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Abstract

The first APN polynomials EA-inequivalent to power functions have been con-
structed in [7, 8] by applying CCZ-equivalence to the Gold APN functions. It is a nat-
ural question whether it is possible to construct APN polynomials EA-inequivalent
to power functions by using only EA-equivalence and inverse transformation on a
power APN function: this would be the simplest method to construct APN polyno-
mials EA-inequivalent to power functions. In the present paper we prove that the
answer to this question is positive. By this method we construct a class of APN
polynomials EA-inequivalent to power functions. On the other hand it is shown that
the APN polynomials from [7, 8] cannot be obtained by the introduced method.
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1 Introduction

A function F : F
m
2 → F

m
2 is called almost perfect nonlinear (APN) if, for every a 6= 0 and

every b in F
m
2 , the equation F (x)+F (x+a) = b admits at most two solutions (it is also called

differentially 2-uniform). Vectorial Boolean functions used as S-boxes in block ciphers must
have low differential uniformity to allow high resistance to the differential cryptanalysis
(see [2, 28]). In this sense APN functions are optimal. The notion of APN function is
closely connected to the notion of almost bent (AB) function. A function F : F

m
2 → F

m
2

is called AB if the minimum Hamming distance between all the Boolean functions v · F ,
v ∈ F

m
2 \{0}, and all affine Boolean functions on F

m
2 is maximal. AB functions exist for

m odd only and oppose an optimum resistance to the linear cryptanalysis (see [26, 14]).
Besides, every AB function is APN [14], and in the m odd case, any quadratic function is
APN if and only if it is AB [13].

The APN and AB properties are preserved by some transformations of functions [13, 28].
If F is an APN (resp. AB) function, A1, A2 are affine permutations and A is affine then the
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function F ′ = A1 ◦ F ◦ A2 + A is also APN (resp. AB); the functions F and F ′ are called
extended affine equivalent (EA-equivalent). Another case is the inverse transformation,
that is, the inverse of any APN (resp. AB) permutation is APN (resp. AB). Until recently,
the only known constructions of APN and AB functions were EA-equivalent to power
functions F (x) = xd over finite fields (F2m being identified with F

m
2 ). Table 1 gives all

known values of exponents d (up to multiplication by a power of 2 modulo 2m − 1, and
up to taking the inverse when a function is a permutation) such that the power function
xd over F2m is APN. For m odd the Gold, Kasami, Welch and Niho APN functions from
Table 1 are also AB (for the proofs of AB property see [10, 11, 21, 22, 24, 28]).

Table 1
Known APN power functions xd on F2m.

Functions Exponents d Conditions Proven in

Gold 2i + 1 gcd(i, m) = 1 [21, 28]

Kasami 22i − 2i + 1 gcd(i, m) = 1 [23, 24]

Welch 2t + 3 m = 2t + 1 [18]

Niho 2t + 2
t

2 − 1, t even m = 2t + 1 [17]

2t + 2
3t+1

2 − 1, t odd

Inverse 22t − 1 m = 2t + 1 [1, 28]

Dobbertin 24t + 23t + 22t + 2t − 1 m = 5t [19]

In [13], Carlet, Charpin and Zinoviev introduced an equivalence relation of functions,
more recently called CCZ-equivalence, which corresponds to the affine equivalence of the
graphs of functions and preserves APN and AB properties. EA-equivalence is a particular
case of CCZ-equivalence and any permutation is CCZ-equivalent to its inverse [13]. In
[7, 8], it is proven that CCZ-equivalence is more general, and applying CCZ-equivalence
to the Gold mappings classes of APN functions EA-inequivalent to power functions are
constructed. These classes are presented in Table 2. When m is odd, these functions are
also AB.

Table 2
Known APN functions EA-inequivalent to power functions on F2m .

Functions Conditions Alg. degree

m ≥ 4

x2i+1 + (x2i

+ x + tr(1) + 1) tr(x2i+1 + x tr(1)) gcd(i, m) = 1 3

m divisible by 6

[x + trm/3(x
2(2i+1) + x4(2i+1)) + tr(x) trm/3(x

2i+1 + x22i(2i+1))]2
i+1 gcd(i, m) = 1 4

m 6= n

x2i+1 + trm/n(x2i+1) + x2i

trm/n(x) + x trm/n(x)2
i

m odd

+[trm/n(x)2
i+1 + trm/n(x2i+1) + trm/n(x)]

1

2i+1 (x2i

+ trm/n(x)2
i

+ 1) m divisible by n n + 2

+[trm/n(x)2
i+1 + trm/n(x2i+1) + trm/n(x)]

2i

2i+1 (x + trm/n(x)) gcd(i, m) = 1

These new results on CCZ-equivalence have solved several problems (see [7, 8]) and
have also raised some interesting questions. One of these questions is whether the known
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classes of APN power functions are CCZ-inequivalent. Partly the answer is given in [5]:
it is proven that in general the Gold functions are CCZ-inequivalent to the Kasami and
Welch functions, and that for different parameters 1 ≤ i, j ≤ m−1

2
the Gold functions

x2i+1 and x2j+1 are CCZ-inequivalent. Another interesting question is the existence of
APN polynomials CCZ-inequivalent to power functions. Examples of APN polynomials
CCZ-inequivalent to power functions have been constructed in [20, 16, 27] and infinite
classes of such functions in [3, 4, 5, 6]. In the present paper we consider the natural
question whether it is possible to construct APN polynomials EA-inequivalent to power
functions by applying only EA-equivalence and the inverse transformation on a power APN
function. We prove that the answer is positive and construct a class of AB functions EA-
inequivalent to power functions by applying this method to the Gold AB functions. It
should be mentioned that the functions from Table 2 cannot be obtained by this method.
It can be illustrated, for instance, by the fact that for m = 5 the functions from Table 2 and
for m even the Gold functions are EA-inequivalent to permutations [7, 8, 29], therefore,
the inverse transformation cannot be applied in these cases and the method fails.

2 Preliminaries

Let F
m
2 be the m-dimensional vector space over the field F2. Any function F from F

m
2 to

itself can be uniquely represented as a polynomial on m variables with coefficients in F
m
2 ,

whose degree with respect to each coordinate is at most 1:

F (x1, ..., xm) =
∑

u∈F
m
2

c(u)
(

m
∏

i=1

xui
i

)

, c(u) ∈ F
m
2 .

This representation is called the algebraic normal form of F and its degree d◦(F ) the
algebraic degree of the function F .

Besides, the field F2m can be identified with F
m
2 as a vector space. Then, viewed as a

function from this field to itself, F has a unique representation as a univariate polynomial
over F2m of degree smaller than 2m:

F (x) =
2m−1
∑

i=0

cix
i, ci ∈ F2m .

For any k, 0 ≤ k ≤ 2m − 1, the number w2(k) of the nonzero coefficients ks ∈ {0, 1} in
the binary expansion

∑m−1
s=0 2sks of k is called the 2-weight of k. The algebraic degree of

F is equal to the maximum 2-weight of the exponents i of the polynomial F (x) such that
ci 6= 0, that is, d◦(F ) = max0≤i≤m−1,ci 6=0 w2(i) (see [13]).

A function F : F
m
2 → F

m
2 is linear if and only if F (x) is a linearized polynomial over

F2m , that is,
m−1
∑

i=0

cix
2i

, ci ∈ F2m .
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The sum of a linear function and a constant is called an affine function.
Let F be a function from F2m to itself and A1, A2 : F2m → F2m be affine permutations.

The functions F and A1◦F ◦A2 are then called affine equivalent. Affine equivalent functions
have the same algebraic degree (i.e. the algebraic degree is affine invariant).

As recalled in Introduction, we say that the functions F and F ′ are extended affine

equivalent if F ′ = A1 ◦ F ◦ A2 + A for some affine permutations A1, A2 and an affine
function A. If F is not affine, then F and F ′ have again the same algebraic degree.

Two mappings F and F ′ from F2m to itself are called Carlet-Charpin-Zinoviev equivalent
(CCZ-equivalent) if the graphs of F and F ′, that is, the subsets GF = {(x, F (x)) | x ∈ F2m}
and GF ′ = {(x, F ′(x)) | x ∈ F2m} of F2m × F2m , are affine equivalent. Hence, F and F ′

are CCZ-equivalent if and only if there exists an affine automorphism L = (L1, L2) of
F2m × F2m such that

y = F (x) ⇔ L2(x, y) = F ′(L1(x, y)).

Note that since L is a permutation then the function L1(x, F (x)) has to be a permutation
too (see [5]). As shown in [13], EA-equivalence is a particular case of CCZ-equivalence and
any permutation is CCZ-equivalent to its inverse.

For a function F : F2m → F2m and any elements a, b ∈ F2m we denote

δF (a, b) = |{x ∈ F
m
2 : F (x + a) + F (x) = b}|.

F is called a differentially δ-uniform function if maxa∈F
∗

2m ,b∈F2m δF (a, b) ≤ δ. Note that
δ ≥ 2 for any function over F2m . Differentially 2-uniform mappings are called almost

perfect nonlinear.
For any function F : F2m → F2m we denote

λF (a, b) =
∑

x∈F2m

(−1)tr(bF (x)+ax), a, b ∈ F2m ,

where tr(x) = x + x2 + x4 + ... + x2m−1
is the trace function from F2m into F2. The set

ΛF = {λF (a, b) : a, b ∈ F2m , b 6= 0} is called the Walsh spectrum of the function F and the
multiset {|λF (a, b)| : a, b ∈ F2n , b 6= 0} is called the extended Walsh spectrum of F . The
value

NL(F ) = 2m−1 −
1

2
max

a∈F2m ,b∈F
∗

2m

|λF (a, b)|

equals the nonlinearity of the function F . The nonlinearity of any function F satisfies the
inequality

NL(F ) ≤ 2m−1 − 2
m−1

2

([14, 30]) and in case of equality F is called almost bent or maximum nonlinear.
Obviously, AB functions exist only for n odd. It is proven in [14] that every AB function

is APN and its Walsh spectrum equals {0,±2
m+1

2 }. If m is odd, every APN mapping which
is quadratic (that is, whose algebraic degree equals 2) is AB [13], but this is not true for
nonquadratic cases: the Dobbertin and the inverse APN functions are not AB (see [11, 13]).
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When m is even, the inverse function x2m−2 is a differentially 4-uniform permutation [28]
and has the best known nonlinearity [25], that is 2m−1 − 2

m
2 (see [11, ?]). This function

has been chosen as the basic S-box, with m = 8, in the Advanced Encryption Standard
(AES), see [15]. A comprehensive survey on APN and AB functions can be found in [12].

It is shown in [13] that, if F and G are CCZ-equivalent, then F is APN (resp. AB) if
and only if G is APN (resp. AB). More generally, CCZ-equivalent functions have the same
differential uniformity and the same extended Walsh spectrum (see [7]). Further invariants
for CCZ-equivalence can be found in [20] (see also [16]) in terms of group algebras.

3 The new construction

In this section we show that it is possible to construct APN polynomials EA-inequivalent
to power functions by applying only EA-equivalence and the inverse transformation on a
power APN function. We shall illustrate it on the Gold AB functions and in order to do
it we need the following result from [7, 8].

Proposition 1 ([7, 8]) Let F : F2m → F2m, F (x) = L(x2i+1) + L′(x), where gcd(i, m) = 1
and L, L′ are linear. Then F is a permutation if and only if, for every u 6= 0 in F2m and

every v such that tr(v) = tr(1), the condition L(u2i+1v) 6= L′(u) holds. ✷

Further we use the following notations for any divisor n of m

trm/n(x) = x + x2n

+ x22n

... + x2n(m/n−1)

,

trn(x) = x + x2 + ... + x2n−1

.

Theorem 1 Let m ≥ 9 be odd and divisible by 3. Then the function

F ′(x) =
(

x
1

2i+1 + trm/3(x + x22i

)
)−1

,

with 1 ≤ i ≤ m, gcd(i, m) = 1, is an AB permutation over F2m. The function F ′ is

EA-inequivalent to the Gold functions and to their inverses, that is, to x2j+1 and x
1

2j+1 for

any 1 ≤ j ≤ m.

Proof. To prove that the function F ′ is an AB permutation we only need to show that

the function F1(x) = x
1

2i+1 + trm/3(x + x22i
) is a permutation. Since the function x2i+1

is a permutation when m is odd and gcd(i, m) = 1 then F1 is a permutation if and only
if the function F (x) = F1(x

2i+1) = x + trm/3(x
2i+1 + x22s(2i+1)), with s = i mod 3, is a

permutation.
By Proposition 1 the function F is a permutation if for every v ∈ F2m such that

tr(v) = 1 and every u ∈ F
∗
2m the condition trm/3(u

2i+1v+(u2i+1v)22s
) 6= u holds. Obviously,

if u /∈ F
∗
23 then trm/3(u

2i+1v+(u2i+1v)22s
) 6= u. For any u ∈ F

∗
23 the condition trm/3(u

2i+1v+

(u2i+1v)22s
) 6= u is equivalent to u2i+1 trm/3(v) + (u2i+1 trm/3(v))22s

6= u. Therefore, F is a
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permutation if for every u, w ∈ F
∗
23 , tr3(w) = 1 the condition u2i+1w + (u2i+1w)22s

6= u is

satisfied. Then F is a permutation if x+x2i+1 +x22s(2i+1) is a permutation on F23 and that
was easily checked by a computer.

We have d◦(x2i+1) = 2 and it is proven in [28] that d◦(x
1

2i+1 ) = m+1
2

. We show below
that d◦(F ′) = 4 for m ≥ 9. Since the function F ′ has algebraic degree different from 2 and
m+1

2
then it is EA-inequivalent to the Gold functions and to their inverses.

Since F ′(x) = F−1
1 (x) = [F (x

1

2i+1 )]−1 = [F−1]2
i+1 then to get the representation of the

function F ′ we need the representation of the function F−1. The following computations
are helpful to show that F−1 = F ◦ F .

trm/3[(x + trm/3(x
2i+1 + x22s(2i+1)))2i+1] = trm/3(x

2i+1) + trm/3(x
2s

) trm/3(x
2i+1 + x22s(2i+1))

+ trm/3(x) trm/3(x
2i+1 + x2s(2i+1)) + trm/3(x

2i+1 + x22s(2i+1)) trm/3(x
2i+1 + x2s(2i+1)),

since

trm/3((x
2i+1 + x22s(2i+1))2i

) = trm/3((x
2i+1 + x22s(2i+1))2s

)

= trm/3(x
2s(2i+1) + x23s(2i+1)) = trm/3(x

2s(2i+1) + x2i+1).

Then

trm/3[(x + trm/3(x
2i+1 + x22s(2i+1)))2i+1 + (x + trm/3(x

2i+1 + x22s(2i+1)))22s(2i+1)]

= trm/3(x
2i+1 + x22s(2i+1)) + trm/3(x

2s

) trm/3(x
2i+1 + x22s(2i+1))

+ trm/3(x) trm/3(x
22s(2i+1) + x2s(2i+1)) + trm/3(x) trm/3(x

2i+1 + x2s(2i+1))

+ trm/3(x
22s

) trm/3(x
22s(2i+1) + x(2i+1)) + trm/3(x

2i+1 + x22s(2i+1)) trm/3(x
2i+1 + x2s(2i+1))

+ trm/3(x
22s(2i+1) + x2s(2i+1)) trm/3(x

22s(2i+1) + x(2i+1)) = trm/3(x
2i+1 + x22s(2i+1))

+ trm/3(x + x2s

+ x22s

) trm/3(x
2i+1 + x22s(2i+1)) + (trm/3(x

2i+1 + x22s(2i+1)))2

= trm/3(x
2i+1 + x22s(2i+1)) + trm(x) trm/3(x

2i+1 + x22s(2i+1)) + (trm/3(x
2i+1 + x22s(2i+1)))2

and

F ◦ F (x) = x + trm(x) trm/3(x
2i+1 + x22s(2i+1)) + (trm/3(x

2i+1 + x22s(2i+1)))2

and, since trm(trm/3(x
2i+1 + x22s(2i+1))) = 0,

(F ◦ F ) ◦ F (x) = x + trm/3(x
2i+1 + x22s(2i+1)) + trm(x)[trm/3(x

2i+1 + x22s(2i+1))

+ trm(x) trm/3(x
2i+1 + x22s(2i+1)) + (trm/3(x

2i+1 + x22s(2i+1)))2] + [trm/3(x
2i+1 + x22s(2i+1))

+ trm(x) trm/3(x
2i+1 + x22s(2i+1)) + (trm/3(x

2i+1 + x22s(2i+1)))2]2

= x + trm/3(x
2i+1 + x22s(2i+1)) + (trm/3(x

2i+1 + x22s(2i+1)))2 + (trm/3(x
2i+1 + x22s(2i+1)))4

= x + tr3(trm/3(x
2i+1 + x22s(2i+1))) = x + trm(x2i+1 + x22s(2i+1))) = x.
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Therefore,

F−1(x) = F ◦ F (x) = x + trm(x) trm/3(x
2i+1 + x22s(2i+1)) + (trm/3(x

2i+1 + x22s(2i+1)))2.

Thus, we have

F ′(x) = [F−1(x)]2
i+1 = [x + trm(x) trm/3(x

2i+1 + x22s(2i+1)) + (trm/3(x
2i+1

+x22s(2i+1)))2]2
i+1 = x2i+1 + trm(x)(trm/3(x

2i+1 + x22s(2i+1)))2s+1

+(trm/3(x
2i+1 + x22s(2i+1)))2(2s+1) + x2i

trm(x) trm/3(x
2i+1 + x22s(2i+1))

+x trm(x)(trm/3(x
2i+1 + x22s(2i+1)))2s

+ x2i

trm/3(x
2(2i+1) + x22s+1(2i+1))

+x (trm/3(x
2(2i+1) + x22s+1(2i+1)))2s

+ trm(x)(trm/3(x
2i+1 + x22s(2i+1)))2s+2

+ trm(x)(trm/3(x
2i+1 + x22s(2i+1)))2s+1+1 = x2i+1 + (trm/3(x

2i+1 + x22s(2i+1)))2(2s+1)

+x2i

trm(x)(trm/3(x
2i+1 + x22s(2i+1)) + x trm(x) trm/3(x

2i+1 + x2s(2i+1))

+x2i

trm/3(x
2(2i+1) + x22s+1(2i+1)) + x trm/3(x

2(2i+1) + x2s+1(2i+1)) + trm(x)[(trm/3(x
2i+1

+x22s(2i+1)))2s+1 + (trm/3(x
2i+1 + x22s(2i+1)))2s+2 + (trm/3(x

2i+1 + x22s(2i+1)))2s+1+1].

The only item in this sum which can give algebraic degree greater than 4 is the last item.
We have

(trm/3(x
2i+1+x22s(2i+1)))2s+1+(trm/3(x

2i+1+x22s(2i+1)))2s+2+(trm/3(x
2i+1+x22s(2i+1)))2s+1+1

= (trm/3(x
2i+1+x22s(2i+1)))2s+1+(trm/3(x

2i+1+x22s(2i+1)))4(2s+1)+(trm/3(x
2i+1+x22s(2i+1)))22s

,

since

2s + 2 =

{

4 if s = 1
6 if s = 2

, 4(2s + 1) =

{

12 = 5 (mod 23 − 1) if s = 1
20 = 6 (mod 23 − 1) if s = 2

,

2s+1+1 =

{

5 if s = 1
9 = 2 (mod 23 − 1) if s = 2

, 22s =

{

4 if s = 1
16 = 2 (mod 23 − 1) if s = 2

.

On the other hand,

(trm/3(x
2i+1 + x22s(2i+1)))2s+1 = trm/3(x

2i+1 + x22s(2i+1)) trm/3(x
2i+1 + x2s(2i+1))

= trm/3(x
2i+1)2 + (trm/3(x

2i+1))22s+1 + (trm/3(x
2i+1))2s+1 + (trm/3(x

2i+1))22s+2s

= (trm/3(x
2i+1))6 + (trm/3(x

2i+1))5 + (trm/3(x
2i+1))3 + (trm/3(x

2i+1))2 (1)

Using (1) we get

(trm/3(x
2i+1 +x22s(2i+1)))2s+1 +(trm/3(x

2i+1+x22s(2i+1)))4(2s+1) +(trm/3(x
2i+1 +x22s(2i+1)))22s

= (trm/3(x
2i+1))6 + (trm/3(x

2i+1))5 + (trm/3(x
2i+1))3 + (trm/3(x

2i+1))2 + [(trm/3(x
2i+1))3
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+(trm/3(x
2i+1))6 + (trm/3(x

2i+1))5 + trm/3(x
2i+1)] + (trm/3(x

2i+1))2 + (trm/3(x
2i+1))4

= trm/3(x
2i+1) + (trm/3(x

2i+1))4.
(2)

Hence, applying (1) and (2) we get

F ′(x) = x2i+1 + [(trm/3(x
2i+1))6 + (trm/3(x

2i+1))5 + (trm/3(x
2i+1))3 + (trm/3(x

2i+1))2]2

+x2i

trm(x) trm/3(x
2i+1 + x22s(2i+1)) + x trm(x) trm/3(x

2i+1 + x2s(2i+1))

+x2i

trm/3(x
2(2i+1) + x22s+1(2i+1)) + x trm/3(x

2(2i+1) + x2s+1(2i+1))

+ trm(x)[trm/3(x
2i+1) + (trm/3(x

2i+1))4] = x2i+1 + (trm/3(x
2i+1))6 + (trm/3(x

2i+1))5

+(trm/3(x
2i+1))3 + (trm/3(x

2i+1))4 + x2i

trm(x) trm/3(x
2i+1 + x22s(2i+1))

+x trm(x) trm/3(x
2i+1 + x2s(2i+1)) + x2i

trm/3(x
2(2i+1) + x22s+1(2i+1))

+x trm/3(x
2(2i+1) + x2s+1(2i+1)) + trm(x) trm/3(x

2i+1 + x4(2i+1)).

Below we consider all items in the sum presenting the function F ′ which may give the
algebraic degree 4:

[(trm/3(x
2i+1))6 + (trm/3(x

2i+1))5 + (trm/3(x
2i+1))3]

+[x2i

trm(x)(trm/3(x
2i+1 + x22s(2i+1)) + x trm(x)(trm/3(x

2i+1 + x2s(2i+1))].

For simplicity we take i = 1. Obviously, all the items in the second bracket of the algebraic
degree 4 have the form x2j+2k+2l+2r

, where r < l < k < j ≤ m − 1, r ≤ 1. Therefore, if
we find an item of algebraic degree 4 in the first bracket of the form x2j+2k+2l+2r

, where
2 ≤ r < l < k < j ≤ m − 1, which does not cancel, then this item does not vanish in the
whole sum.

We have

trm/3(x
3) = x2+1 + x24+23

+ ... + x2m−5+2m−6

+ x2m−2+2m−3

=

m
3
−1

∑

k=0

x23k+1+23k

,

(trm/3(x
3))2 = x22+2 + x25+24

+ ... + x2m−4+2m−5

+ x2m−1+2m−2

=

m
3
−1

∑

k=0

x23k+2+23k+1

,

(trm/3(x
3))4 = x23+22

+ x26+25

+ ... + x2m−3+2m−4

+ x2m+2m−1

=

m
3
−2

∑

k=0

x23k+3+23k+2

+ x2m−1+1,

(trm/3(x
3))3 = (trm/3(x

3))2 trm/3(x
3) =

m
3
−1

∑

i,k=0

x23k+1+23k+23i+2+23i+1

, (3)

(trm/3(x
3))5 =

m
3
−2

∑

j=0

m
3
−1

∑

k=0

x23j+3+23j+2+23k+1+23k

+

m
3
−1

∑

k=0

x2m−1+1+23k+1+23k

, (4)
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(trm/3(x
3))6 =

m
3
−2

∑

j=0

m
3
−1

∑

k=0

x23j+3+23j+2+23k+2+23k+1

+

m
3
−1

∑

k=0

x2m−1+1+23k+2+23k+1

. (5)

Note that all exponents of weight 4 in (3)-(5) are smaller than 2m. If m ≥ 9 then it is
obvious that the item x26+25+24+23

does not vanish in (4) and it definitely differs from all
items in (3) and (5).

Hence, the function F ′ has the algebraic degree 4 when m ≥ 9 and that completes the
proof of the theorem. ✷

It is proven in [5] that the Gold functions are CCZ-inequivalent to the Welch function
for all m ≥ 9. Therefore, the function F ′ of Theorem 1 is CCZ-inequivalent to the Welch
function. Further, the inverse and the Dobbertin APN functions are not AB (see [13, 11])
and, therefore, the AB function F ′ is CCZ-inequivalent to them. The algebraic degree of
the Kasami function x4i−2i+1, 2 ≤ i ≤ n−1

2
, gcd(i, m) = 1, is equal to i + 1. Thus, its

algebraic degree equals 4 if and only if i = 3. Since the function F ′ is defined only for m
divisible by 3 then for i = 3 we would have gcd(i, m) 6= 1. On the other hand, if Gold
and Kasami functions are CCZ-equivalent then it follows from the proof of Theorem 5 of
[5] that the Gold function is EA-equivalent to the inverse of the Kasami function which
must be quadratic in this case. Thus, if F ′ was EA-equivalent to the inverse of a Kasami
function then F ′ would be quadratic. Thus, F ′ cannot be EA-equivalent to the Kasami
functions or to their inverses.

Proposition 2 The function of Theorem 1 is EA-inequivalent to the Welch, Kasami,

inverse, Dobbertin functions and to their inverses.

For m = 2t + 1 the Niho function has the algebraic degree t + 1 if t is odd and the
algebraic degree (t + 2)/2 if t is even. Therefore, its algebraic degree equals 4 if and only
if m = 7, 13.

Proposition 3 The function of Theorem 1 is EA-inequivalent to the Niho function.

We do not have a general proof of EA-inequivalence of F ′ and the inverse of the Niho
function but for m = 9 the Niho function coincides with the Welch functions and therefore
its inverse cannot be EA-equivalent to the function F ′. Thus, for m = 9 the function F ′ is
EA-inequivalent to any power function.

Corollary 1 For m = 9 the function of Theorem 1 is EA-inequivalent to any power func-

tion.

When m is odd and divisible by 3 the APN functions from Table 2 have the algebraic
degree different from 4. Thus we get the following proposition.

Proposition 4 The function of Theorem 1 is EA-inequivalent to any APN function from

Table 2.
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