Enforcing Semantic Integrity on Untrusted Clients in
Networked Virtual Environments *

Somesh Jha Stefan KatzenbeisseiChristian Schallhaft Helmut Veiti? Stephen Chennéy
1 University of Wisconsin 2 Technische Universitat Miinchen?® Emergent Game Technology

Abstract

During the last years, large-scale simulations of reatigithysical environments which support the interaction
of multiple participants over the Internet have becomeeéasingly available and economically viable, most
notably in the computer gaming industry. Such systems, cofgnealled networked virtual environments
(NVESs), are usually based on a client-server architecture whereperformance reasons and bandwidth
restrictions, the simulation is partially delegated to ttients. This inevitable architectural choice renders
the simulation vulnerable to attacks against the semantiegrity of the simulation: malicious clients may
attempt to compromise the physical and logical rules ganerithe simulation, or to alter the causality of
events a posteriori.

In this paper, we initiate the systematic study of semantigrity inNVES from a security point of view.
We argue that naive policies to enforce semantic integniplive intolerable network load, and are therefore
not practically feasible. We present a nprovably securesemantic integrity protocol based on cryptographic
primitives which enables the server system to audit thel looaputations of the clients on demand. Our
approach facilitates low network an@pru load, incurs reasonable engineering overhead, and makmal
decouples the auditing process from the soft real time caimé$ of the simulation.

1 Introduction

Networked Virtual Environments (NVES) are software systémwhich users feel immersed in an artificial
world, typically viewed through a three-dimensional griaghrendering. The most widely deployed examples
of NVEs are networked interactive games, sucllaseal Tournamenfl], in which remotely-located players
compete against each other using standard Internet coimm&cSocial NVES, such &econd Lifd2], have
recently emerged and are drawing corporate marketing reseto their online community [3].

Security in the form of cheat prevention - ensuring thatygwee is playing by the same rules - is among the
primary technical and business imperatives for NVE opesatBeyond ensuring the reliability and integrity
of their systems, operators must maintain a community aéaeparticipants who generate a steady revenue
stream. Players are typically very sensitive to perceiveghting, and enabling cheating in online games is
one of the fastest ways to destroy a community and commeeapakation.

Massively multi-player online games (MMOGS), in which thenmber of concurrent participants may be
measured in the hundreds of thousands, are seen by manygre#test source of growth in online gaming.
Examples includdve Onling[4] and World of Warcraft[5], the latter with over 6 million subscribers. The

*Supported in part by the European Commission through théli®g§ramme under Contract IST-2002-507932 ECRYPT.

key technical feature of these worlds is persistence, asc#s spawned entire virtual economies tied to the
real world economy through the sale of game assets. Sormeagssi [6] claim the real-world value of online
game assets exceeds $2 billion, while the daily real-weadsactions between Second Life users are reported
at $500,000 [7]. In-game cheating threatens the value ofgassets if expensive goods are made common
through cheating, and hence has real-world economic iajubics.

Cheating is an attack on tlemantic integrityof the online community: A malicious user may attempt to
compromise the logical rules governing the simulation,ooalter the causality of events a posteriori. Such
attacks have been repeatedly reported in the trade puibtisafior gaming applications, yet are rarely found
in the academic literature. The goal of the current paperiisitiate the systematic study of security issues in
NVEsand topresent security protocols which prevent malicious pgstats from compromising the semantic
integrity of the NVE.

Unlike online applications in which clients lie and cheababtheir real world characteristics, in an NVE
the application software completely defines the rules ofdivronment: virtual characters are created in
the space and live their entire virtual lives according te fioftware implementation of the environment.
Secure software systems provide the opportunity to elitaindbroad range of cheats, because, in theory, any
character’s deviation from the pre-programmed rules ofglume can be detected. Unfortunately, practical
limits on the design and implementation of NVEs make it diffi¢co guarantee their semantic integrity.

NVE System Architecture. In this paper we are only concerned witmote accesdlVEs based on the
client-server mod€8, 9]. This includes almost all widely-used NVESs. In a ctiserver NVE architecture,
the authoritative and central version of the state of the N§/Baintained by the server syst&tateServer.
The clientsClient;, ..., Client,,, connect to the server over a wide-area, insecure netwodkrexeive state
updates that are used to reconstruct their local model afriigonment. The user is presented with a graphical
representation of the model and can provide input in resgptmgvhat they see (pick up an object, send a text
message, etc.). The resulting events, in the form of statatagequests, are sent back to the server. We refer
to the processing of state updates and the evolution of thiel wwdel assimulation

Each timeClient; wants to update the shared state of the NVE, it has to sendesponding request to
StateServer. StateServer checks whether the requested actions are compliant to kbe afithe NVE. If
this is the caseStateServer sends taClient; an authoritative state update message that contains (asvalek
edgment) the requested state updat€liént; as well as all changes to the central state that occurree sinc
the last update message was sentlient;. Finally, Client; updates its local state according to the answer
received from the server system.

We define alient cycleas the procedure which starts with the computation of thatgoaquest bZlient;
and ends with the client state update according to the sezgponse. In a typical NVE application the client
cycle is repeated at around 10Hz. Different portions of tatesnay be updated at different rates to balance
interactivity versus bandwidth. Interpolation is used tegent the user with a higher visible update rate.

Client software can be modified by malicious participanisafie modifications include exposing suppos-
edly hidden state or modifying damage done by weapons. @Qaesdly, any security assessment of NVEs
must assume that all clients are untrusted. Thus, NVEs witlote access not only have to cope with the
deficits of the networking infrastructure (long transnossiimes and frequent packet loss [10]), but also with
malicious clients attacking thidVE . These attacks take many forms, which we describe in@e2t

The Semantic Gap and Security. One of the most important business metrics for an NVE is tmebar of
clients per server. Each client represents monthly syligmmi revenue, while each server represents a cost,
and providers aim to maximize their net revenue per clierdchBuser represents a computational load, so
servers must be added as clients are added, or the work et lust be reduced.

Tightly interconnected server clusters are used to ada&eewhile maintaining the appearance of a single
StateServer machine. Since all resources within the cluster are soketijodited to the NVE, we will assume
that they are mutually trusted. Consequently, clusteriagsdnot directly affect the security of the NVE.
Clustering enables growth in client numbers, but it doesmptove the client per server ratio. Clustering also
fails to provide for NVEs that enable users to run their ownweses, such aklnreal Tournament

The practical way to reduce server workloads is to off-loasrenwork to the client. Clearly, it is most
beneficial to transfer the most computationally demandasgs: rendering of 3D images and simulations of
natural phenomenon are two examples of tasks that are aatweesgs computed on the client. Users actively
prefer this approach because it allows them to improve therisonal experience by investing in their own
computational resources.

Computing on the client is only of benefit if the server doesrapeat the work, but then the client compu-
tations must be trusted to embody some of the rules of thedwBdr example, a physically-based simulation
of a user’s vehicle would be done on the client, and only thisukation can tell us if the vehicle stays on
the road as it rounds a bend. The server has onlglmtractrepresentation of the world: the user is in a
vehicle at a certain location moving at a certain speed. @m\client is computing theoncreteoutcome of
the simulation step. We refer to the difference betweenesemd client knowledge as tlsemantic gap

The semantic gap is the primary means by which malicioustdisubvert semantic integrity. Such a client
can successfully submspurious updatethat are consistent with the rules of the NVE on the absteaal)
but violate the NVE semantics at the concrete level. In obicke example, the client could inform the server
that the vehicle rounds the bend, even though the clientlation indicates that it crashes.

Closing all semantic gaps requires a very extreme form of NWEvhich final rendered images are com-
puted on the server and securely sent to clients. This iytatapractical — it takes all of the resources of a
dedicated graphics card to compute one image on a cliente &tgerver would have to compute thousands
of these images, not to mention the bandwidth. On the cgnteaonomic concerns demand very aggressive
movement of simulation from the server to the client.

Given that we cannot close the semantic gap, we aim insteddtéxt the presence of spurious updates.
This is challenging because the trustworthy server doetang the clients’ complete local states, including
the rendered images, and has no hope of obtaining all sugehattavery time step.

Engineering Requirements. The computational workloads of NVEs not only lead to seguibblems via
the semantic gap, they also place requirements on the desamy security solution:

e Minimal and Scalable Resource OverheadThe overhead caused by the security solution should be
as small as possible and scale well with respect to the nuaflperticipants and the level of security to
be enforced. While this sounds like an obvious requiremeatywant to stress that the typical MMOG
client application is heavily optimized to exploit all resoes in the drive for a compelling experience.
Therefore, any approach which causes significant CPU or odtwverhead at the client- or server-side
is impractical.

e Minimal Quality of Service Requirements. A security solution should utilize unreliable network
services for as many messages as possibldy a few important messages should require timely and
reliable send operations.

e Minimal Engineering Overhead: NVESs are complex software systems which usually consist of mul-
tiple large software packages, some of which may be thirdpaiddleware. Thus, it is often infeasible
to modify an existing NVE to meet strict security requirense\ security solution should be as inde-
pendent as possible from the simulation and should onlgtedf@all portions of the code.

Technical Contribution. The main technical contribution of this paper is a set of plby secure protocols
that maintain the states of the clients and the server dendig and securely, even in the presence of mali-
ciously modified clients. The approach is based on an effigiadit procedurethat is performed repeatedly
and randomly on the NVE clients. During the audit procesis, verified whether theoncretestate updates
performed by the client in a specific time frame are valid adiog to the NVE semantics. The solution meets
all above stated requirements:

e The protocols enforce semantic integrity on the NVE clientkile allowing a central abstracted state
and autonomous clients. We prove in appendix A that the poidécare secure under standard crypto-
graphic assumptions.

e The solution incurs very low additional network traffic, amdjuires the transmission of complete client
states over the networdnly during the audit processviore precisely, our solution requires only a few
additional bytes per client cycle which is a negligible qutsiin comparison to the other messages in
the client cycle. The security overhead consists solely lodsh which is considered secure at a size
of about 20 bytes. On the other hand, a modern MMOG requingghty one kilobyte per client and
cycle. Note that with thousands of clients, bandwidth is tiléeck mainly at the server side.

e Our solution uses reliable and time critical network traissions only for a few small messages. All
other messages, in particular the complete audit procassbe implemented solely using unreliable
send operations.

e The audit process is completely independent of the (tintécali simulation, and will in general not
affect the smoothness of the simulation for all but possibéyaudited party.

e The protocol is designed to be integrated with existing hexdre approaches with tolerable overhead.
In particular, the protocol is abstract [11], i.e., it candulapted for any specific MMOG.

Although the effort to integrate the protocol within a newllgsigned NVE is reasonable, the complication is
to integrate the protocol into an existing code for a MMOG.u blown MMOG is estimated to take $50
million prior to its launch [12] and therefore such an impémtation is not accessible. Thus, we do not present
a prototypical implementation.

Related Work on Security. Audit trails were successfully applied in electronic commoeeapplications (e.g.,
see [13]). An audit trail enables a special party, caleditor, to verify the correctness of previous transac-
tions. The audit trail can either be stored at the client erserver. In any case, the audit information must be
protected from modifications. Bellare and Yee [14] identifierward securityas the key security property for
audit trails: even if an attacker completely compromisesahditing system, he should not be able to forge
audit information referring to the past. Implementatiohsacure audit and logging facilities can be found in
[15, 16, 17].

The protocols described in this paper follow the principdéswudit trails, but account for the specific par-
ticularities of NVE environments. Most importantly, oudiion incurs a minimal network traffic overhead,
while retaining its security. In fact, a direct adoption te#ssical audit trails to the NVE scenario would inflict
a large load on the network, as the concrete state updatdiscieéats must be verified. In our solution, the
audit information is stored at the client side and sent tatlditor on request. The client only “commits” itself
to a status update by sending a short message to the servgn, cannot be altered later.

The approach taken is fundamentally optimistic: we allowating to happen, but aim at later detection.
Under the assumption that cheating does not occur too dftenapproach incurrs only low detection over-
head. The approach is thus related to optimistic fault &wiee [18].

Replication techniques for Byzantine fault tolerance P®,also seem applicable to our problem. However,
since the client has complete control of the replicas, theskeniques cannot address the semantic-integrity

4

problem caused by cheating on the client side. Still, refibn based techniques are certainly applicable on
the server side.

Only a few papers have dealt directly with security in onlgemes. Baughman and Levine [21] and
Chen and Maheswaran [22] concentrated on peer-to-peeiplayir games, while we consider client server
architectures of large-scale online games. Yan and Choid2Bgave a taxonomy of security issues in online
games and a case study on security of online bridge gamings [25] points out the importance of security in
online games from a business perspective. Pritchard [285d@th semantic attacks. However, this approach
requires each client to run the entire simulation, whichsdoat scale for MMOG and is primarily targeted
at small-scale peer-to-peer gaming applications.

2 Threat Analysis

The first NVEs were military simulation systems where thersigelonged to well-defined groups whose
NVE-clients were trusted. However, as large-scale N$W#th untrusted and dispersed participants are be-
coming more popular, the security of N\ébbecomes an eminent issue. We have identified the following
security threats in the context of an NVE with untrusted ipgoants:

1. System Security Attacks: There are a number of classical security problems assdorate NVES,
such as authentication, or host security. These secusigsshave been widely studied [27, 28].

2. Semantic Subversion:The participants of an NVE can interact in the virtual emmirent according
to the set of rules embodied in the simulation algorithmse &hforcement of these rules is of crucial
importance for all honest participants and the system’s. W call attacks targeted at circumventing
or subverting these rules semantic attacks.

(a) Semantic Integrity Violation: Attacks in this category attempt to violate the physical kgical
laws of the NVE without detection by the server. All attacksthis class involve maliciously
modified software on the client side and come in two flavors:

i. Rule Corruption: The malicious client attempts to modify the simulation in aythat is
illegal but plausible to the server system. For exampleclieat modifies their vehicle physics
system to allow higher speeds without negative road-hgldonsequences. The server is not
running the complex vehicle simulation, so it does not knogcsely what the vehicle should
be doing.

ii. Causality Alteration: The malicious client attempts to withdraw previous statengfes to
obtain unfair advantages, i.e., the client attempts to fitevits history”. For example, position
information could be changed to avoid taking damage fromxaiosion, after the explosion
had happened and damage was determined by the client.

(b) Client Amplification: In this case, the client employs modified software to achiebilities to
exploit the possibilities of the NVE in an unintended manimarring such an attack, the externally
observable behavior of the amplified client is not reliahistidguishable from the behavior of a
honest client. Amplification attacks contain the followitvgp main categories:

i. Sniffing: The malicious client exposes information which has to berdoaded for technical
reasons but is not intended to be observable immediatelyeX@mple, a client can be mod-
ified to render opaque walls as transparent, thus revealingrester in a neighboring room
that should have been hidden. Note that cheats of this kindmoarequire modifications to
the client application — access to client memory or systématies suffices for a cheat.

ii. Agents: The malicious client enhances the natural capabilitieh@fiuman participant. For
example, an agent could automatically maintain a model efvbrld and employ search
strategies to guide the player, or could log and replay sisfakprior actions.

3. Metastrategies: Attacks in this category are compliant with the NVE and do imeblve software
modifications. They exploit principal vulnerabilities pemt in the NVE, e.g., collusive collaboration
of human participants, or mobbing of fellow participants.

Note that system security attacks are targeted againstihersystems, while all other attack groups identified
in this section describe exploits which involve only thesoli side.

System security attacks are exploits that do not involveifipgroperties of NVEs and therefore they are
not in the scope of this paper. On the other extreme, Metagies do not violate the semantic rules of the
game, and require solutions that look outside the enviramm€onsequently, the focus of this paper is on
Semantic Subversion Attacks; these attacks are furthelisdbd into the categories Semantic Integrity Vio-
lation and Client Amplification. Some client amplificatiotizks can be addressed with memory encryption
or other countermeasures [26], but not all can be handledrigoaous way because they require models of
human player capabilities. They are, however, amenabl&atistical detection and countermeasures similar
to intrusion detection systems [29].

We considerSemantic Integrity Violationhe most important NVE-specific class of attacks which needs
to be treated at the protocol level. The protocols presemtedis paper consider both rule corruption and
causality alteration attacks. To do so, the protocols eeftre following two conditions on the client behavior:

e Rule Compliance: Each client is only allowed to act in accordance with theswé&the NVE. This
prevents rule corruption.

e Monotone History: The actions of the client must be irrevocable and undenigbdmsequently, clients
are not allowed to choose an alternative history of actiameahey obtain more information in the
future. This condition prevents causality alteration.

3 Unsecured Client Cycle

In this section, we review the state update mechanism tlzainisnonly implemented in NV&that main-
tain a central abstract state. We wWi8TATE to denote the centrally maintained and abstracted stateeride
ing on the spatial position dtlient; within the simulated world, only a portion of the entire stét relevant
for the Client;; this portion is denoted bysTATE[Client;]. The relevant portion of the abstracted and centrally
maintained state is transfered to the client. Locally, #iistract state is expanded to a concrete state by the
client.

Given an abstract state we usey(s) to denote the set of possible concretizations. Furtherpibrg
is a concrete state, then(S) is the unique abstract state which correspondS.tdhe paira()/y() can be
naturally viewed as a Galois connection between the setstfadt and concrete states [11], i.€.€ v(«(S5))
ands = «(S) forany S € ~(s).

When connecting to the NVEClient; receives a concrete state € v(ASTATE[Client;]) to initialize its
local statesTATE[Client;]. From this point onClient; maintains and updatesraTe[Client;] locally and only
receives abstract updates.

If Client; wishes to change its state, it has to inform 8tateServer in order to update the central NVE-
stateASTATE. For this purposeClient; computes a state update in the form of a compact descrigion
the difference between the current stat@Te[Client;], and the intended next state; we calladiff. Given a
stateS and a diff A betweenS and.S’, we denote the application df to S by S = S H A. Note thatA will

typically be small compared to the state descriptiSristhe NVE performs a fine-grained simulation of the
virtual world.

In the following, we will applya() and~y() not only to states, but also to diffs. In particular, we ugé) to
denote the abstraction of a diff. § = S H A holds, then we require that.S") = «(S) Ha(A) is also true.
Not every concretizatiod\ of an abstract difd might be applicable to a given concrete st&teTherefore,
we use usey(S,0) to denote the set of concretizations of an abstractodifhich can be applied t§. More
precisely, ifS" = S H A, thenA € (S, a(A)) and for allA” € (S, a(A)), we geta(S B A') = a(5").

One client cycle consists of the following steps: The clisabhds an abstraction &, denoted by =
a(A), to StateServer, which evaluates the semantics of the update. This abstifact contains the changes
requested by the client. We céllarequest diff Now, two cases can happen:

e If § is allowed with respect to the semantics of the NVE, ti&tateServer responds with &' that
contains all changes intended 6Yient; together with state updates performed by other clientseptes
in the NVE. Upon receipt of’, Client; computes a concretizatioA’ € ~(STATE[Client;], ") and
updates its own state by computisgaTe[Client;],, , = STATE[Client;], BB A'.

e If § is not consistent with the semantics of the NVE, the servirses to apply the update. This
can happen itClient; tries to do something impossible, such as opening a locked deloreover,
inconsistencies can be caused by synchronization and caioation errors (e.g., packet loss of the
network). In this case, thBtateServer responds with a state updatewhich only contains the states
updates of other clients.

In either case, the respon&eof the StateServer is calledauthoritative diff.

If the clients behave according to the NVE specificatiors gibtocol suffices to consistently maintain both
the state of the clients and the server. However, if malgidients participate in the simulation, this protocol
is susceptible t@emantic integrityiolation as described in Section BtateServer is only able to check
whether theabstractstate updated = «(A) are consistent with itabstractstate. A maliciouClient (see
Definition 5.3) can make an inconsistent state chahgehose abstractiofiis consistent with the NVE rules.

4 Secure Semantic Integrity Protocol §SIP)

In this section, we show how to amend the basic state updateqal described above with cryptographic
mechanisms in order to prevent semantic integrity viotatitiacks. This protocol will satisfy all requirements
established in Section 1.

Our approach is based on an audit procedure, which is pesfbriny a dedicated server, namely the
AuditServer. During each client cycle, the client sends a piece of evidgieontaining a hash of the ap-
plied concretestate update) as action commitmenfaditServer. From time to time, th€lient will also be
requested to commit to a concrete state; these states wil as possible starting states for the audit process.

Note that our security model assumes thatitServer is fully trusted. In particular, the protocols do not
provide non-repudiation: a cheating audit server coulth&annocent clients by wrongly claiming that they
behaved badly. However, we do not consider this case, as lievd¢hat it is not a practical situation in
commercial NVEs.

When auditing is initiatedAuditServer asks aClient to provide a sequence of concrete state updates for
a specific time frame together with an initial concrete fudlts. Based on this informatiouditServer
simulates the requested segment of@ient computation and checks both its compliance to the NVE rules
and its consistency with the action commitments sent pusiyo

Audits are initiated according to a strategy determinedhyserver, which is unpredictable for the client.
For example AuditServer might choose clients for auditing in a completely randonmhi@s or audit “on
demand” whenever statistical evidence suggests cheating.

7

Audit Cycles. The auditing process is organized in termsaatlit cycleswhere each audit cycle consists
of exactly! client cycles. At eacli-th client cycle a new audit cycle is started. In this paper,agsume for
simplicity that! is a system-wide announced and agreed on parameter. Howeasgrossible to customize
for each client while the simulation is running. The paranétssentially determines how far back into the
past auditing is possible.

At the beginning of each audit cycle, the client sends a hadtecconcrete full state as action commitment
to AuditServer. As this hash may be costly to compute because of the large dgacription, this message
has to arrive only within the current audit cycle (i.e., vitlhe next! client cycles). In addition, as noted
above, during each client cycle, the client sends an acbomutment of the applied concrete diff; as the diff
is usually small, we require that this message arrivesuditServer during the same client cycle.

While StateServer only keeps the current ab-

5 stracted central state, the clients do not only main-

N o Full state tain their current concrete state but alstain a
61~ A Diff history of previous states in a local buffemn-

- o Full state action taining up to 3 full states angl diffs. In particu-

-) g’f;;“ﬁI:;“:;‘];it‘jl’im lar, theClient has to retain a copy of the complete
8] available state at the beginning of each new audit cycle to-
P 2 Audited history gether with diffs between the states of interme-

v o (b) © diate client cycles. All buffer content older than

three audit cycles on the client side can be deleted
safely. The buffer thus describes a “sliding win-
dow” which contains the state history of the last
2l + 1 to 3l client cycles, i.e., the last two full au-
dit cycles and the current one. Thkding windowwhich is maintained at client cyclg > 2/ contains the
statesS;,, S, ., St, as well as all the intermediate diffs; , ,,..., A} where

e |—ef o
Thus,t, denotes the expiration time for client side audit inforrmati In addition to the history of states, the
client stores all messages received from the server witlgnite interval determined by the sliding window.

Figures 1(a), (b), and (c) show the gradual change of thebaffone specific client. These figures illustrate
the buffer contents at client cyclgé + 1, 71 + 2, and7l 4+ 3 = 8I, respectively. The symbal represents a
fully saved state, whereas represents a concrete diff, both saved at the client. Onttier hande and A
represent action commitments of full states and diffs wlaich available at thduditServer (note that full
state action commitmentsare only available after an audit cycle is finished).

As seen in Figure 1, at most three fully saved states arenestait any given time; the scope of an audit pro-
cess covers at most three audit cycles (see Figure 1(b)e ®new audit cycle is completed, the information
about an earlier audit cycle can be discarded (see Figuje 1(c

Figure 1. The "sliding window".

a-+1?

Audit Process. During the audit procesguditServer requiresClient to prove that its actions during the
last two completely finished audit cycles and the currenitawydle are compliant to the rules of the NVE.
For this purposeClient sends the contents of the current sliding window (i.e., theesnformation) together
with all corresponding state server messagesuditServer, who simulates the client computations.

Now, AuditServer checks whether

1. the received state information matches the action comemts previously submitted by the client,
whether

2. the client computation is compliant to the rules of the Nattel whether

3. the client correctly committed itself to the startingtstaof all audit cycles contained in the audited
period.

The audit results in a positive verdict if and only if all ckecsucceed. Note that the third condition is of
central importance, as this prohibits the client from cimgabn future audit starting states.

Crucial to the correctness of the audit process is the esrfioeat of the timing conditions for the action
commitments. The action commitment of a diffustarrive within the current client cycle, whereas action
commitments of full states must be available only when theect audit cycle is completed. In Figure 1 the
action commitments (represented by for diffs are available at thA&uditServer immediately. In contrast,
the action commitment for the full state7] becomes available when the system enters 8tate

Note that the late availability of the full state action coitment messages requires the audit process to audit
at least two full audit cycles, as otherwise the semantiegiritty of the future audit starting points cannot be
guaranteed. In principle, the protocols can easily be adaptsuch a way that more audit cycles are verified
during each invocation of the audit protocol. However, fa sake of brevity, we present the protocols for the
simplest case of auditing at most three audit cycles.

Protocol Description

Secure integrity enforcement is performed by three prd¢otmitialize, StatusUpdate and Audit. The
protocollnitialize is performed whenever a client wants to join the NVE, whe&agisUpdate is executed
at each client cycle (i.e., whenever a client wishes to chatsgstate). FinallyAudit implements the auditing
mechanism. We assume that a client leaving the NVE performsrdinary status update, where the diff
encodes the intention to leave the NVE.

For the sake of simplicity, we present the protocol for alsimijent Client that interacts wittStateServer
andAuditServer. For multiple clients, the protocol is processed asynabwgly in parallel. Sending a mes-
sage unreliably will be denoted by. Sending a message reliably that must arrive before thetrbxtlient
cycle is initiated, will be denoted by—;. Unreliable messages may be dropped or delivered with delay
However, we assume that no packet corruption occurs.

In the protocols we use a Message Authentication Code (MA@ a collision-free hash function as
cryptographic primitives (for a formal definition of thesarpitives, see [30]). For computing MAC-tags,
an appropriate key must be generated wite= GenMag1™) wheren is the security parameter. Then, a
tag ¢t for a messagen is computed witht = SignMadk, m), whereas the verification algorithm is writ-
ten as VerifyMa¢k, m,t) = {true false}. We write M = AuthMsg(k, m, Client) as an abbreviation for
m || SignMadk, m || Client), where|| denotes string concatenation. Furthermore, we will dendtie 1/ (")
and M ? the two parts of the messagdé, i.e., M) = m and M = SignMadk,m | Client). The hash
function CFHas(m) is chosen from a collection of collision-free hash funcsioheth = GenCFHasfl™)
be its index, where: is the security parameter. For the sake of simplicity we alibreviatesTATE[Client],
with S;.

The protocols use a single MAC kéywhich is mutually agreed between the state server and thiesauder
and is used to authenticate status updates sent$tateServer to Client. The MAC enable®uditServer
to check whether a cheatir@jient has passed modified status update messages fatlitServer.

In the following, we describe each protocol in detail:

Initialize: This protocol initializes the state ofGlient wishing to join the NVE (see Figure 2).

Client initializest := 0 and sends an initialization requestStateServer.
StateServer ~ AuditServer : k := GenMag¢1")

AuditServer ~~ Client : h := GenCFHasfl")

StateServer choosesS € v(ASTATE[Client))

StateServer ~ Client : M, := AuthMsg(k, S || ng, Client)

Client setsS;p := S

Client —; AuditServer: Qo := CFHash(Sp)

N o s~ N e

Figure 2. Protocol Initialize

Client computes a desired status chadge ; and its abstractiof; ;1 = a(Asy1)
Client ~ StateServer: §;41
Upon receiving), 1, StateServer computes a new, , ; and updates itaSTATE accordingly
StateServer ~ Client : M, := AuthMsg(k, 5, ; || n; + 1, Client)
Client chooses and stores; ; € v(S5;,d;, ;) and computes,, = S; BA]
Client —; AuditServer: D;,, := CFHash(A},,)
Client incrementg
if tmodl =0
(a) Client deletes all\}_, with 21 < i < 3l as well as the full stats;_s; (if ¢ > 310).

(b) Client storesS; and starts to comput®, := CFHash (S;).
(c) After computation of),, Client —; AuditServer: Q.

© N o g~ NP

Figure 3. Protocol StatusUpdate

Upon opening a connection tetateServer, an appropriate MAC-key: as well as an index for the
collision-free hash function are generated and distrohuite a practical implementation, the index of the hash
function would be fixed and globally distributed. Then, thiert receives the relevant status information
together with a randomly generated nonggeand a MAC of the message. At this point the state server
transmits aoncretestateS € v(ASTATE|[Client]) to the client. The client initializes its local statg with S.
Note that this is the only point, besides the audit proceduere a concrete state is transmitted. Finally, the
client sends as evidence a hash of its stgteeliably to the audit server; as the hash of the concrete staly
be costly to compute, we only require that this process ispteted before théth client cycle is initiated.

StatusUpdate: After initialization, the client uses this protocol to upeats local state in each client cycle
to reflect actions of the client itself, of other clients, ahd state server. Formally, the protocol is shown in
Figure 3.

Suppose the client is in stafg and wants to change its state according to the Aliff ;. To initiate the
update protocol, the client sends an abstracted requést dif= « (A1) to StateServer. The server checks
whether this request is valid and consistent with the cticentral NVE stateASTATE and computes a new

10

. AuditServer ~~ Client : audit|| to
. Client computeg, = |2 — 2|1
. Client ~> AuditServer: Sy, | A} |- | A4 | Migs1 || --- || My,

. AuditServer computesS; 1 = S; B AL, fori =t,,...,to — 1 whereS;, = S,

o A W N B

. Foralli =t,+1,...,t, AuditServer checks whetheA! is chosen fromy (S;, 4;) compliant with the
rules of the NVE, wheré! is taken from the messade;

6. Foralli =t,+1,...,t, AuditServer checks whether
€) VerifyMac(k:,MZ.(l) \CIient,Mi(z)) = true and
(b) CFHash(A!) = D;

7. AuditServer checks whether CFHagts;,) = Q;, and CFHash(S;, +1) = Q, 4.

If t, = 0, Client ~» AuditServer : Mo(z) andAuditServer checks VerifyMa¢k, Sy ||Client, Méz)) =
true.

8. AuditServer accepts the computations Gfient if and only if all tests in steps 5 to 7 passed.

Figure 4. Protocol Audit

authoritative diffo;, ;. This diff might differ fromd,, since it has to reflect changes of other clients and the
server itself; however, if; ;1 is legitimate with respect to the NVE semantigs,, contains the state changes
of dy41. If §;41 violates the semantic integrit&jﬂ only contains the state updates of the other clientsbut
d:11 (or at most those actions i, that are consistent). THetateServer updates its centrally managed
stateASTATE according ta);, ; and sends;_ ; back to the client, together with a MAC and an incremented
nonce (steps 1-4 of the protocol).

The client now computes a concrete state updste, € v(S;,d;, ;) and applies it toS; to enter the next
stateS;; = S;HA;_ ;. Finally the client sends a hash of the concreteljff , as action commitment reliably
to theAuditServer before the next client cycle is started (this message istddriny D;). Additionally, at the
beginning of each audit cycle, the client sends a hash ofiltstate toAuditServer. This message, denoted
by Q:, is sent reliably but must arrive within the current auditleyi.e., within the next client cycles.

For audit purposes, the client saves all information asesgd that is necessary for the audit server to
simulate its computations. More precisely, at the begigmiheach audit cycle, the client saves its full state;
in intermediate client cycles, the client only retains glif the previous state. In addition, the client saves all
messaged/; received from the state server. Finally, all outdated andtirmation (i.e., the fully saved state,
all diffs and messages belonging to the third-last audite)yzan be removed (step 8).

Audit: During the audit protocolAuditServer validates the computations of o@#ient. In particular,
AuditServer checks whether the client can present concrete state pithatematch the action commitments
received so far and are consistent with the NVE rules (sear&i).

The auditing protocol starts with an audit message sente€lient during client cyclety. An audit can
be initiated at any client cyclg > 2i. The client first computes the starting poigtof the audit according
to equation (1). The client then sends the concrete stgteas well as all diffsA] and messages/; for
te +1 < i < ty to the AuditServer (steps 1-3 of the protocol). Finally, the audit server clsedalsing the
action commitment messaggs and(); submitted by the client before, whether the client adhevd¢kdd NVE

11

semantics. In particular, the audit server checks

e whether allA] are suitable concretizations &fsent by the state server in messadg(step 5),
e whether all state server messagés(t, + 1 < i < tg) are unmodified (step 6(a)) and

e whether all action commitment messagés and(;) submitted by the client beforehand are valid, in
particular theAuditServer checks

— the hashes on the messadest, + 1 < i < ty, (step 6(b)) and

— the hashes of the full states, and S;,.;, contained in the messagés, and @, +; (step 7).
Note that these messages are already available to the anditr $f the timing conditions of the
StatusUpdate protocol are enforced.

e If the first audit cycle is to be auditedt,(= 0), then Client is required to presenp/” =
SignMadk, Sp||Client) to AuditServer additionally to prove that the initial state, has been autho-
rized by theStateServer (step 7).

If all checks pass, the client is considered honest (step 8).

Computation and Engineering Overhead. The protocol can be implemented in a very resource efficient
manner: TheStatusUpdate protocol requires only a few MAC and hash computations ogkatively small
amounts of data. The hash computation over the complete atat client can be processed in background
during thel client cycles of an audit cycle. Moreover, only the MACs amglies are additionally transmitted
over the network.

In contrast, theAudit protocol is much more data intensive and involves a compkEmulation of the
client computations. However, the execution of gelit protocol is not time critical and can be delegated to
a specific server, namely thaiditServer. Therefore, it does not cause resource overhead &tHieServer.

To integrate our protocol into an NVE system, one has to implet the protocol logic, add the computation
of the MACs and hashes at the state server and the clientpgidment the audit server. It should be possible
to implement the audit server by mainly reusing client comeesthe audit server is simulating the client
computations. The biggest problem in implementing thequait will likely be the creation of copies of
the complete client state in a timely manner, as requiretieabeginning of each audit cycle. However, all
remaining parts of the protocol can be implemented in agitdorward manner.

5 Security

In this section, we will state the security property achtelg the Secure Semantic Integrity ProtoS&IP.

In particular, we introduce two properties (namalje complianceandmonotone historyliscussed briefly in
Section 2) which jointly assure the semantic integrity & MVE. We show that the protocol above enforces
both properties.

We introduce thesuccessor relation-, wheresTATE = STATE' holds if there is a diffA such thasTATE' =
STATE H A. Analogously,ASTATE = ASTATE’ is true, if there is an abstract diff such thatASTATE' =
ASTATE B §. Since by definitiors TATE' = STATEH A impliesa(STATE') = a(STATE) B «(A), we find that
STATE > STATE' = «(STATE) > «(STATE') holds, see Section 3. However, the converse is not nedgssari
true, since it is possible that there are no concrete stadtehwealize a given abstract transition.

Based on the successor relation, we define a sequence obt®statesSTATE, . . ., STATE;) asvalid if
V0 <i<t : STATE; > STATE;;; holds. Analogously{ASTATEy,...,ASTATE,) is avalid sequence of
abstract statesif 0 < i < ¢ : ASTATE; > ASTATE; ;.

12

During thelnitialize- and StatusUpdate-protocol, the client receives a concrete statetgy and a se-
ries (07, ...,0;) of (abstract) authoritative diffs. Thus, the client and 8tateServer producecooperatively
a sequence of abstract stat@sTATE,...,ASTATE;), WhereASTATEy = «(STATEy) and ASTATE; ;1 =
ASTATE; H §;, . The StateServer only checks whether the abstract seqUe(KETATE, ..., ASTATE;) IS
valid; as noted Section 1, the concept of abstract statebdéms introduced to relievBtateServer from
the workload of maintaining the details of the concrete @spntation. But the validity of the abstract se-
quence does not guarantee iémlizability: We say that{ASTATE, ..., ASTATE,) is realizable atconcrete
stateSTATE, if there exists a valid concrete sequeregATEy, ..., STATE;) which starts withsTATE, and
wheresTATE; € «(ASTATE;) holds for all0 <i <¢.

Definition 5.1 Rule Compliance
A client behavesule compliant,if the sequence of abstract statessTATE,, ..., ASTATE,) produced by the
client and theStateServer is realizable at concrete staterATE,. °

During the Audit-protocol, theAuditServer asks the client to disclose some of its former concrete state
(STATEy, ..., STATE;). In this situation, it may happen that the sequence disdlbgethe client is rule com-
pliant, but the client has manipulated this sequence inrdadenake its history look as if it were compliant
to the rules of the NVE. In Section 2, we called such a behasaoisality alteration. For a given> t, we
denote byHSTATE] the state returned by the client if queried at tignfer its former statesTATE;. HSTATE/ is
ahistorical state.

If the client is honest, it will always return the truthfulshorical states, i.eHSTATEg = STATE; for all
q > t. In this case, the client never rewrites its history (HSTATE] # HSTATE]) and thus we say the client
has a monotone history.

Definition 5.2 Monotone History
A client has a monotone history,HETATE{ = STATE, for all ¢ > t. °

A client which obeys the requirements of rule compliance motiotone history is a honest client.

Definition 5.3 Honest and Malicious Clients
A client is honest, if it behaves rule compliant and discdoaemonotone history. Otherwise, the client is
malicious. °

The following theorem show that (under standard cryptdgi@pssumptions) the protocol of Section 4 en-
forces honest client behavior.

Theorem 5.4 Security of the Secure Semantic Integrity Protcol (SSIP)

If CFHash is a collection of collision-free hash functiorms)d SignMac is a message authentication code
secure against selective forgery of messages, then theeSSemantic Integrity ProtocolSSIP) enforces
honest client behavior(assuming probabilistic polyndrtime computations on client- and server-side).

We show the theorem by a simultaneous reduction to the prablef finding collisions of the hash func-

tion CFHash and of forging MACs of SignMac. Suppose thatdhsra client that succeeds to cheat with
non-negligible probability by violating either the sedurproperty of rule compliance or of monotone his-
tory. Then, we show that there exist algorithms AttackHasth AttackMac that can compute collisions of
CFHash or forge MACs; one of the algorithms will have nonfiggigie success probability, which violates

the assumptions.

As a proof technigue, we use the concept ohalicious behavior experimentpnsisting of aScenario-
Generator, which simulates both &tateServer and a set of clients. AcenarioGenerator is designed for a
specific malicious client and provides this client with awiehich is identical to a real-world execution of the
NVE. The simulation, as provided by tlseenarioGenerator, is designed to allow the corresponding client

13

to behave maliciously, i.e., tHeécenarioGenerator is intuitively used to demonstrate the malicious behavior
of the client.

At some point during the simulation, an audit process iatd@td and the malicious client responds to the
request accordingly. We say that the malicious behavioemxgent issuccessfulif the client could cheat
within the audited client cycles such that the invoMagitServer is unable to detect the malicious behavior.

By a case analysis, we show that, whenever a malicious ¢diable to cheat thAuditServer in a malicious
behavior experiment, it is possible to find either a collisod the hash function or a forged MAC: If there is a
client together with &cenarioGenerator which is performs successfully in malicious behavior ekpents
with non-negligible probability, then we can either produmllisions of the hash function or forged MACs
with non-negligible probability.

Thus, we show that the existence of a client which is sucakssthe malicious code experiment violates
standard cryptographic assumptions. Therefore SBHP enforces honest client behavior. For the detailed
proof see Appendix A.

6 Conclusion and Future Work

In this paper, we have argued that networked virtual enuiremis are an emerging network technology
which has not been subject to rigorous security investigati We have identifiedemantic integrityas a one
central security problem in NV& Untrusted and malicious clients may utilize the fact that ¢central NVE
server can—due to the limited computing power and the digmpin the network connection—only maintain
an abstracted version of the NVE state. To overcome thislgmgbwe have introduced a neprovably
secureaudit trail mechanism which is able to verify the compliané¢he client computation. Although we
allow autonomous clients, our protocols assure that regutheating clients will be identified with a high
probability. The audit mechanism proposed in this paperlmarseamlessly integrated into current NVE
architectures and incurs little engineering and resouveehead.

References

[1] Epic Games. Unreal tournamertit t p: / / www. unr eal t our nanent . com 1999.
[2] Linden Lab. Second lifeht t p: // secondl i f e. com 2003.

[3] Virtual online world. The Economist, September 28 200#it t p: / / ww. econom st. com
busi ness/ di spl aystory. cf n?st ory_i d=E1 _SIGPVPR.

[4] CCP Games. Eve onlindat t p: / / www. eve- onl i ne. com 2003.
[5] Blizzard. World of warcraftht t p: / / www. wor | dof war cr af t . com 2005.
[6] E. CastronovaThe Business and Culture of Online Gamésiversity of Chicago Press, 2005.

[7] A. Pasick. Us congress launches probe into virtual eodas, October
15 2006. http://secondlife.reuters.com stories/ 2006/ 10/ 15/
us- congress- | aunchs- probe-into-virtual - econoni es/.

[8] S.Singhal and M. ZydaNetworked Virtual Environments: Design and Implementatiddison-Wesley,
1999.

[9] C. Joslin, T. Di Giacomo, and N. Magnenat-Thalmann. @adlrative virtual environments: Form birth
to standardizationlEEE Communicationgages 28-33, April 2004.

14

[10] S.K. Singhal.Effective Remote Modelling in Large-Scale Distributed @ation and Visualization En-
vironments PhD thesis, Stanford University, 1996.

[11] P. Cousot and R. Cousot. Abstract interpretation: fieshiattice model for static analysis of programs
by construction or approximation of fixpoints. ymposium on Principles of Programming Languages
pages 238-252, 1977.

[12] Michael Zenke. Interview: Call of the wild - turbine’ggsica mulligan on MMO trendsht t p: //
www. garmasut ra. cont f eat ur es/ 20050422/ zenke 01. sht m , 2005.

[13] J. Peha. Electronic commerce with verifiable auditidrain Proceedings of INET'99, Internet Society
1999.

[14] M. Bellare and B. Yee. Forward integrity for secure alalgs. Technical report, UCSD, 1997.

[15] B. Schneier and J. Kelsey. Secure audit logs to suppmrtpater forensics.ACM Transactions on
Information and Systems Securi(2):159-176, 1999.

[16] B. Schneier and J. Kelsey. Remote auditing of softwargputs using a trusted coprocessdtuture
Generation Computer Systeni$(1):9-18, 1997.

[17] C. Chong, Z. Peng, and P. Hartel. Secure audit loggirig taimper-resistant hardware. Rmoceedings
of the 18th IFIP International Information Security Cordace pages 74-84, 2003.

[18] R. E. Strom and S. Yemini. Optimistic recovery in distried systemsACM Transactions on Computer
Systems3(3):204-226, 1985.

[19] M. Castro and B. Liskov. Practical byzantine fault talece. InProceedings of the Third USENIX
Symposium on Operating Systems Design and Implementagea.

[20] M.K. Reiter. Secure agreement protocols: Reliable @iodhic group multicast in rampart. Proceed-
ings of the ACM Conference on Computer and CommunicatiotisiSe 1994.

[21] N. Baughman and B. Levine. Cheat-proof playout for calited and distributed online games. In
Proceedings of the 20th IEEE INFOCOM Conferenuages 104-113, 2001.

[22] B. Chen and M. Maheswaran. A fair synchronization pcotowith cheat proofing for decentralized
online multiplayer games. IRroceedings of the 3rd IEEE Symposium on Network Computitg a
Applications pages 372-375, 2004.

[23] J. Yan. Security issues in online gam@&ke Electronic Library: international journal for the apgphtion
of technology in information environmen)(2), 2002.

[24] J. Yan and H.J. Choi. Security design in online games.Ammual Computer Security Applications
Conference2003.

[25] S. Davis. Why cheating matters. cheating, game segcant the future of on-line gaming business. In
Game Developers Conferen@903.

[26] M. Pritchard. How to hurt the hackers: The scoop on theriet cheating and how you can com-
bat it. Game Developer Magazinglune 2000. htt p: / / ww. gamasutr a. con f eat ur es/
20000724/ pritchard0l. htm

15

[27] R. Anderson.Security EngineeringWiley, 2001.
[28] W. Stallings.Cryptography and Network SecuritiPrentice Hall, 2003.

[29] H. Debar, M. Dacier, and A. Wespi. Towards a taxonomyrafusion-detection systemsComputer
Networks 31(9):805-822, 1999.

[30] O. Goldreich.Foundations of Cryptographyolume II: Basic Applications. Cambridge University F3gs
2004.

16

Appendix
A Proof of the Main Theorem

In order to prove Theorem 5.4, we show that whenever a cleable to behave maliciously with non-
negligible probability, either a MAC-tag can be forged orddlision of the hash function can be found in
probabilistic polynomial time, again with non-negligilppeobability.

We naturally assume thauditServer executes a single step of tBatusUpdate- and theAudit-protocol
within polynomial time with respect to the security paraenet and the size of the concrete states.

As a malicious client can only operate in the environmentroN&/ E, we will use a scenario generator in
our proof which provides a client with a realistic environthey pretending to be the state server. The client
interacts with the scenario generator in the same way asulkdweith a state server.

Definition A.1 Scenario Generator
ScenarioGenerator is a probabilistic interactive Turing Machine which takégtsecurity parameter™ as
initial input and produces a scenari@®y, 9, . . ., d,,,) in the following way:

e First, it outputs a concrete stats,. After this initial computation, th&cenarioGenerator repeats the
following: it waits for an abstract request diff from the client and returns a corresponding authorita-
tive diff 5, for 0 < ¢ < m wherem is the length of the scenariep must be bounded by a polynomial in
n.

e The computation of the initial concrete stafg and the computation of each abstract diffmust be
done in probabilistic polynomial time. °

The ultimate goal of the client, while interacting with tBeenarioGenerator, is to behave maliciously
while being undetected by theuditServer. More precisely, the allegedly malicious client, t8eenario-
Generator, and the trusted real-lifAuditServer engage in the following experiment in which tBeenario-
Generator behaves in accordance with Definition A.1.

Definition A.2 Malicious Behavior Experiment
In the malicious behavior experiment,ScenarioGenerator, a Client, and theAuditServer participate.
First, the security parameter is distributed and théuditServer communicates the indéxof the hash func-
tion to be used by the client. Also, tBeenarioGenerator sends an initial state, utilizing thel nitialize-
protocol, to theClient. ThenScenarioGenerator and Client repeatedly execute tHatatusUpdate-protocol
for at mostm rounds, wheren is the length of the generated scenario. In each rou@lignt sends a re-
quest diffd; to ScenarioGenerator and receives an authoritative diff as response. Furthermore, the client
outputs its currently locally maintained stat in each iteration.

The AuditServer initiates theAudit-protocol once during the experiment at a uniformly and ramdly
chosen point intimé, < m. The experiment is successful, if the client behaves roasty within the audited
time frame but is not detected. °

Figure 5 depicts this experiment graphically: GenMac igdusegenerate a random MAC-key which will
subsequently used by AuthMsg to authorize the messagesaing from theScenarioGenerator. The

ScenarioGenerator produces the initial stat§, and the authoritative update$,...,d,,, and authenti-
cates them with the help of an oracle AuthMsg, similarly asStateServer. The authenticated messages
My, ..., M,, are sent tcClient as usual in thé&tatusUpdate-protocol.

As in the real protocol executioAuditServer receives during the executions of tB@atusUpdate-protocol
the hashed, ..., D,,. Similarly, theClient sends toAuditServer the hashes)y, ..., Q("TLU on the entire

17

state and produces the sequence of local sfates . , .S,,. In the figure, we use thin lines to depict messages
which are sent either during thaitialize- or StatusUpdate-protocol.

In contrast, the bold lines are used for mes- 1"
sages of theAudit-protocol: At some uni- ‘
formly and randomly chosen point in timg, I
AuditServer initiates theAudit-protocol by send-
ing the messageudit||t, to the Client. In re-
sponse, the client will reply with the messages i b
My, 1,y My, Si,, and Ay, 41,...,0. By 1 So.8,... .8
doing soClient claims thatM; = M;, S;, = Sy, AuthMsg IR
andA; = A;, whereS;, andA;, 1 1,..., A, de-
note states and diffs the client originally commit-
ted to.

The experiment ends whekuditServer out- — Client
puts a verdict whetheZlient behaved maliciously
or not. sy

In Theorem 5.4, we said that tH&SIP en-
forces honest client behaviogssuming polyno- &
mial time complexity bounds on the server and SN
client side and assuming that MACs and col-
lections of collision-free hash functions do ex-
ist. With the definition of the malicious be-
havior experiment at hand, we are able to re- i
fine this statement as follows: We prove that a
client which passes the malicious behavior ex-
periment successfully with a non-negligible prob-
ability will yield either a procedure AttackHash Figure 5. Malicious Behavior Experiment
which produces collisions for the allegedly secure
hash function or a procedure AttackMac which forges MACstfar allegedly secure MAC function. At
least one of these procedures will be successful with ngtigilele probability, assuming that the malicious
behavior experiment succeeds with non-negligible prditablUsing this terminology, we can formulate the
theorem as follows:

GenMac ScenarioGenerator

Q
_ M,

'-,Dm
Apig. ...

audit||to

Dy

h

]\Yf 1], ..
S

|

AuditServer -~

honest/malicious

Theorem A.3 Security of the Secure Semantic Integrity Protool (SSIP) (11)

If CFHash is a collision-free hashing function and SignMamassage authentication code, then the Secure
Semantic Integrity ProtocolSSIP) guarantees that any malicious behavior experiment withiadabilistic
polynomial-time client has negligible success probapilit °

Proof of Theorem A.3
Suppose there exist@ient and aScenarioGenerator such that the client succeeds in the malicious behavior
experiment with non-negligible probability.

Then we construct two probabilistic polynomial-time prdaees where the first procedure AttackHash is
able to find a collision of the hash function CFHash, and tleeseé procedure AttackMac is able to forge
MACs. Either of these algorithms will succeed with non-iigigle probability, contradicting the crypto-
graphic assumptions of Theorem A.3.

18

Both procedures are constructed on the basis of a malicielaviior experiment. In particular, we claim
that each successful execution of the experiment yieltsest forged MAC or a collision of the hash function.

According to Definition 5.3, a successful malicious clientgheither violate the rule compliance of the
NVE or the monotone history property, while being undetgct€he rule compliance property is violated if
the sequence of abstract states, as presented I@idre to the AuditServer, is not jointly produced by the
StateServer and theClient or is not realizable at the given initial concrete clienteta cheating client can
attempt to present a different sequence by manipulatingetbeived authoritative diffs,. The realizability
of the sequence is always checked correctly in Aluglit-protocol by resimulating the presented concrete
sequence and checking whether it corresponds to the absitrac

The monotone history property is violated, if the clientydes theAuditServer with a sequence of states
that differs from the sequence of states it actually execufdus, the client may either cheat on the diffs
sent during the audit or on the full stafg, that provides the basis for the auditing process. In sumntiaey
malicious client has the following options to cheat:

1. The client cheats on the first audited stétg, i.e., the state5;, sent to theAuditServer differs from
St,- In this case the client has found a second preimage of the foastion, as CFHasf{S;,) =
CFHash(S;,).

2. Suppose now that the client does not cheat on the firstealistate, i.e.S;, = S;,. Thus, the client
may either cheat on some messadgor honestly reporf\/; = M; for all i.

(a) Inthe first case, the client must provide a messdge- AuthMsg(k, &/, || n;, Client) for ad; which
has never been authenticated (since we assume that théomalehavior experiment succeeds).
Thus, the client would be able to forge the MAC of the mess#der; || Client, which has never
been authenticated during the entire experiment due tortiggieness of the nonce.

(b) In the second casé{; = M; for all i), the client provided théuditServer with the correctly
authenticated authoritative diffs, as constructedSmgnarioGenerator. This leave the client
with two other possibilities for cheating:

Case 1:The client cheats on a diff, i.e., there isiaguch that\} # A’. Since the client committed

to Al by sendingD; = CFHash (A!) to AuditServer, it follows that the client has found a second
preimage ofD;.

Case 2: If the client does not cheat on the diffs, the only remainirgywo cheat successfully
without being detected is to manipulate the ste ;. This means that;, ., differs fromS,, ., =

S;, BA, 11 B...8A;, . Butthe client already committed itself &, ; by sending the hash
Q,+1 = CFHash (S, +:) to the AuditServer. Since the client cheats undetected, it must have
found a second pre-image &, ;.

Since by assumption the experiment is successful with anegtigible probability, we can either forge MACs
or compute second pre-images of the collision-free hasttifumwith non-negligible probability.

It remains to construct the two attack procedures Attackistaat AttackHash which adapt the black-box
simulation and fit the definition of attacks on MACs and calisfree hashing functions, respectively.

e We build an attack procedure AttackHash as depicted in Eigar The attack procedure AttackHash
receives the indek of the collision function to be used and outputs a paiw) such that CFHasfta) =
CFHash (a) holds with non-negligible probability.

GenMac and AuthMsg are part of the attack procedure, whileGE&lash is external to the attack. The
AuditServer has been replaced: GenCFHash is used to provide the idl@xthe hash function and

19

171 171

el g Iatatetainiieintatetuiietatatauiele - Seaiieiateteiaiiieintatele -
1 1

1

: ' ! ! ' :

! 1

1 GenMac ScenarioGenerator : GenMac 1 ScenarioGenerator :

! 1

: k : k ! :
1 ! 1

: » SO(S,I(S;n 1 ' ! San—iv 67’?1 !
1 1

: AuthMsg 01yeevy O | 0 AuthMsg : 01y ey O | 0
1 L 1

: Mo, My, ..., My, ! VMo, My, My, '
1 1

1

. 1 |m = ! 1

! : ' :

1 1

1 Client : 1 Client :

1

: I 1 1 y 1

. 4 ! .] !

1 2 1 = g

1 : =|! 1 = = !

1 g E <! 1 : <!

1) 3 s 1 B S

Vo E T - : P !

B I s J -

' Y ' ' Y X

1 ! ! 1

1
: CFHashSelector 1 GenCFHash =~ : MacSelector GenCFHash == 1
1
) l_ : \ l- '
(a,a) (m,t)
(a) AttackHash (b) AttackMac

Figure 6. Attack Procedures

the messageudit||ty, which starts théudit-protocol, is sent at a uniformly and randomly chosen point
in time.
The CFHashSelector computes the sequenas, . ,,...,A; (based onS;,,...,S) and the state

S, +1 (based on the5;, and A} ,,..., A}). ThenCFHashSelector chooses uniformly and ran-
domly one pair(a,a) from the pairs(S;,, S;,) and (S, 4, S:,+1) and from the sequence of pairs

(At Bln) oo (AL A).
All other outputs of theClient, namely the authenticated message, 1, ..., M, the hashes
D+,...,D,, onthe concrete diffs, and the hasligs . . ., Q("TLU on the entire states, are discarded.

Let us assume that the simulation produces a collision ®ctilision-free hashing function with non-
negligible probability, i.e. that one of the possible clesidor(a, a) is a collision under the given hash
function with non-negligible probability. Then the randignchosen pair is still a collision with non-

negligible probability.

The runtime of AttackHash is again polynomially boundedsiall components of the malicious be-
havior experiment are running within probabilistic polymial time.

e We construct an attack procedure AttackMac which takeas input, has access to an authentication
oracle AuthMsg, and produces with non-negligible probigbd pair (m,t) such thatn has not been

20

authenticated before by AuthMsg but such that SignMadk,m) holds for a keyk which is not
known to the AttackMac.

In Figure 6b, AttackMac is shown as the procedure which isosed by the dashed box: This time, the
GenMac and AuthMsg procedures are external to AttackMale that the used ke is inaccessible to
AttackMac (and again, we replace theditServer by GenCFHash and send the first message of the
Audit-protocol at a randomly chosen point in time).

The MacSelector receives the messagés;, .1, ..., M;, and selects one of them uniformly and ran-
domly. If one of these messages contains a forged MAC-talj miin-negligible probability, then
a uniformly selected messag¥; contains still a forged MAC-tag with non-negligible proliéip.
This is true, since there are at most polynomially many suaisp Finally, the procedure outputs

<Mi(1)’ Mi(2)>'

All other outputs of theClient, namely the sequence of local st&s . . . , S;,, the allegedly occurred
state at the beginning of the audited cySle and the allegedly subsequently used diffs . 1, . . ., Ay,
the hashedq, ..., D,, on the concrete diffs, and the hashgg. . .. ,Q[%“ on the entire states, are
discarded.

Since all components used within AttackMac run within polgmal time,ScenarioGenerator runs in
polynomial time with respect to the security parametes well.

This concludes the proof: If the protocol does not eliminte possibility of successful executions of
the malicious behavior experiment with non-negligible gability, then it either produces forged MACs or
collisions for the hash function with non-negligible proiiay, and therefore at least one of the procedures
AttackMac and AttackHash will be successfully attacking torresponding cryptographic primitive—which
contradicts the assumption that no such attack exists.at all .

21

