
Algebraic and Slide Attacks on KeeLoq

Nicolas T. Courtois1, Gregory V. Bard2, and David Wagner3

1 University College of London, Gower Street, London WC1E 6BT, UK,
2 University of Maryland, College Park, MD 20742, USA

3 University of California - Berkeley, Berkeley CA 94720, USA

Abstract. KeeLoq is a block cipher used in wireless devices that unlock
the doors of cars manufactured by Chrysler, Daewoo, Fiat, GM, Honda,
Jaguar, Toyota, Volvo, Volkswagen, etc [6, 7, 23, 24]. KeeLoq is very sim-
ple in implementation and economical in gate count, yet according to
Microchip [23] it should have “a level of security comparable to DES”.
Until now, algebraic attacks on block ciphers did not yield interesting
results and most researchers seriously doubted if any block cipher would
ever be broken by such attacks. It turns out that direct algebraic attacks
can break up to 128 rounds of KeeLoq. Much better results are achieved
in combination with slide attacks. Given about 216 known plaintexts, we
give an algebraic attack that uses a SAT solver and allows one to recover
the key in 264 CPU clocks which is about 253 KeeLoq encryptions. To
the best of our knowledge, this is the first time that a full round real-
life block cipher is broken by an algebraic attack. Our attacks are easy
to implement, have been tested experimentally, and the full key can be
recovered on a PC.
In addition, if about 232 known plaintexts are available, we present an
attack equivalent to about 229 KeeLoq encryptions.

1 Introduction

KeeLoq was designed in the 1980’s by Willem Smit from South Africa. Following
[25], the specification of KeeLoq is “not secret” but is patented and was released
only under license. The specification of KeeLoq can be found in [6, 7, 24, 4]. In
1995 KeeLoq was sold to Microchip Technology Inc for more than 10 million US
dollars [6].

KeeLoq operates with 32-bit blocks and 64-bit keys. Compared to typical
block ciphers that have a few carefully-designed rounds, this cipher has 528 ex-
tremely simple rounds. In each round, only one bit of the state is modified. More
importantly, KeeLoq requires a very low number of gates to be implemented.
This is quite interesting and challenging, as it has been sometimes conjectured,
that ciphers which require a small number of gates should be vulnerable to al-
gebraic cryptanalysis, see [15, 10]. In this paper we will see that the simplicity
of KeeLoq makes it directly breakable by simple algebraic attacks for up to 128
rounds.

KeeLoq also has a periodic structure with period of 64 rounds. This will allow
us to propose much better attacks, and in particular a practical algebraic attack



that recovers the full key for the full cipher and the complexity of which does
not depend on the number of rounds of the cipher.

Very little of previous work on algebraic cryptanalysis was very successful.
The vulnerability of ciphers in general against algebraic cryptanalysis is moti-
vated by the existence of algebraic I/O relations, see [10, 12]. However, though
such equations allow one to break many LFSR-based stream ciphers quite badly
[11] and certain block ciphers with strong special structure [13], so far it appeared
infeasible to use algebraic cryptanalysis for cryptanalysis of common types of
block ciphers. In 2006 Courtois published an attack that breaks 6 rounds of a
toy block cipher called CTC, see [14], however CTC is not a very strong design,
see [28]. Finally, it was shown that for DES, which is known to be very robust,
algebraic attacks allow one to break up to 6 rounds, see [15]. According to [23],
KeeLoq should have “a level of security comparable to DES”. Yet, when we take
into account its periodicity (a slide property, cf. Section 2), given 216 known
plaintexts we are able to break the full 528 rounds of KeeLoq.

KeeLoq has unusually small 32-bit blocks. Thus, in theory the attacker can
expect to recover the whole code-book of 232 known plaintexts. In practice there
is no hope for such attacks, the devices are simply too slow to obtain this. At
the same time, the 64-bit key size implies that the exhaustive search is actually
feasible in practice, and hackers and car thieves implement it with FPGA’s [6].
It requires only 2 known plaintexts (one known plaintext does not alone allow
one to uniquely determine the key).

In two of the attacks we present in this paper we assume that the whole code-
book is known. Then one may wonder whether it is really useful to recover the
key, as the code-book allows one to encrypt and decrypt any message. However,
from the point of view of the cryptographic research, the question remains very
interesting. Very little is known about how such a key can be recovered, with
what complexity, and what is the most efficient method. More importantly, our
attacks work when only 60% or less of the code-book is available.

This paper is organised as follows: in Section 2 we describe the cipher and its
usage. In Section 3 we do a preliminary analysis and recall some useful results
about random functions and permutations. In Section 4 we demonstrate several
algebraic attacks that work given very small quantity of known/chosen plaintexts
and for a reduced number of rounds of KeeLoq. In Section 5 we study combined
slide and algebraic attacks that work given about 232/2 known plaintexts for
the full 528-round cipher. Finally, in Section 6 and Appendix C we describe
two even faster attacks that recover the key for full KeeLoq, requiring however
the knowledge of (about) the whole code-book. In Appendix A we propose a
method to avoid attacks on KeeLoq without modifying the cipher. In Appendix
B we study the algebraic immunity of the Boolean function used in KeeLoq. In
Appendix D, we present some experimental results which justify claims made in
the text.

1.1 Notation

We will use the following notation for functional iteration:



f (n)(x) = f(f(· · · f(
︸ ︷︷ ︸

n times

x) · · ·))

2 Cipher Description

The KeeLoq cipher is a strongly unbalanced Feistel construction in which the
round function has one bit of output, and consequently in one round only one
bit in the “state” of the cipher will be changed. Alternatively it can viewed as a
modified shift register with non-linear feedback, in which the fresh bit computed
by the Boolean function is XORed with one key bit.

The cipher has the total of 528 rounds, and it makes sense to view that as
528 = 512+16 = 64×8+16. The encryption procedure is periodic with a period
of 64 and it has been “cut” at 528 rounds, because 528 is not a multiple of 64, in
order to prevent obvious slide attacks (but more advanced slide attacks remain
possible as will become clear later). Let k63, . . . , k0 be the key. In each round,
it is bitwise rotated to the right, with wrap around. Therefore, during rounds
i, i + 64, i + 128, . . ., the key register is the same. If one imagines the 64 rounds
as some fk(x), then KeeLoq is

Ek(x) = gk(f
(8)
k (x))

with g(x) being a 16-round final step, and Ek(x) being all 528 rounds. The last
“surplus” 16 rounds of the cipher use the first 16 bits of the key (by which we
mean k15, . . . , k0) and gk is a functional“prefix” of fk (which is also repeated at
the end of the whole encryption process). In addition to the simplicity of the
key schedule, each round of the cipher uses only one bit of the key. From this
we see that each bit of the key is used exactly 8 times, except the first 16 bits,
k15, . . . , k0, which are used 9 times.

At the heart of the cipher is the non-linear function with algebraic normal
form (ANF) given by:

NLF (a, b, c, d, e) = d ⊕ e ⊕ ac ⊕ ae ⊕ bc ⊕ be ⊕ cd ⊕ de ⊕ ade ⊕ ace ⊕ abd ⊕ abc

Alternatively, the specification documents available [6], say that it is “the
non-linear function 3A5C742E” which means that NLF (i) is the ith bit of that
hexadecimal number, counting 0 as the least significant and 31 as the most
significant.

The main shift register has 32 bits, (unlike the key shift register with 64
bits), and let Li denote the leftmost or least-significant bit at the end of round
i, while denoting the initial conditions as round zero. At the end of round 528,
the least significant bit is thus L528, and then let L529, L530, . . . , L559 denote the
31 remaining bits of the shift register, with L559 being the most significant. The
following equation gives the shift-register’s feedback:

Li = ki−32 mod 64 ⊕ Li−32 ⊕ Li−16 ⊕ NLF (Li−1, Li−6, Li−12, Li−23, Li−30)

where k63, k62, . . . , k1, k0 is the original, non-rotating key.



1. Initialize with the plaintext: L31, . . . , L0 = P31, . . . , P0

2. For i = 0, . . . , 528 − 1 do
Li+32 = ki mod 64 ⊕ Li ⊕ Li+16⊕NLF (Li+31, Li+26, Li+20, Li+9, Li+2)

3. The ciphertext is C31, . . . , C0 = L559, . . . , L528.

Fig. 1. KeeLoq Encryption



2.1 Cipher Usage

It appears that the mode in which the cipher is used depends on the car man-
ufacturer. One possible method is a challenge-response authentication with a
fixed key and a random challenge. Another popular method is to set the plain-
text to 0, and increment the key at both sides. Another important mode is a so
called ’hopping’ or ’rolling’ method described in [4, 23]. In this case 16 bits of
the plaintext are permanently fixed on both sides, and the attacker cannot hope
get more than 216 known plaintexts. More information can be found in [4].

In this paper we study the security of the KeeLoq cipher against key recovery
attacks given a certain number of known or chosen plaintexts.

3 Preliminary Analysis and Useful Combinatorial Facts

3.1 The Simplicity of KeeLoq

Fact 3.1. Given (x, y) with y = hk(x), where hk represents up to 32 rounds of
KeeLoq, one can find the part of the key used in hk in as much time as it takes
to compute hk.

Justification: This is because for up to 32 rounds, all state bits between
round i and round i − 1 are directly known. More precisely, after the round
i, 32 − i bits are known from the plaintext, and i bits are known from the
ciphertext, for all i = 1, 2, . . . , 32. Then the key bits are obtained directly:
we know all the inputs of each NLF, and we know the output of it XORed
with the corresponding key bit. We simply have ki−32 = Li ⊕ Li−32 ⊕ Li−16 ⊕

NLF (Li−1, Li−6, Li−12, Li−23, Li−30). This also shows that there will be exactly
one possible key.

Remark: For more rounds it is much less simple as we will see later. Algebraic
attacks allow one to efficiently recover the key of such a simple cipher for up to
128 rounds.

Fact 3.2. Given (x, y), one can quickly test whether it is possible that y = gk(x)
for 16 rounds. The probability that a random (x, y) will pass this test is 1/216.

Justification: After 16 rounds of KeeLoq, only 16 bits of x are changed, and
16 bits of x are just shifted. If data is properly aligned this requires a 16-bit
equality test that should take only 1-2 CPU clocks.

Fact 3.3. Given (x, y) with y = hk(x), where hk represents 48 rounds of KeeLoq,
one can find all 216 possible keys for hk in as much time as 216 times the time
to compute hk.

Justification: Try exhaustively all possibilities for the first 16 key bits and
apply Fact 3.1.

Fact 3.4. For full KeeLoq, given a pair (p, c) with c = Ek(p), it is possible to
very quickly test whether p is a possible fixed point of f8

k . All fixed points will
be accepted; all but 1/216 of the non-fixed points will be rejected.
Justification: If p is a fixed point of f8, then c = gk(p). We simply use Fact 3.2
to test whether it is possible that c = gk(p).

These facts are later used in Attack 4.



3.2 Random Functions, Random Permutations and Fixed Points

Given a random function from n-bits to n-bits, the probability that a given point
has i pre-images is 1

i!e , when n → ∞. (This is a Poisson distribution with the
average number of pre-images being λ = 1).

This distribution can be applied to derive statistics on the expected number
of fixed points of a (random) permutation. It is also expected to work for (not
exactly random) permutations that we encounter in cryptanalysis of KeeLoq. In
particular let fk(x) be the first 64 rounds of KeeLoq. Assuming that fk(x) ⊕ x
is a pseudo-random function, we look at the number of pre-images of 0 with this
function. This gives immediately:

Proposition 3.1. The first 64 rounds of KeeLoq have 1 or more fixed points
with probability 1 − 1/e ≈ 0.63.

Proposition 3.2. The first 64 rounds of KeeLoq have 2 or more fixed points
with probability of 1 − 2/e ≈ 0.26.

3.3 On the Expected Number of Cycles in a Random Permutation

It is well known (see [29] for example) that:

Proposition 3.3. The expected number of cycles in a permutation on n bits
is equal to H2n where Hk =

∑k
i=0 1/i is the k-th Harmonic number. We have

Hk ≈ ln k + γ where γ ≈ 0.58 is the Euler-Mascheroni constant.

For example, when n = 8 we expect to have 6 cycles on average, and when
n = 32 we expect to have 23 cycles on average.

4 Algebraic Attacks on KeeLoq

Our goal is to recover the key of the cipher by solving a system of multivariate
equations given a small quantity of known, chosen or random plaintexts, as in
[10]. Very few such attacks are really efficient on block ciphers. For example DES
can be broken for up to 6 rounds by such attacks, see [15]. For KeeLoq, due to
its simplicity, many more rounds can be directly attacked.

4.1 How to Write the Equations

We write equations in a straightforward way: namely by following directly the
description of Fig 1. One new variable represents the output of the NLF in the
current round. In addition, in order to decrease the degree, we add two additional
variables per round, to represent the monomials α = ab and β = ae, and add
equations of the form αi = ai · bi and βi = ai · ei. The values of the plaintext,
the ciphertext, and a certain number of key bits that we may fix (i.e. guess, cf.
Section 4.2) during the attack are written as separate equations. Thus, given r
rounds of the cipher, and for each known plaintext, assuming that F bits of the
key are known, we will get a system of 3r + 32 + 32 + F multivariate quadratic



equations with 3r + 64 + 32 variables. Out of these the values of 32 + 32 + F
variables are already known. The total number of monomials that appear in
these equations is about 12r.

The equations are written for one or several known plaintexts. This will be
our known-plaintext attack. In another version, we consider that the cipher is
used in the counter mode, i.e. the set of plaintexts forms a set of consecutive
integers encoded on 32 bits. This will be called a counter mode attack.

4.2 Direct Algebraic Attacks on KeeLoq vs. Brute Force

The equations of KeeLoq are of very low degree (i.e. 2), and very sparse. One
can try to solve with an off-the-shelf computer algebra system such as Magma’s
implementation of F4 algorithm [17] or Singular’s slimgb() algorithm [30]. We
have also tried a much simpler method called ElimLin and described in [15]. An-
other family of techniques are SAT solvers. Any system of multivariate equations
is amenable for transformation into a CNF-SAT problem, using the methods of
[16].

Fact 4.1. An optimised assembly language implementation of r rounds of KeeLoq
is expected to take only about 4r CPU clocks.

Justification: See footnote 4 in [4].
Thus, the complexity of an attack on r rounds of KeeLoq with k bits of the

key should be compared to 4r × 2k−1 which is the expected complexity of the
brute force key search. For example, for full KeeLoq, the reference complexity
for the exhaustive key search is about 275 CPU clocks. Assuming that the CPU
runs at 2 GHz, one can execute about 243 CPU clocks per hour. Consider the
following example. Suppose we guess 32 key bits for example k1 = 0, k2 = 1, . . ..
Suppose then the remaining key bits are found on a PC in less than an hour, or
< 243 CPU clocks. In reality, the attacker is not given 32 bits of the key. Instead
one can guess them and on average 231 such guesses must be made. With early
abort of unsuccessful tries after for example 1.5 hours, the expected running
time is < 243231+1 or < 275, which is faster than brute force.

Note: In the real life hackers recover the KeeLoq key by brute force with
FPGAs which takes about two weeks, see [6].

4.3 Frontal Assault – Elimination and Gröbner Bases Attacks

Example 1. For example, we consider 64 rounds of KeeLoq and 2 known plain-
texts, and we run ElimLin as described in [15]. The program manages to elimi-
nate all but 137 variables out of the initial 372 variables. Moreover, in the linear
span of the equations after ElimLin, the program is able to find one equation of
degree 2, that involves only the 64 key variables and in which all the internal
variables of the cipher are eliminated. This is sufficient to show that 64 rounds
are very easy to break by Gröbner bases. For example, we may proceed as fol-
lows: for each new pair of known plaintexts, we get a new equation of this type.
Given a sufficient number of known plaintexts (a small multiple of 64 will be



sufficient), we will get a very overdefined system of equations with 64 variables.
Such systems can be solved very easily by the XL algorithm or Gröbner bases,
see [9, 8, 1].

Example 2. Here also, we consider 64 rounds of KeeLoq and 4 known plaintexts,
and we run ElimLin as described in [15]. We fix 10 key bits to their values. Then
the remaining 54 key bits are recovered by ElimLin alone in 10 seconds. The
same result is obtained by using Singular slimgb() function [30] in 70 seconds.

Example 3. With 64 rounds, 2 plaintexts that differ only in 1 bit, (it is no longer
a known plaintext attack), and with 10 key bits fixed, the key is computed by
ElimLin in 20 seconds and by Singular in 5 seconds (here Singular is faster).

Example 4. With 128 rounds and 128 plaintexts in the counter mode (the
plaintexts are consecutive integers on 32-bits), and 30 bits fixed, the remaining
34 bits are recovered by ElimLin in 3 hours. This is slightly faster than brute
force.

4.4 Cryptanalysis of KeeLoq with SAT Solvers

From [15], one may expect that better results will be obtained with SAT solvers.
Given some number of pairs of plaintext and ciphertexts, over the whole 528
rounds, we rewrite the equations as a SAT problem and try to solve them. We
write equations as polynomials (cf. previous section) and use the simplest version
of the ANF to CNF conversion method described in [16].

Example 5. For full 528 rounds of KeeLoq, these attacks remain much slower
than exhaustive search. For example with 8 plaintexts in counter mode (consecu-
tive integers on 32-bits) and 44 bits fixed, the remaining 20 key bits are recovered
in 7 hours with a conversion to CNF and MiniSat 2.0., done as described in [15,
16]. This is much slower than brute force. However, with a reduced number of
rounds, the results are quite interesting.

Example 6. For 64 rounds of KeeLoq and 2 known plaintexts, the key is re-
covered by MiniSat 2.0. in 0.19 s.

Example 7. For 96 rounds of KeeLoq, 4 known plaintexts, and when 20 key
bits are guessed, the key is recovered by MiniSat 2.0. in 0.3 s.

Example 8. With 128 rounds, 2 plaintexts in counter mode, and 30 bits guessed,
the remaining 34 bits are recovered in 2 hours by MiniSat 2.0. This is only slightly
faster than brute force.

Future Work. So far we are not aware of an attack that would break more than
128 rounds of KeeLoq faster than the exhaustive search given a small number
of known or chosen plaintexts.



5 Combining Slide and Algebraic Attacks on KeeLoq

If the number of rounds were 512, and not 528, then it would be easy to analyse
KeeLoq as an 8-fold iteration of 64 rounds. The last 16 rounds are a “barrier”,
which we can remove by guessing the 16 bits of the key used in those 16 rounds.
These are the first 16 key bits, or k0, . . . , k15, and the guess is correct with
probability 2−16. This is what we will do in Attacks 1 and 3. Alternatively (as
we will see in Attacks 2 and 4), we may assume/guess some particular property
of the 512 rounds of the cipher and try to recover the 16 (or more) bits that
confirm this property.

Classical sliding attacks [3, 19, 21] exploit pairs of plaintext that have the
following property:

Definition 5.1. Given a block cipher with periodic structure of the form Ek(x) =

gk(f
(m)
k (x)), m > 1, we call a “slid pair” any pair of plaintexts (Pi, Pj) such that

fk(Pi) = Pj .

5.1 Slide-Algebraic Attack 1

A simple sliding attack on KeeLoq would proceed as follows.

1. We guess the 16 key bits of gk which gives us “oracle access” to 512 rounds

of KeeLoq that we denote by O = f
(8)
k .

2. We consider 216 known plaintexts (Pi, Ci).
3. By birthday paradox, one pair (Pi, Pj) is a “slid pair” for 64 rounds.
4. From this, one can derive an unlimited number of known plaintexts for 64

rounds of KeeLoq. For example, if fk(Pi) = Pj then fk(O(Pi)) = O(Pj).
Additional “slid pairs” are obtained by iterating O twice, three times etc..

5. The whole attack has to be run about 232 times, to find the correct “slid
pair” (Pi, Pj).

In all with guessing the key of gk there are 248 possibilities to check. For
each potential value for the first 16 bits of the key, and for each couple (Pi, Pj)
we compute some 4 plaintext/ciphertext pairs for 64 rounds and then the key
is recovered by MiniSat (cf. above) in 0.4 s which is about 230 CPU clocks. The
total complexity of the attack is about 278 CPU clocks which is more than the
exhaustive search.

5.2 Slide-Algebraic Attack 2

Another, better sliding attack proceeds as follows.

1. We do not guess 16 key bits, they will be determined later.
2. We consider 216 known plaintexts (Pi, Ci).
3. By birthday paradox, one pair (Pi, Pj) is a “slid pair”: fk(Pi) = Pj .
4. Then the pair (Ci, Cj) is a plaintext/ciphertext pair for a “slided” version

of the same cipher: starting at round 16 and finishing before round 80. This
is to say a cipher with absolutely identical equations in every respect except
for the (permuted) subscripts of the ki.



5. From the point of view of multivariate equations and algebraic cryptanalysis,
this situation is not much different than in Example 6 above solved in 0.2
seconds. We have one system of equations with the pair (Pi, Pj) for the first
64 rounds, and the same system of equations with the pair (Ci, Cj) and the
key bits that are rotated by 16 positions.

6. We did write this system of equations and try ElimLin and MiniSat. For
example with 15 first bits of the key fixed, ElimLin solves the system in 8
seconds. Better results are obtained with MiniSat, and without guessing any
key variables, the key is computed in 2.3 seconds. Thus, with ElimLin, we
can recover the key in about 249 CPU clocks, and with MiniSat, we can do
it in about 232 CPU clocks.

7. There are about 232 pairs (Pi, Pj) to be tried.

The total complexity of the attack, in the version with MiniSat is exactly
232+32 = 264 CPU clocks which is much faster than exhaustive search that
requires about 275 CPU clocks.

Summary. Our Attack 2 can break KeeLoq within 264 CPU clocks given 216

known plaintexts. This is about 253 KeeLoq encryptions. The attack is realistic,
practical and has been fully implemented.

6 Attacks that Use the Whole Dictionary

We will now present two attacks that are faster than our Attack 2, but require
the attacker to know about 232 known plaintexts. In this case the question of
key recovery is still an important question that deserves attention.

In our Attack 3 we will construct a distinguisher that allows one to distinguish
512 rounds of KeeLoq from a random permutation and thus recovers 16 bits of
the key. The final key will be recovered by a pure algebraic attack – solving a
system of multivariate equations. In our Attack 4, we will compute a list of pairs
that, for each possible value of the first 16 bits of the key, will contain several
plausible fixed points for 64 rounds of KeeLoq.

Both attacks assume that one can iterate through all possible 232 plaintexts.
This can either be obtained from a remote encryption oracle, or simply harness-
ing the circuitry without being able to read the key in order to clone the device.
While this may sound like a practical attack scenario, it is hard to imagine a
hacker patient enough to get 232 known plaintexts from the device knowing that
brute force is actually feasible.

For simplicity we will assume that all the plaintext-ciphertext pairs are stored
in a table and the time to get one pair is about 16 CPU clocks. This would require
16 Gigabytes of RAM which is now available on a high-end PC.

6.1 Preliminary Analysis and Working Conditions

In Attacks 3 and 4 we make the following observations. Recall, fk(x) represents
the first 64 rounds of the cipher. First we assume that there are at least one and



two fixed points, respectively, for fk(x). As shown in Section 3.2, these events
happen with probability 0.63 and 0.26, respectively. For the sake of simplicity,
we will assume that Attacks 3 and 4 will fail when the required number of fixed
points is not present.

Secondly, we observe that if x is a fixed point of fk(·), or in an orbit of size

2, 4, or 8, then x is a fixed point of f
(8)
k (·). We estimate that f

(8)
k (·) – the first

512 rounds of KeeLoq – will on average have about 4 fixed points. In Attack 4,

the attacker determines possible fixed points for f
(8)
k and then assumes that it

is also a fixed point for fk(·). This guess will be correct with probability about
1/4. (For Attack 3 see Appendix C and D.)

6.2 Slide-Algebraic Attack 3

This part has been moved to Appendix C. The following Attack 4 is much faster
and works for a larger proportion of keys.

6.3 Slide-and-Determine Attack 4

This attack occurs in two stages.

Stage 1 - Batch Guessing Fixed Points. This attack requires 232 plain-
text/ciphertext pairs (p, c). We expect that one p is a fixed point of f (about
4 of them are fixed points for f8). For each such pair (p, c), test whether it is
possible that p is a fixed point of f (and thus also for f8) if not, discard that pair.
We use Fact 3.4 and the complexity so far is about 16 · 232 = 236 CPU clocks
(mostly spent accessing the memory). Only about 216 + 4 pairs will survive.

Then following Fact 3.1 we can at the same time compute 16 bits of the key
with time of about 4 ·16 CPU clocks (cf. Fact 3.1 and 4.1). To summarize, given
the whole code-book and in time of about 238 CPU clocks we produce a list
of 216 triples P,C, (k15, . . . , k0). Since we assumed that fk has a fixed point, at
least one triple is valid (moreover we expect that less than 2 are valid).

Stage 2 - Batch Solving and Verification. For each surviving triple, assume

that p is a fixed point, so that c = Ek(p) = gk(f
(8)
k (p)) = gk(p). Note that if

fk(p) = p, then p = hk(c), where hk represents the 48 rounds of KeeLoq using
the last 48 key bits. Then an algebraic attack can be applied to suggest possible
keys for this part. If we guess additional 16 bits of the key, such an attack with a
SAT solver takes less than 0.1 s. There is a simpler and direct method to get the
same result. We use Fact 3.3 to recover 216 possibilities for the last 48 key bits
from the assumption that p = h(c). Combined with the 16 bits pre-computed
above for each triple, we get a list of 232 possible full keys of 64 bits. This takes
time equivalent to 232 computations of hk(·), which is about 240 CPU clocks.

Finally, test each of these 232 complete keys on one other plaintext/ciphertext
pair. This is again only about 236 CPU clocks with our precomputed table. Most
incorrect key guesses will be discarded, and only 1 or 2 keys will survive, one of
them being correct. With additional few pairs we get the right key with certainty.



Summary of Attack 4. This attack succeeds for 63 % of keys (cf. Proposition
3.1). The running time is about 240 CPU clocks which is only about 229 KeeLoq
encryptions. This is if we ignore the time to get the 232 plaintext/ciphertext
pairs. If we added it, the complexity of the attack would be 232 KeeLoq encryp-
tions.

The attack is parallelizable and can be performed online, as known texts are
received. It can be performed with less than the full code-book, at a proportional
decrease in the success probability.

7 Conclusions

In this paper we described four key recovery attacks on KeeLoq, a block ci-
pher with a very small block size and a simple periodic structure. KeeLoq is
widespread in the automobile industry and is used by millions of people every
day. Recently it has been shown that for a more complex cipher such as DES, up
to 6 rounds can be broken by an algebraic attack given only one known plaintext
[15]. In this paper we showed that, for example up to 128 rounds of KeeLoq can
be broken using MiniSat algorithm, given up to 4 known plaintexts.

For the full 528-round KeeLoq cipher and given about 216 known plaintexts,
we have proposed a working slide-algebraic attack equivalent to 253 KeeLoq en-
cryptions. This attack is practical and was implemented with little programming
effort. It appears that it is actually the first cryptanalytic attack on KeeLoq that
can work in practice. In particular, in the so called ’hopping’ or ’rolling’ mode
described in [4, 23], it is impossible to get more than 216 known plaintexts.

A faster attack can be found if nearly 232 known plaintexts are available. For
about 63 % of all keys, we can recover the key of the full cipher with complexity
equivalent to about 229 KeeLoq encryptions.

It is interesting to note that attacks that use sliding properties can be quite
powerful because typically (as in Attacks 1,2 and 4) their complexity simply
does not depend on the number of rounds of the cipher. The results of this
paper can be compared to [4], another very recent work on KeeLoq. It appears
that algebraic cryptanalysis gives better results than traditional methods such
as Linear Cryptanalysis, and our algebraic attack will be the fastest attack we
know requiring a reasonable quantity of known plaintexts.

References

1. Magali Bardet, Jean-Charles Faugère and Bruno Salvy, On the complexity of
Gröbner basis computation of semi-regular overdetermined algebraic equations, in
Proceedings of International Conference on Polynomial System Solving (ICPSS,
Paris, France), pp.71-75, 2004.

2. Alex Biryukov, David Wagner: Advanced Slide Attacks, In Eurocrypt 2000, LNCS
1807, pp. 589-606, Springer 2000.

3. Alex Biryukov, David Wagner: Slide Attacks, In Fast Software Encryption, 6th
International Workshop, FSE ’99, Springer, LNCS 1636, pp. 245-259.



4. Andrey Bogdanov: Cryptanalysis of the KeeLoq block cipher,
http://eprint.iacr.org/2007/055.

5. C.Cid, S. Babbage, N. Pramstaller and H. Raddum: An Analysis of the Hermes8
Stream Cipher, In ACISP 2007, LNCS 4586, pages 1-10, Townsville, Australia, July
2007. Springer.

6. Keeloq wikipedia article. 25 January 2007. See
http://en.wikipedia.org/wiki/KeeLoq.

7. Keeloq C source code by Ruptor. See http://cryptolib.com/ciphers/
8. Nicolas Courtois and Jacques Patarin, About the XL Algorithm over GF (2), Cryp-

tographers’ Track RSA 2003, LNCS 2612, pp. 141-157, Springer 2003.
9. Nicolas Courtois, Adi Shamir, Jacques Patarin, Alexander Klimov, Efficient Algo-

rithms for solving Overdefined Systems of Multivariate Polynomial Equations, In
Advances in Cryptology, Eurocrypt’2000, LNCS 1807, Springer, pp. 392-407.

10. Nicolas Courtois and Josef Pieprzyk: Cryptanalysis of Block Ciphers with Overde-
fined Systems of Equations, Asiacrypt 2002, LNCS 2501, pp.267-287, Springer.

11. Nicolas Courtois and Willi Meier: Algebraic Attacks on Stream Ciphers with Linear
Feedback, Eurocrypt 2003, Warsaw, Poland, LNCS 2656, pp. 345-359, Springer.

12. Nicolas Courtois: General Principles of Algebraic Attacks and New Design Criteria
for Components of Symmetric Ciphers, in AES 4 Conference, Bonn May 10-12 2004,
LNCS 3373, pp. 67-83, Springer, 2005.

13. Nicolas Courtois: The Inverse S-box, Non-linear Polynomial Relations and Crypt-
analysis of Block Ciphers, in AES 4 Conference, Bonn May 10-12 2004, LNCS 3373,
pp. 170-188, Springer, 2005.

14. Nicolas T. Courtois How Fast can be Algebraic Attacks on Block Ciphers? Avail-
able at http://eprint.iacr.org/2006/168/.

15. Nicolas T. Courtois and Gregory V. Bard: Algebraic Cryptanalysis of the Data
Encryption Standard, Available at http://eprint.iacr.org/2006/402/.

16. Gregory V. Bard, Nicolas T. Courtois and Chris Jefferson: Efficient Methods for
Conversion and Solution of Sparse Systems of Low-Degree Multivariate Polynomials
over GF(2) via SAT-Solvers, Available at http://eprint.iacr.org/2007/024/.

17. Jean-Charles Faugère: A new efficient algorithm for computing Gröbner
bases (F4), Journal of Pure and Applied Algebra 139 (1999) pp. 61-88. See
www.elsevier.com/locate/jpaa

18. Raphael Chung-Wei Phan, Soichi Furuya: Sliding Properties of the DES Key Sched-
ule and Potential Extensions to the Slide Attacks, In ICISC 2002, LNCS 2587, pp.
138-148, Springer, 2003.

19. Soichi Furuya: Slide Attacks with a Known-Plaintext Cryptanalysis. In ICISC 2001,
LNCS 2288, pp. 214-225, Springer, 2002.

20. Gemplus Combats SIM Card Cloning with Strong Key Se-
curity Solution, Press release, Paris, 5 November 2002, see
http://www.gemalto.com/press/gemplus/2002/r d/strong key 05112002.htm.

21. E.K.Grossman and B.Tuckerman: Analysis of a Feistel-like cipher weakened by
having no rotating key, IBM Thomas J. Watson Research Report RC 6375, 1977.

22. L. Marraro, and F. Massacci. Towards the Formal Verification of Ciphers: Logical
Cryptanalysis of DES, Proc. Third LICS Workshop on Formal Methods and Security
Protocols, Federated Logic Conferences (FLOC-99). 1999.

23. Microchip. An Introduction to KeeLoq Code Hopping. Available from
http://ww1.microchip.com/downloads/en/AppNotes/91002a.pdf, 1996.

24. Microchip. Hopping Code Decoder using a PIC16C56, AN642. Available from
http://www.keeloq.boom.ru/decryption.pdf, 1998.



25. Microchip. Using KeeLoq to Validate Subsystem Compatibility, AN827. Available
from http://ww1.microchip.com/downloads/en/AppNotes/00827a.pdf, 2002.

26. MiniSat 2.0. An open-source SAT solver package, by Niklas Eén, Niklas Sörensson,
available from http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/

27. Ilya Mironov and Lintao Zhang Applications of SAT Solvers to Cryptanalysis of
Hash Functions, In Proc. Theory and Applications of Satisfiability Testing, SAT
2006, pp. 102-115, 2006. Also available at http://eprint.iacr.org/2006/254.

28. Orr Dunkelman and Nathan Keller: Linear Cryptanalysis of CTC, Available at
http://eprint.iacr.org/2006/250/.

29. Random Permutation Statistics – wikipedia article, 25 January 2007, available at
http://en.wikipedia.org/wiki/Random permutation statistics

30. Singular: A Free Computer Algebra System for polynomial computations.
http://www.singular.uni-kl.de/

A Strong Keys in KeeLoq

It is possible to see that the manufacturer or the programmer of a device that
contains KeeLoq can check each potential key for fixed points for fk. If it has
any, that key can be declared “weak” and never used. This means that 63% of
keys will be weak, and changes the effective key space from 64 bits to 62.56 bits,
which is in fact a small loss. This removes all attacks described in this paper
(unhappily brute force attacks will remain feasible).

This solution can be used in practice, and is very similar to a known solution
that was in 2002 patented and commercialized by Gemplus (currently Gemalto)
to prevent GSM SIM cards from being cloned, see [20].

Further research. With current attacks, there is no need to remove all

fixed points f
(8)
k . Further research might force one to do so. For example it is

possible to see that Attack 3 might force one to remove all fixed points of f
(2)
k .

This is because Attack 3 that is dominated by the first step, and if we consider
the cipher as 4 × 128 + 16 rounds instead of 8 × 64 + 16, in the second step
of the attack we might be able to break 128 rounds of KeeLoq with 2 known
plaintexts, with an improved algebraic attack that remains to be found. This
shows the interest of studying “pure” algebraic cryptanalysis as done in Section

4, further improvements here might force us to remove also fixed points for f
(2)
k ,

further reducing the “safe” key space of KeeLoq.

B Algebraic Immunity and Boolean Function Used in

KeeLoq

The security of KeeLoq depends on the quality of KeeLoq Boolean function
NLF. We have:

y = NLF (a, b, c, d, e) = d⊕ e⊕ac⊕ae⊕ bc⊕ be⊕ cd⊕de⊕ade⊕ace⊕abd⊕abc

Following [4] , this function is weak with respect to correlation attacks, it is
1-resilient but it is not 2-resilient and can in fact be quite well approximated by
the linear function d ⊕ e.



From the point of view of algebraic cryptanalysis, the fundamental question
to consider is to determine the “Algebraic Immunity” of the NLF, which is also
known “Graph Algebraic Immunity” or “I/O degree”. We found that it is only 2,
and one can verify that this NLF allows one to write the following I/O equation
of degree 2 with no extra variables:

(e + b + a + y) ∗ (c + d + y) = 0

However, there is only 1 such equation, and this equation by itself does not

give a lot of information on the NLF of KeeLoq. This equation is naturally true
with probability 3/4 whatever is the actual NLF used. It is therefore easy to
see that this equation alone does not fully specify the NLF, and taken alone
cannot be used in algebraic cryptanalysis. When used in combination with other
equations, this should allow some algebraic attacks to be faster, at least slightly.
At present time we are not aware of any concrete attack on KeeLoq that is
enabled or aided by using this equation.

C Slide-Algebraic Attack 3

In this attack we will guess the first 16 bits of the key namely k0, . . . , k15, and

construct a distinguisher between f
(8)
k and a random permutation.

Preliminary Remarks We assume that there are at least two fixed points
for fk(x), which happens with probability 0.26 (cf. Proposition 3.2). In the re-
maining cases the attack fails. Under this assumption, we expect that there will

be about 6 fixed points for f
(8)
k (·), i.e. the first 512 rounds of KeeLoq. We did

computer simulations that confirm this figure, see Appendix D. The attacker
will try to guess which out of 6 are fixed points for fk(·). The probability that

the guess is correct is about
(
6
2

)
−1

≈ 1/15. Instead of guessing, the attacker will
try all subsets of 2 out of 6 points until the right pair is used, which requires on
average about 15 tries.

Stage 1 - Recover 16 Key Bits with a Distinguisher. Let B be a per-
mutation on 32 bit words. From Proposition 3.3, assuming that it behaves as a
random permutation, we expect that B has about 23 cycles. Half of them should
have even sizes. When we compose B with itself, all cycles that are of even size
split into two pieces, that can be of either even or odd size depending on whether
the initial cycle size was congruent to 0 or 2 modulo 4. All cycles of odd size
remain intact (but points are permuted). Thus, we expect that the number of
even cycles will be dived by 2.

Consider what happens when this composition operation is repeated 3 times:

B → B2
→ B4

→ B8.

We expect that B8 has 11.5 7→ 5.75 7→ 2.8 7→ 1.4 which is about 1 cycle
of even size left. Note that a cycle of B must be of length 0 mod 16 to be of
even length for B8. Otherwise, if it is of length 1, 2, . . . 15 mod 16 then it will be



of odd length for B8. This property allows one to distinguish between f
(8)
k and

a random permutation that should have about 11–12 even length cycles. The
proposed distinguisher works as follows: if there are 6 or more cycles, we say it
is the wrong key. Otherwise we say that k0, . . . , k15 is be correct.

The probability of a false positive is equal to the probability that some 6
cycles in B have length that are multiples of 16, as only such cycles can still be
of even size after splitting into two 3 times. This probability is p = 16−6 = 2−24.
Our distinguisher has a very low threshold, only 6, yet the resulting probability
of a false positive p = 2−24 is clearly sufficient to be able to uniquely determine
which 16-bit key is the right key. At the same time, since the expected number
of even cycles in a random permutation is about 11.5, the probability of the
right key being not detected – a false negative – which amounts to having only
5 or less even-size cycles for a random permutation is extremely low and will be
neglected. The success rate of this part of the attack is close to 1 and we expect
that exactly one key will be found.

In order to implement the distinguisher, we need to compute the sizes of
all cycles for a permutation on 232 elements. This is easy and takes time of
roughly about 236 CPU clocks, as we assumed that plaintext-ciphertext pairs
are stored in a table and the time to get one pair is 16 of CPU clocks. For each
point not previously used, we explore the cycle and count how many elements
it has. Then we start with a random point not previously used. The additional
memory required (in addition to 16 Gigabytes already used for storing the whole
code-book) is only 232 bits - we need to remember which points were used. The
fact that we can reject a key as long as 6 even-size cycles are found, avoids
systematically computing all cycles, only the biggest ones, and allows for an
early abort. It is clear that the average complexity of an optimised version of
this attack will be not much more than 216+36 CPU clocks. To summarise, at
this stage the attack gives us 16 bits of the key k0, . . . , k15 with the workfactor
of about 252 CPU clocks.

Stage 2 - Recover the Missing 48 Bits. The first idea would be to use brute
force. The complexity is however 248+11 which is already too much in comparison
to our Stage 1. Instead we proceed exactly as in Attack 3, except that we now
actually know 16 bits of the key, and know the resulting (approximatively) 4

fixed points of f
(8)
k . Here again we will assume that there are two fixed points

for fk which works for 26 % of keys. (the complexity of this attack for other keys
remains to be seen.) We need to guess which two points are fixed points of fk

and then we solve a system of equations corresponding to 64 rounds of KeeLoq
and 2 known plaintexts. This takes 0.2 s ≈ 228 CPU clocks with MiniSat 2.0.

The probability of correctly guessing which two fixed points of f
(8)
k are fixed

points for fk is
(
6
2

)
−1

= 1/15 as explained earlier. Thus the total complexity of
this stage is about 15 · 228 ≈ 232 CPU clocks and we expect that for the wrong
pair of fixed points no solution will be found (there are 48 bits of key left to
be found determined by the 64 bits of the two fixed point). The first stage that
requires about 252 CPU clocks dominates the attack.



Summary of Attack 3. This attack succeeds with probability 0.26 i.e; for 26
% of keys (cf. Proposition 3.2). The running time is about 252 CPU clocks which
is only about 241 KeeLoq encryptions.

It is possible to see that this attack works and allows one to find two fixed
points of fk, already if we have about 60% of the code-book, see Appendix D.
However, since we need two fixed points, if a smaller fraction 0 < α ≤ 1 of the
code-book is available, unlike Attack 3, the success probability of this attack
declines quite quickly, decreasing as a square of this proportion α.

D Simulations on Fixed Points and Random

Permutations

In this section we do some computer simulations to justify certain claims about
permutations and fixed points made in text. In Attack 3, we need to know how
many (on average) fixed points do we expect for f8 when we assume that f
already has at least 2 fixed points. The answer is about 6 fixed points.

It is also interesting to know what is the percentage of the plaintext space
that has to be searched, to find enough fixed points of f (8), such that at least
two of these are also fixed points for f . Our experiments show that η = 60% of
the plaintext space must be explored on average.

In our experiment, we generated random permutations f of domain size 212

through 216. We checked for fixed points by exhaustion. If that permutation
indeed had zero or one fixed points, then we denoted this an abortion. Then for
those permutations that did not abort (i.e. those which two or more fixed points),
we iterated through the domain to see at what value the second fixed point was
found. We also counted the number of fixed points of f , and the number of fixed
points of f (8) and computed their average. For a random permutation f the
number of fixed points of f is denoted n1, and the the number of fixed points
for f8 is denoted n8.

Table 1. Fixed points of random permutations and their 8th powers

Size 212 212 213 214 215 216

Experiments 1000 10,000 10,000 10,000 10,000 100,000
Abortions (n1 < 2) 780 7781 7628 7731 7727 76,824
Good Examples (n1 ≥ 2) 220 2219 2372 2269 2273 23,176

Average n1 2.445 2.447 2.436 2.422 2.425 2.440
Average n8 4.964 5.684 5.739 5.612 5.695 5.746

Average Location 2482 2483 4918 9752 19,829 39,707
Percentage (η) 60.60% 60.62% 60.11% 59.59% 60.51% 60.59%


