
Enforcing Semantic Integrity on Untrusted Clients in
Networked Virtual Environments ∗

Somesh Jha1 Stefan Katzenbeisser2 Christian Schallhart2 Helmut Veith2 Stephen Chenney3

1 University of Wisconsin 2 Technische Universität München3 Emergent Game Technology

Abstract

During the last years, large-scale simulations of realistic physical environments which support the interaction
of multiple participants over the Internet have become increasingly available and economically viable, most
notably in the computer gaming industry. Such systems, commonly called networked virtual environments
(NVES), are usually based on a client-server architecture where for performance reasons and bandwidth
restrictions, the simulation is partially delegated to theclients. This inevitable architectural choice renders
the simulation vulnerable to attacks against the semantic integrity of the simulation: malicious clients may
attempt to compromise the physical and logical rules governing the simulation, or to alter the causality of
events a posteriori.

In this paper, we initiate the systematic study of semantic integrity inNVES from a security point of view.
We argue that naive policies to enforce semantic integrity involve intolerable network load, and are therefore
not practically feasible. We present a newprovably securesemantic integrity protocol based on cryptographic
primitives which enables the server system to audit the local computations of the clients on demand. Our
approach facilitates low network andCPU load, incurs reasonable engineering overhead, and maximally
decouples the auditing process from the soft real time constraints of the simulation.

1 Introduction

Networked Virtual Environments (NVEs) are software systems in which users feel immersed in an artificial
world, typically viewed through a three-dimensional graphical rendering. The most widely deployed examples
of NVEs are networked interactive games, such asUnreal Tournament[1], in which remotely-located players
compete against each other using standard Internet connections. Social NVEs, such asSecond Life[2], have
recently emerged and are drawing corporate marketing resources to their online community [3].

Security in the form of cheat prevention - ensuring that everyone is playing by the same rules - is among the
primary technical and business imperatives for NVE operators. Beyond ensuring the reliability and integrity
of their systems, operators must maintain a community of repeat participants who generate a steady revenue
stream. Players are typically very sensitive to perceived cheating, and enabling cheating in online games is
one of the fastest ways to destroy a community and commercialreputation.

Massively multi-player online games (MMOGs), in which the number of concurrent participants may be
measured in the hundreds of thousands, are seen by many as thegreatest source of growth in online gaming.
Examples includeEve Online[4] and World of Warcraft[5], the latter with over 6 million subscribers. The

∗Supported in part by the European Commission through the ISTProgramme under Contract IST-2002-507932 ECRYPT.

1

key technical feature of these worlds is persistence, and this has spawned entire virtual economies tied to the
real world economy through the sale of game assets. Some estimates [6] claim the real-world value of online
game assets exceeds $2 billion, while the daily real-world transactions between Second Life users are reported
at $500,000 [7]. In-game cheating threatens the value of game assets if expensive goods are made common
through cheating, and hence has real-world economic implications.

Cheating is an attack on thesemantic integrityof the online community: A malicious user may attempt to
compromise the logical rules governing the simulation, or to alter the causality of events a posteriori. Such
attacks have been repeatedly reported in the trade publications for gaming applications, yet are rarely found
in the academic literature. The goal of the current paper is to initiate the systematic study of security issues in
NVEsand topresent security protocols which prevent malicious participants from compromising the semantic
integrity of the NVE.

Unlike online applications in which clients lie and cheat about their real world characteristics, in an NVE
the application software completely defines the rules of theenvironment: virtual characters are created in
the space and live their entire virtual lives according to the software implementation of the environment.
Secure software systems provide the opportunity to eliminate a broad range of cheats, because, in theory, any
character’s deviation from the pre-programmed rules of thegame can be detected. Unfortunately, practical
limits on the design and implementation of NVEs make it difficult to guarantee their semantic integrity.

NVE System Architecture. In this paper we are only concerned withremote accessNVEs based on the
client-server model[8, 9]. This includes almost all widely-used NVEs. In a client-server NVE architecture,
the authoritative and central version of the state of the NVEis maintained by the server systemStateServer.
The clients,Client1, . . . , Clientn, connect to the server over a wide-area, insecure network, and receive state
updates that are used to reconstruct their local model of theenvironment. The user is presented with a graphical
representation of the model and can provide input in response to what they see (pick up an object, send a text
message, etc.). The resulting events, in the form of state update requests, are sent back to the server. We refer
to the processing of state updates and the evolution of the world model assimulation.

Each timeClienti wants to update the shared state of the NVE, it has to send a corresponding request to
StateServer. StateServer checks whether the requested actions are compliant to the rules of the NVE. If
this is the case,StateServer sends toClienti an authoritative state update message that contains (as acknowl-
edgment) the requested state update ofClienti as well as all changes to the central state that occurred since
the last update message was sent toClienti. Finally, Clienti updates its local state according to the answer
received from the server system.

We define aclient cycleas the procedure which starts with the computation of the update request byClienti
and ends with the client state update according to the serverresponse. In a typical NVE application the client
cycle is repeated at around 10Hz. Different portions of the state may be updated at different rates to balance
interactivity versus bandwidth. Interpolation is used to present the user with a higher visible update rate.

Client software can be modified by malicious participants. Simple modifications include exposing suppos-
edly hidden state or modifying damage done by weapons. Consequently, any security assessment of NVEs
must assume that all clients are untrusted. Thus, NVEs with remote access not only have to cope with the
deficits of the networking infrastructure (long transmission times and frequent packet loss [10]), but also with
malicious clients attacking theNVE . These attacks take many forms, which we describe in Section 2.

The Semantic Gap and Security. One of the most important business metrics for an NVE is the number of
clients per server. Each client represents monthly subscription revenue, while each server represents a cost,
and providers aim to maximize their net revenue per client. Each user represents a computational load, so
servers must be added as clients are added, or the work per client must be reduced.

2

Tightly interconnected server clusters are used to add servers while maintaining the appearance of a single
StateServer machine. Since all resources within the cluster are solely dedicated to the NVE, we will assume
that they are mutually trusted. Consequently, clustering does not directly affect the security of the NVE.
Clustering enables growth in client numbers, but it does notimprove the client per server ratio. Clustering also
fails to provide for NVEs that enable users to run their own servers, such asUnreal Tournament.

The practical way to reduce server workloads is to off-load more work to the client. Clearly, it is most
beneficial to transfer the most computationally demanding tasks: rendering of 3D images and simulations of
natural phenomenon are two examples of tasks that are almostalways computed on the client. Users actively
prefer this approach because it allows them to improve theirpersonal experience by investing in their own
computational resources.

Computing on the client is only of benefit if the server does not repeat the work, but then the client compu-
tations must be trusted to embody some of the rules of the world. For example, a physically-based simulation
of a user’s vehicle would be done on the client, and only this simulation can tell us if the vehicle stays on
the road as it rounds a bend. The server has only anabstract representation of the world: the user is in a
vehicle at a certain location moving at a certain speed. Onlythe client is computing theconcreteoutcome of
the simulation step. We refer to the difference between server and client knowledge as thesemantic gap.

The semantic gap is the primary means by which malicious clients subvert semantic integrity. Such a client
can successfully submitspurious updatesthat are consistent with the rules of the NVE on the abstract level,
but violate the NVE semantics at the concrete level. In our vehicle example, the client could inform the server
that the vehicle rounds the bend, even though the client simulation indicates that it crashes.

Closing all semantic gaps requires a very extreme form of NVE, in which final rendered images are com-
puted on the server and securely sent to clients. This is totally impractical – it takes all of the resources of a
dedicated graphics card to compute one image on a client, while a server would have to compute thousands
of these images, not to mention the bandwidth. On the contrary, economic concerns demand very aggressive
movement of simulation from the server to the client.

Given that we cannot close the semantic gap, we aim instead todetect the presence of spurious updates.
This is challenging because the trustworthy server does nothave the clients’ complete local states, including
the rendered images, and has no hope of obtaining all such state at every time step.

Engineering Requirements. The computational workloads of NVEs not only lead to security problems via
the semantic gap, they also place requirements on the designof any security solution:

• Minimal and Scalable Resource Overhead:The overhead caused by the security solution should be
as small as possible and scale well with respect to the numberof participants and the level of security to
be enforced. While this sounds like an obvious requirement,we want to stress that the typical MMOG
client application is heavily optimized to exploit all resources in the drive for a compelling experience.
Therefore, any approach which causes significant CPU or network overhead at the client- or server-side
is impractical.

• Minimal Quality of Service Requirements. A security solution should utilize unreliable network
services for as many messages as possible.Only a few important messages should require timely and
reliable send operations.

• Minimal Engineering Overhead: NVES are complex software systems which usually consist of mul-
tiple large software packages, some of which may be third-party middleware. Thus, it is often infeasible
to modify an existing NVE to meet strict security requirements. A security solution should be as inde-
pendent as possible from the simulation and should only affect small portions of the code.

3

Technical Contribution. The main technical contribution of this paper is a set of provably secure protocols
that maintain the states of the clients and the server consistently and securely, even in the presence of mali-
ciously modified clients. The approach is based on an efficient audit procedurethat is performed repeatedly
and randomly on the NVE clients. During the audit process, itis verified whether theconcretestate updates
performed by the client in a specific time frame are valid according to the NVE semantics. The solution meets
all above stated requirements:

• The protocols enforce semantic integrity on the NVE clients, while allowing a central abstracted state
and autonomous clients. We prove in appendix A that the protocols are secure under standard crypto-
graphic assumptions.

• The solution incurs very low additional network traffic, andrequires the transmission of complete client
states over the networkonly during the audit process. More precisely, our solution requires only a few
additional bytes per client cycle which is a negligible quantity in comparison to the other messages in
the client cycle. The security overhead consists solely of ahash which is considered secure at a size
of about 20 bytes. On the other hand, a modern MMOG requires roughly one kilobyte per client and
cycle. Note that with thousands of clients, bandwidth is a bottleneck mainly at the server side.

• Our solution uses reliable and time critical network transmissions only for a few small messages. All
other messages, in particular the complete audit process, can be implemented solely using unreliable
send operations.

• The audit process is completely independent of the (time critical) simulation, and will in general not
affect the smoothness of the simulation for all but possiblythe audited party.

• The protocol is designed to be integrated with existing middleware approaches with tolerable overhead.
In particular, the protocol is abstract [11], i.e., it can beadapted for any specific MMOG.

Although the effort to integrate the protocol within a newlydesigned NVE is reasonable, the complication is
to integrate the protocol into an existing code for a MMOG. A full blown MMOG is estimated to take $50
million prior to its launch [12] and therefore such an implementation is not accessible. Thus, we do not present
a prototypical implementation.

Related Work on Security. Audit trails were successfully applied in electronic commerce applications (e.g.,
see [13]). An audit trail enables a special party, calledauditor, to verify the correctness of previous transac-
tions. The audit trail can either be stored at the client or the server. In any case, the audit information must be
protected from modifications. Bellare and Yee [14] identified forward securityas the key security property for
audit trails: even if an attacker completely compromises the auditing system, he should not be able to forge
audit information referring to the past. Implementations of secure audit and logging facilities can be found in
[15, 16, 17].

The protocols described in this paper follow the principlesof audit trails, but account for the specific par-
ticularities of NVE environments. Most importantly, our solution incurs a minimal network traffic overhead,
while retaining its security. In fact, a direct adoption of classical audit trails to the NVE scenario would inflict
a large load on the network, as the concrete state updates of all clients must be verified. In our solution, the
audit information is stored at the client side and sent to theauditor on request. The client only “commits” itself
to a status update by sending a short message to the server, which cannot be altered later.

The approach taken is fundamentally optimistic: we allow cheating to happen, but aim at later detection.
Under the assumption that cheating does not occur too often,this approach incurrs only low detection over-
head. The approach is thus related to optimistic fault tolerance [18].

Replication techniques for Byzantine fault tolerance [19,20] also seem applicable to our problem. However,
since the client has complete control of the replicas, thesetechniques cannot address the semantic-integrity

4

problem caused by cheating on the client side. Still, replication based techniques are certainly applicable on
the server side.

Only a few papers have dealt directly with security in onlinegames. Baughman and Levine [21] and
Chen and Maheswaran [22] concentrated on peer-to-peer multiplayer games, while we consider client server
architectures of large-scale online games. Yan and Choi [23, 24] gave a taxonomy of security issues in online
games and a case study on security of online bridge gaming. Davis [25] points out the importance of security in
online games from a business perspective. Pritchard [26] deals with semantic attacks. However, this approach
requires each client to run the entire simulation, which does not scale for MMOGS and is primarily targeted
at small-scale peer-to-peer gaming applications.

2 Threat Analysis

The first NVEs were military simulation systems where the users belonged to well-defined groups whose
NVE-clients were trusted. However, as large-scale NVES with untrusted and dispersed participants are be-
coming more popular, the security of NVES becomes an eminent issue. We have identified the following
security threats in the context of an NVE with untrusted participants:

1. System Security Attacks: There are a number of classical security problems associated with NVES,
such as authentication, or host security. These security issues have been widely studied [27, 28].

2. Semantic Subversion:The participants of an NVE can interact in the virtual environment according
to the set of rules embodied in the simulation algorithms. The enforcement of these rules is of crucial
importance for all honest participants and the system’s host. We call attacks targeted at circumventing
or subverting these rules semantic attacks.

(a) Semantic Integrity Violation: Attacks in this category attempt to violate the physical andlogical
laws of the NVE without detection by the server. All attacks in this class involve maliciously
modified software on the client side and come in two flavors:

i. Rule Corruption: The malicious client attempts to modify the simulation in a way that is
illegal but plausible to the server system. For example, theclient modifies their vehicle physics
system to allow higher speeds without negative road-holding consequences. The server is not
running the complex vehicle simulation, so it does not know precisely what the vehicle should
be doing.

ii. Causality Alteration: The malicious client attempts to withdraw previous state changes to
obtain unfair advantages, i.e., the client attempts to “rewrite its history”. For example, position
information could be changed to avoid taking damage from an explosion, after the explosion
had happened and damage was determined by the client.

(b) Client Amplification: In this case, the client employs modified software to achievecapabilities to
exploit the possibilities of the NVE in an unintended manner. During such an attack, the externally
observable behavior of the amplified client is not reliably distinguishable from the behavior of a
honest client. Amplification attacks contain the followingtwo main categories:

i. Sniffing: The malicious client exposes information which has to be downloaded for technical
reasons but is not intended to be observable immediately. For example, a client can be mod-
ified to render opaque walls as transparent, thus revealing amonster in a neighboring room
that should have been hidden. Note that cheats of this kind may not require modifications to
the client application — access to client memory or system libraries suffices for a cheat.

5

ii. Agents: The malicious client enhances the natural capabilities of the human participant. For
example, an agent could automatically maintain a model of the world and employ search
strategies to guide the player, or could log and replay successful prior actions.

3. Metastrategies: Attacks in this category are compliant with the NVE and do notinvolve software
modifications. They exploit principal vulnerabilities present in the NVE, e.g., collusive collaboration
of human participants, or mobbing of fellow participants.

Note that system security attacks are targeted against the server systems, while all other attack groups identified
in this section describe exploits which involve only the client side.

System security attacks are exploits that do not involve specific properties of NVEs and therefore they are
not in the scope of this paper. On the other extreme, Metastrategies do not violate the semantic rules of the
game, and require solutions that look outside the environment. Consequently, the focus of this paper is on
Semantic Subversion Attacks; these attacks are further subdivided into the categories Semantic Integrity Vio-
lation and Client Amplification. Some client amplification attacks can be addressed with memory encryption
or other countermeasures [26], but not all can be handled in arigorous way because they require models of
human player capabilities. They are, however, amenable to statistical detection and countermeasures similar
to intrusion detection systems [29].

We considerSemantic Integrity Violationthe most important NVE-specific class of attacks which needs
to be treated at the protocol level. The protocols presentedin this paper consider both rule corruption and
causality alteration attacks. To do so, the protocols enforce the following two conditions on the client behavior:

• Rule Compliance: Each client is only allowed to act in accordance with the rules of the NVE. This
prevents rule corruption.

• Monotone History: The actions of the client must be irrevocable and undeniable. Consequently, clients
are not allowed to choose an alternative history of actions once they obtain more information in the
future. This condition prevents causality alteration.

3 Unsecured Client Cycle

In this section, we review the state update mechanism that iscommonly implemented in NVES that main-
tain a central abstract state. We writeASTATE to denote the centrally maintained and abstracted state. Depend-
ing on the spatial position ofClienti within the simulated world, only a portion of the entire state is relevant
for theClienti; this portion is denoted byASTATE[Clienti]. The relevant portion of the abstracted and centrally
maintained state is transfered to the client. Locally, thisabstract state is expanded to a concrete state by the
client.

Given an abstract states, we useγ(s) to denote the set of possible concretizations. Furthermore, if S

is a concrete state, thenα(S) is the unique abstract state which corresponds toS. The pairα()/γ() can be
naturally viewed as a Galois connection between the set of abstract and concrete states [11], i.e.,S ∈ γ(α(S))
ands = α(S) for anyS ∈ γ(s).

When connecting to the NVE,Clienti receives a concrete stateS ∈ γ(ASTATE[Clienti]) to initialize its
local stateSTATE[Clienti]. From this point on,Clienti maintains and updatesSTATE[Clienti] locally and only
receives abstract updates.

If Clienti wishes to change its state, it has to inform theStateServer in order to update the central NVE-
stateASTATE. For this purpose,Clienti computes a state update in the form of a compact description∆ of
the difference between the current stateSTATE[Clienti]t and the intended next state; we call∆ a diff. Given a
stateS and a diff∆ betweenS andS′, we denote the application of∆ to S by S′ = S ⊞∆. Note that∆ will

6

typically be small compared to the state descriptionsS if the NVE performs a fine-grained simulation of the
virtual world.

In the following, we will applyα() andγ() not only to states, but also to diffs. In particular, we useα(∆) to
denote the abstraction of a diff. IfS′ = S ⊞∆ holds, then we require thatα(S′) = α(S)⊞ α(∆) is also true.
Not every concretization∆ of an abstract diffδ might be applicable to a given concrete stateS. Therefore,
we use useγ(S, δ) to denote the set of concretizations of an abstract diffδ which can be applied toS. More
precisely, ifS′ = S ⊞∆, then∆ ∈ γ(S,α(∆)) and for all∆′ ∈ γ(S,α(∆)), we getα(S ⊞∆′) = α(S′).

One client cycle consists of the following steps: The clientsends an abstraction of∆, denoted byδ =
α(∆), to StateServer, which evaluates the semantics of the update. This abstractdiff δ contains the changes
requested by the client. We callδ a request diff.Now, two cases can happen:

• If δ is allowed with respect to the semantics of the NVE, thenStateServer responds with aδ′ that
contains all changes intended byClienti together with state updates performed by other clients present
in the NVE. Upon receipt ofδ′, Clienti computes a concretization∆′ ∈ γ(STATE[Clienti], δ′) and
updates its own state by computingSTATE[Clienti]t+1 = STATE[Clienti]t ⊞∆′.

• If δ is not consistent with the semantics of the NVE, the server refuses to apply the update. This
can happen ifClienti tries to do something impossible, such as opening a locked door. Moreover,
inconsistencies can be caused by synchronization and communication errors (e.g., packet loss of the
network). In this case, theStateServer responds with a state updateδ′ which only contains the states
updates of other clients.

In either case, the responseδ′ of theStateServer is calledauthoritative diff.
If the clients behave according to the NVE specification, this protocol suffices to consistently maintain both

the state of the clients and the server. However, if malicious clients participate in the simulation, this protocol
is susceptible tosemantic integrityviolation as described in Section 1:StateServer is only able to check
whether theabstractstate updatesδ = α(∆) are consistent with itsabstractstate. A maliciousClient (see
Definition 5.3) can make an inconsistent state change∆ whose abstractionδ is consistent with the NVE rules.

4 Secure Semantic Integrity Protocol (SSIP)

In this section, we show how to amend the basic state update protocol described above with cryptographic
mechanisms in order to prevent semantic integrity violation attacks. This protocol will satisfy all requirements
established in Section 1.

Our approach is based on an audit procedure, which is performed by a dedicated server, namely the
AuditServer. During each client cycle, the client sends a piece of evidence (containing a hash of the ap-
plied concretestate update) as action commitment toAuditServer. From time to time, theClient will also be
requested to commit to a concrete state; these states will serve as possible starting states for the audit process.

Note that our security model assumes thatAuditServer is fully trusted. In particular, the protocols do not
provide non-repudiation: a cheating audit server could frame innocent clients by wrongly claiming that they
behaved badly. However, we do not consider this case, as we believe that it is not a practical situation in
commercial NVEs.

When auditing is initiated,AuditServer asks aClient to provide a sequence of concrete state updates for
a specific time frame together with an initial concrete full state. Based on this information,AuditServer
simulates the requested segment of theClient computation and checks both its compliance to the NVE rules
and its consistency with the action commitments sent previously.

Audits are initiated according to a strategy determined by the server, which is unpredictable for the client.
For example,AuditServer might choose clients for auditing in a completely random fashion or audit “on
demand” whenever statistical evidence suggests cheating.

7

Audit Cycles. The auditing process is organized in terms ofaudit cycles,where each audit cycle consists
of exactlyl client cycles. At eachl-th client cycle a new audit cycle is started. In this paper, we assume for
simplicity thatl is a system-wide announced and agreed on parameter. However, it is possible to customizel
for each client while the simulation is running. The parameter l essentially determines how far back into the
past auditing is possible.

At the beginning of each audit cycle, the client sends a hash of the concrete full state as action commitment
to AuditServer. As this hash may be costly to compute because of the large state description, this message
has to arrive only within the current audit cycle (i.e., within the nextl client cycles). In addition, as noted
above, during each client cycle, the client sends an action commitment of the applied concrete diff; as the diff
is usually small, we require that this message arrives atAuditServer during the same client cycle.

����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

���
���
���
���

5l

6l

7l

8l

9l

(b)(a)

Diff

Audited history

Full state

(c)

Full state action
commitment available

Diff action commitment
available

Figure 1. The "sliding window".

While StateServer only keeps the current ab-
stracted central state, the clients do not only main-
tain their current concrete state but alsoretain a
history of previous states in a local buffer,con-
taining up to 3 full states and3l diffs. In particu-
lar, theClient has to retain a copy of the complete
state at the beginning of each new audit cycle to-
gether with diffs between the states of interme-
diate client cycles. All buffer content older than
three audit cycles on the client side can be deleted
safely. The buffer thus describes a “sliding win-
dow” which contains the state history of the last
2l + 1 to 3l client cycles, i.e., the last two full au-

dit cycles and the current one. Thesliding windowwhich is maintained at client cyclet0 ≥ 2l contains the
statesSta , Sta+l

, St0 as well as all the intermediate diffs∆′
ta+1, . . . ,∆

′
t0

where

ta =

⌊

t0

l
− 2

⌋

l. (1)

Thus,ta denotes the expiration time for client side audit information. In addition to the history of states, the
client stores all messages received from the server within the time interval determined by the sliding window.

Figures 1(a), (b), and (c) show the gradual change of the buffer of one specific client. These figures illustrate
the buffer contents at client cycles7l + 1, 7l + 2, and7l + 3 = 8l, respectively. The symbol• represents a
fully saved state, whereasN represents a concrete diff, both saved at the client. On the other hand,◦ and△
represent action commitments of full states and diffs whichare available at theAuditServer (note that full
state action commitments◦ are only available after an audit cycle is finished).

As seen in Figure 1, at most three fully saved states are retained at any given time; the scope of an audit pro-
cess covers at most three audit cycles (see Figure 1(b)). Once a new audit cycle is completed, the information
about an earlier audit cycle can be discarded (see Figure 1(c)).

Audit Process. During the audit process,AuditServer requiresClient to prove that its actions during the
last two completely finished audit cycles and the current audit cycle are compliant to the rules of the NVE.
For this purpose,Client sends the contents of the current sliding window (i.e., the state information) together
with all corresponding state server messages toAuditServer, who simulates the client computations.

Now, AuditServer checks whether

1. the received state information matches the action commitments previously submitted by the client,
whether

8

2. the client computation is compliant to the rules of the NVEand whether

3. the client correctly committed itself to the starting states of all audit cycles contained in the audited
period.

The audit results in a positive verdict if and only if all checks succeed. Note that the third condition is of
central importance, as this prohibits the client from cheating on future audit starting states.

Crucial to the correctness of the audit process is the enforcement of the timing conditions for the action
commitments. The action commitment of a diffmustarrive within the current client cycle, whereas action
commitments of full states must be available only when the current audit cycle is completed. In Figure 1 the
action commitments (represented by△) for diffs are available at theAuditServer immediately. In contrast,
the action commitment◦ for the full state7l becomes available when the system enters state8l.

Note that the late availability of the full state action commitment messages requires the audit process to audit
at least two full audit cycles, as otherwise the semantic integrity of the future audit starting points cannot be
guaranteed. In principle, the protocols can easily be adapted in such a way that more audit cycles are verified
during each invocation of the audit protocol. However, for the sake of brevity, we present the protocols for the
simplest case of auditing at most three audit cycles.

Protocol Description

Secure integrity enforcement is performed by three protocols Initialize, StatusUpdate and Audit. The
protocolInitialize is performed whenever a client wants to join the NVE, whereasStatusUpdate is executed
at each client cycle (i.e., whenever a client wishes to change its state). Finally,Audit implements the auditing
mechanism. We assume that a client leaving the NVE performs an ordinary status update, where the diff
encodes the intention to leave the NVE.

For the sake of simplicity, we present the protocol for a single clientClient that interacts withStateServer
andAuditServer. For multiple clients, the protocol is processed asynchronously in parallel. Sending a mes-
sage unreliably will be denoted by . Sending a message reliably that must arrive before the nextt-th client
cycle is initiated, will be denoted by֒→t. Unreliable messages may be dropped or delivered with delay.
However, we assume that no packet corruption occurs.

In the protocols we use a Message Authentication Code (MAC) and a collision-free hash function as
cryptographic primitives (for a formal definition of these primitives, see [30]). For computing MAC-tags,
an appropriate key must be generated withk = GenMac(1n) wheren is the security parameter. Then, a
tag t for a messagem is computed witht = SignMac(k,m), whereas the verification algorithm is writ-
ten as VerifyMac(k,m, t) = {true, false}. We write M = AuthMsg(k,m, Client) as an abbreviation for
m ‖ SignMac(k,m ‖Client), where‖ denotes string concatenation. Furthermore, we will denotewith M (1)

andM (2) the two parts of the messageM , i.e.,M (1) = m andM (2) = SignMac(k,m ‖Client). The hash
function CFHashh(m) is chosen from a collection of collision-free hash functions. Leth = GenCFHash(1n)
be its index, wheren is the security parameter. For the sake of simplicity we willabbreviateSTATE[Client]t
with St.

The protocols use a single MAC keyk which is mutually agreed between the state server and the audit server
and is used to authenticate status updates sent fromStateServer to Client. The MAC enablesAuditServer
to check whether a cheatingClient has passed modified status update messages to theAuditServer.

In the following, we describe each protocol in detail:

Initialize: This protocol initializes the state of aClient wishing to join the NVE (see Figure 2).

9

1. Client initializes t := 0 and sends an initialization request toStateServer.

2. StateServer AuditServer : k := GenMac(1n)

3. AuditServer Client : h := GenCFHash(1n)

4. StateServer choosesS ∈ γ(ASTATE[Client])

5. StateServer Client : M0 := AuthMsg(k, S ‖n0, Client)

6. Client setsS0 := S

7. Client →֒l AuditServer : Q0 := CFHashh(S0)

Figure 2. Protocol Initialize

1. Client computes a desired status change∆t+1 and its abstractionδt+1 = α(∆t+1)

2. Client StateServer : δt+1

3. Upon receivingδt+1, StateServer computes a newδ′t+1 and updates itsASTATE accordingly

4. StateServer Client : Mt+1 := AuthMsg(k, δ′t+1 ‖nt + 1, Client)

5. Client chooses and stores∆′
t+1 ∈ γ(St, δ

′
t+1) and computesSt+1 = St ⊞∆′

t+1

6. Client →֒1 AuditServer : Dt+1 := CFHashh(∆′
t+1)

7. Client incrementst

8. if t modl = 0

(a) Client deletes all∆′
t−i with 2l ≤ i < 3l as well as the full stateSt−3l (if t ≥ 3l).

(b) Client storesSt and starts to computeQt := CFHashh(St).

(c) After computation ofQt, Client →֒l AuditServer : Qt.

Figure 3. Protocol StatusUpdate

Upon opening a connection toStateServer, an appropriate MAC-keyk as well as an indexh for the
collision-free hash function are generated and distributed. In a practical implementation, the index of the hash
function would be fixed and globally distributed. Then, the client receives the relevant status information
together with a randomly generated noncen0 and a MAC of the message. At this point the state server
transmits aconcretestateS ∈ γ(ASTATE[Client]) to the client. The client initializes its local stateS0 with S.
Note that this is the only point, besides the audit procedure, where a concrete state is transmitted. Finally, the
client sends as evidence a hash of its stateS0 reliably to the audit server; as the hash of the concrete state may
be costly to compute, we only require that this process is completed before thelth client cycle is initiated.

StatusUpdate: After initialization, the client uses this protocol to update its local state in each client cycle
to reflect actions of the client itself, of other clients, andthe state server. Formally, the protocol is shown in
Figure 3.

Suppose the client is in stateSt and wants to change its state according to the diff∆t+1. To initiate the
update protocol, the client sends an abstracted request diff δt+1 = α(∆t+1) toStateServer. The server checks
whether this request is valid and consistent with the current central NVE stateASTATE and computes a new

10

1. AuditServer Client : audit‖ t0

2. Client computesta =
⌊

t0
l
− 2

⌋

l

3. Client AuditServer : Sta ‖∆′
ta+1 ‖ . . . ‖∆′

t0
‖Mta+1 ‖ . . . ‖Mt0

4. AuditServer computesŜi+1 = Ŝi ⊞∆′
i+1 for i = ta, . . . , t0 − 1 whereŜta = Sta

5. For alli = ta + 1, . . . , t0, AuditServer checks whether∆′
i is chosen fromγ(Ŝi, δ

′
i) compliant with the

rules of the NVE, whereδ′i is taken from the messageMi

6. For alli = ta + 1, . . . , t0, AuditServer checks whether

(a) VerifyMac(k,M
(1)
i ‖Client,M (2)

i) = true and

(b) CFHashh(∆′
i) = Di

7. AuditServer checks whether CFHashh(Sta) = Qta and CFHashh(Ŝta+l) = Qta+l.

If ta = 0, Client AuditServer : M
(2)
0 andAuditServer checks VerifyMac(k, S0‖Client,M (2)

0) =
true.

8. AuditServer accepts the computations ofClient if and only if all tests in steps 5 to 7 passed.

Figure 4. Protocol Audit

authoritative diffδ′t+1. This diff might differ fromδt+1 since it has to reflect changes of other clients and the
server itself; however, ifδt+1 is legitimate with respect to the NVE semantics,δ′t+1 contains the state changes
of δt+1. If δt+1 violates the semantic integrity,δ′t+1 only contains the state updates of the other clients butnot
δt+1 (or at most those actions inδt+1 that are consistent). TheStateServer updates its centrally managed
stateASTATE according toδ′t+1 and sendsδ′t+1 back to the client, together with a MAC and an incremented
nonce (steps 1-4 of the protocol).

The client now computes a concrete state update∆′
t+1 ∈ γ(St, δ

′
t+1) and applies it toSt to enter the next

stateSt+1 = St⊞∆′
t+1. Finally the client sends a hash of the concrete diff∆′

t+1 as action commitment reliably
to theAuditServer before the next client cycle is started (this message is denoted byDt). Additionally, at the
beginning of each audit cycle, the client sends a hash of its full state toAuditServer. This message, denoted
by Qt, is sent reliably but must arrive within the current audit cycle, i.e., within the nextl client cycles.

For audit purposes, the client saves all information as evidence that is necessary for the audit server to
simulate its computations. More precisely, at the beginning of each audit cycle, the client saves its full state;
in intermediate client cycles, the client only retains diffs to the previous state. In addition, the client saves all
messagesMi received from the state server. Finally, all outdated auditinformation (i.e., the fully saved state,
all diffs and messages belonging to the third-last audit cycle) can be removed (step 8).

Audit: During the audit protocol,AuditServer validates the computations of oneClient. In particular,
AuditServer checks whether the client can present concrete state updates that match the action commitments
received so far and are consistent with the NVE rules (see Figure 4).

The auditing protocol starts with an audit message sent to the Client during client cyclet0. An audit can
be initiated at any client cyclet0 ≥ 2l. The client first computes the starting pointta of the audit according
to equation (1). The client then sends the concrete stateSta as well as all diffs∆′

i and messagesMi for
ta + 1 ≤ i ≤ t0 to theAuditServer (steps 1-3 of the protocol). Finally, the audit server checks, using the
action commitment messagesDi andQi submitted by the client before, whether the client adhered to the NVE

11

semantics. In particular, the audit server checks

• whether all∆′
i are suitable concretizations ofδ′i sent by the state server in messageMi (step 5),

• whether all state server messagesMi (ta + 1 ≤ i ≤ t0) are unmodified (step 6(a)) and

• whether all action commitment messages (Dt andQt) submitted by the client beforehand are valid, in
particular theAuditServer checks

– the hashes on the messagesDi, ta + 1 ≤ i ≤ t0, (step 6(b)) and

– the hashes of the full statesSta and Sta+l, contained in the messagesQta and Qta+l (step 7).
Note that these messages are already available to the audit server if the timing conditions of the
StatusUpdate protocol are enforced.

• If the first audit cycle is to be audited (ta = 0), then Client is required to presentM (2)
0 =

SignMac(k, S0‖Client) to AuditServer additionally to prove that the initial stateS0 has been autho-
rized by theStateServer (step 7).

If all checks pass, the client is considered honest (step 8).

Computation and Engineering Overhead. The protocol can be implemented in a very resource efficient
manner: TheStatusUpdate protocol requires only a few MAC and hash computations over relatively small
amounts of data. The hash computation over the complete state of a client can be processed in background
during thel client cycles of an audit cycle. Moreover, only the MACs and hashes are additionally transmitted
over the network.

In contrast, theAudit protocol is much more data intensive and involves a completere-simulation of the
client computations. However, the execution of theAudit protocol is not time critical and can be delegated to
a specific server, namely theAuditServer. Therefore, it does not cause resource overhead at theStateServer.

To integrate our protocol into an NVE system, one has to implement the protocol logic, add the computation
of the MACs and hashes at the state server and the client, and implement the audit server. It should be possible
to implement the audit server by mainly reusing client code since the audit server is simulating the client
computations. The biggest problem in implementing the protocol will likely be the creation of copies of
the complete client state in a timely manner, as required at the beginning of each audit cycle. However, all
remaining parts of the protocol can be implemented in a straight forward manner.

5 Security

In this section, we will state the security property achieved by the Secure Semantic Integrity ProtocolSSIP.
In particular, we introduce two properties (namelyrule complianceandmonotone history,discussed briefly in
Section 2) which jointly assure the semantic integrity of the NVE. We show that the protocol above enforces
both properties.

We introduce thesuccessor relation≻, whereSTATE ≻ STATE′ holds if there is a diff∆ such thatSTATE′ =
STATE ⊞ ∆. Analogously,ASTATE ≻ ASTATE′ is true, if there is an abstract diffδ such thatASTATE′ =
ASTATE ⊞ δ. Since by definitionSTATE′ = STATE⊞∆ impliesα(STATE′) = α(STATE)⊞ α(∆), we find that
STATE ≻ STATE′ ⇒ α(STATE) ≻ α(STATE′) holds, see Section 3. However, the converse is not necessarily
true, since it is possible that there are no concrete states which realize a given abstract transition.

Based on the successor relation, we define a sequence of concrete states〈STATE0, . . . , STATEt〉 asvalid if
∀ 0 ≤ i < t : STATEi ≻ STATEi+1 holds. Analogously,〈ASTATE0, . . . , ASTATEt〉 is a valid sequence of
abstract states if∀ 0 ≤ i < t : ASTATEi ≻ ASTATEi+1.

12

During theInitialize- and StatusUpdate-protocol, the client receives a concrete stateSTATE0 and a se-
ries〈δ′1, . . . , δ

′
t〉 of (abstract) authoritative diffs. Thus, the client and theStateServer producecooperatively

a sequence of abstract states〈ASTATE0, . . . , ASTATEt〉, whereASTATE0 = α(STATE0) and ASTATEi+1 =
ASTATEi ⊞ δ′i+1. TheStateServer only checks whether the abstract sequence〈ASTATE0, . . . , ASTATEt〉 is
valid; as noted Section 1, the concept of abstract states hasbeen introduced to relieveStateServer from
the workload of maintaining the details of the concrete representation. But the validity of the abstract se-
quence does not guarantee itsrealizability: We say that〈ASTATE0, . . . , ASTATEt〉 is realizable atconcrete
stateSTATE0, if there exists a valid concrete sequence〈STATE0, . . . , STATEt〉 which starts withSTATE0 and
whereSTATEi ∈ γ(ASTATEi) holds for all0 ≤ i ≤ t.

Definition 5.1 Rule Compliance
A client behavesrule compliant,if the sequence of abstract states〈ASTATE0, . . . , ASTATEt〉 produced by the
client and theStateServer is realizable at concrete stateSTATE0. •

During theAudit-protocol, theAuditServer asks the client to disclose some of its former concrete states
〈STATE0, . . . , STATEt〉. In this situation, it may happen that the sequence disclosed by the client is rule com-
pliant, but the client has manipulated this sequence in order to make its history look as if it were compliant
to the rules of the NVE. In Section 2, we called such a behaviorcausality alteration. For a givenq ≥ t, we
denote byHSTATE

q
t the state returned by the client if queried at timeq for its former stateSTATEt. HSTATE

q
t is

ahistorical state.
If the client is honest, it will always return the truthful historical states, i.e.,HSTATE

q
t = STATEt for all

q ≥ t. In this case, the client never rewrites its history (i.e.,HSTATE
q
t 6= HSTATEr

t) and thus we say the client
has a monotone history.

Definition 5.2 Monotone History
A client has a monotone history, ifHSTATE

q
t = STATEt for all q ≥ t. •

A client which obeys the requirements of rule compliance andmonotone history is a honest client.

Definition 5.3 Honest and Malicious Clients
A client is honest, if it behaves rule compliant and discloses a monotone history. Otherwise, the client is
malicious. •

The following theorem show that (under standard cryptographic assumptions) the protocol of Section 4 en-
forces honest client behavior.

Theorem 5.4 Security of the Secure Semantic Integrity Protocol (SSIP)
If CFHash is a collection of collision-free hash functions,and SignMac is a message authentication code
secure against selective forgery of messages, then the Secure Semantic Integrity Protocol (SSIP) enforces
honest client behavior(assuming probabilistic polynomial time computations on client- and server-side).

We show the theorem by a simultaneous reduction to the problems of finding collisions of the hash func-
tion CFHash and of forging MACs of SignMac. Suppose that there is a client that succeeds to cheat with
non-negligible probability by violating either the security property of rule compliance or of monotone his-
tory. Then, we show that there exist algorithms AttackHash and AttackMac that can compute collisions of
CFHash or forge MACs; one of the algorithms will have non-negligible success probability, which violates
the assumptions.

As a proof technique, we use the concept of amalicious behavior experiment,consisting of aScenario-
Generator, which simulates both aStateServer and a set of clients. AScenarioGenerator is designed for a
specific malicious client and provides this client with a view which is identical to a real-world execution of the
NVE. The simulation, as provided by theScenarioGenerator, is designed to allow the corresponding client

13

to behave maliciously, i.e., theScenarioGenerator is intuitively used to demonstrate the malicious behavior
of the client.

At some point during the simulation, an audit process is initiated and the malicious client responds to the
request accordingly. We say that the malicious behavior experiment issuccessful,if the client could cheat
within the audited client cycles such that the involvedAuditServer is unable to detect the malicious behavior.

By a case analysis, we show that, whenever a malicious clientis able to cheat theAuditServer in a malicious
behavior experiment, it is possible to find either a collision of the hash function or a forged MAC: If there is a
client together with aScenarioGenerator which is performs successfully in malicious behavior experiments
with non-negligible probability, then we can either produce collisions of the hash function or forged MACs
with non-negligible probability.

Thus, we show that the existence of a client which is successful in the malicious code experiment violates
standard cryptographic assumptions. Therefore, theSSIP enforces honest client behavior. For the detailed
proof see Appendix A.

6 Conclusion and Future Work

In this paper, we have argued that networked virtual environments are an emerging network technology
which has not been subject to rigorous security investigations. We have identifiedsemantic integrityas a one
central security problem in NVES. Untrusted and malicious clients may utilize the fact that the central NVE
server can—due to the limited computing power and the disruptions in the network connection—only maintain
an abstracted version of the NVE state. To overcome this problem, we have introduced a newprovably
secureaudit trail mechanism which is able to verify the complianceof the client computation. Although we
allow autonomous clients, our protocols assure that regularly cheating clients will be identified with a high
probability. The audit mechanism proposed in this paper canbe seamlessly integrated into current NVE
architectures and incurs little engineering and resource overhead.

References

[1] Epic Games. Unreal tournament.http://www.unrealtournament.com, 1999.

[2] Linden Lab. Second life.http://secondlife.com, 2003.

[3] Virtual online world. The Economist, September 28 2006.http://www.economist.com/
business/displaystory.cfm?story id=E1 SJGPVPR.

[4] CCP Games. Eve online.http://www.eve-online.com, 2003.

[5] Blizzard. World of warcraft.http://www.worldofwarcraft.com, 2005.

[6] E. Castronova.The Business and Culture of Online Games. University of Chicago Press, 2005.

[7] A. Pasick. Us congress launches probe into virtual economies, October
15 2006. http://secondlife.reuters.com/stories/2006/10/15/
us-congress-launchs-probe-into-virtual-economies/.

[8] S. Singhal and M. Zyda.Networked Virtual Environments: Design and Implementation. Addison-Wesley,
1999.

[9] C. Joslin, T. Di Giacomo, and N. Magnenat-Thalmann. Collaborative virtual environments: Form birth
to standardization.IEEE Communications, pages 28–33, April 2004.

14

[10] S.K. Singhal.Effective Remote Modelling in Large-Scale Distributed Simulation and Visualization En-
vironments. PhD thesis, Stanford University, 1996.

[11] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs
by construction or approximation of fixpoints. InSymposium on Principles of Programming Languages,
pages 238–252, 1977.

[12] Michael Zenke. Interview: Call of the wild - turbine’s jessica mulligan on MMO trends.http://
www.gamasutra.com/features/20050422/zenke 01.shtml, 2005.

[13] J. Peha. Electronic commerce with verifiable audit trails. In Proceedings of INET’99, Internet Society,
1999.

[14] M. Bellare and B. Yee. Forward integrity for secure audit logs. Technical report, UCSD, 1997.

[15] B. Schneier and J. Kelsey. Secure audit logs to support computer forensics.ACM Transactions on
Information and Systems Security, 2(2):159–176, 1999.

[16] B. Schneier and J. Kelsey. Remote auditing of software outputs using a trusted coprocessor.Future
Generation Computer Systems, 13(1):9–18, 1997.

[17] C. Chong, Z. Peng, and P. Hartel. Secure audit logging with tamper-resistant hardware. InProceedings
of the 18th IFIP International Information Security Conference, pages 74–84, 2003.

[18] R. E. Strom and S. Yemini. Optimistic recovery in distributed systems.ACM Transactions on Computer
Systems, 3(3):204–226, 1985.

[19] M. Castro and B. Liskov. Practical byzantine fault tolerance. InProceedings of the Third USENIX
Symposium on Operating Systems Design and Implementation, 1999.

[20] M.K. Reiter. Secure agreement protocols: Reliable andatomic group multicast in rampart. InProceed-
ings of the ACM Conference on Computer and Communications Security, 1994.

[21] N. Baughman and B. Levine. Cheat-proof playout for centralized and distributed online games. In
Proceedings of the 20th IEEE INFOCOM Conference, pages 104–113, 2001.

[22] B. Chen and M. Maheswaran. A fair synchronization protocol with cheat proofing for decentralized
online multiplayer games. InProceedings of the 3rd IEEE Symposium on Network Computing and
Applications, pages 372–375, 2004.

[23] J. Yan. Security issues in online games.The Electronic Library: international journal for the application
of technology in information environments, 20(2), 2002.

[24] J. Yan and H.J. Choi. Security design in online games. InAnnual Computer Security Applications
Conference, 2003.

[25] S. Davis. Why cheating matters. cheating, game security and the future of on-line gaming business. In
Game Developers Conference, 2003.

[26] M. Pritchard. How to hurt the hackers: The scoop on the internet cheating and how you can com-
bat it. Game Developer Magazine, June 2000. http://www.gamasutra.com/features/
20000724/pritchard 01.htm.

15

[27] R. Anderson.Security Engineering. Wiley, 2001.

[28] W. Stallings.Cryptography and Network Security. Prentice Hall, 2003.

[29] H. Debar, M. Dacier, and A. Wespi. Towards a taxonomy of intrusion-detection systems.Computer
Networks, 31(9):805–822, 1999.

[30] O. Goldreich.Foundations of Cryptography, volume II: Basic Applications. Cambridge University Press,
2004.

16

Appendix

A Proof of the Main Theorem

In order to prove Theorem 5.4, we show that whenever a client is able to behave maliciously with non-
negligible probability, either a MAC-tag can be forged or a collision of the hash function can be found in
probabilistic polynomial time, again with non-negligibleprobability.

We naturally assume thatAuditServer executes a single step of theStatusUpdate- and theAudit-protocol
within polynomial time with respect to the security parameter n and the size of the concrete states.

As a malicious client can only operate in the environment of an NVE, we will use a scenario generator in
our proof which provides a client with a realistic environment by pretending to be the state server. The client
interacts with the scenario generator in the same way as it would with a state server.

Definition A.1 Scenario Generator
ScenarioGenerator is a probabilistic interactive Turing Machine which takes the security parameter1n as
initial input and produces a scenario〈S0, δ

′
1, . . . , δ

′
m〉 in the following way:

• First, it outputs a concrete stateS0. After this initial computation, theScenarioGenerator repeats the
following: it waits for an abstract request diffδt from the client and returns a corresponding authorita-
tive diff δ′t for 0 < t ≤ m wherem is the length of the scenario;m must be bounded by a polynomial in
n.

• The computation of the initial concrete stateS0 and the computation of each abstract diffδt must be
done in probabilistic polynomial time. •

The ultimate goal of the client, while interacting with theScenarioGenerator, is to behave maliciously
while being undetected by theAuditServer. More precisely, the allegedly malicious client, theScenario-
Generator, and the trusted real-lifeAuditServer engage in the following experiment in which theScenario-
Generator behaves in accordance with Definition A.1.

Definition A.2 Malicious Behavior Experiment
In the malicious behavior experiment, aScenarioGenerator, a Client, and theAuditServer participate.
First, the security parametern is distributed and theAuditServer communicates the indexh of the hash func-
tion to be used by the client. Also, theScenarioGenerator sends an initial stateS0, utilizing theInitialize-
protocol, to theClient. ThenScenarioGenerator andClient repeatedly execute theStatusUpdate-protocol
for at mostm rounds, wherem is the length of the generated scenario. In each round,Client sends a re-
quest diffδi to ScenarioGenerator and receives an authoritative diffδ′i as response. Furthermore, the client
outputs its currently locally maintained stateSi in each iteration.

The AuditServer initiates theAudit-protocol once during the experiment at a uniformly and randomly
chosen point in timet0 ≤ m. The experiment is successful, if the client behaves maliciously within the audited
time frame but is not detected. •

Figure 5 depicts this experiment graphically: GenMac is used to generate a random MAC-key which will
subsequently used by AuthMsg to authorize the messages originating from theScenarioGenerator. The
ScenarioGenerator produces the initial stateS0 and the authoritative updatesδ′1, . . . , δ

′
m, and authenti-

cates them with the help of an oracle AuthMsg, similarly as the StateServer. The authenticated messages
M0, . . . ,Mm are sent toClient as usual in theStatusUpdate-protocol.

As in the real protocol execution,AuditServer receives during the executions of theStatusUpdate-protocol
the hashesD1, . . . ,Dm. Similarly, theClient sends toAuditServer the hashesQ0, . . . , Q⌈m

l
⌉l on the entire

17

state and produces the sequence of local statesS0, . . . , Sm. In the figure, we use thin lines to depict messages
which are sent either during theInitialize- or StatusUpdate-protocol.

honest/malicious

S0, . . . , Sm

h

k

1n

δ1, . . . , δm

S0, δ
′
1, . . . , δ

′
m

D
1
,.

..
,D

m

AuditServer

Client

ScenarioGenerator

AuthMsg

GenMac

M0, M1, . . . , Mm

S̄
t
a
,∆̄

t
a
+

1
,.

..
,∆̄

t
0

Q
0
,Q

l
,.

..
,Q

⌊
m l
⌋l

a
u
d
it
‖
t 0

M̄
t
a
+

1
,.

..
,M̄

t
0

Figure 5. Malicious Behavior Experiment

In contrast, the bold lines are used for mes-
sages of theAudit-protocol: At some uni-
formly and randomly chosen point in timet0,
AuditServer initiates theAudit-protocol by send-
ing the messageaudit‖t0 to the Client. In re-
sponse, the client will reply with the messages
M̄ta+1, . . . , M̄t0 , S̄ta , and ∆̄ta+1, . . . , ∆̄t0 . By
doing so,Client claims thatMi = M̄i, Sta = S̄ta ,
and∆i = ∆̄i, whereSta and∆ta+1, . . . ,∆t0 de-
note states and diffs the client originally commit-
ted to.

The experiment ends whenAuditServer out-
puts a verdict whetherClient behaved maliciously
or not.

In Theorem 5.4, we said that theSSIP en-
forces honest client behavior,assuming polyno-
mial time complexity bounds on the server and
client side and assuming that MACs and col-
lections of collision-free hash functions do ex-
ist. With the definition of the malicious be-
havior experiment at hand, we are able to re-
fine this statement as follows: We prove that a
client which passes the malicious behavior ex-
periment successfully with a non-negligible prob-
ability will yield either a procedure AttackHash
which produces collisions for the allegedly secure
hash function or a procedure AttackMac which forges MACs forthe allegedly secure MAC function. At
least one of these procedures will be successful with non-negligible probability, assuming that the malicious
behavior experiment succeeds with non-negligible probability. Using this terminology, we can formulate the
theorem as follows:

Theorem A.3 Security of the Secure Semantic Integrity Protocol (SSIP) (II)
If CFHash is a collision-free hashing function and SignMac amessage authentication code, then the Secure
Semantic Integrity Protocol (SSIP) guarantees that any malicious behavior experiment with a probabilistic
polynomial-time client has negligible success probability. •

Proof of Theorem A.3
Suppose there exist aClient and aScenarioGenerator such that the client succeeds in the malicious behavior
experiment with non-negligible probability.

Then we construct two probabilistic polynomial-time procedures where the first procedure AttackHash is
able to find a collision of the hash function CFHash, and the second procedure AttackMac is able to forge
MACs. Either of these algorithms will succeed with non-negligible probability, contradicting the crypto-
graphic assumptions of Theorem A.3.

18

Both procedures are constructed on the basis of a malicious behavior experiment. In particular, we claim
that each successful execution of the experiment yields either a forged MAC or a collision of the hash function.

According to Definition 5.3, a successful malicious client must either violate the rule compliance of the
NVE or the monotone history property, while being undetected. The rule compliance property is violated if
the sequence of abstract states, as presented by theClient to theAuditServer, is not jointly produced by the
StateServer and theClient or is not realizable at the given initial concrete client state. A cheating client can
attempt to present a different sequence by manipulating thereceived authoritative diffsδ′i. The realizability
of the sequence is always checked correctly in theAudit-protocol by resimulating the presented concrete
sequence and checking whether it corresponds to the abstract one.

The monotone history property is violated, if the client provides theAuditServer with a sequence of states
that differs from the sequence of states it actually executed. Thus, the client may either cheat on the diffs∆̄i

sent during the audit or on the full statēSta that provides the basis for the auditing process. In summary, the
malicious client has the following options to cheat:

1. The client cheats on the first audited stateSta , i.e., the statēSta sent to theAuditServer differs from
Sta . In this case the client has found a second preimage of the hash function, as CFHashh(Sta) =
CFHashh(S̄ta).

2. Suppose now that the client does not cheat on the first audited state, i.e.,̄Sta = Sta . Thus, the client
may either cheat on some messageMi or honestly reportM̄i = Mi for all i.

(a) In the first case, the client must provide a messageM̄i = AuthMsg(k, δ̄′i ‖ni, Client) for a δ̄′i which
has never been authenticated (since we assume that the malicious behavior experiment succeeds).
Thus, the client would be able to forge the MAC of the messageδ̄′i ‖ni ‖Client, which has never
been authenticated during the entire experiment due to the uniqueness of the nonce.

(b) In the second case (̄Mi = Mi for all i), the client provided theAuditServer with the correctly
authenticated authoritative diffs, as constructed byScenarioGenerator. This leave the client
with two other possibilities for cheating:
Case 1:The client cheats on a diff, i.e., there is ani such that̄∆′

i 6= ∆′
i. Since the client committed

to ∆′
i by sendingDi = CFHashh(∆′

i) to AuditServer, it follows that the client has found a second
preimage ofDi.
Case 2: If the client does not cheat on the diffs, the only remaining way to cheat successfully
without being detected is to manipulate the stateSta+l. This means thatSta+l differs fromS̄ta+l =
S̄ta ⊞ ∆̄ta+1 ⊞ . . . ⊞ ∆̄ta+l. But the client already committed itself toSta+l by sending the hash
Qta+l = CFHashh(Sta+l) to theAuditServer. Since the client cheats undetected, it must have
found a second pre-image toQta+l.

Since by assumption the experiment is successful with a non-negligible probability, we can either forge MACs
or compute second pre-images of the collision-free hash function with non-negligible probability.

It remains to construct the two attack procedures AttackMacand AttackHash which adapt the black-box
simulation and fit the definition of attacks on MACs and collision-free hashing functions, respectively.

• We build an attack procedure AttackHash as depicted in Figure 6a: The attack procedure AttackHash
receives the indexh of the collision function to be used and outputs a pair〈a, ā〉 such that CFHashh(a) =
CFHashh(ā) holds with non-negligible probability.

GenMac and AuthMsg are part of the attack procedure, while GenCFHash is external to the attack. The
AuditServer has been replaced: GenCFHash is used to provide the indexh for the hash function and

19

S
0
,.

..
,S

t
0

k

δ1, . . . , δm

S0, δ
′
1, . . . , δ

′
m

GenCFHash

Client

ScenarioGenerator

AuthMsg

GenMac

M0, M1, . . . , Mm

CFHashSelector

S̄
t
a
,∆̄

t
a
+

1
,.

..
,∆̄

t
0

〈a, ā〉

a
u
d
it
‖
t 0

1n

h

a
u
d
it
‖
t 0

k

1n

δ1, . . . , δm

S0, δ
′
1, . . . , δ

′
m

GenCFHash

Client

ScenarioGenerator

AuthMsg

GenMac

M0, M1, . . . , Mm

MacSelector

M̄
t
a
+

1
,.

..
,M̄

t
0

h

〈m, t〉

(a) AttackHash (b) AttackMac

Figure 6. Attack Procedures

the messageaudit‖t0, which starts theAudit-protocol, is sent at a uniformly and randomly chosen point
in time.

The CFHashSelector computes the sequence∆′
ta+1, . . . ,∆

′
t0

(based onSta , . . . , St0) and the state
S̄ta+l (based on thēSta and ∆̄′

ta+1, . . . , ∆̄
′
t0

). ThenCFHashSelector chooses uniformly and ran-
domly one pair〈a, ā〉 from the pairs

〈

Sta , S̄ta

〉

and
〈

Sta+l, S̄ta+l

〉

and from the sequence of pairs
〈

∆′
ta+1, ∆̄

′
ta+1

〉

, . . . ,
〈

∆′
t0

, ∆̄′
t0

〉

.

All other outputs of theClient, namely the authenticated messagesM̄ta+1, . . . , M̄t0 , the hashes
D1, . . . ,Dm on the concrete diffs, and the hashesQ0, . . . , Q⌈m

l
⌉l on the entire states, are discarded.

Let us assume that the simulation produces a collision for the collision-free hashing function with non-
negligible probability, i.e. that one of the possible choices for〈a, ā〉 is a collision under the given hash
function with non-negligible probability. Then the randomly chosen pair is still a collision with non-
negligible probability.

The runtime of AttackHash is again polynomially bounded since all components of the malicious be-
havior experiment are running within probabilistic polynomial time.

• We construct an attack procedure AttackMac which takes1n as input, has access to an authentication
oracle AuthMsg, and produces with non-negligible probability a pair 〈m, t〉 such thatm has not been

20

authenticated before by AuthMsg but such thatt = SignMac(k,m) holds for a keyk which is not
known to the AttackMac.

In Figure 6b, AttackMac is shown as the procedure which is enclosed by the dashed box: This time, the
GenMac and AuthMsg procedures are external to AttackMac such that the used keyk is inaccessible to
AttackMac (and again, we replace theAuditServer by GenCFHash and send the first message of the
Audit-protocol at a randomly chosen point in time).

TheMacSelector receives the messages̄Mta+1, . . . , M̄t0 and selects one of them uniformly and ran-
domly. If one of these messages contains a forged MAC-tag with non-negligible probability, then
a uniformly selected messagēMi contains still a forged MAC-tag with non-negligible probability.
This is true, since there are at most polynomially many such pairs. Finally, the procedure outputs
〈

M̄
(1)
i , M̄

(2)
i

〉

.

All other outputs of theClient, namely the sequence of local statsS0, . . . , St0 , the allegedly occurred
state at the beginning of the audited cycleS̄ta and the allegedly subsequently used diffs∆̄ta+1, . . . , ∆̄t0 ,
the hashesD1, . . . ,Dm on the concrete diffs, and the hashesQ0, . . . , Q⌈m

l
⌉l on the entire states, are

discarded.

Since all components used within AttackMac run within polynomial time,ScenarioGenerator runs in
polynomial time with respect to the security parametern as well.

This concludes the proof: If the protocol does not eliminatethe possibility of successful executions of
the malicious behavior experiment with non-negligible probability, then it either produces forged MACs or
collisions for the hash function with non-negligible probability, and therefore at least one of the procedures
AttackMac and AttackHash will be successfully attacking the corresponding cryptographic primitive—which
contradicts the assumption that no such attack exists at all. •

21

