Accelerating SSL using the Vector processors in
IBM’s Cell Broadband Engine
for Sony’s Playstation 3

Neil Costigan, Michael Scott

School of Computing
Dublin City University
Glasnevin, Dublin 9,
Ireland.

neil.costigan@computing.dcu.ie™™

mike@computing.dcu.ie

Abstract. Recently the major performance chip manufacturers have
turned to multi-core technology as a more cost effective alternative to
ever increasing clock speeds. Well known examples of multi-core archi-
tectures include the Intel Core Duo and AMD Athlon 64 X2 range of
chips. IBM have introduced the Cell Broadband Engine (Cell) as their
next generation CPU to feed the insatiable appetite modern multimedia
and number crunching applications have for processing power.

The Cell is the “Wicked Smart”! technology at the heart of Sony’s
Playstation 3™, The Cell contains a number of specialist synergistic
processor units (SPUs) optimised for multimedia processing and offer a
rich programming interface to applications that can make use of the vec-
tor processing capabilities. The specialised hardware design for gaming
will always deliver performance gains compared to a more generic proces-
sor for its specific domain. Multi-precision number manipulation for use
in cryptography is a considerable distance away from this domain. This
paper explores the implementation and performance gains when using
the vector processing capabilities for SSL and shows that big improve-
ments are still possible with the hardware designed primarily for other
purposes.

1 Why SSL?

Despite huge gains in computing performance and bandwidth, the widespread
use of secure communications on the Internet is still essentially limited to SSL
connections for password logins or with credit card payments. Despite this SSL
implementations are widely distributed and well analysed for security weaknesses
making it the de-facto standard for secure communications. The main reason for
such limited usage is the perception that encrypted communication protocols

** Research supported by the Irish Research Council for Science, Engineering and Tech-
nology,(IRCSET).
! “Wicked Smart” is an advertising slogan used by Sony

such as SSL place too high demands on bandwidth and processing power at the
server side of the communication and can interrupt the browsing experience of
the client. This paper sets out to show that with the performance of modern
multi-core hardware devices it is now possible to enable secure channels for a
wider range of network communications.

2 The Cell Broadband Engine

When Sony examined the options for the Playstation 2’s successor they realised
that traditional clock speed improvements were not going to deliver to next
generation demands. They wanted something more than the traditional CPU
if the Playstation brand was going to maintain its lead over its chief competi-
tor Microsoft’s XBoxT™brand of gaming consoles. In early 2001 they turned to
IBM and Toshiba. Together they formed a partnership to deliver a chip that
would both provide the power for the next generation of media rich gaming con-
soles, while also being a scalable, adaptable design that would meet the most
demanding computational tasks. The result is a unique architecture combining a
traditional central processor and specialised high performance processors similar
to those found in graphics cards (GPUs). These processing units are combined
across a circular high bandwidth bus to offer a multi-core environment with
two-instruction sets and enormous processing power. Sony use a subset of the
chip inside its Playstation 3 gaming and media console. IBM offer a range of
configurations inside a Blade series suitable for server and super-computing use.
Central to the Cell Broadband Engine (more commonly referred to as ‘Cell’) is
a 3.2 GHz 64-bit Power Processing Unit (PPU). The PPU is a variant (970) of
the G5/PowerPC product line, a RISC driven processor found in IBM’s servers
and Apple’s PowerMac range. This PPU works as the primary processor and as
supervisor for the other cores.

SPU SPU SPU SPU PPU

High Speed Bus

18]]0U0D O]
13]101u0D AloWs
Q0BpRIUI WYHAX Sngwey

L2

SPU SPU SPU SPU (512K)

21607 Bngaq 79 1591

Fig. 1. Cell BE Die Layout

2.1 The Cell’s SPU

The real power of the Cell is in the ability to harness the additional Synergistic
Processing Units (SPUs). The SPU is a specialist processor with a RISC-like
SIMD instruction set and a large (128) array of 128-bit registers. Each SPU has
its own local memory store (LS). Currently, and on the Playstation 3, this LS is
limited to just 256K. The SPU can access the LS in the same clock cycle as its
register operations. The latest SDK (2.0) has a beta software cache implemen-
tation. While the SPU does not directly access main memory the central PPU
can access each SPU’s local memory store. The SPU has no hardware cache so
each software application directly manages data transfer to and from each SPU.
This leads to a number of interesting programming models.

While the architecture allows for any number of SPUs, a standard Cell, and
those currently in production, has 8 SPUs. Interestingly Sony have chosen to
utilise just 7 as they can gain much higher production yields if they can discard an
SPU that shows a failure during silicon testing. Furthermore Sony restrict access
to one SPU for Digital Rights Management (DRM) purposes on a Playstation
running in Linux mode.

A processor with just 256K, no hardware cache and with no access to I/0
doesn’t appear to be anything exciting when compared to the PPU or other
modern CPUs. The fact that the Cell offers 8 SPUs on one die all designed to
operate in parallel combined with the ability to work with up to 4 32-bit integer
operations in just one clock cycle (referred to as SIMD) that make the SPU so
interesting. The SPU also contains 2 instruction pipelines and while the pipelines
are not equal, careful management of the order of instructions can lead to huge
amounts of data being processed with very few clock cycles and a very low clock
cycles per instruction (CPI) ratio.

The large register size is ideal for the number crunching operations required
for cryptography. However, the fact that the size of the register is too large for
most high level language’s basic types, and that most operations work with, at
most, 32-bit sub-sections of the quadword register, makes development a little
tricky. The programmer accesses the registers through a set of C extensions which
operate exclusively on vectors rather than traditional direct memory access.
The C extensions (or intrinsics) also offer a degree of code portability with
similar CPUs such as the Altivec [10]. It is possible to develop small, dedicated,
standalone, SPU applications (spulets). A more interesting, but more complex
model, is the capability of the PPU to call SPU applications through a POSIX
threads-like library passing data through a direct memory access (DMA) library.

To stimulate interest within the development community IBM offer a soft-
ware development kit and ample documentation [1]. This SDK contains a full
range of development tools and code samples including a powerful cycle accurate
simulator for the SPU and a vector optimised multi-precision Math library (IBM
MPM) [6].

2.2 Multi-instruction sets

One interesting issue with the different architectures of the PPU and SPU is the
need for multi-instruction set binaries. Traditional applications compile individ-
ual source modules and then link the results to bind all program data symbols
(variable, types functions etc.), but as the SPUs LS memory is physically sep-
arate and makes use of wide 128-bit registers, its program code needs to be
compiled and linked separately. Both the SPU and PPU use standard ELF bi-
nary formats. An application’s binary contains 64-bit code for the main PPU but
embedded inside this is an object file with the SPU instructions and data ready
to be pushed to the SPU on a createthread() call from the PPC. The build
process involves two separate compilers and two linkers. The SPU ELF binary
is passed through an embedspu command which builds a wrapper (a CESOF
linkable) to the SPU binary marking it with PPU compatible symbols. Finally
there is one more link stage which binds all executables together. Figure 2 [3]
outlines the build process.

PPE module Iife oycle

System Memory

PPE Compller Linked PPE exscutabls Loaded PPE exscutable
Pl PPE Linker il PPE Loader i
PPE source PPE linkable £
. <

PPE ELF executable fie

SPE module fife oycle

II SPE Compier II [sPEGmer L £ ;;ecuﬁaug
SPE source SPE linkable

SPE ELF executable fie

']

Mapped SPE exsculable
image

SPE local store.

Fig. 2. Cell BE build process [3]

2.3 The Cell as a HSM

The Cell has been designed with an interesting security architecture [15]. The
feature set suggest it is primarily to aid in the management of digital rights,
however the interface is also open to third party developers to implement ad-
ditional security functionality into code running on an SPU. This architecture
can be used to make security critical code run in a protected environment as a
Hardware Security Module (HSM). Commercially, most of the SSL accelerator
vendors offer HSM’s in high-end configurations.

To operate in a more protected environment the critical SSL code can be run
in an SPU in isolated mode. For an SSL accelerator this means that is possible to
have any key generation make use of a cryptographically secure random number
generator, key data can be protected from other processes running on the Cell,
key data can be encrypted in shared memory locations, and program code can
check its integrity.

The Cell achieves this level of security by implementing a hardware based
process in which

1. The code and data in an SPU can be executed in physically isolated memory
space.

2. There is hardware based code signing (referred to as secure boot) where the
integrity of code about to be executed can be verified.

3. An isolated process in an SPU can use hardware-key based data encryp-
tion/decryption that can only be used by code that has been verified.

4. The random number generator can be configured to use a physical sample
source such as a Cell die. (note: this functionality is limited on our PS3 based
Cell)

This extra security comes with a performance penalty. Initialisation would be
affected by secure boot, if data were to be stored off SPU then there can be run-
time overheads in decryption. The various random number generators degrade in
performance as one moves towards a more random, physical sample based libary.
Unfortunately implementation details are only available under Non-Disclosure
Agreement with IBM and so we are not able to test our SPU acceleration code
under this interesting environment.

For further information on the Cell see IBM’s excellent Cell resource centre
[5]

2.4 Direct Memory Access

As mentioned above the PPU can access main memory and has instructions
to transfer data between the main memory and its registers. The SPU, on the
other hand, works with its own smaller local store and so to access data from
the main memory the SPU goes through a Memory Flow Controller (MFC)
which translates SPU main memory requests over the high speed bus via a set
of DMA channel calls. These DMA calls are directional (read or write), blocking
or non-blocking, can be issued in parallel, and can be tagged by the programmer
to allow for identification management of data.

When communicating either the PPU or an SPU can initiate and manage a
DMA transfer. However it is optimal for the SPU to do the ‘protocol’ manage-
ment as it can free PPU clock cycles that can occur if, for example, a number
of SPUs have blocking calls. When the PPU needs to initiate the transfer the
procedure is for the PPU to push a pointer to the SPU with a tag and then let
the SPU pull the data from the pointed reference and informing the PPU, via
the tag, that it has done so.

2.5 Vector Programming

To utilise the full performance of SPU SIMD instructions a developer works with
a combination of Vector C extensions with assembly like code. Space is limited
so we will look at the following extracts to highlight typical techniques used.
We implemented a primitive MADD () commonly used in cryptographic libraries
which fully utilises the 128-bit register by implementing a 64x64-bit multiply
function.

For example the following code fragment is used to fill a quadword with
two scalars (in this case standard C 64-bit unsigned long long) and to ‘splat’
across a vector. Splat is a term used when filling a vector with a mask. In a big
number context we utilise splats to allow us operate on different elements of a
quadword when filling partial products.

unsigned long long _a, _b
vector unsigned short AB;
AB=(vector unsigned short) \

spu_insert (.a,(vector unsigned long long)AB,0x1);
AB=(vector unsigned short) \

spu_insert (-b,(v
/x select two bytes */
const vector unsigned char splat_shortl= \

(vector unsigned char)(VEC_SPLAT_U32(0x80800405));

ector unsigned long long)AB,0x0);

Here we utilise a C macro to guarantee all vector multiplies (spumulo())
are at a 16-bit level to efficiently use the 16x16-bit multiplier in the SPU.

#define MULTIPLY (a, b))\
(spu_extract (spu_mulo((vector unsigned short)spu_promote(a,0))\
,(vector unsigned short)spu_promote(b, 0)),0))

Finally an assembly-like example of a speed up technique when adding a
128-bit value to a 64-bit value where we know there is no need to manage an
overflow. This technique is used in summing partial products inside the big
number multiply.

vector unsigned int _out_-s, _in_al28, _in_a64;

vector unsigned int _sum, _cO, _t0;

—c0 = spu_genc (-in_al28, _in_a64); // generate carry bits
sum = spu._add(-in_al28, _in_a64); // add

_t0 = spu-slqwbyte(-c0, 4); // shift quadword left 4 bytes
_out_s = spu_add(_sum, _t0); // add in the carry

3 OpenSSL

OpenSSL [7] is an open source toolkit released under under a BSD style license.
It evolved out of Eric Young’s popular SSLeay and in 1998 passed to a dedicated

team of developers. It has since become the de facto open source SSL toolkit. It
is the security sub-system of choice for large open source projects such as Apache
[8] and MySQL [13] and included in virtually all UNIX distributions including
Linux, MacOSX™ and Solaris™.

The name ‘OpenSSL’ is misleading as the toolkit provides a vast array of
building blocks and interfaces from cryptographic primitives through big number
routines to PKI components such as certificate authorities and OCSP responders.
One of the most useful features is the ability to factor out processing intensive
operations to specialist hardware through an ‘engine’ interface. It is through
this engine subsystem that we accelerate SSL by using the Cell SPU’s vector
processing capabilities.

SSL operates in two phases: an initial handshake and a bulk encryption
phase. The purpose of the handshake is to swap identification credentials, algo-
rithm capabilities, and negotiate a bulk encryption key. The reason for the key
negotiation is that asymmetric cryptography, whilst needed to establish a shared
secret, incurs a large computational overhead compared to a symmetric encryp-
tion algorithm. By analysing clock cycles, Zhao et al. [2] found that 90.4% of
the SSL handshake comprises public key operations. Cryptographic operations
take, in total, about 95% of the total CPU load.

Since the CPU load will be heaviest at the server side, and since the main
computationally load incurred by the server for its part in the handshake is
asymmetric decryption, we focus our attempts on speeding up asymmetric de-
cryption.

Isolating the SSL handshake to measure our improvements is a challeng-
ing task as there are can be many dependencies (network traffic, HT'TP server
etc.) on a running machine which make accurate sampling difficult. Fortunately
OpenSSL provides the utility openssl speed which can measure individual al-
gorithms. Using this utility we can demonstrate improvements to the throughput
of the critical algorithms. The SSL protocol supports a range of asymmetric algo-
rithms, (RSA, DSA, ECC etc.). In this paper we focus on RSA but the technique
is relevant to all.

3.1 OpenSSL engine

When taking over computational tasks from OpenSSL two issues which must be
considered are

1. How the engine informs the library of the scope of its responsibilities.
2. Marshalling the big number format to and from OpenSSL’s internal repre-
sentation.

To tell OpenSSL exactly what the engine will do the developer provides a
static library with a set of defined interfaces with descriptive text to describe the
engine. Then, through function pointer replacement, a defining a set of functions
which implement the algorithms that the engine intends to provide.

While there are dynamic loading techniques for closed source libraries, at the
current OpenSSL version (0.9.8d) the simplest method to integrate the engine

is to statically link the engine code and add a call inside
ENGINE_ load-built_in_engines (). This will add the engine as an option to any
application using the OpenSSL default engine.

Through this call OpenSSL then loads any engine that conforms to the correct
interface at start-up, and subsequently any OpenSSL command that uses the
-engine <id> option will redirect to the named engine. At the Engine init ()
stage the calling library passes an OpenSSL data structure containing a set of
initialisation variables and an opening via a free additional pointer for the engine
to append its own data structure which can be accessed later by subsequent
engine functions. The engine is responsible for its own memory management.
It is through this Engine_init () call that we gather OpenSSL parameters and
convert the OpenSSL big number representation to the native Cell IBM Multi-
precision Big number format.

4 Development

To recap: we need to build a PPU library (32 or 64-bit) that plugs into a PPU
build of OpenSSL. Inside this library we embed an SPU ELF executable which
can act upon the 128-bit registers and utilises IBM’s MPM library. This SPU
ELF executable needs to be under 256K including all code and data. The multi-
core environment with the limitations on code and data size requires some uncon-
ventional, data centric, programming models which the engineering community
are still evolving. The cardinal rule appears to be ‘offload as much as one can to
the SPUs’. Many data intensive multimedia applications employ a model where
data is streamed through a chain of SPUs with each SPU carrying out a specific
operation on the data, then calling another SPU with the processed data. Yet
another model makes the PPU act as a scheduler pushing data segments and
code ‘blobs’ to any SPU with the PPU managing the operations and data or-
dering through double buffering. To fit the OpenSSL engine model, we mirror
the operation of a similar engine developed by Geoff Thorpe of the OpenSSL
core team for the GNU Multi-Precision library (GMP) [9]. To have the SPUs do
as much work as possible we chose to overload the RSA.mod_exp () function and
indicate through control flags that the engine would perform full RSA decryp-
tion using the Chinese Remainder Theorem. Figure 3 describes the interaction
between the various components. This allows us to potentially parallelise the
modular exponentiation calls. We could approach this a number of ways:

1. Have the PPU do the RSA/CRT but invoke SPUs to manage the expensive
modular exponential (mod_exp()). Different SPUs would handle the p and ¢
mod_exp().

2. Have the PPU pass the whole RSA/CRT to an SPU.

3. Have the PPU pass the whole RSA/CRT to an SPU with this SPU passing
the the two mod_exp() to two other SPUs.

4. Have the PPU pass the whole RSA/CRT to an SPU with this SPU passing
one of the two mod_exp() to another SPU and, in parallel, handle the other.

OpenSSL SPU

| ? SPU
oo

PPU Engine

SPU

Fig. 3. OpenSSL with Engine and SPUs

There are a number of advantages to each. With (1) the amount of data
in the DMA bus is reduced but it breaks the guideline of offloading as much
computation as possible to an SPU. With (3&4) the latency per SSL connection
will be reduced but, as it adds extra DMA data to the bus, the over all maxi-
mum throughput will be affected. With (2, 3 & 4) we can double buffer the data
transfer, for example passing the p parameter to the bus while the SPU is pro-
cessing the g mod_exp(). The double buffering technique would offer relatively
small speed gains. We implemented (1) and (2) and found the initial speed up
to be marginally higher but the maximum throughput to be slightly lower. This
is explained by increased amount of SPU invocation. In an attempt to measure
the maximum throughput we chose to focus on (2).

To maintain compatibility with OpenSSL and other engine implementa-
tions we use notation matching OpenSSL code: dmp;, the decryption exponent
mod p — 1, dmgy, the decryption exponent mod ¢ — 1. igmp is the inverse of ¢
mod p. Iy is the cyphertext. A decryption exponent d, for a prime p, is a number
d, such that m*® mod p = mor ed =1 mod (p— 1), where e is the encryption
exponent, commonly chosen to be 3 or 65537.

At the RSA initialisation stage OpenSSL passes the (p, ¢, dmp1, dmqr, igmp)
parameters to the engine. At this stage we check the parameters, allocate a
memory store, fill the store with local copies of the big numbers ready to pass
to an SPU, and then pass the memory store pointer back through a thread safe
thread local memory store. OpenSSL later makes a call to the main overloaded
RSA mod_exp() function with Iy and the same thread memory store parameter.
The overloaded mod_exp() extracts the thread local data, calls an SPU thread,
DMA transfers the location and size of the memory store to the SPU. It then
allocates space for the return data from the SPU.

As mentioned above, the SPU thread when activated could either receive all
parameters in a full DMA transfer or, more efficiently, a pointer to the block
of big numbers in memory on the Cell’s main store. By passing the pointer,
the SPU’s memory flow controller effectively takes the memory processing away
from the main PPU, further improving the performance.

At this stage the SPU thread converts the big number set to the IBM MPM
format and carries out the CRT logic. On success it takes the result, pushes it
back to the PPU using the DMA tag that the Iy parameter was sent with, finally
cleaning up any memory used by the engine and exiting.

4.1 RSA/CRT

We implement traditional RSA Decryption using Chinese Remainder Theorem
but with a small modification. Because the SPU is restrictive in some respects
and as we can’t be certain that the parameter p is always greater than ¢ we
need to maintain a sequence of calls that ensure the results of any modular
exponentiation stay positive.

1. The SPU compiler optimiser is most efficient when there is no branching.

2. The current version (SDK 2.0) of the IBM MPM is intended to work with
unsigned numbers.

3. Integer comparison operations (less than, greater than) on negative numbers
are undefined.

To overcome these restrictions we assume p is always less than ¢. A condition
OpenSSL guarantees. The modified algorithm is outlined in Algorithm 1.

Algorithm 1 RSA Decryption using Chinese Remainder Theorem modified for
the IBM MPM unsigned restrictions. Note: We follow OpenSSL notation found
i all engine implementations.

INPUT: p,q, Iy, dmqi, dmp1,igmp

OUTPUT: rq

r1 < Ip mod q
mi1 — r1¥™% mod ¢
r1 < Ip mod p
ro < ™ mod p
To <= To — 1M
if 79 < 0 then

Ty <= To+Dp
end if
Ty < To - igmp
rog «— 11 mod p
™ <—To-q
rg < T1 +my

The IBM-MPM library offers an alternative modular exponentiation function
which uses the Montgomery reduction technique. This is more efficient than
the classic 'product then reduce the result modulo n’ approach as it keeps the
numbers from growing unnecessarily. See chapter 14 of [12].

10

5 Results

Table 1 lists timings in cycles counts and milliseconds for the time consuming
functions of the RSA/CRT implementation. Two totals are presented: sum of
these calls and an observed timing for all calls including some initialisation and
the DMA receive calls. These timings are made using an engine with just one
SPU configured.

|function |calls|cycle count| cycles| millisecs| secs|# / sec|
big_number. convert() 7 877 6139| 0.00192
mpm_mod() 4 77731 310924| 0.09716
mpm_mont_mod_exp() 2| 93328909|186657818|58.33057
mpm_mul() 1 22733 22733| 0.00710
mpm_sub() 1 704 704| 0.00022
mpm_add() 1 1116 1116] 0.00035
mpm_madd() 1 39648 39648| 0.01239
[sub-total | | 187039082] | 0.05845] |
|T0ta1 includes other calls| | 215159632| | |0.06724| 14.87|

Table 1. RSA/CRT decryption implemented in IBM MPM function calls with
cycle count and time in milliseconds for a 4096-bit key

We can see that, as expected, the mpm_mont_mod_exp()? calls represent the
bulk of the time consuming operations. A case could be made for a design that
offloaded just this call to an SPU. Theoretically (from the results of Table 1) we
can expect the SPU to be able to process 14.8 4096-bit decryptions in a second.
Interesting (from Table 2) we achieve close to this at 14.1. Obviously there is
additional overhead from DMA and the process queue on the main PPU. Cycle
counts are from the latest (2.0) version of the SDK’s simulator. Unfortunately
the simulator (at this time) cannot measure DMA or PPU latency.

As mentioned previously, to get some sense of the improvements our optimi-
sations have made we use the openssl speed command on RSA with the engine
off (native OpenSSL on the PPU) and with our engine on utilising the SPU.

Tests are run on a 3.2 GHz Playstation 3 with just 6 SPUs running Yellow
Dog Linux 5.0 [16] with kernel version 2.6.16-20061110.ydl.1ps3. A server/blade
Cell system would have up to 16 SPUs. We could expect the Playstation Cell to
deliver a throughput of up to 89 sign/sec and a blade server to go as high as 237
sign/sec. Our observations (Table 3) see slightly smaller results. As mentioned
there are number of factors that could skew our observed numbers, mainly the
design of the OpenSSL speed post-processing, DMA overhead and the fact that
the PPU is busy managing the multiprocess queue.

2 The generic mpm_mod_exp() clocks at 136914856 cycles for a 4096-bit modulus

11

We are using the openssl speed -elapsed time option instead of the more
often quoted CPU user time as on the multi-core processor the CPU timer will
just count the CPU time of the driving PPU thread whereas the multi-threaded
nature of the SPU based system is better represented by elapsed time. OpenSSL
is configured for 64-bit PPC/G5 ASM 3.

openssl speed rsa —elapsed
openssl speed rsa —engine cellspumpm —elapsed

RSA PPU 1 SPU
key length|| sign [sign/sec|| sign sign/sec
1024-bits [|0.003435s| 291.2]0.005655s| 176.8
2043-bits |[0.017541s| _ 57.0/[0.015636s| 64.0
2096-bits [0.100793s] 9.1]j0.070915s| 14.1
Table 2. OpenSSL speed on PPU vs. 1 SPU using IBM-MPM on 3.2GHz Cell

From Table 3 we can see that the overhead of the DMA transfer and the big
number conversion impact the performance improvements just below the 2048-
bit key. The benefits of the 128-bit registers are apparent at 4096-bit level with
improvements in the order of 150% (14.1 vs. 9.1).

To see the full impact of the multi-core we need to use the -multi [n] option
to the speed command which can (through fork()) generate multiple simulta-
neous RSA operations. We have picked a number (6) of parallel processes to run
matching the number of SPUs on the Playstation 3. It is important to note that
the -multi option introduces some small processing overhead to the speed com-
mand as it uses a fork() invocation whereas the standard calls in single threaded.
Again we compare the PPU with an SPU enabled engine.

openssl speed rsa —elapsed —multi 6
openssl speed rsa —engine cellspumpm —elapsed —multi 6

We see from Table 3 similar overheads impacting the 1024-bit keys. However
there is huge improvements in 2048-bit (329.7 vs.71.7) and 4096-bit (83.6 vs
11.2). A 749% increase.

While the openssl speed utility running on the 6 SPU Cell inside a Playsta-
tion 3 gives us a solid basis to develop and measure our improvements, Séan
Starke at IBM was kind enough to try our tests in a full 16 SPU dual Cell blade.
These results (Table 4) are preliminary but are consistent with the trend from
the Playstation 3 results.

% Options: bn(64,64) md2(int) re4(ptr,char) des(idx,riscl,16,long) aes(partial)
idea(int) blowfish(idx) compiler: ppu-gcc -DOPENSSL_.USE_MPM_SPU -
DOPENSSL_.THREADS -D_REENTRANT -DDSO_DLFCN -DHAVE_DLFCN_H
-m64 -DB_ENDIAN -DTERMIO -03 -Wall

12

RSA PPU 6 SPUs
key length|| sign [sign/sec|| sign |sign/sec
1024-bits {|0.000724s| 384.5(|0.001906s| 524.7
2048-bits {|0.002600s 71.7](0.003033s| 329.7
4096-bits (|0.089455s 11.2](0.011925s 83.9
Table 3. OpenSSL speed on PPU vs. 6 SPUs using IBM-MPM on 3.2GHz Cell,
6 parallel processes.

RSA 2 PPUs 16 SPUs
key length|| sign [sign/sec|| sign sign/sec
1024-bits ||0.001270s| 787.5[|0.001509s| 662.7
2048-bits ||0.006805s| 146.9{|0.001664s| 601.0
4096-bits |[0.043944s 22.8|(0.005762s| 173.6
Table 4. OpenSSL speed on 2 PPUs vs. 16 SPUs using IBM-MPM on 3.2GHz
Cell, 16 parallel processes.

6 Conclusions and Future Work

The numbers speak for themselves: over 700% improvement in performance.
With the widespread use of specialised multi-core processors there is no reason to
prevent the roll out of always on encryption leading to improvements in privacy
for the general user.

We believe that we have pushed the Cell SDK’s IBM-MPM library to its
limits. The library is an excellent demonstration of the power of SPU intrinsics
‘vector’ programming. However, we believe the introduction of an optimised
number library more suited to crypto can substantially improve the performance,
possibly doubling the figures presented above.

As mentioned the results are based on using generic Montgomery
mpm_mont mod_exp () function. This function allows for any size of parameter
whereas we know the size of parameters are based on fixed key lengths (1024,
2048 etc.) These fixed lengths can offer further optimisations as they always
align on the 128-bit boundaries of the vectors and that the number of partial
products to be summed inside any multiplies can be determined allowing for
very efficient carry management.

The multiplication inside the mpm mont_mod_exp() needs to be examined in
more detail. MPM uses ‘row by row’ operand scanning to do big number mul-
tiplies whereas a ‘column by column’ product scanning technique used by the
Comba [4] method would be more suitable for the large, fixed sized numbers
used by crypto. Furthermore, as the number length moves beyond 1024-bit the
Comba method can be combined with the Karatsuba technique [11] for further
improvement.

13

OpenSSL uses this Comba/Karatsuba combination at key lengths above
1024-bit irrespective of the architecture. We hope to swap out the IBM MPM
library and use a fine tuned version of MIRACL [14] with fixed key sizes on fixed
128-bit alignment, and utilising the Comba/Karatsuba speed ups on longer key
lengths.

The threshold key length to optimally use the Karatsuba method depends
heavily on the underlying word size and the architecture’s instruction set, specif-
ically how fast the multiplier is compared to the addition. We hope to examine
this threshold in more detail with the more flexible, MIRACL library.

The performance figures focus on raw crypto performance. We would like
to examine the SSL performance of real word data using a commercial grade
SSL/HTTP load testing suite. We also intend to offer support for DSA and
ECC algorithms.

7 Acknowledgements

For development tools and background information we turned again and again
to the IBM’s ‘DeveloperWorks’ resource centre and the Cell SDK. We would
like to thank the Cell development community particularly Séan Starke and
the IBM team. The authors acknowledge Georgia Institute of Technology, its
Sony-Toshiba-IBM Center of Competence, and the National Science Foundation,
for the use of Cell Broadband Engine resources that have contributed to this
research. We would also like to acknowledge the valuable feedback given by the
anonymous reviewers from the SPEED 2007 (Amsterdam) workshop at which
this paper was presented. Finally We would also like to thank Augusto Jun
Devegili (Unicamp, Brazil), Peter Kehoe (DCU), Noel McCullagh, and Stephen
Henson (OpenSSL)[7] for their encouragement, assistance & patience.

References

1. IBM alphaWorks. Cell Broadband Engine SDK. http://www.alphaworks.ibm.
com/topics/cell.

2. Zhao Iyer Srihari Makineni Laxmi Bhuyan. Anatomy and performance of SSL pro-
cessing. In Proc. IEEE Int. Symp. Performance Analysis of Systems and Software,
pages 197-206, 2005.

3. Alex Chunghen Chow. Programming the Cell Broadband Engine. FEmbedded
Systems Design, 2006. http://www.embedded.com/columns/showArticle. jhtml?
articleID=188101999.

4. P. G. Comba. Exponentiation cryptosystems on the ibm pc. IBM Syst. J.,
29(4):526-538, 1990.

5. IBM DeveloperWorks. Cell Broadband Engine resource center. http://wwwu-128.
ibm.com/developerworks/power/cell/.

6. IBM DeveloperWorks. Cell Broadband Engine SDK Libaries Multi-Precision Math
Library, 2006. http://www-128.ibm.com/developerworks/power/cell/.

7. S. Henson et al. OpenSSL library. Open source library, 1988. http://www.openssl.
org.

14

10.

11.

12.

13.

14.
15.

16.

Apache Foundation. Apache HTTP server project. http://www.apache.org.
SWOX / Free Software Foundation. GNU Multiple Precision Arithmetic Library.
http://www.swox.com/gmp/.

Freescale. Altivec velocity engine. http://www.freescale.com/altivec.

Donald E. Knuth. The art of computer programming, volume 2 (3rd ed.): seminu-
merical algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1997.

Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 2001.

MySQL. MySQL open souce database. http://www.mysql.com.

M. Scott. MIRACL. http://www.shamus.ie.

K. Shimizu, H. P. Hofstee, and J. S. Liberty. Cell Broadband Engine processor vault
security architecture. IBM Journal of Research and Development, 51(5):521-528,
September 2007.

Terrasoft. Yellow Dog Linux. http://www.terrasoftsolutions.com/products/
ydl/.

15

