is a synchronous stream cipher which normally uses a 32-byte key (however,
the key can be of any size from 1 byte to 256 bytes) and a 16-byte initial value or
IV (IV can also be of any size from 1 byte to 64 bytes). The allowable keystream
length per key/IV is 264 bytes. Py works in three phases – a key setup algorithm,
an IV setup algorithm and a round function which generates two output-words
(each output-word is 4 bytes long). The internal state of Py contains two S-boxes
Y , P and a variable s. Y contains 260 elements each of which is 32 bits long. The
elements of Y are indexed by [-3, -2,..., 256]. P is a permutation of the elements
of {0, ..., 255}. The main feature of the stream cipher Py is that the S-boxes are
updated like ‘rolling arrays’ [6]. The technique of ‘rolling arrays’ means that, in
each round of Py, (i) one or two elements of the S-boxes are updated (line 1 and
7 of Algorithm 6) and (ii) all the elements are cyclically rotated by one position
toward the left (line 2 and 8 of Algorithm 6). In our analysis, we have assumed
that, after the key/IV setup, Y , P and the variable s are uniformly distributed
and independent. Under this assumption we analyzed the round function of Py
(or Pseudorandom Bit Generation Algorithm) which is described in Algorithm 6.
See [6] for a detailed description of the key/IV setup algorithms.

The inputs to Algorithm 6 are Y [−3, ..., 256], P [0, ..., 255] and s, which are
obtained after the key/IV setup. Lines 1 and 2 describe how P is updated and
rotated. In the update stage, the 0th element of P is swapped with another
element in P , which is accessed indirectly, using Y [185]. The next step involves
a cyclic rotation by one position, of the elements in P . This implies that the
entry in P [0] becomes the entry in P [255] in the next round and the entry in P [i]
becomes the entry in P [i− 1] (∀i ∈ {1, 2, ..., 255}). Lines 3 and 4 of Algorithm 6

5.2. DESCRIPTION OF PY 65

indicate how s is updated and its elements rotated. Here, the ‘ROTL32(s, x)’
function implies a cyclic left rotation of s by x bit-positions. The output-words
(each 32-bit) are generated in lines 5 and 6. The last two lines of the algorithm
explain the update and rotation of the elements of Y . The rotation of Y is carried
in the same manner as the rotation of P .

Algorithm 6 Single Round of Py

Input: Y [−3, ..., 256], P [0, ..., 255], a 32-bit variable s
Output: 64-bit random output

/*Update and rotate P*/
1: swap (P [0], P [Y [185]&255]);
2: rotate (P);

/* Update s*/
3: s+ = Y [P [72]]− Y [P [239]];
4: s = ROTL32(s, ((P [116] + 18)&31));

/* Output 8 bytes (least significant byte first)*/
5: output ((ROTL32(s, 25)⊕ Y [256]) + Y [P [26]]);
6: output ((s ⊕Y [−1]) + Y [P [208]]);

/* Update and rotate Y */
7: Y [−3] = (ROTL32(s, 14)⊕ Y [−3]) + Y [P [153]];
8: rotate(Y);

5.2.1 Notation and Convention

As Py uses different types of internal and external states (e.g. integer arrays, 32-
bit integer) and they are updated every round, it is important to denote all the
states and rounds in a simple but consistent way. In every round of Py, the S-box
P and the variable s are updated before the output generation (see Algorithm 6).
The other S-box, namely Y , is updated after the output generation.

1. In the beginning of any round i, the components of the internal state are
denoted by Pi−1, si−1 but Yi.

2. At the end of any round i, the internal state is updated to Pi, si and Yi+1.
(If the above two conventions are followed, we have Pi, si and Yi in the
formulas for the generation of the output-words in round i (line 5 and 6 of
Algorithm 6)).

3. The nth element of the arrays Yi and Pi, are denoted by Yi[n] and Pi[n]
respectively.

66 CHAPTER 5. CRYPTANALYSIS OF PY

4. The output-words generated in line 5 and line 6 of Algorithm 6 are referred
to as the ‘1st output-word’ and the ‘2nd output-word’ respectively.

5. Ol,m denotes the lth (l ∈ {1, 2}) output-word generated in the mth round
of Py. Ol,m(j) denotes the jth bit of Ol,m. For example, O1,3(5) denotes the
5th bit of the 1st output-word in round 3.

6. As mentioned in the list of symbols in the beginning of this thesis, the ‘+’
operator denotes addition modulo 232 as a rule, except when it is used to
increment elements of P (particularly in expressions of the form Pi[n] =
Pj [m] + 1, where ‘+’ denotes addition over Z). Similarly, the meaning of
‘−’ should be understood.

5.2.2 Assumption

We assume that the key setup and the IV setup algorithms of Py are perfect, i.e.,
after the execution of them, the permutation P , the elements of Y and the s are
uniformly distributed and independent. When we are interested in the analysis
of the mixing of bits of the internal state by the PRBG, the above assumption is
reasonable, particularly when it is difficult to derive any relation between inputs
and outputs of the key/IV setup algorithm. Apart from that the assumption is
in agreement with a claim made in Sect. 6.4 of [6] that the key/IV setup leaks
no statistical information on the internal state.

5.3 Motivational Observation

Our main observation is that, if certain conditions on the elements of the S-box
P are satisfied then the least significant bit (lsb) of the 1st output-word at the
1st round is equal to the lsb of the 2nd output-word at the 3rd round.

Theorem 5.1 O1,1(0) = O2,3(0) if the following six conditions on the elements
of the S-box P are simultaneously satisfied.

1. P2[116] ≡ −18 mod 32 (event A),

2. P3[116] ≡ 7 mod 32 (event B),

3. P2[72] = P3[239] + 1 (event C),

4. P2[239] = P3[72] + 1 (event D),

5. P1[26] = 1 (event E),

6. P3[208] = 254 (event F).

5.3. MOTIVATIONAL OBSERVATION 67

G

−1 0 1 254 256 255

−1 0 1 254 255 256

−1 0 1 254 255 256

(a) The S−box Y after Key/IV Set up

(b) Y after the first round

(c) Y after the second round

O11

O23

H G

H G

H

Figure 5.1: (a) P1[26] = 1 (condition 5): G and H are used in O1,1, (b) Y2 (i.e.,
Y after the 1st round), (c) P3[208] = 254 (condition 6): G and H are used in
O2,3

Proof. The formulas for the O1,1, O2,3 and s2 are given below (see Sect. 5.2):

O1,1 = (ROTL32(s1, 25)⊕ Y1[256]) + Y1[P1[26]] , (5.1)

O2,3 = (s3 ⊕ Y3[−1]) + Y3[P3[208]] , (5.2)

s2 = ROTL32(s1 + Y2[P2[72]]− Y2[P2[239]],

P2[116] + 18 mod 32) . (5.3)

• Condition 1 (i.e., P2[116] ≡ −18 mod 32) reduces (5.3) to

s2 = s1 + Y2[P2[72]]− Y2[P2[239]] .

• Condition 2 (i.e., P3[116] ≡ 7 mod 32) together with Condition 1 implies

s3 = ROTL32((s1 + Y2[P2[72]]− Y2[P2[239]] + Y3[P3[72]]− Y3[P3[239]]), 25) .

• Condition 3 and 4 (that is, P2[72] = P3[239] + 1 and P2[239] = P3[72] + 1)
reduce the previous equation to

s3 = ROTL32(s1, 25) . (5.4)

From (5.1), (5.2), (5.4) we get:

O1,1 = (ROTL32(s1, 25)⊕ Y1[256]) + Y1[P1[26]] , (5.5)

O2,3 = (ROTL32(s1, 25)⊕ Y3[−1]) + Y3[P3[208]] . (5.6)

68 CHAPTER 5. CRYPTANALYSIS OF PY

In Fig. 5.1, conditions 5 and 6 are described. According to the figure,

H = Y1[P1[26]] = Y3[−1] , (5.7)

G = Y1[256] = Y3[P3[208]] . (5.8)

Applying (5.7) and (5.8) in (5.5) and (5.6) we get,

O1,1(0) ⊕O2,3(0) = Y1[256](0) ⊕ Y1[P1[26]](0) ⊕ Y3[−1](0) ⊕ Y3[P3[208]](0) = 0 .

This completes the proof. �

5.4 Bias in the Distribution of the 1st and the

3rd Outputs

In this section, we shall compute P [O1,1(0) ⊕ O2,3(0) = 0] using the results of
Sect. 5.3. We now recall the six events (or conditions) A, B, C, D, E, F as
described in Theorem 5.1. First, we shall compute P [A ∩ B ∩ C ∩ D ∩ E ∩ F].
The elements involved in the calculation of the probability are P1[26], P2[72],
P2[116], P2[239], P3[72], P3[116], P3[208], and P3[239]. Now we observe that
Algorithm 6 ensures that all the above elements occupy unique indices in round 1.
We calculate the probabilities step by step using Bayes’ rule under the assumption
described in Sect. 5.2.2.

1. P [E] = 1
256 ,

2. P [E ∩ F] = P [F |E] · P [E] = 1
255 · 1

256 ,

3. P [A ∩ E ∩ F] = P [A|E ∩ F] · P [E ∩ F] = 8
254 · 1

255 · 1
256 ,

4. P [A ∩B ∩ E ∩ F] = P [B|A ∩ E ∩ F] · P [A ∩ E ∩ F] = 8
253 · 8

254 · 1
255 · 1

256 ,

5. Similarly, P [A ∩B ∩C ∩ E ∩ F] = 247
251·252 · 8

253 · 8
254 · 1

255 · 1
256 ,

6. P [A ∩B ∩ C ∩D ∩ E ∩ F] ≈ 244
249·250 · 247

251·252 · 8
253 · 8

254 · 1
255 · 1

256 ≈ 2−41.9 .

Under the assumption of randomness and uniformity of the distributions of the S-
box elements and of s after the key/IV setup, if any of the six events – described in

5.5. THE DISTINGUISHER 69

Theorem 5.1 – does not occur then P [O1,1(0)⊕O2,3(0) = 0] = 1
2 (see Appendix C.1

for a justification for that). That is,

P [O1,1(0) ⊕O2,3(0) = 0|(A ∩B ∩ C ∩D ∩ E ∩ F)c] =
1

2
.

We denote the event A ∩ B ∩ C ∩ D ∩ E ∩ F by L and its complement by Lc.
Therefore,

P [O1,1(0) ⊕O2,3(0) = 0] = P [O1,1(0) ⊕O2,3(0) = 0|L] · P [L]

+ P [O1,1(0) ⊕O2,3(0) = 0|Lc] · P [Lc]

= 1 · 2−41.91 +
1

2
· (1 − 2−41.91)

=
1

2
· (1 + 2−41.91) . (5.9)

Note that, if Py had been an ideal PRBG then the above probability would have
been exactly 1

2 .

5.5 The Distinguisher

The distinguishers that we construct in this section and Sect. 5.6, using the bias
described in Sect. 5.4, are prefix distinguishers. In Sect. 5.7, we build a regular
distinguisher ; however, the number of outputs needed for this distinguisher ex-
ceeds the allowable keystream length per key/IV. In Section 5.8, we propose a
hybrid distinguisher mainly to reduce the time cost of our prefix distinguisher. An
elaborate introductory discussion on various types distinguishers can be found in
Sect. 1.3.3.

Algorithm 7 A Distinguisher separating Py from Random

Input: An n-bit sequence (z1, z2, z3, · · · , zn)
Output: Whether the sequence is random or generated by Py

1: Compute LLR =
∑

i log(
P0[zi]
P1[zi]

);

2: If LLR ≥ 0 then return 1 (i.e., “The sequence is from Py”)
else 0 (i.e., “The sequence is random”);

Algorithm 7. The prefix distinguisher that separates Py from random is de-
scribed in Algorithm 7. The input to the algorithm is a realization of the se-
quence of binary random variables (z1, z2, z3, · · · , zn). The adversary first
generates n key/IV pairs X1, X2, X3, · · · , Xn randomly and then computes

70 CHAPTER 5. CRYPTANALYSIS OF PY

zi = O1,1(0) ⊕ O2,3(0) for all Xi, 1 ≤ i ≤ n. Using the results obtained by
Baignères, Junod and Vaudenay [3], we see that Algorithm 7 is an optimal dis-
tinguisher. Given a fixed number of samples, an optimal distinguisher attains
the maximum advantage. Note that the random variables zi’s are independent of
each other and each of them follows the distribution computed in Sect. 5.4 (call
the distribution D0). Let the uniform distribution on alphabet [0, 1] be denoted
by D1. In Algorithm 7, P0[zi] (shorthand for PD0

[zi]) denotes the probability of
occurrence of zi when chosen according to D0 (similarly P1[zi] and PD1

[zi]).
Let the Algorithm 7, the sequence of variables (z1, z2, z3, · · · , zn) and the

quantity
∑

i log(
P0[zi]
P1[zi]

) be denoted by F , Z and LLR respectively. Now we will

compute the advantage of F (the advantage of this distinguisher has been inde-
pendently calculated by Paul Crowley [17]). Now we recall the advantage of a
distinguisher as described in (1.8):

AdvnF =
∣
∣PDn

0
[F(Z) = 1]− PDn

1
[F(Z) = 1]

∣
∣ . (5.10)

Following the results in [3], we see that for large n,

PDn
0
[F(Z) = 1] = PD0

[LLR ≥ 0] ≈ Φ

(√
nµ0

σ0

)

,

PDn
1
[F(Z) = 1] = PD1

[LLR ≥ 0] ≈ Φ

(√
nµ1

σ1

)

.

where Φ is the standard normal distribution function expressed as,

Φ(z) =
1√
2π

∫ z

−∞

e−
1
2
u2

du .

If the two distributions D0 and D1 are close (i.e.,
∣
∣P0[z]− P1[z]

∣
∣ ≪ P1[z]) then

µ0 ≈ −µ1 ≈ 1

2

∑

z∈[0,1]

(P0[z]− P1[z])
2

P1[z]
and σ2

0 ≈ σ2
1 ≈

∑

z∈[0,1]

(P0[z]− P1[z])
2

P1[z]
.

The above equations suggest that, for a given n, using the known distributions
D0 and D1, the advantage of Algorithm 7 can be computed from (5.10). Some
simple calculations show that, if P0[0]−P1[0] =

1
M
, then, to ensure the advantage

of the distinguisher to be greater than 0.5, the required number of samples is

n = 0.4624 ·M2 . (5.11)

In the present case P0[0]−P1[0] =
1

242.9 (see Sect. 5.4). Therefore, from (5.11),

n = 0.4624 · (242.9)2 = 284.7 samples (i.e., as many randomly chosen key/IVs)

5.6. BIASES AMONG OTHER PAIRS OF BITS AND DISTINGUISHERS 71

can distinguish Py from random with an advantage that exceeds 0.5. The time
cost to build this distinguisher is tini · 284.7 where tini is the running time of the
key/IV setup of Py. Note that, for each key/IV, we collect the first 24 bytes of the
keystream. Therefore, the number of bytes required to establish the distinguisher
is 284.7 · 24 = 289.2.

5.6 Biases among other Pairs of Bits and Distin-

guishers

In Sect. 5.4, we have shown a bias in (O1,1(0), O2,3(0)). In this section, we show
that the bias is present in (O1,1(i), O2,3(i)), where 0 ≤ i ≤ 31; however, the bias
gradually reduces as i increases. From (5.1) and (5.2), we get:

O1,1(i) = ROTL32(s1, 25)(i) ⊕ Y1[256](i) ⊕ Y1[P1[26]](i) ⊕ c1(i) ,

O2,3(i) = s3(i) ⊕ Y3[−1](i) ⊕ Y3[P3[208]](i) ⊕ c3(i) ,

where 0 ≤ i ≤ 31 and c1, c3 are the carry terms in (5.1) and (5.2) respectively.

A Special Case. If all the 6 conditions of Theorem 5.1 are satisfied, O1,1

and O2,3 can be written in the following form (see Theorem 5.1):

O1,1 = (S ⊕G) +H , (5.12)

O2,3 = (S ⊕H) +G , (5.13)

which implies that

O1,1(i) ⊕O2,3(i) = c1(i) ⊕ c3(i), 0 ≤ i ≤ 31 ,

where the carries c1(i) and c3(i) can be calculated from the following recursive
relations (note that c1(0) = c3(0) = 0),

c1(i) = c1(i−1)(S(i−1) ⊕G(i−1))⊕ c1(i−1)H(i−1) ⊕
H(i−1)(S(i−1) ⊕G(i−1)) , (5.14)

c3(i) = c3(i−1)(S(i−1) ⊕H(i−1))⊕ c3(i−1)G(i−1) ⊕
G(i−1)(S(i−1) ⊕H(i−1)) . (5.15)

72 CHAPTER 5. CRYPTANALYSIS OF PY

Computing P [O1,1(i) ⊕O2,3(i) = 0]. Note that

P [O1,1(i) ⊕O2,3(i) = 0] = P [O1,1(i) ⊕O2,3(i) = 0|L] · P [L]

+ P [O1,1(i) ⊕O2,3(i) = 0|Lc] · P [Lc]

= P [c1(i) ⊕ c3(i) = 0|L]
︸ ︷︷ ︸

pi

·P [L]

+ P [O1,1(i) ⊕O2,3(i) = 0|Lc]
︸ ︷︷ ︸

Xi

·P [Lc] , (5.16)

where i ∈ [0, 31] and the event L is A ∩ B ∩ C ∩ D ∩ E ∩ F . Note that four
components are involved in (5.16); they are P [L], P [Lc], pi and Xi. Next, we
show how to determine these four quantities.

1,2. Computing P [L] and P [Lc]: the results in Sect. 5.4 show that P [L] =
2−41.9 and P [Lc] = (1− 2−41.9).

3. Computing pi: now we recursively compute P [c1(i) ⊕ c3(i) = 0|L], de-
noted by pi in (5.16) (similarly pi−1 should be understood), from the following
equation derived directly from (5.14) and (5.15).

c1(i) ⊕ c3(i) = (c1(i−1) ⊕ c3(i−1))(S(i−1) ⊕G(i−1) ⊕H(i−1))⊕
S(i−1)(G(i−1) ⊕H(i−1)) . (5.17)

Note that the variables G, H , S are uniformly distributed and independent. The
truth table for (5.17) is shown in Table 5.1. From Table 5.1, using Bayes’ rule,
we obtain the following recursion to compute pi,

pi =
pi−1

2
+

1

4
.

We already know that p0 = 1 (i.e., P [O1,1(0) ⊕ O2,3(0) = 0|L] = 1). Therefore,
solving the above recurrence relation, finally we get

pi =
1

2
+

1

2i+1
, 0 ≤ i ≤ 31 . (5.18)

4. Computing Xi: according to the results obtained in Appendix C.1 it is
reasonable to assume that

Xi =
1

2
, for all i ∈ [0, 24] ∪ [26, 31] .

General Expression. Using the above results, recalling (5.16), we find,

P [O1,1(i) ⊕O2,3(i) = 0] =
1

2
(1 + 2−(41.9+i)) , (5.19)

5.6. BIASES AMONG OTHER PAIRS OF BITS AND DISTINGUISHERS 73

Table 5.1: Truth table for (5.17). The last column in each row indicates the
probability of the occurrence of that row

c1(i−1) ⊕ c3(i−1) S(i−1) B(i−1) A(i−1) c1(i) ⊕ c3(i) Probability
0 0 0 0 0 pi−1/8
0 0 0 1 0 pi−1/8
0 0 1 0 0 pi−1/8
0 0 1 1 0 pi−1/8
0 1 0 0 0 pi−1/8
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0 pi−1/8
1 0 0 0 0 (1 − pi−1)/8
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0 (1 − pi−1)/8
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

74 CHAPTER 5. CRYPTANALYSIS OF PY

where i ∈ [0, 24] ∪ [26, 31]. It is also reasonable to assume (due to the event L′

as described in Appendix C.1) that

P [O1,1(25) ⊕O2,3(25) = 0] ≥ 1

2
(1 + 2−(41.9+25))

≥ 1

2
(1 + 2−66.9) .

From (5.19), one may see that P [O1,1(i) ⊕ O2,3(i) = 0] attains the maximum
value if i = 0. Our distinguisher, described in Sect. 5.4 and 5.5, exploits the case
if i = 0. Equation (5.19) suggests that many distinguishers can be generated
using different (O1,1(i), O2,3(i))’s rather than only (O1,1(0), O2,3(0)), however, the
amount of bias decreases as i increases (i.e., we get the most effective distinguisher
if i = 0). For example, if i = 1,

P [O1,1(1) ⊕O2,3(1) = 0] =
1

2
(1 + 2−42.91) .

For the above case, taking the 1st bits of O1,1 and O2,3, the number of samples
(i.e., the number of key/IVs) required to establish a distinguisher with advantage
exceeding 0.5 is 286.7 (see (5.11)). Similarly, if we consider i = 2 then the number
of required samples is 288.7.

5.7 Generalizing the Bias at Rounds t and t+ 2:

A Distinguisher Using a Single Keystream

Under assumptions similar to those in Sect. 5.2.2, the results of Sect. 5.3 and
Sect. 5.4 are valid even if we consider any rounds t and t + 2 (t > 0) instead of
just rounds 1 and 3. In other words, instead of (O1,1(0), O2,3(0)), one can show
that the bias exists even in the distribution of (O1,t(i), O2,(t+2)(i)). Now, we state
a theorem which is the generalized version of Theorem 5.1.

Theorem 5.2 O1,t(0) = O2,(t+2)(0) if the following six conditions on the elements
of the S-box P are simultaneously satisfied.

1. Pt+1[116] ≡ −18(mod 32),

2. Pt+2[116] ≡ 7(mod 32),

3. Pt+1[72] = Pt+2[239] + 1,

4. Pt+1[239] = Pt+2[72] + 1,

5. Pt[26] = 1,

5.8. A MORE EFFICIENT HYBRID DISTINGUISHER 75

6. Pt+2[208] = 254.

Using the above theorem and the techniques used before, it is easy to show
that (see (5.9))

P [O1,t(0) ⊕O2,(t+2)(0) = 0] =
1

2
(1 + 2−41.91) .

The fact that the above probability is valid, ∀ t > 0, allows us to generate a
regular distinguisher with the number of rounds 284.7 of a single keystream (see
Sect. 1.3.3 for a definition of a regular distinguisher). This means that 284.7 ·
23 = 287.7 bytes of a single stream generated by a randomly chosen key/IV
are sufficient to distinguish Py from random with success probability greater
than 0.5. The workload here is also comparable to 287.7. However, this attack
is rendered ineffective because the amount of required bytes falls outside the
allowable keystream length of 264 bytes.

5.8 A More Efficient Hybrid Distinguisher

The results of Sect. 5.5 and Sect. 5.7 lead us in a natural way to build a hybrid
distinguisher by making a trade-off between the number of key/IVs and output
bytes per key/IV. It is apparent from the previous discussion that, to realize
our distinguisher, we need 284.7 pairs of internal states (recall that the internal
state of Py consists of the arrays P , Y and a 32-bit integer s) with each pair
being separated by one round. Then, under the assumption that the first state of
each pair is randomly generated, those pairs can be used to build a distinguisher.
As the allowable number of rounds per key/IV is 264−8 = 256, the number of
required key/IVs is 284.7−56 = 228.7 to construct this hybrid distinguisher. The
main difference between the prefix distinguisher in Sect. 5.5 and this hybrid dis-
tinguisher is that the running time to build this hybrid distinguisher is much
smaller, as it requires the key/IV setup to run only for 228.7 times compared
to 284.7 times for the previous prefix distinguisher. Therefore, the time and the
data complexity of this distinguisher are tr · 284.7 and 287.7 bytes respectively,
where tr is the running time of a single round of Py. Furthermore, this hybrid
distinguisher does not breach the cipher specifications.

5.9 Do Our Distinguishers Break the Cipher Py?

The subject of what constitutes a break of a practical stream cipher or a PRBG is
a highly contentious issue even if the area is quite well developed in theory. The
definition of a cryptographically strong pseudorandom bit generator (CSPRBG),

76 CHAPTER 5. CRYPTANALYSIS OF PY

given by Blum and Micali, has been provided in Sect. 1.3.1. We see that, theoret-
ically, a PRBG is studied according to how it behaves when the length of seed is
increased asymptotically. The major problem in fitting the analyses of practical
stream ciphers into the above framework is that, most of the ciphers work with
fixed sized keys and keystream bits (e.g. Py allows 256-bit key and 264 bytes of
keystream per key/IV pair). Such constraints make the asymptotic analyses of
practical stream ciphers impossible. For a practical PRBG with a fixed sized key
(such as Py), given the first s output bits generated by an unknown key/IV, the
s+ 1st bit can be predicted with a high probability with running time bounded
above by a trivial exhaustive search. As there is no non-trivial upper bound on
the running time of a distinguishing attack on a stream cipher (or PRBG) with
a fixed sized key, any legal distinguishing attack with running time less than
exhaustive search constitutes an academic break of the cipher.1 Therefore, our
attacks from Sect. 5.5, Sect. 5.6 and Sect. 5.8 imply a theoretical break of Py.
However, it should be noted that each of the attacks presented in the chapter
requires a workload larger than 285 and therefore, poses no practical threats to
the cipher.

Do our distinguishing attacks on Py violate the designers’ claims?

The stream cipher Py is claimed by the designers to have up to 256-bit secu-
rity (see Appendix A of [6]). In the authors’ words, “The security claims are for
keys up to 256 bits (32 bytes) and IVs up to 128 bits (16 bytes)”. 256-bit is also
the category of security level under which Py is included in the ECRYPT project
[20]. According to the discussion on the definition of n-bit security of a perfectly
secure stream cipher, it is clear that this claim is compromised by our attacks.

However, in Sect. 6.1 of [6], the authors claim,“There are no distinguishing
attacks that succeed given less than 264 bytes of key stream with a complexity
less than of exhaustive search.” It is understood from [5], that those 264 bytes,
as mentioned in the claim, may be generated by many keys rather than a single
key. Under this interpretation, our attacks do not violate this claim, since our
best attack requires 287.7 bytes of output.

As a result we conclude that two claims, mentioned above, contradict each
other with respect to the attacks mentioned in this chapter. At this point, we
leave it to the reader to decide on the implications of our distinguishers.

1A legal distinguishing attack is the one which does not violate the specified parameters of
the cipher.

5.10. FUTURE WORK 77

5.10 Future Work

One could try to combine the individual biases of the pairs of bits presented
here to develop a more sophisticated distinguisher with fewer output bytes. Paul
Crowley has reduced the time and output bytes of our distinguisher to 272 each,
by analyzing our observation in Sect. 5.3 using a Hidden Markov Model [17]. A
plausible strategy consists of identifying many more correlations between internal
and external states of Py in order to reduce the time and data complexity of the
distinguisher.

5.11 Conclusion and Remarks

The chapter presented several weaknesses of the stream cipher Py. We discovered
a class of distinguishers for the cipher, the best of which works with 287.7 bytes
and comparable time. We also showed that the output stream of Py with a
recommended keystream length of 264 bytes, contains biases at different points
– this fact can be exploited to build more effective distinguishers. These results
break the cipher Py academically. However, the data complexity for the best
distinguishing attack falls well beyond the time complexity what is feasible today.
Therefore, these weaknesses pose no practical threat to the security of the cipher
at this moment. However, very recently Wu and Preneel have reported key
recovery attacks on Py with chosen IVs [97].

78 CHAPTER 5. CRYPTANALYSIS OF PY

Chapter 6

Array-based Stream Ciphers

with Short Indices and

Large Elements: Attacks on

Py6, IA, ISAAC, NGG,

GGHN

Life must be understood backwards; but it must be lived forward.
– Kierkegaard (1813-1855)

6.1 Introduction

In Chapter ??, 4 and 5, we have already analyzed the design principles and the
weaknesses of three important array-based stream ciphers RC4, RC4A and Py.
In this chapter, we take a closer look at a specific type of array-based stream
ciphers (or PRBGs) where the size of the index is shorter than that the element
pointed to by the index.

In general, stream ciphers are of paramount importance in fast cryptographic
applications such as encryption of streaming data where information is generated
at a high speed. Unfortunately, the state-of-the art of this type of ciphers, to
euphemize, is not very promising as reflected in the failure of the NESSIE project
to select a single cipher for its profile [61] and also the attacks on a number of
submissions for the ongoing ECRYPT project [25]. Because of plenty of common

79

80 CHAPTER 6. ATTACKS ON PY6, IA, ISAAC, NGG, GGHN

features as well as dissimilarities, it is almost impossible to classify the entire
gamut of stream ciphers into small, well-defined, disjoint groups, so that one
group of ciphers can be analyzed in isolation of the others. However, in view of
the identical data structures and similar operations in a number of stream ciphers
and the fact that they are vulnerable against certain kinds of attacks originating
from some basic flaws inherent in the design, it makes sense to scrutinize the
class of ciphers in a unified way. In this chapter, we take a closer look at the
stream ciphers connected by a common feature that each of them uses (i) one
or more arrays1 as the main part of the internal state and (ii) the operation
modular addition in the pseudorandom bit generation algorithm. Apart from
addition over different groups (e.g, GF(2n) and GF(2)), the stream ciphers under
consideration only admit of simple operations such as memory access (direct and
indirect) and cyclic rotation of bits, which are typical of any fast stream cipher.
In the present discussion we omit the relatively rare class of stream ciphers which
may nominally use array and addition, but their security depends significantly
on special functions such as those based on algebraic hard problems, the Rijndael
S-box etc.

To the best of our knowledge, the RC4 stream cipher, designed by Ron Rivest
in 1987, is the first stream cipher which exploits the features of an array for gen-
erating pseudorandom bits, using a few simple operations. Since then a large
number of array-based ciphers (or PRBGs) – namely, RC4A [65], VMPC stream
cipher [98], IA, IBAA, ISAAC [41], Py [6], Py6 [8], Pypy [7], HC-256 [95], NGG
[60], GGHN [36] – have been proposed that are inspired by the RC4 design prin-
ciples. The Scream family of ciphers [38] also uses arrays and modular additions
in their round functions, however, the security of them hinges on a tailor-made
function derived from the Rijndael S-box rather than on the mixing of additions
over different groups (e.g., GF(2n) and GF(2)) and cyclic rotation of bits; there-
fore, this family of ciphers is excluded from the class of ciphers discussed in the
chapter.

First, in Table 6.1, we briefly review the pros and cons of the RC4 stream ci-
pher which is the predecessor of all the ciphers to be analyzed later. Unfortunately,
the RC4 cipher is compatible with the old fashioned 8-bit processors only. Except
RC4A and the VMPC cipher (which are designed to work on 8-bit processors), all
the other ciphers described before are suitable for modern 16/32-bit architectures.
Moreover, those 16/32-bit ciphers have been designed with an ambition of incor-
porating all the positive aspects of RC4, while ruling out its negative properties
as listed in Table 6.1. However, the chapter demonstrates that a certain amount
of caution is necessary to adapt RC4-like ciphers to 16/32-bit architecture. Here,
we mount distinguishing attacks on the ciphers Py6, IA, ISAAC, NGG, GGHN
– all of them are designed to suit 16/32-bit processors – with data 268.61, 232.89,

1An array is a data structure containing a set of elements associated with unique indices.

6.1. INTRODUCTION 81

Table 6.1: Pros and cons of the RC4 Cipher

Advantages of RC4 Disadvantages of RC4

Arrays allow for huge secret internal state Not suitable for 16/32-bit
architecture

Fast because of fewer operations per round Several distinguishing attacks
Simple design Weak Key-setup algorithm
No key recovery attacks better than brute
force

216.89, 232.89 and 232.89 respectively, by exploiting similar weaknesses in their de-
signs (note that another 32-bit array-based cipher Py has already been attacked
in a similar fashion in Chapter 5 and in [17]). Summarily, the attacks on the
class of ciphers, described in this chapter, originate from the following basic al-
though not independent facts. However, note that our attacks are based on the
assumptions that the key-setup algorithms of the ciphers are ‘perfect’, that is,
after the execution of the algorithms they produce uniformly distributed internal
states (more on that in Sect. 6.1.1).

• Array-elements are large (usually of size 16/32 bits), but the array-indices
are short (generally of size 8 bits).

• Only a few elements of the arrays undergo changes in consecutive rounds.

• Usage of both pseudorandom index-pointers and pseudorandom array ele-
ments in a round, which apparently seems to provide stronger security than
the ciphers with fixed pointers, may leave room for attacks arising from
the correlation between the index-pointers and the corresponding array-
elements (see discussion in Sect. 6.2.2).

• Usage of simple operations like addition over GF(2n) and GF(2) in the
output generation.

Essentially our attacks based on the above facts have it origins in the fortuitous
states attack on RC4 by Fluhrer and McGrew [31].

A general framework to attack array-based stream ciphers (or PRBGs) with
the above characteristics is discussed in Sect. 6.2. Subsequently in Sect. 6.3.1, 6.3.2
and 6.3.3, as concrete proofs of our argument, we show distinguishing attacks on
five stream ciphers. The methods of our attacks are clearly motivated by the
fortuitous states attack by Fluhrer and McGrew on the RC4 stream cipher [31].
The purpose of the chapter is, by no means, to claim that the array-based ciphers
are intrinsically insecure, and therefore, should be rejected without analyzing its

82 CHAPTER 6. ATTACKS ON PY6, IA, ISAAC, NGG, GGHN

merits; rather, we stress that when such a cipher turns out to be extremely fast
– such as Py, Py6, IA, ISAAC, NGG, GGHN – an alert message should better
be issued for the designers to recheck that they are free from the weaknesses
described here. In Sect. 6.5, we comment on the security of three other array-
based ciphers (or PRBGs) IBAA, Pypy and HC-256 which, for the moment, do
not come under attacks, however they are slower than the ones attacked in this
chapter.

Notation. At any round t, some part of the internal state is updated before the
output generation and the rest is updated after that. Example: in Algorithm 10,
the variables a and m are updated before the output generation in line 5. The
variables i and b are updated after or at the same time with output generation.
Our convention is: a variable S is denoted by St at the time of output generation
of round t. As each of the variables is modified in a single line of the corresponding
algorithm, after the modification its subscript is incremented. Output at round
t is denoted by Zt.

6.1.1 Assumption

In this chapter, we concentrate solely on the mixing of bits by the keystream
generation algorithms (i.e., the PRGB) of several array-based stream ciphers
and assume that the corresponding key-setup algorithms are perfect. A perfect
key-setup algorithm produces internal state that leaks no statistical information
to the attacker. In other words, because of the difficulty of deducing any rela-
tions between the inputs and outputs of the key-setup algorithm, the internal
state produced by the key-setup algorithm is assumed to follow the uniform dis-
tribution.

6.2 Stream Ciphers Based on Arrays and Mod-

ular Addition

6.2.1 Basic Working Principles

The basic working principles of the PRBG of a stream cipher (see Chapter ?? for
a definition of a PRBG), based on one or multiple arrays, are shown in Fig. 6.1.
For simplicity, we take snapshots of the internal state, composed of only two
arrays, at two close rounds denoted by round t and round t′ = t + δ. However,
our analysis is still valid with more arrays and rounds than just two. Now we
delineate the rudiments of the PRBG of such ciphers.

6.2. STREAM CIPHERS WITH ARRAYS AND MODULAR ADDITION 83

Zt’

...

...

...

...X2

(a)

...

...

...

...

X1

X2

(b)

X1

m1, m2 m1’,m2’

 Output
Zt Output

Figure 6.1: Internal State at (a) round t and (b) round t′ = t+ δ

• Components: the internal state of the cipher comprises all or part of the
following components.

1. One or more arrays of n-bit elements (X1 and X2 in Fig. 6.1).

2. One or more variables for indexing into the arrays, i.e., the index-
pointers (down arrows in Fig. 6.1).

3. One or more random variables usually of n-bit length (m1, m2, m
′
1,

m′
2 in Fig. 6.1).

• Modification to the Internal State at a round.

1. Index Pointers: the most notable feature of such ciphers is that it
has two sets of index pointers. (i) Some of them are fixed or up-
dated in a known way, i.e., independent of the secret part of the state
(solid arrows in Fig. 6.1) and (ii) the other set of pointers are updated
pseudorandomly, i.e., based on one or more secret components of the
internal state (dotted arrows in Fig. 6.1).

2. Arrays : a few elements of the arrays are updated pseudorandomly
based on one or more components of the internal state (the shaded
cells of the arrays in Fig. 6.1). Note that, in two successive rounds,
only a small number of array-elements (e.g. one or two in each array)
are updated. Therefore, most of the array-elements remain identical
in consecutive rounds.

3. Other variables if any: they are updated using several components of
the internal state.

• Output generation: the output generation function at a round is a non-
linear combination of different components described above.

84 CHAPTER 6. ATTACKS ON PY6, IA, ISAAC, NGG, GGHN

6.2.2 Weaknesses and General Attack Scenario

Before assessing the security of array-based ciphers in general, for easy under-
standing, we first deal with a simple toy-cipher with certain properties (or weak-
nesses) which induce distinguishing attack on it.

Remark 6.1 The basis for the attacks, described throughout the chapter includ-
ing the one in the following example, is searching for internal states for which
the outputs can be predicted with bias. This strategy is inspired by the fortuitous
states attacks by Fluhrer and McGrew on the RC4 stream cipher [31].

Example 6.2 Let the size of the internal state of a stream cipher with the fol-
lowing properties be k bits.

Property 1 The outputs Zt1 , Zt2 are as follows.

Zt1 = (X ⊕ Y) + (A ≪ B) , (6.1)

Zt2 = (M +N)⊕ (C ≪ D) (6.2)

where X, Y , A, B, M , N , C, D are uniformly distributed and independent.

Property 2 [Bias-inducing State] If certain k′ bits (0 < k′ ≤ k) of the inter-
nal state are set to all 0’s (denote the occurrence of such state by event E) at
round t1, then the following equations hold.

X = M, Y = N, B = D = 0, A = C.

Therefore, (6.1) and (6.2) become

Zt1 = (X ⊕ Y) +A , Zt2 = (X + Y)⊕A .

Now, it follows directly from the above equations that, for a fraction of 2−k′

of
all internal states,

P
[
Z(0) = (Zt1 ⊕ Zt2)(0) = 0|E

]
= 1. (6.3)

Property 3 If the internal state is chosen randomly from the rest of the states,
then

P [Z(0) = 0|Ec] =
1

2
. (6.4)

To calculate the overall bias we shall use the following fact known as law of total
probability.

6.2. STREAM CIPHERS WITH ARRAYS AND MODULAR ADDITION 85

Fact 6.3 Given two mutually exclusive events E and Ec whose probabilities sum
to unity,

P [A] = P [A|E] · P [E] + P [A|Ec] · P [Ec],

where A is an arbitrary event, and P [A|B] is the conditional probability of A
given B (where B is either E or Ec).

Combining (6.3) and (6.4) we get the overall bias for Z(0) using Fact 6.3,

P [Z(0) = 0] =
1

2k′
· 1 + (1− 1

2k′
) · 1

2

=
1

2
(1 +

1

2k′
) . (6.5)

Note that, if the cipher were a secure PRBG then P [Z(0) = 0] = 1
2 . �

Discussion. Now we argue that an array-based cipher has all the three proper-
ties of the above example; therefore, the style of attack presented in the example
can possibly be applied to an array-based cipher too. First, we discuss the op-
erations involved in the output generation of the PRBG. Let the internal state
consist of N arrays and M other variables. At round t, the arrays are denoted by
S1,t[·], S2,t[·], · · · , SN,t[·] and the variables by m1,t, m2,t, · · · , mM,t. We observe
that the output Zt is of the following form,

Zt = ROT[· · ·ROT[ROT[ROT[V1,t]⊛ ROT[V2,t]]

⊛ROT[V3,t]]⊛ · · ·⊛ ROT[Vk,t]] (6.6)

where Vi,t = mg,t or Sj,t[Il]; ROT[·] is the cyclic rotation function either constant
or variable depending on the secret state; the function ⊛[·, ·] is either bit-wise
XOR or addition modulo 2n.

Now we describe a general technique to establish a distinguishing attack on
an array-based cipher (or PRBG) from the above information. We recall that,
at the first round (round t1 in the present context), the internal state is assumed
to be uniformly distributed (see Sect. 6.1.1).

Step 1. [Analogy with Property 1 of Example 6.2] Observe the elements of
the internal state which are involved in the outputs Zt1 , Zt2 , · · · (i.e., the Vi,t’s
in (6.6)) when the rounds in question are close (t1 < t2 < · · ·).

Step 2. [Bias-inducing state, Analogy with Property 2 of Example 6.2] Fix
a few bits of some array elements (or fix a relation among them) at the initial
round t1 such that indices of array-elements in later rounds can be predicted

86 CHAPTER 6. ATTACKS ON PY6, IA, ISAAC, NGG, GGHN

with probability 1 or close to it. More specifically, we search for a partially spec-
ified internal state such that one or both of the following cases occur due to
predictable index-pointers.

1. The Vi,t’s involved in Zt1 , Zt2 , · · · are those array-elements whose bits are
already fixed.

2. Each Vi,t is dependent on one or more other variables in Zt1 , Zt2 , · · · .

Now, for this case, we compute the bias in the output bits. Below we identify the
reasons why an array-based cipher can potentially fall into the above scenarios.

Reason 1 Usually, an array-based cipher uses a number of pseudorandom index-
pointers which are updated by the elements of the array. This fact turns out
to be a weakness, as fixed values (or a relation) can be assigned to the array-
elements such that the index-pointers fetch values from known locations. In
other words, the weakness results from the correlation between index-pointers
and array-elements which are uniformly distributed individually but not inde-
pendent of each other.

Reason 2 Barring a few, most of the array-elements do not change in rounds
which are close to each other. Therefore, by fixing bits, it is sometimes easy to
force the pseudorandom index-pointers to fetch certain elements from the arrays
in successive rounds.

Reason 3 The size of an index-pointer is small, usually 8 bits irrespective of
the size of an array-element which is either 16 bits or 32 bits or 64 bits. There-
fore, fixing a small number of bits of the array-elements, it is possible to assign
appropriate values to the index-pointers. The fewer the number of fixed bits, the
greater is the bias (note the parameter k′ in (6.5)).

Reason 4 If the rotation operations in the output function are determined by
pseudorandom array elements (see (6.6)) then fixing a few bits of internal state
can simplify the function by freeing it from rotation operations. In many cases ro-
tation operations are not present in the function. In any case the output function
takes the following form.

Zt = V1,t ⊛ V2,t ⊛ V3,t ⊛ · · ·⊛ Vk,t.

Irrespective of whether ‘⊛’ denotes ‘⊕’ or ‘+’, the following equation holds for
the lsb of Zt.

Zt(0) = V1,t(0) ⊕ V2,t(0) ⊕ V3,t(0) ⊕ · · · ⊕ Vk,t(0).

6.3. DISTINGUISHING ATTACKS ON ARRAY-BASED CIPHERS 87

Now by adjusting the index-pointers through fixing bits, if certain equalities

among the Vi,t’s are ensured then
t⊕
Zt(0) = 0 occurs with probability 1 rather

than probability 1/2.

Step 3. [Analogy with Property 3 of Example 6.2] Prove or provide strong
evidence that, for the rest of the states other than the bias-inducing state, the
bias generated in the previous step is not counterbalanced.

Reason The internal state of such cipher is huge and uniformly distributed at the
initial round. The correlation, detected among the indices and array-elements in
Step 2, is fortuitous although not entirely surprising because the variables are not
independent. Therefore, the possibility that a bias, produced by an accidental
state, is totally counterbalanced by another accidental state is negligible. In other
words, if the bias-inducing state, as explained in Step 2, does not occur, it is likely
that at least one of the Vi,t’s in (6.6) is uniformly distributed and independent;
this fact ensures that the outputs are also uniformly distributed and independent.

Step 4. [Analogy with (6.5) of Example 6.2] Estimate the overall bias from
the results in Step 2 and Step 3. �

In the next section, we attack several array-based ciphers (or PRBGs) follow-
ing the methods described in this section.

6.3 Distinguishing Attacks on Array-based Ci-

phers

This section describes distinguishing attacks on the ciphers (or PRBGs) Py, Py6,
IA, ISAAC, NGG and GGHN – each of which is based on arrays and modular
addition. A full description of the ciphers is omitted; the reader is kindly referred
to the corresponding design papers for details. For each of the ciphers, our task
is essentially two-forked as summed up below.

1. Identification of a Bias-inducing State. This state is denoted by the
event E which adjusts the index-pointers in such a way that the lsbs of the
outputs are biased. The lsbs of the outputs are potentially vulnerable as
they are generated without any carry bits which are nonlinear combinations
of input bits (see Step 2 of the general technique described in Sect. 6.2.2).

2. Computation of the Probability of Overall Bias. The probability is
calculated considering both E and Ec. As suggested in Step 3 of Sect. 6.2.2,
for each cipher (or PRBG), the lsbs of the outputs are uniformly distributed
if the event E does not occur under the assumption mentioned in Sect. 6.1.1.

88 CHAPTER 6. ATTACKS ON PY6, IA, ISAAC, NGG, GGHN

Note. For each of the five ciphers attacked in the subsequent sections, simple
observations show that, if E (i.e., the bias-inducing state) does not occur then
the variable under investigation is uniformly distributed under the assumption
of uniformly distributed internal state after the key-setup algorithm. We omit
the formal proofs.

6.3.1 Bias in the Outputs of Py6

The stream cipher Py6, designed especially for fast software applications by Bi-
ham and Seberry in 2005, is one of the modern ciphers that are based on arrays
[6, 8].2 Although the cipher Py, a variant of Py6, was successfully attacked in
Chapter 5 and [17], Py6 has so far remained alive. The PRBG of Py6 is described
in Algorithm 8 (see [6, 8] for a detailed discussion).

Algorithm 8 Single Round of Py6

Input: Y [−3, ..., 64], P [0, ..., 63], a 32-bit variable s
Output: 64-bit random output

/*Update and rotate P*/
1: swap (P [0], P [Y [43]&63]);
2: rotate (P);

/* Update s*/
3: s+ = Y [P [18]]− Y [P [57]];
4: s = ROTL32(s, ((P [26] + 18)&31));

/* Output 8 bytes (least significant byte first)*/
5: output ((ROTL32(s, 25)⊕ Y [64]) + Y [P [8]]);
6: output ((s ⊕Y [−1]) + Y [P [21]]);

/* Update and rotate Y */
7: Y [−3] = (ROTL32(s, 14)⊕ Y [−3]) + Y [P [48]];
8: rotate(Y);

Bias-producing State of Py6. Below we identify five conditions among the
elements of the S-box P , for which the distribution of Z1,1 ⊕ Z2,3 is biased (Z1,t

and Z2,t denote the lower and upper 32 bits of output respectively, at round t).

C1. P2[26] ≡ −18(mod 32); C2. P3[26] ≡ 7(mod 32); C3. P2[18] = P3[57] + 1;
C4. P2[57] = P3[18] + 1; C5. P1[8] = 1; C6. P3[21] = 62.

Let the event E denote the simultaneous occurrence of the above conditions
(P [E] ≈ 2−33.86). Theorem 6.4 shows that, if E occurs then Z(0) = 0 where Z
denotes Z1,1 ⊕ Z2,3.

2The cipher has been submitted to the ECRYPT Project [25].

6.3. DISTINGUISHING ATTACKS ON ARRAY-BASED CIPHERS 89

Theorem 6.4 Z1,1(0) = Z2,3(0) if the following six conditions on the elements of
the S-box P are simultaneously satisfied.

1. P2[26] ≡ −18 mod 32,

2. P3[26] ≡ 7 mod 32,

3. P2[18] = P3[57] + 1,

4. P2[57] = P3[18] + 1,

5. P1[8] = 1,

6. P3[21] = 62.

(a) The S−box Y after Key/IV Set up

−1 0 1

(c) Y after the second round

H G

64 6362

Z 2,3

−1 0 1

H G

6462 63

Z 1,1

−1 0 1

H G

64 6362

(b) Y after the first round

Figure 6.2: Py6: (a) P1[8] = 1 (condition 5): G and H are used in Z1,1, (b) Y2

(i.e., Y after the 1st round), (c) P3[21] = 62 (condition 6): G and H are used in
Z2,3

Proof. The formulas for the Z1,1, Z2,3 and s2 are given below (see Algo-
rithm 8).

Z1,1 = (ROTL32(s1, 25)⊕ Y1[64]) + Y1[P1[8]] , (6.7)

Z2,3 = (s3 ⊕ Y3[−1]) + Y3[P3[21]] , (6.8)

s2 = ROTL32(s1 + Y2[P2[18]]− Y2[P2[57]],

P2[26] + 18 mod 32) . (6.9)

90 CHAPTER 6. ATTACKS ON PY6, IA, ISAAC, NGG, GGHN

• Condition 1 (i.e., P2[26] ≡ −18 mod 32) reduces (6.9) to

s2 = s1 + Y2[P2[18]]− Y2[P2[57]] .

• Condition 2 (i.e., P3[26] ≡ 7 mod 32) together with Condition 1 implies

s3 = ROTL32((s1 + Y2[P2[18]]− Y2[P2[57]] + Y3[P3[18]]− Y3[P3[57]]), 25) .

• Condition 3 and Condition 4 (that is, P2[18] = P3[57]+1 and P2[57] = P3[18]+
1) reduce the previous equation to

s3 = ROTL32(s1, 25) . (6.10)

From (6.7), (6.8), (6.10) we get:

Z1,1 = (ROTL32(s1, 25)⊕ Y1[64]) + Y1[P1[8]] , (6.11)

Z2,3 = (ROTL32(s1, 25)⊕ Y3[−1]) + Y3[P3[21]] . (6.12)

In Fig. 6.2, condition 5 and 6 are described. According to the figure,

H = Y1[P1[8]] = Y3[−1] , (6.13)

G = Y1[64] = Y3[P3[21]] . (6.14)

Applying (6.13) and (6.14) in (6.11) and (6.12) we get,

Z1,1(0) ⊕ Z2,3(0) = Y1[64](0) ⊕ Y1[P1[8]](0) ⊕ Y3[−1](0) ⊕ Y3[P3[21]](0) = 0 .

This completes the proof. �

Now, using Fact 6.3, we calculate P [Z(0) = 0]. Note that P [E] = 2−33.86 and
P [Z(0) = 0|Ec] = 0.5 .

P [Z(0) = 0] = P [Z(0) = 0|E] · P [E] + P [Z(0) = 0|Ec] · P [Ec]

= 1 · 2−33.86 +
1

2
· (1− 2−33.86)

=
1

2
· (1 + 2−33.86) . (6.15)

Note that, if Py6 had been an ideal PRBG then the above probability would
have been exactly 1

2 .

Remark 6.5 The above bias can be generalized for rounds t and t + 2 (t > 0)
rather than only rounds 1 and 3.

Remark 6.6 The main difference between Py and Py6 is that the locations of
S-box elements used by one cipher is different from those by the other. The
significance of the above results is that it shows that changing the locations of
array-elements is futile if the cipher retains some intrinsic weaknesses as ex-
plained in Sect. 6.2.2. We shall later see that Py was attacked with 284.7 data
while Py6 can be attacked with 268.61 (explained in Sect. 6.4)

6.3. DISTINGUISHING ATTACKS ON ARRAY-BASED CIPHERS 91

6.3.2 Biased Outputs in IA and ISAAC

At FSE 1996, R. Jenkins Jr. proposed two fast PRBGs, namely IA and ISAAC,
along the lines of the RC4 stream cipher [41]. The round functions of IA and
ISAAC are shown in Algorithm 9 and Algorithm 10. Each of them uses an array
of 256 elements. The size of an array-element is 16 bits for IA and 32 bits for
ISAAC. However, IA and ISAAC can be adapted to work with array-elements of
larger size too. For ISAAC, the earlier attack was by Pudovkina who claimed to
have deduced its internal state with time 4 · 67 · 101240 which was way more than
the exhaustive search through the keys of usual size of 256-bit or 128-bit [73].
On the other hand, we shall see later in Sect. 6.4 that our distinguishing attacks
can be built with much lower time complexities.

Algorithm 9 PRBG of IA

Input: m[0, 1, ...255], 16-bit random variable b
Output: 16-bit random output
1: i = 0;
2: x = m[i];
3: m[i] = y = m[ind(x)] + b mod 216; /* ind(x) = x(7,0) */
4: Output= b = m[ind(y ≫ 8)] + x mod 216;
5: i = i+ 1 mod 256;
6: Go to step 2;

Bias-inducing State of IA. Let mt[it + 1 mod 256] = a. If the following
condition

ind((a+ Zt) ≫ 8) = ind(a) = it+1 (6.16)

is satisfied then

Z(0)(= Zt(0) ⊕ Zt+1(0)) = 0

A proof is in Theorem 6.7.

Theorem 6.7 Let mt[it + 1 mod 256] = a. If the following condition

ind((a+ Zt) ≫ 8) = ind(a) = it+1

is satisfied then

Zt+1 = 2 · a+ Zt mod 216 ⇒ Zt(0) ⊕ Zt+1(0) = 0 .

92 CHAPTER 6. ATTACKS ON PY6, IA, ISAAC, NGG, GGHN

Z = 2a+

Z

tZ tZ

 t+1

 (i)

(ii)

t ti i +1

i t+1

 a

a+

t

Figure 6.3: IA: (i) at round t when mt[it + 1] = a, (ii) at round t+ 1

Proof. This follows directly from Algorithm 9. In Fig. 6.3, the configuration
of the array m and the output are shown for two consecutive rounds when the
condition is satisfied. �

Let event E occur when (6.16) holds good. Note that P [E] = 2−16 and
P [Z(0) = 0|Ec] = 0.5 assuming a and Zt are independent and uniformly dis-
tributed. Now, using Fact 6.3, we calculate P [Z(0) = 0].

P [Z(0) = 0] =
1

2
· (1 + 2−16) . (6.17)

Algorithm 10 PRBG of ISAAC

Input: m[0, 1, ...255], two 32-bit random variables a and b
Output: 32-bit random output
1: i = 0;
2: x = m[i];
3: a = a⊕ (a ≪ R) +m[i+K mod 256] mod 232;
4: m[i+ 1] = y = m[ind(x)] + a+ b mod 232;/* ind(x) = x(7,0) */
5: Output= b = m[ind(y ≫ 8)] + x mod 232;
6: i = i+ 1 mod 256;
7: Go to Step 2.

Bias-inducing State of ISAAC. For ease of understanding, we rewrite the
PRBG of the ISAAC in a simplified manner in Algorithm 10. The variables R
and K, described in step 3 of Algorithm 10, depend on the parameter i (see [41]

6.3. DISTINGUISHING ATTACKS ON ARRAY-BASED CIPHERS 93

for details); however, we show that our attack can be built independent of those
variables.

Let mt−1[it] = x. Let event E occur when the following equation is satisfied.

ind((mt−1[ind(x)] + at + bt−1) ≫ 8) = it. (6.18)

If E occurs then Zt = x+x mod 232, i.e., Zt(0) = 0 (see Theorem 6.8 for a proof).

i

Z

x =x+x

t

t

Figure 6.4: ISAAC: at round t

Theorem 6.8 Let mt−1[it] = x. If the following condition

ind((mt−1[ind(x)] + at + bt−1) ≫ 8) = it (6.19)

is satisfied then

Zt = x+ x mod 232 ⇒ Zt(0) = 0 . (6.20)

Proof. The claim can be easily verified from Algorithm 10. In Fig. 6.4, the
configuration of the internal state at round t is shown. �

As at, bt−1 and x are independent and each of them is uniformly distributed over
Z232 , the following equation captures the bias in the output using Fact 6.3.

P [Zt(0) = 0] =
1

2
· (1 + 2−8) (6.21)

where P [E] = 2−8 .

6.3.3 Biases in the Outputs of NGG and GGHN

Gong et al. very recently have proposed two array-based ciphers NGG and GGHN
with 32/64-bit word-length [60, 36] for very fast software applications. The
PRBGs of the ciphers are described in Algorithm 11 and 12. Both the ciphers

94 CHAPTER 6. ATTACKS ON PY6, IA, ISAAC, NGG, GGHN

are claimed to be more than three times faster RC4. Due to the introduction of
an extra 32-bit random variable k, the GGHN is evidently a stronger version of
NGG. We propose attacks on both the ciphers based on the general technique
described in Sect. 6.2.2. Note that the NGG cipher was already experimentally
attacked by Wu without theoretical quantification of the attack parameters such
as bias, required outputs [96]. For NGG, our attack is new, theoretically justifi-
able and most importantly, conforms to the basic weaknesses of an array-based
cipher, as explained in Sect. 6.2.2. For GGHN, our attack is the first attack on
the cipher.

Algorithm 11 Pseudorandom Bit Generation of NGG

Input: S[0, 1, ...255]
Output: 32-bit random output
1: i = 0, j = 0;
2: i = i+ 1 mod 256;
3: j = j + S[i] mod 256;
4: Swap (S[i], S[j]);
5: Output= S[S[i] + S[j] mod 256];
6: S[S[i] + S[j] mod 256] = S[i] + S[j] mod 232

7: Go to step 2;

Bias-inducing State of NGG. Let the event E occur, if it = jt and St+1[it+1]+
St+1[jt+1] = 2 · St[it] mod 256. We observe that, if E occurs then Zt+1(0) = 0
(see Theorem 6.9).

Zt+1=2A

j t+1i

 (a)

(b)

A

C D

 C+D=2A

2A

2A

Lowest 8 bits

Lowest 8 bits

Zt
, t t i j 2A

 t+1

Figure 6.5: NGG: (a) the array S at the end of round t, (b) the array S just
before output generation at round t+ 1

6.3. DISTINGUISHING ATTACKS ON ARRAY-BASED CIPHERS 95

Theorem 6.9 If (i) it = jt and (ii) St+1[it+1] + St+1[jt+1] = 2 · St[it] mod 256,
then

Zt+1 = 2 · St[it] mod 216 ⇒ Zt+1(0) = 0

assuming that it+1 6= 2 · St[it] mod 256 and jt+1 6= 2 · St[it] mod 256.3

Proof. The proof can be easily followed from Fig. 6.5. �

Now we compute P [Zt+1(0) = 0] where P [E] = 2−16 in a similar manner as
before.

P [Zt+1(0) = 0] =
1

2
· (1 + 2−16) . (6.22)

Algorithm 12 Pseudorandom Bit Generation of GGHN

Input: S[0, 1, ...255], k
Output: 16-bit random output
1: i = 0, j = 0;
2: i = i+ 1 mod 256;
3: j = j + S[i] mod 256;
4: k = k + S[j] mod 232;
5: Output= S[S[i] + S[j] mod 256] + k mod 232;
6: S[S[i] + S[j] mod 256] = k + S[i] mod 232;
7: Go to step 2;

Bias-producing State of GGHN. In Theorem 6.10 it is shown that, if St[it] =
St+1[jt+1] and St[jt] = St+1[it+1] (denote it by event E) then Zt+1(0) = 0.

Theorem 6.10 If St[it] = St+1[jt+1] and St[jt] = St+1[it+1] then

Zt+1 = 2 · (k + St[it]) mod 232 ⇒ Zt+1(0) = 0 .

Proof. From Algorithm 12 and Fig. 6.6 the proof can be ascertained. �

Now, applying Fact 6.3, we compute P [Zt+1(0) = 0] where P [E] = 2−16.

P [Zt+1(0) = 0] =
1

2
· (1 + 2−16) . (6.23)

3The assumption has negligible effect on the computed probability.

96 CHAPTER 6. ATTACKS ON PY6, IA, ISAAC, NGG, GGHN

Zt+1=2(k+A)i

i t j t

A B
k+

B
k+

A

 A+B

A

A
+B

 A+B

(a)

(b)

Zt
Lowest 8 bits

Lowest 8 bits t+1j t+1

Figure 6.6: GGHN: (a) the array S at the end of round t, (b) the array S at the
end of round t+ 1

6.4 Data and Time of the Distinguishing Attacks

In the section we compute the data and time complexities of the distinguishers
derived from the biases computed in the previous sections. See Sect. 1.3.3 for a
detailed discussion on distinguishers and the advantage of a distinguisher.

Let there be n binary random variables z1, z2, · · · , zn which are independent
of each other and each of them follows the distribution DBIAS. Let the uniform
distribution on alphabet Z2 be denoted by DUNI. A method to construct an
optimal distinguisher with a fixed number of samples has been described by
Baignères et al. [3].4 While the detailed description of an optimal distinguisher
is omitted, the following theorem determines the number of samples required
by an optimal distinguisher to attain an advantage of 0.5 which is considered a
reasonable goal.

Table 6.2: Data and time of the distinguishers with advantage exceeding 0.5

PRBG M Bytes of a single stream = 0.4624 ·M2 Time

Py6 234.86 268.61 O(268.61)

IA 217 232.89 O(232.89)

ISAAC 29 216.89 O(216.89)

NGG 217 232.89 O(232.89)

GGHN 217 232.89 O(232.89)

4Given a fixed number of samples, an optimal distinguisher attains the maximum advantage.

6.5. A NOTE ON IBAA, PYPY AND HC-256 97

Theorem 6.11 Let the input to an optimal distinguisher be a realization of
the binary random variables z1, z2, z3, · · · , zn where each zi follows DBIAS. To
attain an advantage of more than 0.5, the least number of samples required by
the optimal distinguisher is given by the following formula

n = 0.4624 ·M2 where

PDBIAS
[zi = 0]− PDUNI

[zi = 0] =
1

M
.

Proof. See Sect. 5.5 for the proof. �

Now DUNI is known and DBIAS can be determined from (6.15) for Py6, (6.17) for
IA, (6.21) for ISAAC, (6.22) for NGG, (6.23) for GGHN. In Table 6.2, we list
the data and time complexities of the distinguishers. Our experiments agree well
with the theoretical results. The constant in O(m) is determined by the time
taken by single round of the corresponding cipher; note that this is an abuse of
notation.

6.5 A Note on IBAA, Pypy and HC-256

We are still unable to mount distinguishing attacks on the array-based PRBGs
IBAA, Pypy and HC-256, using the method described in this chapter. The IBAA
works in a similar way as the ISAAC works, except for the variable a which plays
an important role in the output generation of IBAA [41]. It seems that a relation
has to be discovered among the values of the parameter a at different rounds
to successfully attack IBAA. Pypy is a slower variant of Py and Py6 [7]. Pypy
produces 32 bits per round when each of Py and Py6 produces 64 bits. To attack
Pypy, in a fashion described in this chapter, a relation needs to be found among
the elements which are separated by at least three rounds. However, please note
that very recently Wu and Preneel have reported key recovery attacks on Pypy
using chosen IVs [97]. To attack HC-256 [95], some correlations need to be known
among the elements which are cyclically rotated by constant number of bits.

6.6 Conclusion

In this chapter, we have studied array-based stream ciphers in a general frame-
work to assess their resistance against certain distinguishing attacks originating
from the correlation between index-pointers and array-elements. We show that
the weakness becomes more profound because of the usage of simple modular
additions in the output generation function. In the unified framework we have

98 CHAPTER 6. ATTACKS ON PY6, IA, ISAAC, NGG, GGHN

attacked five modern array-based stream ciphers (or PRBGs) Py6, IA, ISAAC,
NGG, GGHN with data complexities 268.61, 232.89, 216.89, 232.89 and 232.89 respec-
tively. We also note that some other array-based ciphers IBAA, Pypy, HC-256
still do not come under any attacks, however, the algorithms need to be analyzed
more carefully in order to be considered secure. We believe that our investigation
will throw light on the security of array-based stream ciphers in general and can
possibly be extended to analyze other types of ciphers.

Chapter 7

Conclusions and Future

Work

Nature’s music is never over; her silences are pauses, not conclusions.
-Mary Webb (1881-1927)

7.1 Results of the Thesis: In a Nutshell

In the first part of the thesis we dealt with a certain class of equations that
combined modular additions over two different algebraic groups. These equations
are known as differential equations of addition (DEA). DEA are of the following
forms:

(x + y)⊕ ((x ⊕ α) + (y ⊕ β)) = γ,

(x+ y)⊕ (x + (y ⊕ β)) = γ,

where x and y are the only unknown variables. Combination of additions over
various algebraic groups is considered a fundamental building block in the de-
signs of symmetric cipher primitives. We first establish that the satisfiability of
such equations is in the complexity class P . Going further, we also solve those
equations using a novel technique which is based on simple combinatorial obser-
vations rather than usual algebraic methods such as Buchberger’s algorithm for
computing Gröbner bases [2], F4 [26] and F5 [27]. Using these results, we are able
to recover the secret key of the Helix cipher with both adaptive chosen plaintexts
and chosen plaintexts.

99

100 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Next we comprehensively studied a class of stream ciphers connected by the
properties that each used (i) arrays as main components of their internal state
and (ii) modular additions in the PRBG to generate output streams. We devised
a unified framework to evaluate the resistance of these ciphers against certain
kinds of distinguishing attacks. The attacks can be interpreted as the extension,
modification and further insightful explanation of the fortuitous states attacks
invented by Fluhrer and McGrew to cryptanalyze the RC4 cipher in 2000. Our
investigations affirm that, without certain precautions, any array-based stream
cipher (or PRBG) can come under distinguishing attacks originating from the
relations between the indices and the corresponding elements of the array. To
establish the fact, exploiting the above mentioned weaknesses, we describe dis-
tinguishing attacks on 8 practical array-based ciphers namely RC4, RC4A, Py,
Py6, GGHN, NGG, ISAAC and IA.

7.2 Open Problems

We identify a number of ways to improve and extend our work.

• Many modern ciphers, such as IDEA [49, 50], RC6 [79], use modular multi-
plications in addition to modular additions over various groups. Therefore,
the next question that immediately comes to our mind is: how to solve the
following types of equations in the manners described in Chapter 2.

(x ⊛ y)⊛ ((x ⊛ α)⊛ (y ⊛ β)) = γ,

(x⊛ y)⊛ (x ⊛ (y ⊛ β)) = γ,

where the function ⊛[·, ·] can be any of the following binary operations:

– addition modulo 2n (+),

– multiplication modulo 2n (⊙),

– bitwise XOR (⊕),

– bitwise or (∨),
– bitwise and (∧).

The above equations as well as the ones explored in the thesis can be bro-
ken into a set of multivariate polynomial equations over GF(2). It is a
well established fact that the satisfiability of an arbitrary set of multivari-
ate polynomial equations over any field is an NP-complete problem [94].
Recently, substantial research effort has been spent on inventing faster tech-
niques to solve multivariate polynomial equations (e.g. XL algorithm [16],
XSL algorithm [15]). However, the efficiency of those algorithms has also

7.2. OPEN PROBLEMS 101

been disputed by many [13, 21]. It is important to note that, to attack
a symmetric cipher component, it may not be necessary to search for an
algorithm which solves any arbitrary set of multivariate polynomial equa-
tions. As the components of symmetric ciphers are mainly composed of
operations such as +, −, ⊕ and ⊙, where each of them combines n-bit
integers, it is reasonable to assume that a weaker algorithm may suffice to
attack the cipher, if we are able to discover some fortuitous patterns among
the bits of the variables as we did for the DEA in the thesis. Therefore, a
possible direction to carry on our work is to design algorithms to solve the
above equations and then take on more complex equations based on them.

• Secondly, in Chapter 5 and 6 most of the distinguishing attacks were based
on the biased lsbs where the carry bits of the respective expressions were
each zero. However, it is apparent that the higher order carry bits also occur
with biases with diminishing magnitudes (see Sect. 5.6 for an example). It
is not yet known how to combine all the biased bits optimally to construct
an optimal distinguisher. Paul Crowley has made an attempt to combine
the biases of several bits of Py outputs using a Hidden Markov Model [17],
however, it seems plausible that a better distinguisher can be built.

• Next, what appears to be the most challenging question at present is to
express the array-based ciphers as a set of algebraic equations in terms of
key, IV, plaintext and ciphertext and then to solve the equations for the
secret key. Till now no such attempts have been made for such types of
ciphers.

• The thesis dealt with a large number of ciphers which used one or more
arrays as the main components of their internal states. In the literature,
many more sophisticated data structures are also available rather than just
arrays. Heap, various types of trees, pushdown automata, stacks, queues
are some of them that seem to be potential candidates to be used in stream
ciphers. Therefore, analyzing different data structures for the purpose of
constructing symmetric ciphers may be a useful way to extend our work.

• Lastly, it is still a challenging open problem to recover the secret key of
the RC4 cipher (with 128-bit key) with running time which is less than the
exhaustive search through all possible keys.

102 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] A. Aho, J. Hopcroft, J. Ullman, “The Design and Analysis of Computer
Algorithms,” Addison-Wesley, 1974.

[2] I. A. Ajwa, Z. Liu, P. S. Wang, “Gröbner Bases Algorithm,”
ICM Technical Report, February 1995, Available Online at
http://icm.mcs.kent.edu/reports/1995/gb.pdf.

[3] T. Baignères, P. Junod and S. Vaudenay, “How Far Can We Go Beyond
Linear Cryptanalysis?,”Asiacrypt 2004 (P. Lee, ed.), vol. 3329 of LNCS,
pp. 432-450, Springer-Verlag, 2004.

[4] T. A. Berson, “Differential Cryptanalysis Mod 232 with Applications to
MD5,” Eurocrypt 1992 (R. A. Rueppel, ed.), vol. 658 of LNCS, pp. 71-80,
Springer-Verlag, 1993.

[5] E. Biham, Personal Communication, Dec. 2005.

[6] E. Biham, J. Seberry, “Py (Roo): A Fast and Secure Stream Cipher us-
ing Rolling Arrays,” eSTREAM, ECRYPT Stream Cipher Project, Report
2005/023, 2005.

[7] E. Biham, J. Seberry, “Pypy: Another Version of Py,” eSTREAM, ECRYPT
Stream Cipher Project, Report 2006/038, 2006.

[8] E. Biham, J. Seberry, “C Code of Py6,” as available from
http://www.ecrypt.eu.org/stream/py.html, eSTREAM, ECRYPT
Stream Cipher Project, 2005.

[9] E. Biham, A. Shamir, “Differential Cryptanalysis of DES-like Cryptosys-
tems,” Crypto ’90 (A. Menezes, S. A. Vanstone, eds.), vol. 537 of LNCS,
pp. 2-21, Springer-Verlag, 1991.

103

104 Bibliography

[10] A. Biryukov, D. Wagner, “Slide Attacks,”Fast Software Encryption 1999,
(Lars R. Knudsen, ed.), vol. 1636 of LNCS, pp. 245-259, Springer-Verlag,
1999.

[11] M. Blum, S. Micali, “How to Generate Cyptographically Strong Sequence of
Psudo-randomBits,”Siam Journal of Computing, vol. 13, No. 4, pp. 850-864,
November 1984.

[12] C. Burwick, D. Coppersmith, E. D’Avignon, Y. Gennaro, S. Halevi,
C. Jutla, S. M. Matyas Jr., L. O’Connor, M. Peyravian, D. Safford and
N. Zunic, “MARS – A Candidate Cipher for AES,” Available Online at
http://www.research.ibm.com/security/mars.html, June 1998.

[13] C. Cid, G. Leurent, “An analysis of the XSL algorithm”, Advances in
Cryptology–Asiacrypt 2005 (B. Roy, ed.), vol. 3788, pp. 333-352, LNCS,
2005.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, “Introduction to Algorithms,”
MIT Press.

[15] N. Courtois, J. Pieprzyk, “Cryptanalysis of Block Ciphers with Overdefined
Systems of Equations,” Asiacrypt 2002 (Yuliang Zheng, ed.), vol. of LNCS,
pp. 267-287, Springer-Verlag, 2002.

[16] N. Courtois, A. Klimov, J. Patarin, and A. Shamir, “Efficient algorithms for
solving overdefined systems of multivariate polynomial equations,” Advances
in Cryptology – EUROCRYPT 2000 (B. Preneel, ed.), vol. 1807, Lecture
Notes in Computer Science, pages 392-407. Springer-Verlag, 2000.

[17] P. Crowley, “Improved Cryptanalysis of Py,” Workshop Record of SASC
2006 – Stream Ciphers Revisited, ECRYPT Network of Excellence in Cryp-
tology, February 2006, Leuven (Belgium), pp. 52-60.

[18] J. Daemen, J. Lano, and B. Preneel, “Chosen ciphertext attack on SSS,” In
SASC 2006 - Stream Ciphers Revisited, pages 45-51. ECRYPT, 2006.

[19] J. Daemen, V. Rijmen, “The Design of Rijndael: AES – The Advanced
Encryption Standard,” Springer-Verlag, 2002.

[20] D. J. Bernstein, “Comparison of 256-bit stream ciphers at the beginning
of 2006,” Workshop Record of SASC 2006 – Stream Ciphers Revisited,
ECRYPT Network of Excellence in Cryptology, pp. 70-83.

[21] C. Diem, “The XL-algorithm and a conjecture from commutative algebra,”
Advances in Cryptology - ASIACRYPT 2004 (P. Lee, ed.), vol. 3329, Lecture
Notes in Computer Science, pp. 323-337, Springer-Verlag, 2004.

Bibliography 105

[22] W. Diffie and M. E. Hellman, “New Directions in Cryptography,”IEEE
Transactions on Information Theory, vol. IT–22, Nov. 1976, pp. 644-654.

[23] H. Dobbertin, A. Bosselaers and B. Preneel, RIPEMD-160: A Strength-
ened Version of RIPEMD, Proceedings of Fast Software Encryption 1996
(D. Gollmann, ed.), vol. 1039, LNCS, pp. 71-82, Springer-Verlag, 1996.

[24] FIPS 186-2, Digital Signature Standard (DSS), National Institute of Stan-
dards and Technology, Jan. 2000.

[25] ECRYPT, http://www.ecrypt.eu.org.

[26] J. Faugère, “A new effecient algorithm for computing Gröbner bases (F4),”
Journal of Pure and Applied Algebra, vol. 139, pp. 61-88, 1999, Available
Online at http://www.elsevier.com/locate/jpaa.

[27] J. Faugère, “A new effecient algorithm for computing Gröbner bases without
reduction to zero (F5),” International Symposium on Symbolic and Algebraic
Computation– ISSAC 2002, pp. 75-83, ACM Press, 2002.

[28] A. Fiat and A. Shamir, How to Prove Yourself: Practical Solutions to Iden-
tification and Signature Problems, Advances in Cryptology – Proceedings of
CRYPTO 1986, LNCS 263, pp. 186-194, Springer-Verlag, 1987.

[29] H. Finney, “An RC4 cycle that can’t happen,” Post in sci.crypt, Septem-
ber 1994.

[30] S. Fluhrer, I. Mantin, A. Shamir, “Weaknesses in the Key Scheduling Al-
gorithm of RC4,” SAC 2001 (S. Vaudenay, A. Youssef, eds.), vol. 2259 of
LNCS, pp. 1-24, Springer-Verlag, 2001.

[31] S. Fluhrer, D. McGrew, “Statistical Analysis of the Alleged RC4 Keystream
Generator,” Fast Software Encryption 2000 (B. Schneier, ed.), vol. 1978 of
LNCS, pp. 19-30, Springer-Verlag, 2000.

[32] R. Floyd, R. Beigel, “The Language of Machines,”W. H. Freeman, 1994.

[33] N. Ferguson, D. Whiting, B. Schneier, J. Kelsey, S. Lucks, T. Kohno, “Helix:
Fast Encryption and Authentication in a Single Cryptographic Primitive,”
Fast Software Encryption 2003 (T. Johansson, ed.), vol. 2887 of LNCS,
pp. 330-346, Springer-Verlag, 2003.

[34] O. Goldreich, “Lecture Notes on Pseudorandomness–Part-I,” Department of
Computer Science, Weizmann Institute of Science, Rehovot, Israel, Jan-
uary 23, 2001.

106 Bibliography

[35] J. Golić, “Linear Statistical Weakness of Alleged RC4 Keystream Gener-
ator,” Eurocrypt ’97 (W. Fumy, ed.), vol. 1233 of LNCS, pp. 226-238,
Springer-Verlag, 1997.

[36] G. Gong, K. C. Gupta, M. Hell, Y. Nawaz, “Towards a General RC4-Like
Keystream Generator,” First SKLOIS Conference, CISC 2005 (D. Feng,
D. Lin, M. Yung, eds.), vol. 3822 of LNCS, pp. 162-174, Springer-Verlag,
2005.

[37] A. Grosul, D. Wallach, “A related key cryptanalysis of RC4,” Department
of Computer Science, Rice University, Technical Report TR-00-358, June
2000.

[38] S. Halevi, D. Coppersmith, C. S. Jutla, “Scream: A Software-Efficient
Stream Cipher,” Fast Software Encryption 2002 (J. Daemen and V. Rij-
men, eds.), vol. 2365 of LNCS, pp. 195-209, Springer-Verlag, 2002.

[39] M. E. Hellman, “A Cryptanalytic Time-Memory Trade-off,” IEEE Transac-
tion on Information Theory, vol. IT-26, No. 4, July, 1980.

[40] J. E. Hopcroft, R. Motwani, J. D. Ullman, “Introduction to Automata The-
ory, Languages and Computation,” Second Edition, Pearson Education,
2004.

[41] R. J. Jenkins Jr., “ISAAC,” Fast Software Encryption 1996 (D. Gollmann,
ed.), vol. 1039 of LNCS, pp. 41-49, Springer-Verlag, 1996.

[42] A. Joux and F. Muller, “Chosen-ciphertext attacks against MOS- QUITO,
”Fast Software Encryption, FSE 2006, (M. Robshaw, ed.) Lecture Notes in
Computer Science. Springer-Verlag, 2006.

[43] D. Kahn, “The Codebreakers: the story of Secret Writings,” MacMillan
Publishing Co. Inc., 1967.

[44] A. Kipnis, A. Shamir, “Cryptanalysis of the HFE Public Key Cryptosys-
tems by Relinearization,” Crypto 1999 (M. Wiener, ed.), vol. 1666 of LNCS,
pp. 19-30, Springer-Verlag, 1999.

[45] A. Klimov, A. Shamir, “Cryptographic Applications of T-Functions,” Se-
lected Areas in Cryptography 2003 (M. Matsui, R. J. Zuccherato, eds.),
vol. 3006 of LNCS, pp. 248-261, Springer-Verlag, 2004.

[46] A. Klimov, A. Shamir, “New Cryptographic Primitives Based on Multiword
T-Functions,” Fast Software Encryption 2004 (B. Roy, W. Meier, eds.),
vol. 3017 of LNCS, pp. 1-15, Springer-Verlag, 2004.

Bibliography 107

[47] L. Knudsen, W. Meier, B. Preneel, V. Rijmen, S. Verdoolaege, “Analysis
Methods for (Alleged) RC4,” Asiacrypt ’98 (K. Ohta, D. Pei, eds.), vol. 1514
of LNCS, pp. 327-341, Springer-Verlag, 1998.

[48] D. E. Knuth, “The Art of Computer Programming,” vol. 2, Seminumerical
Algorithms, Addison-Wesley Publishing Company, 1981.

[49] X. Lai, J. L. Massey, “A Proposal for a New Block Encryption Standard,”
EUROCRYPT 1990 (I. Damg̊ard, ed.), vol. 473 of LNCS, pp. 389-404,
Springer-Verlag, 1990.

[50] X. Lai, J. L. Massey, “Markov Ciphers and Differential Cryptoanalysis,” EU-
ROCRYPT 1991 (D. W. Davies, ed.), vol. 547 of LNCS, pp. 17-38, Springer-
Verlag, 1991.

[51] H. Lipmaa, S. Moriai, “Efficient Algorithms for Computing Differential
Properties of Addition,” FSE 2001 (M. Matsui, ed.), vol. 2355 of LNCS,
pp. 336-350, Springer-Verlag, 2002.

[52] H. Lipmaa, J. Wallén, P. Dumas, “On the Additive Differential Probability
of Exclusive-Or,” Fast Software Encryption 2004 (B. Roy, W. Meier, eds.),
vol. 3017 of LNCS, pp. 317-331, Springer-Verlag, 2004.

[53] I. Mantin, A. Shamir, “A Practical Attack on Broadcast RC4,” Fast Software
Encryption 2001 (M. Matsui, ed.), vol. 2355 of LNCS, pp. 152-164, Springer-
Verlag, 2001.

[54] M. Matsui, “Linear Cryptoanalysis Method for DES Cipher,” Eurocrypt
1993 (T. Helleseth, ed.), vol. 2355 of LNCS, pp. 386-397, Springer-Verlag,
1993.

[55] A. Maximov, “Two Linear Distinguishing Attacks on VMPC and RC4A
and Weakness of RC4 Family of Stream Ciphers,” Fast Software Encryption
2005 (H. Gilbert and H. Handschuh, eds.), vol. 3557 of LNCS, pp. 342-358,
Springer-Verlag, 2005.

[56] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone, “Hand-
book of Applied Cryptography,”CRC Press, Available Online at
http://www.cacr.math.uwaterloo.ca/hac/, 1996.

[57] I. Mironov, “Not (So) Random Shuffle of RC4,” Crypto 2002 (M. Yung,
ed.), vol. 2442 of LNCS, pp. 304-319, Springer-Verlag, 2002.

[58] S. Mister, S. Tavares, “Cryptanalysis of RC4-like Ciphers,” SAC ’98
(S. Tavares, H. Meijer, eds.), vol. 1556 of LNCS, pp. 131-143, Springer-
Verlag, 1999.

108 Bibliography

[59] F. Muller, “Differential Attacks against the Helix Stream Cipher,” Fast Soft-
ware Encryption 2004 (B. Roy, W. Meier, eds.), vol. 3017 of LNCS, pp. 94-
108, Springer-Verlag, 2004.

[60] Y. Nawaz, K. C. Gupta, and G. Gong, “A 32-bit RC4-like Keystream Gen-
erator,” Cryptology ePrint Archive, 2005/175.

[61] NESSIE: New European Schemes for Signature, Integrity and Encryption,
http://www.cryptonessie.org.

[62] B.C. Neuman and T. Ts’o, Kerberos: An Authentication Service for Com-
puter Networks, IEEE Communications, 32(9), pp. 33-38, 1994.

[63] K. Nyberg, L. Knudsen, “Provable Security Against a Differential Attack,”
Journal of Cryptology, 8(1):27-37, 1991.

[64] S. Paul, B. Preneel, “Analysis of Non-fortuitous Predictive States of the
RC4 Keystream Generator,” Indocrypt 2003 (T. Johansson, S. Maitra, eds.),
vol. 2904 of LNCS, pp. 52-67, Springer-Verlag, 2003.

[65] S. Paul, B. Preneel, “A New Weakness in the RC4 Keystream Generator
and an Approach to Improve the Security of the Cipher,” Fast Software
Encryption 2004 (B. Roy, ed.), vol. 3017 of LNCS, pp. 245-259, Springer-
Verlag, 2004.

[66] S. Paul, B. Preneel, “Solving Systems of Differential Equations of Ad-
dition (Extended Abstract),” 10th Australasian Conference on Informa-
tion Security and Privacy, ACISP 2005 (Colin Boyd and Juan Gonza-
lez, eds.), vol. 3574 of LNCS, pp. 75-88, Springer-Verlag, 2005, Extended
Version available online on IACR ePrint Archive as Report 2004/294 at
http://eprint.iacr.org/2004/294, April 2005.

[67] S. Paul, B. Preneel, “Near Optimal Algorithms for Solving Differential Equa-
tions of Addition with Batch Queries,” Indocrypt 2005 (Subhamoy Maitra,
C. E. Veni Madhavan and R. Venkatesan, eds.), vol. 3797 of LNCS, Springer-
Verlag, pp. 90-103, 2005.

[68] S. Paul, B. Preneel, G. Sekar, “Distinguishing Attacks on the Stream Cipher
Py,” Fast Software Encryption 2006 (M. Robshaw, ed.), vol. 4047 of LNCS,
Springer-Verlag, pp. 405-421, 2006.

[69] S. Paul, B. Preneel, “On the (In)security of Stream Ciphers Based on Arrays
and Modular Additions,” Asiacrypt 2006 (X. Lai, ed.), LNCS, Springer-
Verlag, 2006 (to appear).

Bibliography 109

[70] B. Preneel et al., “NESSIE Security Report,” Version 2.0, IST-1999-12324,
February 19, 2003, http://www.cryptonessie.org.

[71] B. Preneel, P. C. van Oorschot, “MDx-MAC and Building Fast MACs from
Hash Functions,” Advances in Cryptology – Proceedings of CRYPTO 1995
(D. Coppersmith, ed.), LNCS 963, pp. 1-14, Springer-Verlag, 1995.

[72] M. Pudovkina, “Statistical Weaknesses in the Alleged RC4 keystream gen-
erator,” Cryptology ePrint Archive 2002-171, IACR, 2002.

[73] M. Pudovkina, “A known plaintext attack on the ISAAC keystream gener-
ator,” Cryptology ePrint Archive: Report 2001/049, IACR, 2001.

[74] R. L. Rivest, “The MD4 Message Digest Algorithm,” Advances in Cryptology
– Proceedings of CRYPTO 1990 (A. Menezes, S. A. Vanstone, eds.), pp. 303-
311, Springer-Verlag, 1991.

[75] R. L. Rivest, “The MD5 Message Digest Algorithm,” Request for Comments
(RFC 1320), Internet Activities Board, Internet Privacy Task Force, 1992.

[76] R. L. Rivest, “The RC4 Encryption Algorithm,” RSA Data Security, Inc.,
March 12, 1992.

[77] R. L. Rivest, M. Robshaw, R. Sidney, Y. L. Yin, “The RC6 Block Cipher,”
Available Online at http://theory.lcs.mit.edu/ rivest/rc6.ps, June
1998.

[78] R. L. Rivest, A. Shamir, L. M. Adleman, “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems,” Commun. ACM., vol. 21, no. 2,
pp. 120-126, 1978.

[79] R. L. Rivest, M. Robshaw, Y. L. Yin, “RC6 as the AES,” AES Candidate
Conference 2000, National Institute of Standards and Technology, pp. 337-
342, 2000.

[80] A. Roos, “Class of weak keys in the RC4 stream cipher,” Post in sci.crypt,
September 1995.

[81] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C.Hall, N. Ferguson, “The
Twofish Encryption Algorithm: A 128-Bit Block Cipher,” John Wiley &
Sons, April 1999, ISBN: 0471353817.

[82] A. Shamir, “Stream Ciphers: Dead or Alive?,” Advances in Cryptology -
ASIACRYPT 2004 (P. Lee, ed.), vol. 3329, Lecture Notes in Computer
Science, pp. 78, Springer-Verlag, 2004. .

110 Bibliography

[83] U.S. Department of Commerce. FIPS 180: Secure Hash Standard, SHA-0,
Federal Information Processing Standards Publication, N.I.S.T., May 1993.

[84] U.S. Department of Commerce. FIPS 180-1: Secure Hash Standard, SHA-1,
Federal Information Processing Standards Publication, N.I.S.T., April 1995.

[85] U.S. Department of Commerce. FIPS 180-2: Secure Hash Standard, SHA-
2, Federal Information Processing Standards Publication, N.I.S.T., August
2002.

[86] C. E. Shannon, “Communication Theory of Secrecy Systems,” Bell Sys-
tem Technical Journal, vol. 28-4, pp. 656-715, 1949. Available online at
http://www.cs.ucla.edu/∼jkong/research/security/

shannon1949.pdf.

[87] O. Staffelbach, W. Meier, “Cryptographic Significance of the Carry for Ci-
phers Based on Integer Addition,” Crypto ’90 (A. Menezes, S. A. Vanstone,
eds.), vol. 537 of LNCS, pp. 601-614, Springer-Verlag, 1991.

[88] D. R. Stinson, “Cryptography: Theory and Practice,” CRC Press, Third
Edition, November 2005.

[89] A. Stubblefield, J. Ioannidis, A. Rubin, “Using the Fluhrer, Mantin and
Shamir attack to break WEP,” Proceedings of the 2002 Network and Dis-
tributed Systems Security Symposium, pp. 17-22, 2002.

[90] Y. Tsunoo, T. Saito, H. Kubo, M. Shigeri, T. Suzaki, and
T. Kawabata, “The Most Efficient Distinguishing Attack on
VMPC and RC4A,” eStream project, Available Online at
http://www.ecrypt.eu.org/stream/papersdir/037.pdf, 2005.

[91] H. Yoshida, A. Biryukov, C. D. Cannière, J. Lano, B. Preneel, “Non-
randomness of the Full 4 and 5-Pass HAVAL,” SCN 2004 (C. Blundo and
S. Cimato, eds.), vol. 3352 of LNCS, pp. 324-336, Springer-Verlag, 2004.

[92] D. Wagner, “The Boomerang Attack,” Fast Software Encryption 1999,
(L. R. Knudsen, ed.), vol. 1636 of LNCS, pp. 156-170, Springer-Verlag, 1999.

[93] J. Wallén, “Linear Approximations of Addition Modulo 2n,” Fast Soft-
ware Encryption 2003 (T. Johansson, ed.), vol. 2887 of LNCS, pp. 261-273,
Springer-Verlag, 2003.

[94] C. Wolf, “Multivariate Quadratic Polynomials in Public Key Cryptography,”
Ph.D. Thesis, Katholieke Universiteit Leuven, Belgium, 2005.

Bibliography 111

[95] H. Wu, “A New Stream Cipher HC-256,” Fast Software Encryption 2004
(B. Roy, ed.), vol. 3017 of LNCS, pp. 226-244, Springer-Verlag, 2004.

[96] H. Wu, “Cryptanalysis of a 32-bit RC4-like Stream Cipher,” Cryptology
ePrint Archive, 2005/219.

[97] H. Wu, B. Preneel, “Key Recovery Attack on Py and Pypy with Chosen
IVs,” eSTREAM, ECRYPT Stream Cipher Project, Report 2006/052, 2006.

[98] B. Zoltak, “VMPC One-Way Function and Stream Cipher,” Fast Software
Encryption 2004 (B. Roy, ed.), vol. 3017 of LNCS, pp. 210-225, Springer-
Verlag, 2004.

Appendix A

Helix

A.1 Proofs of Lemma 2.6 and Lemma 2.7

Claim A.1 For all (0, β, γ̃) ∈ D̃, γ̃(i) = 0 ∀ i ∈ [0, t].

Proof. If the position of the least significant ‘1’ of x is t then c(i) = c̃(i) = 0
∀ i ∈ [0, t] and ∀β ∈ Z

n
2 (see (2.4)). Recall γ̃(i) = c(i) ⊕ c̃(i). This proves the

lemma. �

Claim A.2 For each i ∈ [t+ 1, n− 1], there exists (0, β, γ̃) ∈ D̃ with γ̃(i) = 1.

Proof. We prove the lemma by induction on i. The statement is true if i = t+1.
Suppose, the statement is true if i = k for some k ∈ [t+ 1, n− 2], that is, there
exists (0, a, b) ∈ D̃ with b(k) = 1 (induction hypothesis). We construct three
n-bit integers from a,

1. a′ = (a(n−1), a(n−2), · · · , a(k+1), 0, a(k−1), · · · , a(0))

2. a′′ = (a(n−1), a(n−2), · · · , a(k+1), 1, a(k−1), · · · , a(0))

3. a′′′ = (a(n−1), a(n−2), · · · , a(k+1), 1, 0, 0, · · · , 0).

Now we select three elements (0, a′, b′), (0, a′′, b′′), (0, a′′′, b′′′) ∈ D̃ (such ele-
ments exist since, for all p ∈ Z

n
2 , there exists (0, p, q) ∈ D̃ for some q ∈ Z

n
2).

Note that b′(k) = b′′(k) = b(k) = 1 and b′′′(k) = 0. From Table 2.1, at least one of

b′(k+1), b
′′

(k+1) and b′′′(k+1) is 1. This proves the lemma. �

113

A.2 Proof of Lemma 2.11

Claim A.3 Let n − 4 ≥ t ≥ 0. For any algorithm A there exists a seed
(x, y) ∈ Vn, t such that the adaptively selected sequence of two queries by A for
that particular seed produces oracle outputs γ̃’s with γ̃(i+1) = 0, ∀ i ∈ [t+1, n−2].

Proof. Let the first two queries and the corresponding oracle outputs be (0, β),
(0, β′), γ̃ and γ̃′. Depending only on the tth bit of β and β′, the oracle returns
outputs (i.e., γ̃ and γ̃′) according to the following rules.

1. If β(t) = 0 then the oracle returns γ̃ = (0, 0, · · · , 0)n.
2. If β(t) = 1 then γ̃(t+1) = 1 and all other bits of γ̃ are zero.

3. If β′

(t) = 0 then the oracle returns γ̃′ = (0, 0, · · · , 0)n.

4. If β′

(t) = 1 then γ̃′

(t+1) = 1 and all other bits of γ̃′ are zero.

Under any of the above input-output combinations there exists a seed and γ̃(i+1) =
0, ∀ i ∈ [t+ 1, n− 2] for all outputs γ̃. This proves the lemma. �

A.3 Construction of M from the Li’s

Let Gi be known ∀ i ∈ [0, n − 2] (n > 1) for a nonempty useful set Ã. Let
Li = {(x(i), y(i), c(i)) |Gi ⇒ (x(i), y(i), c(i))} ∀i ∈ [0, n − 2]. Let a set M be
constructed from the Li’s in the following way,

M = {((x(n−1), x(n−2), · · · , x(0)), (y(n−1), y(n−2), · · · , y(0)))
|(x(n−1), y(n−1)) ∈ Z

2
2, (x(i), y(i), c(i)) ∈ Li, i ∈ [0, n− 2], c(0) = 0 ,

c(i+1) = x(i)y(i) ⊕ x(i)c(i) ⊕ y(i)c(i)} .

We present an algorithm to construct M from the Li’s with memory O(n · S)
and time O(S) where S = |Ã-consistent|.

First we set

M1 = {((c(1)), (x(0)), (y(0)))|(x(0), y(0), 0) ∈ L0, c(1) = x(0)y(0)} .

Now we construct a set Mk ∀ k ∈ [2, n− 1] using the following recursion.

Mk = {((c(k)), (x(k−1), · · · , x(0)), (y(k−1), · · · , y(0)))|
(x(k−1), y(k−1), c(k−1)) ∈ Lk−1 ,

((c(k−1)), (x(k−2), · · · , x(0)), (y(k−2), · · · , y(0))) ∈ Mk−1,

c(k) = x(k−1)y(k−1) ⊕ x(k−1)c(k−1) ⊕ y(k−1)c(k−1)} .

Now, we construct

Mn = {((x(n−1), · · · , x(0)), (y(n−1), · · · , y(0)))|(x(n−1), y(n−1)) ∈ Z
2
2 ,

((c(n−1)), (x(n−2), · · · , x(0)), (y(n−2), · · · , y(0))) ∈ Mn−1} .

Using Proposition 2.3 and Theorem 2.2 it is easy to show that M = Mn. Note
that the size of each Li is O(1) since the size of the Table 2.1 is O(1). Also note
that |Mn| = S and therefore the asymptotic memory requirement to construct
Mn recursively following the above algorithm is O(n · S) since k = O(n) and
Mk+1 can be constructed from Mk only. It is trivial to show that the time to
constructMn (i.e., M) from the Li’s is O(S). Thus, the set M can be constructed
from the Li’s with memory O(n · S) and time O(S).

115

Appendix B

RC4

B.1 Criteria for i to Reach an Index to Produce

an Output

The fact that the i pointer can move from the index x to the index y implies that
the value of j is always available in each of the intermediate (y − x+ 1) rounds.
The S-Box region between the indices x and y is all the (y − x+ 1) indices from
x in the direction of the movement of i.

Proposition B.1 If, at a particular round r (when i = ir), jr and some ele-
ments of the S-Box are known, then the fact that i can reach the index ir + k
(where 0 < k ≤ N) from the round r depends only on jr and the known S-Box
elements between the indices ir + 1 and ir + k at round r.

Proposition B.2 Let the number of known elements of the S-Box at the rth
round between the indices ir + 1 and ir + k (where 0 < k ≤ N) be m and at the
rth round the tth element to the right of i be indexed by pt (0 < t ≤ m). Then,
starting from the rth round, the pointer i must reach at least pt to predict the tth
output.

Proposition B.3 If the number of rounds, at which S[j] is known during the
passage of i from i = ir to i = ir + k (where 0 < k ≤ N), is m, then the number
of known elements, between the indices ir +1 and ir+k at round r + k, is also m.

117

B.2 Evaluation of the Maximum Value of d2

Theorem B.4 For any non-fortuitous state of length 3, p3 − p2 < 3 where the
tth element is indexed by pt.

Proof. Let us assume p3 − p2 = 3. Now we try to generate 3 non-consecutive
outputs, in a similar manner as in Theorem ??. The execution of the first three
rounds are shown in Figure B.1. At the 2nd and the 3rd rounds j must point
to S2[g1] and S3[g2] respectively, in order for j to be available at the third and
the fourth rounds. But such conditions lead to Finney’s forbidden state at round
three. So our assumption is wrong. Hence, p3 − p2 6= 3. It is easy to see that
the same situation arises for p3 − p2 > 3. Therefore, p3 − p2 < 3. We know that
d2 = p3 − p2 − 1. Hence, dmax

2 = 1. �

One can see that if we relax the condition of the 1st round producing output
always, then the maximum inter-element gap between the first two elements of
the S-Box is also 1. This basic fact will be used in the determination of dmax

t

when t > 2.

p1 p2 g1 g2 p3

X X X

i ✻

(a)

X X X

i✻ j✻

(b)

X 1 X

i✻ j✻

(c)

Figure B.1: A non-fortuitous state of length 3 with d2 = 2: (a) Round 1: after
production of the 1st output, X indicates known value; (b) Round 2: no output;
(c) Round 3: we reach Finney’s forbidden state as j3 = i3 + 1 and S3[j3] = 1

Appendix C

Py

C.1 Uniformity of Bits If L Does Not Occur

We first write the general formula to calculate Z = O1,1 ⊕O2,3.

O1,1 = (ROT 32(s, 25)⊕G) +H , (C.1)

O2,3 = (ROT 32(ROT 32(s+ I − J , r) +K − L , l)⊕M) +N , (C.2)

where
s = s1, G = Y1[256], H = Y1[P1[26]], I = Y2[P2[72]], J = Y2[P2[239]], r =
P2[116] + 18 mod 32, K = Y3[P3[72]], L = Y3[P3[239]], l = P3[116] + 18 mod 32,
M = Y3[−1], N = Y3[P3[208]].

Below we isolate 18 cases, divided into 4 groups, where the relation between
internal and external states is not trivial. The notation A ↔ B signifies that
the A and B are identical elements in two different rounds of the S-box Y (i.e.,
A = B but their indices may be changed in different rounds). The symbol ‘/’ is
used to mean ‘or’. Note that the following relations in each group are satisfied if
they do not violate the condition of uniqueness of permutation elements of S-box
P .

1. I ↔ N/M , J ↔ M/N , K ↔ G/H , L ↔ H/G (a total of 4 cases). See
Fig.C.1.

2. I ↔ K/L, J ↔ L/K, M ↔ H , N ↔ G (a total of 2 cases). See Fig.C.2.

3. I ↔ N/M , J ↔ K/L. The G is identical to one of the remaining two
elements (so is the H) (a total of 6 cases). See Fig.C.1.

119

Group 1 Group 3

H

I

J

G

N/M

M/N

K/L

L/K

I

J

N/M

K/L

L/K

H/G

G/H

M/N

Figure C.1: Representations of Group 1 and Group 3

4. Similar to the above, J ↔ M/N , I ↔ L/K. The G is identical to one of
the remaining two elements (so is the H) (a total of 6 cases).

Fact C.1 After the key/IV setup, if the permutation P falls outside all of the
18 cases described above then O1,1 and O2,3 are independent and uniformly dis-
tributed over [232 − 1, 0].

Now we denote O1,1(0) ⊕O2,3(0) by R0.

Theorem C.2 After the key/IV setup, let the S-box P be one of the 16 cases
described in Groups 1,3 and 4. Then

P [R0 = 0 |P] =
1

2
.

Proof. Now we prove the theorem by considering Groups 1, 3 and 4 separately.
Group 1 (see Fig. C.1). For this group, R0 can be written in the following form,

R0 = s(7) ⊕ s(w) ⊕ (G(0) ⊕H(0) ⊕K(u) ⊕ L(u))

⊕(I(w) ⊕ J(w) ⊕M(0) ⊕N(0))⊕ C.

Note that the C is a nonlinear function of several bits of s, M , N , H , G. Now
we take three possible subcases.

1. If u 6= 0 then R0 is uniformly distributed since C is independent of K(u)

and L(u).

2. If u = 0, w 6= 0 then R0 is uniformly distributed since C is independent of
I(w) and J(w).

3. If u = 0, w = 0 then R0 = s(7)⊕s(0). Therefore, R0 is uniformly distributed.

Group 3 (see Fig. C.1). R0 can be written in the following form,

R0 = s(7) ⊕ s(w) ⊕ (G(0) ⊕N(0))⊕ (K(u) ⊕ J(w))

⊕(H(0) ⊕ L(u))⊕ (M(0) ⊕ I(w))⊕ C.

Of the 6 cases in Group 3, we are considering only the following case where
I ↔ M , J ↔ K, G ↔ N and H ↔ L. In a similar way as above we divide this
case into three subcases.

1. If u 6= 0 then C is independent of L(u) and thus R0 is uniformly distributed.

2. If u = 0, w 6= 0 then R0 is uniformly distributed since C is independent of
J(w).

3. If u = 0, w = 0 then R0 = s(7)⊕s(0). Therefore, R0 is uniformly distributed.

All the other 5 cases of this group can be proved in a similar fashion.
Group 4. Proof for this group is similar to that for Group 3. �

Group 2(b)

HN

K I

L J

GM

HN

K I

L J

GM

 Group 2(a)

Figure C.2: Group 2(a): I ↔ K, J ↔ L, M ↔ H , N ↔ G; Group 2(b): I ↔ L,
J ↔ K, M ↔ H , N ↔ G

Discussion. From Fact C.1 and Theorem C.2, it is clear that, if P does not
fall within Group 2 then P [R0 = 0|P] = 1

2 . The probability of the occurrence of
Group 2 is approximately 2−31. Therefore, for a fraction of (1−2−31) of all cases,

121

R0 is uniformly distributed. Sect. 5.4 shows that, for the event L occurring with
probability 2−41.9, P [R0 = 0 |P = L] = 1.

Therefore, we are able to prove that, for a fraction of (1−2−31.001) of all cases,
there exists a bias in R0 toward zero. It is, however, nontrivial to determine the
distribution of R0 for the remaining fraction of 2−31.001 of the cases, because of
vigorous mixing of bits in a nonlinear way. Our experiments suggest that it is
very unlikely that the positive bias generated in the large fraction of (1−2−31.01)
can be compensated by a very minuscule fraction of 2−31.001. According to a
small number of experiments that we carried out, a slight bias toward zero was
detected for that remaining fraction of 2−31.001 also. However, we ignored that
bias and assumed R0 to be uniformly distributed for those cases in building the
distinguishers described in the chapter.

In addition to the event L, for which Ri is biased toward zero ∀i ∈ [1, 31]
(see Sect. 5.6), we also identify another event L′, for which R25 is again biased
toward zero (all other Ri’s are uniformly distributed individually). The event L′

occurs when P2[116] ≡ −18(mod 32), P3[116] ≡ 7(mod 32), P2[72] = P3[72] + 1,
P2[239] = P3[239]+1, P1[26] = 1, P3[208] = 254 (see Group 2(a) of Fig. C.2). Us-
ing similar arguments as above, it can be shown that Ri is uniformly distributed
over [0, 1] for the rest of the cases.

List of Publications

Lecture Notes in Computer Science

1. Souradyuti Paul, Bart Preneel, “On the (In)security of Stream Ciphers
Based on Arrays and Modular Additions,” Asiacrypt 2006 (X. Lai, ed.),
LNCS, Springer-Verlag, 2006 (to appear).

2. Souradyuti Paul, Bart Preneel, Gautham Sekar, “Distinguishing Attacks
on the Stream Cipher Py,” Fast Software Encryption 2006 (M. Robshaw,
ed.), vol. 4047 of LNCS, Springer-Verlag, pp. 405-421, 2006.

3. Souradyuti Paul, Bart Preneel, “Near Optimal Algorithms for Solving Dif-
ferential Equations of Addition with Batch Queries,” Indocrypt 2005 (Sub-
hamoy Maitra, C. E. Veni Madhavan and Ramarathnam Venkatesan, eds.),
vol. 3797 of LNCS, Springer-Verlag, pp. 90-103, 2005.

4. Souradyuti Paul, Bart Preneel, “Solving Systems of Differential Equations
of Addition (Extended Abstract),” 10th Australasian Conference on Infor-
mation Security and Privacy, ACISP 2005 (Colin Boyd and Juan Gonza-
lez, eds.), vol. 3574 of LNCS, pp. 75-88, Springer-Verlag, 2005, Extended
Version available online on IACR ePrint Archive as Report 2004/294 at
http://eprint.iacr.org/2004/294, April 2005.

5. Souradyuti Paul, Bart Preneel, “A New Weakness in the RC4 Keystream
Generator and an Approach to Improve the Security of the Cipher,” Fast
Software Encryption 2004 (B. Roy, ed.), vol. 3017 of LNCS, pp. 245–259,
Springer-Verlag, 2004.

6. Souradyuti Paul, Bart Preneel, “Analysis of Non-fortuitous Predictive States
of the RC4 KeystreamGenerator,” Indocrypt 2003 (T. Johansson, S. Maitra,
eds.), vol. 2904 of LNCS, pp. 52-67, Springer-Verlag, 2003.

123

Journals (national level)

1. Souradyuti Paul, “Cryptology: A Mathematician’s Quest for Making and
Breaking the Code,” Point: Journal of Department of Mathematics, Sree
Chaitanya College, Habra, India (Sanatan Paul, Saroj Kumar Chattopad-
hyay, Utpal Dasgupta, Uttam Das, eds.), No. 1, 2005.

Short CV

Souradyuti Paul was born on January 13, 1976 in Kolkata (formerly known as
Calcutta), India, to Dr. Sanatan Paul (a former professor of mathematics) and
Mrs.Ratna Paul as the eldest son of their two children. He received his Bachelor
of Engineering degree (B.E.) in Mechanical Engineering from Jadavpur Univer-
sity, Kolkata, India, in 1998. Thereafter he was caught up in the whirlpool of
burgeoning software industry in India for one year, only to eventually realize that
it was not his cuppa. So he again put on the mantle of a student and secured an
admission for a Master’s degree in computer science to the Indian Statistical In-
stitute, Kolkata, where he was awarded a Master of Technology degree (M.Tech)
in Computer Science in July 2001. His master’s thesis was on the analysis of
non-linearities of a special class of Boolean functions under the supervision of
Dr. Subhamoy Maitra. After that, he worked as a Junior Research Fellow at the
CVPRU (Computer Vision and Pattern Recognition Unit) at the Indian Sta-
tistical Institute for 6 months. In January 2002, he joined the research group
COSIC (Computer Security and Industrial Cryptography) at the Department of
Electrical Engineering (ESAT) of the K.U. Leuven, Belgium, as a pre-doctoral
student. Since October 2003, he has been working in the same research group as
a doctoral student.

