
Cryptanalysis of the KeeLoq block cipher

Andrey Bogdanov

Chair for Communication Security
Ruhr University Bochum, Germany

Abstract. KeeLoq is a block cipher used in numerous widespread pas-
sive entry and remote keyless entry systems as well as in various compo-
nent identification applications. The KeeLoq algorithm has a 64-bit key
and operates on 32-bit blocks. It is based on an NLFSR with a nonlinear
feedback function of 5 variables.
In this paper a key recovery attack with complexity of about 252 steps
is proposed (one step is equivalent to a single KeeLoq encryption opera-
tion). In our attack we use the techniques of guess-and-determine, slide,
and distinguishing attacks. Several real-world applications are vulnerable
to the attack. To our best knowledge this is the first paper to describe
and cryptanalyze the KeeLoq block cipher.

Key words: KeeLoq block cipher, cryptanalysis, slide attacks, guess-
and-determine attacks, distinguishing attacks

1 Introduction

A large proportion of modern block ciphers are built upon Feistel networks. Such
cryptographic algorithms as DES [22], Blowfish [26], KASUMI [6], GOST [32]
or RC5 [25] are based on balanced Feistel networks. Other block ciphers use
source-heavy or target-heavy unbalanced Feistel networks (e.g. REDOC III [27],
Skipjack [23], etc.). The most extreme case of a source-heavy unbalanced Feistel
network [28] is a nonlinear feedback shift register (NLFSR), which can be applied
in both stream cipher and block cipher designs.
A number of NLFSR-based stream ciphers have been recently proposed (e.g.

Achterbahn [8] and [7], Grain [9]) and successfully cryptanalyzed using linear [2]
and nonlinear [11], [24] approximations of nonlinear feedback functions.
KeeLoq is a block cipher based on an NLFSR with a nonlinear boolean

feedback function of 5 variables. The algorithm uses a 64-bit key and operates
on 32-bit blocks. Its architecture consists of two registers (a 32-bit text register
and a 64-bit key register), which are rotated in each of 528 encryption cycles,
and of a nonlinear function (NLF) providing nonlinear feedback. One bit of the
key is added to the output of the NLF modulo 2 in each cycle.
In this paper a key recovery attack on KeeLoq is proposed. It is based on

the following weaknesses of the KeeLoq structure: First, the key schedule is self-
similar, which allows us to mount a slide attack [3], [4]. It is supported by the
relatively short block length which allows one to guess the first slid pair. Second,



the existence of an efficient linear approximation of the NLF is used to recover
a part of the key. Then the rest of the key bits are obtained using other linear
relations within KeeLoq.
The key recovery complexity of our attack is about 252 computational steps.

One computational step is equivalent to a single KeeLoq encryption. The attack
requires all 232 plaintext-ciphertext pairs and a memory of 232 32-bit words.
Several computing devices can share the memory during the attack. All com-
putations are perfectly parallelizable. The property inherited from the slide at-
tacks [3], [4] is that the complexity of our attack is independent of the number
of encryption cycles, which is as a rule not the case for linear or differential
cryptanalysis, where the complexity often grows exponentially with the number
of iterations.
The light-weight architecture of the KeeLoq cipher allows for an extremely

low-cost and efficient hardware implementation. This contributed to the popu-
larity of the KeeLoq cipher among designers of remote keyless entry systems, au-
tomotive and burglar alarm systems, automotive immobilizers, gate and garage
door openers, identity tokens, component identification systems. For instance,
the KeeLoq block cipher is used in the HomeLink wireless control systems to
secure communication with some garage door openers [10]. The KeeLoq tech-
nology supplied by Microchip Technology Inc. includes the KeeLoq cipher and a
number of authentication protocols. Our description of KeeLoq is based on the
newly published article [31], [14] and a number of the manufacturer’s documents
[13], [15], [19], [20].
The paper is organized as follows. Section 2 describes the KeeLoq algorithm.

In Section 3 a key recovery attack on KeeLoq is proposed. In Section 4 we discuss
the impact of our attack with respect to real-word applications. We conclude in
Section 5.

2 Description of the KeeLoq algorithm

KeeLoq is a block cipher with a 64-bit key which operates on 32-bit words [31],
[14]. Its design is based on a nonlinear feedback shift register (NLFSR) of length
32 bits with a nonlinear feedback function of 5 variables. The feedback depends
linearly on two other register bits and on the next key bit taken from the rotated
key register of length 64 bits.

Let Vn = GF(2)
n be the set of all n-bit words and Y (i) = (y

(i)
31 , . . . , y

(i)
0 ) ∈ V32,

y
(i)
j ∈ GF(2), describe the state of the text register in cycle i for j = 0, . . . , 31

and i = 0, 1, . . . Let also K(i) = (k
(i)
63 , . . . , k

(i)
0 ) ∈ V64, k

(i)
j ∈ GF(2), denote the

state of the key register in cycle i for j = 0, . . . , 63 and i = 0, 1, . . . Then each
cycle of encryption can be described using the following algorithm (see Figure 1):

Compute the feedback bit: ϕ = NLF (y
(i)
31 , y

(i)
26 , y

(i)
20 , y

(i)
9 , y

(i)
1 )⊕ y

(i)
16 ⊕ y

(i)
0 ⊕ k

(i)
0

Rotate text and insert feedback: R(i+1) = (ϕ, y
(i)
31 , . . . , y

(i)
1 )

Rotate key: K(i+1) = (k
(i)
0 , k

(i)
63 , . . . , k

(i)
1 ).



Fig. 1. The i-th KeeLoq encryption cycle

For encryption the key register is filled with the 64 key bits K = (k63, . . . k0) ∈
V64, kj ∈ GF(2), j = 0, . . . , 63, in the straightforward way: K(0) = K. If X =
(x31, . . . , x0) ∈ V32, xj ∈ GF(2), j = 0, . . . , 31, is a block of plaintext, the initial
state of the text register is Y (0) = (x31, . . . , x0). The output of the algorithm is
the ciphertext Z = (z31, . . . , z0) = Y

(528) ∈ V32, zj ∈ GF(2), j = 0, . . . , 31.
For decryption the key register is filled in the same way: K(0) = K =

(k63, . . . k0) ∈ V64. But the decryption procedure complements the encryption.
One decryption cycle can be defined by the following sequence of operations (see
Figure 2):

Compute the feedback bit: ϕ = NLF (y
(i)
30 , y

(i)
25 , y

(i)
19 , y

(i)
8 , y

(i)
0 )⊕ y

(i)
15 ⊕ y

(i)
31 ⊕ k

(i)
15

Rotate text and insert feedback: R(i+1) = (y
(i)
30 , . . . , y

(i)
0 , ϕ)

Rotate key: K(i+1) = (k
(i)
62 , . . . , k

(i)
0 , k

(i)
63 ).

The ciphertext and plaintext are input/output in a similar way: The cipher-
text is input into the text register before decryption, Y (0) = Z, and the plaintext
can be read out after 528 decryption cycles, Y (528) = X.

The NLF is a boolean function of 5 variables and is of degree 3. In the
specification [14] the NLF is assigned using a table. The vector of outputs1 is

1 The least significant and most significant bits represent the value of
NLF (x4, x3, x2, x1, x0) for x4 = x3 = x2 = x1 = x0 = 0 and x4 = x3 = x2 =
x1 = x0 = 1, respectively.



0x3A5C742E. This corresponds to the following ANF:

NLF (x4, x3, x2, x1, x0) = x0 ⊕ x1⊕
x0x1 ⊕ x1x2 ⊕ x2x3 ⊕ x0x4 ⊕ x0x3 ⊕ x2x4⊕
x0x1x4 ⊕ x0x2x4 ⊕ x1x3x4 ⊕ x2x3x4.

(1)

The NLF is balanced and its correlation immunity order is 1, cor(NLF ) = 1
[29], [30]. This means that the NLF is 1-resilient [5], which is the maximum for a
function of 5 variables with deg(NLF ) = 3 due to Siegenthaler’s inequality [29]:

deg(NLF ) + cor(NLF ) ≤ 4.

Fig. 2. The i-th KeeLoq decryption cycle

Fig. 3. Round structure of KeeLoq encryption

The KeeLoq algorithm has the following round structure. We define a KeeLoq
round as the permutation F (K) : V32 → V32 depending on the key K ∈ V64.
A KeeLoq quarter round is defined as the permutation F ′(K ′) : V32 → V32



depending on the subkey K ′ = (k15, . . . , k0) ∈ V16. Then the whole KeeLoq
encryption mapping consists of successively computing 8 full round permutations
F (K) and consequently applying the last quarter round permutation F ′(K ′), see
Figure 3. Note that the first 8 full rounds are identical. The decryption can be
represented in a similar way using inverse permutations F ′(K ′)−1 and F (K)−1.
The algorithm allows for an extremely simple hardware implementation com-

prised of a 32-bit shift register with taps on fixed positions, a 64-bit shift resister
with a single tap and a 32-bit (5 × 1) look-up table (LUT) for the NLF. The
LUT can be replaced with the corresponding logical elements according to (1).

3 Attack on the KeeLoq algorithm

Our attack is based on the following weaknesses of the algorithm:

– self-similar key schedule scheme,
– relatively short blocks of 32 bits,
– existence of an efficient linear approximation of the NLF.

The attack can be outlined in the following way. For each subkeyK ′ = (k15, . . . , k0)
and for a random 32-bit input I0 ∈ V32 guess the corresponding output O0 ∈ V32
after the 64 clock cycles which depends on the other 48 key bits (k63, . . . , k16).
Using the periodic structure of the KeeLoq key schedule generate several other
pairs (Ii, Oi) ∈ (V32)2, i = 1, . . . , N − 1 (sliding step). For a successful attack N
has to be about 28. For each number of such pairs we mount a distinguishing
attack to obtain linear relations on some unknown key bits with a high proba-
bility due to the fact that the KeeLoq NLF is not 2-resilient (correlation step).
In this way it is possible to determine (k47, . . . , k16) bit by bit. After this an
input/output pair for 16 encryption cycles can be represented as a triangular
system of linear equations with the remaining bits (k63, . . . , k48) of K as vari-
ables. It can be solved using 16 simple computational operations (linear step).

3.1 Sliding step

Using a single input/output pair (I0, O0) for the full round of 64 cycles and
knowing the first 16 key bits K ′ = (k15, . . . , k0) one can produce an arbitrary
number of other input/output pairs for this round. This is possible due to the
fact that (almost) all rounds in KeeLoq are identical permutations which is the
property on which the slide attacks by Biryukov and Wagner are substantially
based [3], [4]. Once a pair (Ii, Oi) is known, the next input/output pair is pro-
duced by encrypting Ii and Oi with the key to be recovered (it is a chosen
plaintext attack) and obtaining (I ′i+1, O

′
i+1) as ciphertext. Then I

′
i+1 and O

′
i+1

are decrypted using the guessed partial key K ′ = (k15, . . . , k0). The resulting
plaintexts form the needed pair (Ii+1, Oi+1), see Figure 4.
As the sliding has to be performed for each guess of K ′ = (k15, . . . , k0) and

each round output (247 times on the average), its complexity is crucial for the
efficiency of the whole attack. All input/output pairs for a given key can be
generated in a pre-computation step using the chosen plaintext possibility and
stored in memory of size 232 32-bit words.



Fig. 4. Generating input/output pairs using sliding techniques

3.2 Correlation step

Once the needed number of pairs were found in the sliding step, the following
weakness of the KeeLoq NLF with respect to correlation attacks is used due to
the fact that the NLF is 1-resilient, but not 2-resilient.

Lemma 1. For uniformly distributed x4, x3, x2 ∈ GF(2) the following holds:

– Pr {NLF (x4, x3, x2, x1, x0) = 0 | x0 ⊕ x1 = 0} = 5
8 ,

– Pr {NLF (x4, x3, x2, x1, x0) = 1 | x0 ⊕ x1 = 1} = 5
8 .

This means that the NLF can be efficiently approximated by x0 ⊕ x1. So, if x0,
x1 are known and x4, x3, x2 are random and unknown, we can determine f(K)
by statistically filtering out the contribution of NLF (x4, x3, x2, x1, x0) to the
equation

NLF (x4, x3, x2, x1, x0)⊕ f(K) = 0

using a very limited number of such samples. f(K) is a key-dependent boolean
function remaining constant for all samples.
Here we show how to obtain k16 and k32 from Ii and Oi. The remaining key

bits (k47, . . . , k33) and (k31, . . . , k17) can be obtain in the same way by using k32,
k16 and shifting input and output bits.
We denote Ii = Y

(0) and Oi = Y
(64) for each i. The idea is to make use of the

correlation weakness of the dependency between the output bits y
(64)
0 , y

(64)
1 and

the input bits Y (0). One can compute Y (16) from Y (0), since K ′ = (k15, . . . , k0)

is known. For the next bit y
(16)
16 which is the first key-dependent bit one has the

following equation:

y
(32)
16 = y

(17)
31 = NLF (y

(16)
31 , y

(16)
26 , y

(16)
20 , y

(16)
9 , y

(16)
1 )⊕ y(16)0 ⊕ y(16)16 ⊕ k16 =

= c0 ⊕ k16,
(2)

where c0 ∈ GF(2) denotes the key-independent part of (2).
After 32 encryption cycles the following holds:

(y
(32)
15 , y

(32)
14 , . . . , y

(32)
0 ) = (y

(16)
31 , y

(16)
30 , . . . , y

(16)
16 ) ∈ V16.

Thus, the least significant half of Y (32) is known. Then y
(64)
0 can be repre-

sented as:

y
(64)
0 = NLF (y

(32)
31 , y

(32)
26 , y

(32)
20 , y

(32)
9 , y

(32)
1 )⊕ y(32)0 ⊕ y(32)16 ⊕ k32 =

= NLF (y
(32)
31 , y

(32)
26 , y

(32)
20 , y

(32)
9 , y

(32)
1 )⊕ y(32)0 ⊕ (c0 ⊕ k16)⊕ k32,

(3)



where y
(64)
0 , y

(32)
0 , y

(32)
1 , y

(32)
9 , c0 are known and y

(32)
31 , y

(32)
26 , y

(32)
20 , k32, k16 are

unknown. As the first two inputs of the NLF are known, its contribution to (3)
can be replaced with the random variate ε using Lemma 1:

NLF (y
(32)
31 , y

(32)
26 , y

(32)
20 , y

(32)
9 , y

(32)
1 )⊕ y(32)9 ⊕ y(32)1 = ε (4)

with

Pr {ε = 0} =
5

8
. (5)

Then the following holds:

y
(64)
0 ⊕ y(32)0 ⊕ c0 ⊕ y

(32)
9 ⊕ y(32)1 = ε⊕ k16 ⊕ k32. (6)

In order to determine k16⊕k32 one has to distinguish between the following two
cases: k16 ⊕ k32 = 0 and k16 ⊕ k32 = 1. In the first case:

Pr{y(64)0 ⊕ y(32)0 ⊕ c0 ⊕ y
(32)
9 ⊕ y(32)1 = 0} =

5

8
.

Otherwise:

Pr{y(64)0 ⊕ y(32)0 ⊕ c0 ⊕ y
(32)
9 ⊕ y(32)1 = 0} =

3

8
.

Thus, the bias δ of the first random variable with respect to the second one is
δ = 1

4 . Our experiments show that about 2
7 equations (6) for different pairs

(Ii, Oi), i = 0, . . . , 2
7−1, are needed to recover α = k16⊕k32 with an acceptable

error probability (for all 32 key-dependent linear combinations to be determined
in this way), which agrees2 with Theorem 6 of [1].

Next we consider y
(64)
1 and its dependencies from the input and key bits.

Similar to (2) one has:

y
(33)
16 = NLF (y

(17)
31 , y

(16)
27 , y

(16)
21 , y

(16)
10 , y

(16)
2 )⊕ y(16)1 ⊕ y(16)17 ⊕ k17 =

= NLF (c0 ⊕ k16, y
(16)
27 , y

(16)
21 , y

(16)
10 , y

(16)
2 )⊕ y(16)1 ⊕ y(16)17 ⊕ k17 =

= c′1 ⊕ c2k16 ⊕ y
(16)
1 ⊕ y(16)17 ⊕ k17 = c1 ⊕ c2k16 ⊕ k17,

(7)

where c′1 ∈ GF(2) is the free term of NLF, c2 ∈ GF(2) is its linear term with
respect to k16, and c1 = c

′
1 ⊕ y

(16)
1 ⊕ y(16)17 ∈ GF(2). Here c1 and c2 are known

and depend on Y (0). Then the second output bit y
(64)
1 is represented as follows:

y
(64)
1 = NLF (y

(33)
31 , y

(33)
26 , y

(33)
20 , y

(33)
9 , y

(33)
1 )⊕ y(33)0 ⊕ y(33)16 ⊕ k33 =

= (ε⊕ y(33)9 ⊕ y(33)1 )⊕ y(33)0 ⊕ (c1 ⊕ c2k16 ⊕ k17)⊕ k33,
(8)

where the random variate ε is assigned in a way similar to (4) and c0, c1, c2,

y
(33)
0 , y

(33)
9 , y

(33)
1 are known. To determine k17⊕k33 pairs (Ii, Oi) with c2 = 0 are

2 Strictly speaking, the mentioned Theorem 6 cannot be applied here since Assump-
tion 4 of [1] does not hold due to the fact that the mutual bias is relatively large in
our case. But this suggests that our experimental estimations are correct.



selected3. Then ε in (8) is filtered out statistically, which recovers β = k17⊕k33.
After this the remaining pairs (Ii, Oi) (with c2 = 1) are used to obtain γ =
k16 ⊕ k17 ⊕ k33 in the same way. Thus, k16 = β ⊕ γ and k32 = α⊕ k16.
Now k16, k32 and k17⊕k33 are known. In the next step we determine k18⊕k34

and k17 ⊕ k18 ⊕ k34 using the same plaintext/ciphertext pairs (Ii, Oi) and the
same statistical recovery method. In this way all 32 key bits (k47, . . . , k16) are
obtained in only 16 rather simple computational steps.

3.3 Linear step and key verification

The remaining key bits (k63, . . . , k48) ∈ V32 can be recovered as follows. As
(k47, . . . , k0) are known, Y

(48) can be computed for each pair (Ii, Oi). y
(64)
16 can

be expressed as:

y
(64)
16 = NLF (y

(48)
31 , y

(48)
26 , y

(48)
20 , y

(48)
9 , y

(48)
1 )⊕ y(48)16 ⊕ y

(48)
0 ⊕ k48, (9)

which reveals k48 since the entire state Y
(48) is known. Now Y (49) can be com-

pletely calculated which leads to the value of k49 using y
(64)
17 , and so on. In this

way the rest of the key is recovered.
At the end of the key recovery procedure we expect to obtain a number of

key candidates. The upper bound for their average quantity is 264−32 = 232 due
to the known plaintext unicity distance [12], since the block length is 32 bit and
the key length is 64 bit. Thus, we need to verify each key candidate against max.
d 64+432 e = 3 plaintext-ciphertext pairs for all 528 encryption cycles.

3.4 Attack complexity

The attack consists of the following stages:

– Precompute all plaintext-ciphertext pairs for the whole cipher;
– Guess the partial keyK ′ and the output O0 after one round for some input I0;
– For each pair of guesses (K ′, O0) do the following:
• Obtain 28 − 1 other pairs (Ii, Oi);
• Determine k16 ⊕ k32 by evaluating c0 for the first 27 pairs;
• Determine (k47, . . . , k16) by evaluating c1 and c2 28 times;
• Determine (k63, . . . , k48) by evaluating 24 nonlinear boolean functions;
• Verify max. 232 candidate keys using at most 3 plaintext-ciphertext pairs
for the whole cipher and 3 full encryption operations.

If one step is equivalent to a single full KeeLoq encryption (528 encryption
cycles), 232 steps are needed for the precomputation. Each element has to be
stored in a memory of 232 32-bit words.
For each guess of (I0, O0) and K

′ operations of the following complexity have
to be be performed:

3 Note that for random inputs Ii the probability of c2 = 0 is 0.5. Therefore about N/2
out of N known pairs (Ii, Oi) will lead to c2 = 0. This raises the required number
of plaintext/ciphertext pairs to about 28.



– 29 − 2 memory accesses for obtaining (Ii, Oi), i = 1, . . . , 28 − 1. We assume
a single memory access equivalent to 16 encryption cycles. This leads to
approximately 29/32 = 24 steps required to perform the memory accesses.

– 27 evaluations of c0 and k16 ⊕ k32, each evaluation being equivalent to one
encryption cycle. The complexity of this stage is then 27/528 ≈ 2−2 steps.

– 16 ∙ 28 = 212 evaluations of c1 and c2 for determining (k47, . . . , k16). Each
evaluation is computationally equivalent to 2 encryption cycles. This stage
requires about 212 ∙ 2/528 ≈ 24 steps.

– 24 evaluations of a boolean function to determine (k63, . . . , k48). Each eval-
uation is equivalent to one encryption cycle which leads to a complexity of
about 24 ∙ 2−9 = 2−5 steps.

Max. 232 candidate keys have to be verified using at most 3 full encryptions
which requires max. 234 steps. Thus, the overall computational complexity of
the attack is

232 +
232 ∙ 216

2
∙ (24 + 2−2 + 24 + 2−5) + 234 ≈ 252 steps.

The memory complexity is quite reasonable and is 232 32-bit words (16 GByte).
This enables an attacker to place all precomputed values into RAM which sub-
stantially accelerates the implementation of the attack.
Most computations in our attack are perfectly parallelizable: The attacker

can distribute the 248 combinations of guesses between a number of computa-
tional machines (PCs, FPGAs, ASICs, etc.) sharing the 16 GBytes of memory
containing the precomputed plaintext-ciphertext pairs.
Attacks of this type are potentially applicable to all NLFSR-based block

cipher constructions of this kind. To avoid slide attacks some sort of round de-
pendency should be introduced into the key schedule. Moreover, the correlation
immunity order of the nonlinear feedback function has to be increased and the
non-existence of efficient nonlinear approximations should be provided.

3.5 Experiments

We have implemented sliding, correlation and linear steps on a standard Pen-
tium M PC with 1.73 GHz and 1 GB RAM for random keys. On the average we
were able to recover the whole key in about 45000 tact cycles4 for the correct
guesses of (I0, O0) and K

′ as well as for the corresponding slid pairs (Ii, Ci).
The implementation was performed in non-optimized C using Microsoft Visual
C++ 7 compiler. Moreover, our experiments show that about 28 pairs (Ii, Oi)
are required in average to recover the key correctly.

4 Attacks on KeeLoq-based systems in praxis

There are three major types of security protocols in which the KeeLoq block
cipher is involved:

4 A single encryption step on the same platform requires about 2200 tact cycles.



KeeLoq hopping codes: These are also known as rolling codes and provide
authentication of an encoder to the decoder (the main system) by sending an
encrypted counter value (unilateral communication), see [13]. The encoder and
decoder share a 64-bit symmetric key and a 16-bit synchronized counter value.
To authenticate itself the encoder encrypts the next counter value and sends it to
the decoder which decrypts the message and verifies whether the received counter
value is within the open window of length 16. A resynchronization mechanism
exists to repair communication in case the counter value received exceeds the
bounds of the open window. See also [15], [16], [18].
The KeeLoq hopping codes do not allow one to apply our attack since there

are only 216 possible ciphertexts, 16 bits of the plaintext being fixed for a given
encoder.

KeeLoq IFF: The IFF (Identify Friend or Foe) systems provide authentication
of a transponder to the main systems (decoder) using a simple challenge-response
protocol (bilateral communication), see [19]. The transponder and decoder share
a 64-bit symmetric key K. To require authentication the decoder sends a 32-
bit random challenge to the transponder which should reply with the KeeLoq
encrypted challenge using K. The decoder encrypts the genuine challenge using
K and compares the message received as a reply with this value. See also [17].
The KeeLoq IFF systems are vulnerable to our attack since all input/output

pairs are available to the attacker. Moreover, the key management schema of
KeeLoq IFF [17] allows one to determine 4 bits of a 64-bit master key, which
is the same for large series of encoders, by applying our attack to find a single
individual key. This reduces the security of the IFF application to at least 260.
Moreover, if some other KeeLoq key management schemata [13], [15], [16], [18]
are used in KeeLoq IFF, 32 or 16 bits of the master key can be determined
by finding a single individual key using our attack with complexity of 252. This
would reduce the security of the rest of the encoders in the series to 232 or 248,
respectively.

PIC12F635/PIC16F636/639: Proprietary protocols based on PIC-controllers
PIC12F635/PIC16F636/639 [21], [20] supplied by Microchip which are equipped
with a hardware module implementing the KeeLoq block cipher.
The customized protocols using the KeeLoq block cipher with or without

PIC12F635/PIC16F636/639 are potentially vulnerable to practical attacks on
the algorithm and the underlying key management system, since the cipher only
provides at most 52-bit security level due to our attack.

5 Conclusion

In this paper we proposed a practical key-recovery attack on the KeeLoq block
cipher used in numerous automotive applications as well as in various prop-
erty identification systems. To out best knowledge this is the first paper to de-
scribe and successfully cryptanalyze KeeLoq. We showed that several real-world



applications are vulnerable to our attack, including KeeLoq IFF systems and
customized applications using the KeeLoq block cipher.
Our attack is a combination of guess-and-determine, sliding and distinguish-

ing techniques. We first guess an input/output pair for one round and then use
sliding to obtain more such pairs to be able to exploit some linearity of the non-
linear feedback function. The attack works with complexity of 252 steps (while
KeeLoq uses a 64-bit key), one step being equivalent to a single KeeLoq en-
cryption. It requires all 232 plaintexts and a memory of 232 32-bit words. The
complexity does not depend on the number of encryption cycles (iterations). The
attack is very well parallelizable.

References

1. T. Baigneres, P. Junod, and S. Vaudenay. How Far Can We Go Beyond Linear
Cryptanalysis? In Proc. of ASIACRYPT’04, volume 3329 of LNCS. Springer-
Verlag, 2004.

2. C. Berbain, H. Gilbert, and A. Maximov. Cryptanalysis of Grain. In Proc. of
FSE’06, volume 4047 of LNCS. Springer-Verlag, 2006.

3. A. Biryukov and D. Wagner. Slide Attacks. In Proc. of FSE’99, volume 1636 of
LNCS. Springer-Verlag, 1999.

4. A. Biryukov and D. Wagner. Advanced Slide Attacks. In Proc. of EURO-
CRYPT’00, volume 1807 of LNCS. Springer-Verlag, 2000.

5. B. Chor, O. Goldreich, J. Hastad, J. Fridman, S. Rudich, and R. Smolensky. The
Bit Extraction Problem or t-Resilient Functions. In 26th Symposium on Founda-
tions of Computer Science, 1985.

6. ETSI/SAGE. Specification of the 3GPP Confidentiality and Integrity Algorithms,
Document 2: KASUMI Specification. Available from http://portal.etsi.org/

dvbandca/3GPPSPECIFICATIONS/3GTS35.202.pdf, 1999.
7. B. Gammel, R. Goettfert, and O. Kniffler. Achterbahn-128/80. Available from

http://www.ecrypt.eu.org/stream/p2ciphers/achterbahn/achterbahn p2.

pdf, June 2006.
8. B. M. Gammel, R. Goettfert, and O. Kniffler. The Achterbahn Stream Ci-
pher. Available from http://www.ecrypt.eu.org/stream/ciphers/achterbahn/

achterbahn.pdf, April 2005.
9. M. Hell, T. Johansson, and W. Meier. Grain - A Stream Cipher for Constrained En-
vironments. Available from http://www.ecrypt.eu.org/stream/ciphers/grain/

grain.pdf, 2005.
10. HomeLink. Homelink and KeeLoq-based Rolling Code Garage Door Openers.
Available from http://www.homelink.com/home/keeloq.tml, 2006.

11. T. Johansson, W. Meier, and F. Muller. Cryptanalysis of Achterbahn. In Proc. of
FSE’06, volume 4047 of LNCS. Springer-Verlag, 2006.

12. A. Menezes, P. van Oorshot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1996.

13. Microchip. An Introduction to KeeLoq Code Hopping. Available from http:

//ww1.microchip.com/downloads/en/AppNotes/91002a.pdf, 1996.
14. Microchip. Hopping Code Decoder using a PIC16C56, AN642. Available
from http://en.wikipedia.org/wiki/KeeLoq and http://www.keeloq.boom.ru/
decryption.pdf, 1998.



15. Microchip. HCS101 Fixed Code Encoder Data Sheet. Available from http://ww1.

microchip.com/downloads/en/DeviceDoc/41115c.pdf, 2001.
16. Microchip. HCS301 KeeLoq Code Hopping Encoder Data Sheet. Available from

http://ww1.microchip.com/downloads/en/devicedoc/21143b.pdf, 2001.
17. Microchip. HCS410 Keeloq Code Hopping Encoder and Transponder. Available
from http://ww1.microchip.com/downloads/en/DeviceDoc/40158e.pdf, 2001.

18. Microchip. HCS301 KeeLoq Code Hopping Encoder Data Sheet. Available from
http://ww1.microchip.com/downloads/en/devicedoc/21143b.pdf, 2002.

19. Microchip. Using KeeLoq to Validate Subsystem Compatibility, AN827. Available
from http://ww1.microchip.com/downloads/en/AppNotes/00827a.pdf, 2002.

20. Microchip. PIC12F635/PIC16F636/PIC16F639 Cryptographic Module General
Overview, TB086. Available from http://ww1.microchip.com/downloads/en/

DeviceDoc/91086A.pdf, 2005.
21. Microchip. PIC12F635/PIC16F636/639 Data Sheet. Available from http://ww1.

microchip.com/downloads/en/DeviceDoc/41232B.pdf, 2005.
22. NIST. Data Encryption Standard (DES). FIPS PUB 46-3.
23. NIST. Skipjack and kea algorithm specifcations, 1998. Version 2.0, 29 May 1998,
Available from http://csrc.nist.gov/encryption/skipjack-kea.htm.

24. M. N. Plasencia. Cryptanalysis of Achterbahn-128/80. Available from http://

www.ecrypt.eu.org/stream/papersdir/2006/055.pdf, November 2006.
25. R. L. Rivest. The RC5 Encryption Algorithm. In Proc. of FSE’94, volume 1073
of LNCS. Springer-Verlag, 1994.

26. B. Schneier. Description of a New Variable-Length Key, 64-Bit Block Cipher
Blowfish. In Proc. of FSE’94, volume 809 of LNCS. Springer-Verlag, 1994.

27. B. Schneier. Applied Cryptography. John Wiley & Sons, 2nd Ed. edition, 1996.
28. B. Schneier and J. Kelsey. Unbalanced Feistel Networks and Block-Cipher Design.
In Proc. of FSE’96, volume 1039 of LNCS. Springer-Verlag, 1996.

29. T. Siegenthaler. Correlation-immunity of Nonlinear Combining Functions for Cryp-
tographic Applications. IEEE Trans. on Inform. Theory, IT-30(5), 1984.

30. T. Siegenthaler. Decrypting a Class of Stream Ciphers Using Ciphertext Only.
IEEE Trans. on Computers, 34(1), 1985.

31. Wikipedia. Keeloq algorithm. Available from http://en.wikipedia.org/wiki/

KeeLoq, November 2006.
32. I. A. Zabotin, G.P. Glazkov, and V.B. Isaeva. Cryptographic Protection for In-
formation Processing Systems, Cryptographic Transformation Algorithm. Govern-
ment Standard of the USSR, GOST 28147-89, 1989. (Translated by A. Malchik,
with editorial and typograpihc assistance of W. Diffie).


