
Algebraic Lower Bounds for Computing on Encrypted
Data

Rafail Ostrovsky∗ William E. Skeith III†

Abstract

In cryptography, there has been tremendous success in building primitives out of homo-
morphic semantically-secure encryption schemes, using homomorphic properties in a black-
box way. A few notable examples of such primitives include items like private information
retrieval schemes and collision-resistant hash functions (e.g. [14, 6, 13]). In this paper, we
illustrate a general methodology for determining what types of protocols can be implemented
in this way and which cannot. This is accomplished by analyzing the computational power of
various algebraic structures which are preserved by existing cryptosystems. More precisely,
we demonstrate lower bounds for algebraically generating generalized characteristic vectors
over certain algebraic structures, and subsequently we show how to directly apply this abstract
algebraic results to put lower bounds on algebraic constructions of a number of cryptographic
protocols, including PIR-writing and private keyword search protocols. We hope that this work
will provide a simple “litmus test” of feasibility for use by other cryptographic researchers at-
tempting to develop new protocols that require computation on encrypted data. Additionally,
a precise mathematical language for reasoning about such problems is developed in this work,
which may be of independent interest.

1 Introduction

One of the central problems in cryptography is that of finding a public key encryption scheme that
would allow “computation on encrypted data”. In its full generality the problem could be simply
stated as follows: to find a public key encryption scheme such that given encryptions of arbitrary
plaintextsE(x1), . . . , E(xn) it is possiblewithout the decryption keyto computeE(f(x1, . . . , xn))
for any polynomial-time computable functionf . Naturally, if one can find a public-key cryptosys-
tem that is “fully homomorphic”, i.e. allows operations on ciphertext that preserve the structure
of a ring, and hence allows computation of the ubiquitous“NAND” operation on the underlying
plaintext, it would give a general solution to the above problem. Indeed, the reason this is such a
central problem is that it would allow for incredible ability to arbitrarily manipulate encrypted data
without sacrificing privacy. This problem was posed nearly 30 years ago by Rivest, Adelman and
Dertouzos [21]. We do not know if such an encryption scheme exists in its full generality, though
various partial answers are known: One partial answer is single-homomorphic encryption: given

∗Department of Computer Science and Department of Mathematics, UCLA, E-mail: rafail@cs.ucla.edu
†Department of Mathematics, University of California, Los Angeles. E-mail: wskeith@math.ucla.edu,

wskeith@ucla.edu.

1

E(x) andE(y), wherex andy come from some abelian group, there exist cryptosystems that can
computeE(x∗y), where∗ is the group operation. Examples include ElGamal [9], where the group
operation is multiplication, Goldwasser and Micali [10] where the operation is addition modulo 2,
and Pallier [20] where the group operation is addition modulo a large composite. Recent progress
by Boneh, Goh and Nissim [3] showed that more is possible: they designed a cryptosystem that
allows an arbitrary number of additions and a single multiplication (of the underlying plaintext) by
manipulating ciphertexts only. Another approach at building fully-homomorphic encryptions was
considered by Sander, Young, and Yung [23], but only applied to Boolean operations and doubled
the ciphertext size at every step. As a result, one could only perform a few Boolean operations
before the ciphertext size became impractical. A partial negative result was given by Boneh and
Lipton [4].

Many useful protocols and primitives have been derived from such homomorphic schemes in
a “black box” way, essentially just manipulating the homomorphic properties to construct vari-
ous systems. Prominent examples include single-database private information retrieval (PIR) and
collision-resistant hashing (see [14, 6, 13]). In this work, we show a variety of natural tasks that
cannotbe accomplished in this way. More accurately we’ll illustrate a single basic task that cannot
be algebraically accomplished (with small communication) with various types of algebra (e.g., that
of any abelian group). This result will give us a nice criterion or “litmus test” for determining the
feasibility of constructing communication-efficient protocols in general, and a very strong result
for constructing protocols based on the black box use of homomorphic encryption. Along the way,
we’ll also develop a mathematical language and technique for reasoning about such questions,
which may be of independent interest.

1.1 Our Results

A central element of this paper, from which we will derive a number of results, is an algebraic lower
bound for a certain task. The task in question is that of specifying “characteristic vectors” over a
group. For a groupG, we call a vector(v1, ..., vn) ∈ Gn “characteristic” for a setS ⊂ [n] if vi 6= 0G

if and only if i ∈ S. We’ll show that it is impossible to “algebraically” specify characteristic vectors
of singleton subsets of[n] overany abelian groupwith communication complexity less thanO(n).
A formal statement of this idea appears as Theorem 2.3.

This statement holds forall abelian groups. For intuition, one may consider the case of linear
algebra, in which the groupG is of prime order, and has a field structure which could be put upon
it. It is a relatively simple exercise to prove this very special case of the theorem, just arguing about
the degree of vector spaces. However, this technique does not get very far. As the reader will see
from Example 2.2, these ideas don’t apply to general abelian groupsG, even when they are cyclic.
In fact, there is not even a well-defined notion of degree in this setting. A “degree-based” argument
could be carried out via free-module analysis, but it will greatly complicate and obfuscate matters,
and furthermore it will yield a weaker version of the theorem. Our more abstract approach and
more general result will be of utility later on, when we generalize to other structures.

Additionally, we prove a smooth trade-off in communication complexity as the size ofS (the
number of non-identity elements in the characteristic vectors) increases, and as mentioned, we
also generalize to other algebraic structures, which contain virtually all such that are preserved by
known homomorphic encryption schemes. In particular, we prove results forany abelian groupas
well as results for arbitrary rings, in a setting restricted to polynomials of total degreet. (Note that
the cryptosystem of Boneh, Goh, and Nissim [3] gives an example of such an algebraic structure

2

for the special case oft = 2, where polynomials of total degree 2 are the most general items
that one has the ability to compute on encrypted data.) Finally, we’ll show a number of natural
cryptographic protocols that would imply the functionality of generating characteristic vectors, and
hence derive algebraic lower bounds for the communication involved in these protocols as well.

As one will see after an examination of our algebraic results, they are in fact quite general.
Since the results for abelian groups apply to all affine maps, this rules out many possibilities which
do not necessarily come from group formulas. (For example, arbitrary endomorphisms may now
be included in the class of “formulas” even though there is no way to compute all endomorphisms
via an abelian group formula.) In particular, even if one changes their representation of data to
be not just one group element, but many, and furthermore manipulates each of these elements
independently, our results will still apply (this is a simple consequence of Corollary 2.11).

We also note that a general language for formally discussing these ideas is presented here, using
category-theoretic ideas. This helps unify our discussion, and make formal definitions possible at
the right level of abstraction (since as mentioned, a number of different algebraic structures are
addressed here). As a final note, using this language we demonstrate that with any simplenon-
abeliangroup structure onecancompute all finite functions via group formulas (thus, the existence
of any cryptosystem homomorphic over a simple non-abelian group implies a fully-homomorphic
encryption). This work can be found in the later sections, and somewhat generalizes that of [1]
and [17], however it is essentially a different, and constructive version of [25] and may be of
independent interest.

1.2 Related Work

The lower bounds that we consider are most closely related to computational lower bounds on
number theoretic problems when algorithms are restricted only to underlying group operations. For
example, Boneh and Lipton [4] examine the computational difficulty breaking any algebraically
homomorphic (over a field) cryptosystem. In contrast, our lower bounds are on communication
complexity and apply to a wide variety of algebraic structures. Other related works are that of
Shoup [24] and Maurer and Wolf [16], which consider computational difficulty of the discrete
logarithm problem, and other number-theoretic problems in cyclic groups, provided that the algo-
rithms do not exploit any specific properties of the representation of group elements.

Our lower bounds are geared towards communication complexity and program size, rather
than computational complexity, but similar to these works, we focus only on algorithms that utilize
nothing other than the underlying algebraic structures. However, we consider a far greater variety
of structures in our work (including arbitrary abelian groups and bounded degree polynomials over
rings).

1.3 Overview, Motivation and Intuition

Often times, novel cryptographic protocols are developed using homomorphic encryption as build-
ing block (and often it is the only necessary ingredient). Many basic protocols can be constructed
in this way, for example, private information retrieval, oblivious transfer, and collision-resistant
hashing, to name a few. Indeed, such methods have accomplished much in the past, and continue
to prove themselves as fruitful techniques. However, the types of algebraic structures available in
homomorphic encryption are quite limited. Not much beyond the structure of an abelian group can

3

be preserved under an encryption scheme. Quite clearly, abelian groups have limited computing
power. If one simply examines the number of distinctm-variable “formulas” in a finite abelian
groupG of orderk in comparison to the number ofG-valued functions (as set maps) that depend
onm variables, one can’t help but notice a great discrepancy in cardinality (the fraction is in fact
negligible as the number of variables increases). So indeed, there is much that cannot be computed
using only abelian group formulas. But what are these functions? Furthermore, in what sense can
they not be computed?

As mentioned before, there have been many protocols of great utility derived from homomor-
phic encryption over abelian groups (e.g. [14, 6, 13]). However, as the authors believe, for every
such useful protocol in the literature, there are many dead ends, lying at the bottom of stacks of
paper upon researchers’ desks. But until now, there has not been much formal proof that these
dead ends are actually just that. This work provides some basic proofs of lower bounds for a few
very straightforward protocols, based on these algebraic assumptions. But more importantly, it
develops techniques and methods for reasoning about such tasks, which hopefully will be of use to
many other researchers, in the context of many other protocols.

1.4 Summary and Techniques

To summarize, we present here a formal study of what can be computed solely using the operations
of various algebraic structures (although certain results hold under weaker assumptions). The
structures primarily studied are a superset of the structures that (to date) can be preserved with a
homomorphic encryption scheme. Hence, in terms of generic algebraic methods, the lower bounds
shown here serve as practical lower bounds for such techniques. We prove results for the entirety
of abelian groups, and also for rings, in a setting that uses polynomials of some bounded total
degree as formulas. (See the cryptosystem of [3] for motivation of this idea.)

Given the large cardinality discrepancy mentioned above with respect to abelian group alge-
braic formulas, it is not surprising that various protocols cannot be algebraically implemented in
such a way. However, it may be quite surprising that such simple and natural protocols cannot be
implemented, and also that the techniques used to prove such statements are in fact rather elemen-
tary. Basically, what is shown is that all “formulas” over abelian groups correspond to “affine”
group maps, which as we will show have a fair amount of structure. These “affine” group maps are
then analyzed over general modules over a finite ringR, and a basic result regarding characteristic
vectors over a group follows from the analysis. This result is quite strong from an algebraic point
of view, since it was proved for arbitrary affine maps, not all of which come from formulas over a
group. However, every (abelian) group formula does come from an affine map. With this abstract
formulation and proof, it will then be relatively easy to extend the result to other more general
structures, such as polynomials of bounded total degree over a ring.

To even begin a mathematical discussion on this subject, a formulation of the idea of “algebraic
formula” is needed, and accordingly, we have provided a thorough formalization in this work
using the language of category theory. This study is actually somewhat extensive, with numerous
examples provided, and as such has been placed near the final sections of the paper. This material
may be interesting in its own right, but it is not the focus of this work. It is merely a tool for
understanding, formalizing, and for properly stating the definitions we use here. Formalizations of
the idea of computing with algebra are given there as well.

4

2 Preliminaries and Basic Results

2.1 Notations

For a brief index of mathematical notations we use, see Section 5. Most notations are standard,
and most algebraic notations are consistent with [12].

2.2 Generating Encryptions of Characteristic Vectors: Motivation

This example provides a simple description of a protocol that can’t be non-trivially implemented
with abelian group algebra. Later, we’ll show a variety of problems (usually related to PIR or PIR-
writing) which would imply a protocol like this. Hence, these too cannot be implemented with
abelian group algebra.

We could, at this point, formalize a cryptographic protocol about generating characteristic-type
vectors over a group, but it may be convenient to postpone such a definition and instead get right
to the main point, which is algebra. So, we will explain in simple terms the algebraic task we are
trying to accomplish. Consider the following problem:

Let n,m ∈ Z+, and letG be an abelian group. Define the following elementsvi ∈ Gn:

vi = (0G, ...,0G, xi,0G, ...,0G)

wherexi 6= 0G appears in thei-th position.1 Let {mi}n
i=1 ⊂ Gm and letf be an arbitrary affine

group map inm variables fromGm −→ Gn, i.e., f = fm + c wherefm : Gm −→ Gn is linear
andc ∈ Gn. Note that these affine maps can express all possible abelian group formulas on a set
of variables (see Definition 4.2). The question is

Question 2.1 (Informal) If f(mi) = vi for all i ∈ [n], what can be said about|Gm|? In particular,
how small can it be?

We will soon answer this question in a variety of contexts, but first we’ll give an example to
help motivate the non-triviality of the question and our lower bound. The phrasing used regarding
the size estimation was deliberate: we don’t isolate or boundm alone, because we cannot bound
m in a non-trivial way. It is in fact possible to accomplish the above result withm = 1, even for a
cyclic group. However, as we’ll show in our lower bound, this comes at the cost of increasing the
size ofG.

Example 2.2 Let n ∈ Z+, and letN =
∏n

i=1 pi, wherepi is the i-th prime number. Define
G = ZN . Define integers{zi}n

i=1 as follows:

zi =
∏
j 6=i

pj

Then, since all the primes were distinct, it is easy to verify that

(zizj 6= 0 mod N) ⇐⇒ (i = j)

So, we could define a linear functionf = (f1, ..., fn) fromG −→ Gn by fi(x) = zi · x, and we
would havef(zi) = vi, for some elementsvi ∈ Gn which fit the above description of a complete
set of characteristic vectors.

1We givex an indexi simply to show that it need not be uniform across all vectors.

5

However, in the preceding example, notice thatn different primes had to divide the order of
G. Hence,|G| > 2n is of exponential size inn. We will show that even using affine maps, this
is always the case: to generaten orthogonal-type characteristic vectors withm group elements
always requires a groupG such thatGm has exponential size inn, although the statement we
prove has a more abstract setting.

2.3 A Basic Algebraic Result

Here, we will make precise the relationship regardingn and the size of an abelian group that can
algebraically generate a complete set ofn characteristic vectors over an abelian groupG.

Theorem 2.3 Let n ∈ Z+ and letG,A be abelian groups. LetV = {vi}n
i=1 ⊂ Gn be any

collection of elements so that thej-th position ofvi is 0G if and only if i 6= j. Then ifF = f + c
is an affine map fromA −→ Gn such thatV ⊂ F (A) then we havelog(|A|) ∈ Ω(n). More
specifically, ifA ⊂ Gm, we have that

log(|G|) ≥ n

m+ 1

We’ll break the majority of the proof into a lemma and a few simple observations. To begin,
we’ll prove the following lemma which will help us analyze affine maps and translated character-
istic vectors.

Lemma 2.4 Let R be a finite ring with identity, and letM be a (unitary)R-module. LetΩ =
{ωi}k

i=1 ⊂ M be a finite collection of elements. LetΩ′ = {(ωi + c)}k
i=1 for some fixed element

c ∈ M . Then〈Ω′〉, the module generated byΩ′, increases in size by at most a factor of|R| over
the size of〈Ω〉. I.e.,

|〈Ω′〉|
|〈Ω〉|

≤ |R|

Proof: Recall that for any submodulesA,B of a module there is always a surjectionA⊕B −→
A + B sinceA ⊕ B is a coproduct andA + B is generated byA ∪ B. Hence|〈Ω〉 + Rc| ≤
|〈Ω〉 ⊕ Rc| ≤ |〈Ω〉||R|. Since clearly〈Ω′〉 ⊂ 〈Ω〉 + Rc asM is unitary overR, this in fact
completes the proof.�

In light of Lemma 2.4, we need only to analyze “un-translated” characteristic-type vectors. If
they generate a large module, then so will the translated vectors. It is quite clear any such module
generated by elements like those inV will be exponential in size, however to be complete, we
provide a formal proof.

Observation 2.5 Let G be a finite abelian group. Letn ∈ Z+. Define elementsvi ∈ Gn by
vij = δij · αi for someαi 6= 0 ∈ G, andδij ∈ Z with δii = 1 for all i andδij = 0 for i 6= j. Let
H = 〈{vi}n

i=1〉, the subgroup ofGn generated by thevi. Then|H| ≥ 2n.

Proof: Note thatH '
⊕n

i=1〈vi〉 since clearly〈vi〉 ∩ 〈vj〉 = {0} for all i 6= j, and since by
definitionH is generated by thevi. Also, for all i ∈ [n] we have that|〈vi〉| ≥ 2 sinceαi 6= 0 which
completes the proof.�

We’ll also make use of a few very elementary observations from group theory.

6

Observation 2.6 LetG be an abelian group and leta, b ∈ G with x = ord(a), y = ord(b). Then
ord(ab) | lcm(x, y).

Observation 2.7 LetG,H be groups, and letf : G −→ H be a homomorphism. Then for all
g ∈ G, we have thatord(f(g)) | ord(g).

Observation 2.8 LetG be a group, and let(a, b) ∈ G×G. Thenord((a, b)) = lcm(ord(a), ord(b)).

Observation 2.9 Let G be an abelian group, and suppose that there existsN ∈ Z+ such that
N · g = 0G for all g ∈ G, where· denotesZ-module action. Then,G is a ZN -module, where the
action is inherited from that ofZ.

We are now ready to complete the proof of Theorem 2.3.

Proof: (Theorem 2.3)Recall thatF = f + c was an affine map. By assumption, we have that
V ⊂ F (A), and so, by Observation 2.5 we have that|〈F (A)〉| ≥ |〈V 〉| ≥ 2n.

Next, consider the elementsc ∈ Gn and thevi ∈ Gn. Note that(vi− c) ∈ f(A) by assumption.
Now let’s examine the order of these elements. DefineV ′ = {vi − c}i∈[n]. By Observation 2.7, we
know that all of thevi− c have order that divides|A|, since they are images of elements ofA under
a homomorphism. But then, by Observation 2.8, we can see that ifc = (c1, ..., cn), then all of the
ci must have order that divides|A| as well, or else the order of at least one of the(vi − c) would
have order not dividing|A|. Hencec has order dividing|A|. Now, by Observation 2.6, we have
that thevi also have order dividing|A|. Therefore by Observation 2.9,〈V 〉 is in fact aZ|A|-module,
as of course is〈V ′〉 since it is in fact the image of some submodule ofA (possibly all ofA) under
a homomorphism. Then, by Lemma 2.4 (with〈V ∪ V ′〉 playing the role ofM , if you’d like) we
have that

2n

|〈V ′〉|
≤ |Z|A|| = |A|

and hence
2n ≤ |〈V ′〉||A| ≤ |A|2

so that|A| ≥ 2n/2, andlog(|A|) ∈ Ω(n) as desired.
More specifically, ifA ⊂ Gm, then all objects involved areZ|G|-modules, and hence

2n

|G|
≤ |f(A)| ≤ |Gm|

So that|G|m+1 ≥ 2n and hencelog(|G|) ≥ n
m+1

. �

2.4 Functions that Change Multiple Values

We can also generalize this algebraic result to include other types of vectors, whereF (mi) has thei-
th component non-identity, but possibly some other number of positions are non-identity elements
as well. If the functionF has the ability to change arbitrary subsets ofc elements for a constantc,
then our original results clearly apply, as you could re-organizeGn as a productGc×· · ·×Gc with
n/c components. (Without loss of generality, we assumec|n.) However, the bounds still apply
for less powerful classes of functions. We will show thatany function that produces vectors with
c(n) or fewer non-identity positions at a time has communication complexityΩ(n/c(n)), provided

7

only that it is complete- i.e., for every position, it has the ability to produce a vector that is non-
identity in that position. Here,c(n) is any positive function ofn, and note also that the number of
non-identity positions permi need not be uniform- we only ask that it is bounded byc(n). We’ll
prove this by showing that we can always re-organizeGn into a product of larger components
(of sizec(n)) so that the original functionF produces orthogonal characteristic-type vectors in
the original sense, only over(Gc(n))n/c(n). Then, the proof follows immediately from the original
result. Consider the following lemma.

Lemma 2.10 Let c ∈ Z+. Let {Sk}k∈Γ be a collection of sets such thatSk ⊆ [n], |Sk| ≤ c for
all k ∈ [n] and such that the{Sk} form a cover of[n], i.e.,

⋃
k∈Γ Sk = [n]. Then there exists

X ⊆ [n] and a sub-collection of sets{Skj
}kj∈Λ⊆Γ such thatSkj

∩ Skj′
∩X = ∅ wheneverj 6= j′

yetSkj
∩X 6= ∅ for at leastdn/ce of the setsSkj

.

Proof: Suppose{Sk}k∈Γ is such a cover of[n]. In this finite case, it is clear that every cover
has a minimal sub-cover, i.e., a collection{Skj

}m
j=1 that still covers[n] such that for any other sub-

cover{Sk′
j
}m′

j=1 we have thatm ≤ m′. 2 Let {Skj
}m

j=1 be a minimal sub-cover. For this sub-cover,
define for everyi ∈ [n]

Ni = |{Skj
| i ∈ Skj

}|

Note thatNi > 0 for all i since the{Skj
} form a cover of[n]. DefineX ⊂ [n] as follows:

X = [n] \ {i | Ni > 1}

Now clearly,X has the property thatSkj
∩ Skj′

∩X = ∅ wheneverj 6= j′, but it is also true that
Skj

∩X 6= ∅ for everyj ∈ [m]. To see this, suppose that for somej ∈ [m] we haveSkj
∩X = ∅,

i.e., thatSkj
⊂ [n] \X. This statement says that every element ofSkj

is also in at least one other
set in the sub-cover. Hence,

Skj
⊂

⋃
j′ 6=j

Skj′

and thus{Skj′
}j′ 6=j is also a subcover of all of[n] that is smaller than our original, contradicting

the minimality that we assumed. So, we have thatSkj
∩ X 6= ∅ for everyj ∈ [m]. To complete

our proof, we simply note that since|Sk| ≤ c for everyk, any sub-cover must have at leastdn/ce
sets, just by counting.�

Corollary 2.11 Letn ∈ Z+ and letG,A be abelian groups. Letw(x) be a positive valued function
and letV = {vi}n

i=1 ⊂ Gn be any collection of elements so that thei-th position ofvi is not equal
to 0G, and at mostw(n) total positions ofvi are non-identity for alli ∈ [n]. Then ifF = f + c is
an affine map fromA −→ Gn such thatV ⊂ F (A) then we havelog(|A|) ∈ Ω(n/w(n)).

Proof sketch: This is an easy consequence of the lemma. In the language of the lemma, set the
Sk to be the set of indexes in[n] corresponding to all the positions with non-identity elements in
vk. By the lemma, we can find a subset of the indexesX and a subset of the setsSk of size at least
n/w(n) so that theSkj

are disjoint onX. We can then re-organize the productGn according to
thevkj

and where they differ from the identity. Then, transformf + c into a map on this restricted

2Clearlym < ∞ sinceP([n]) is finite, so there is no loss of generality.

8

product ofG’s, just using the component functions (i.e., the compositions with the projections
fromGn −→ G). So, we have some product like:

Gs(k1) × · · · ×Gs(kn/w(n))

Then padGs(kj) with extra products ofG and redefine the maps accordingly (set those components
of the new constantc to 0G, and the new components off to the trivial map. You now have exactly
the original situation from Theorem 2.3, only with a new value ofn, which happens to ben/c(n).
So, we can concludelog(|A|) ∈ Ω(n/w(n)). �

2.5 Polynomials of Bounded Total Degree

Recently, new cryptosystems have been developed with additional homomorphic properties (see
[3]), which provide the ability to compute on ciphertext, polynomials of total degree at most2.
Here, we will generalize our original algebraic result to apply to algebraic functions of the form
of any polynomial of total degreet, over a ringR. Although the following result will apply to the
ring of polynomials over any ringR (it need not have an identity or be commutative), this result
has the most meaning in the case of commutative rings with identity, since in this case the ring
of multivariate polynomials coincides precisely with our notion of “algebraic formula”, which is
formalized in a category theoretic sense in Section 4.1. (For a non-commutative ring, there’s a
more general structure that serves as the set of all formulas.)

Corollary 2.12 Let n ∈ Z+ and letR be any ring. LetV = {vi}n
i=1 ⊂ Rn be any collection of

elements so that thej-th position ofvi is not equal to0R precisely whenj = i, for all i, j ∈ [n].
Then ifF : Rm −→ Rn is such thatF = (F1, ..., Fn) with eachFi ∈ R[X1, ..., Xm] of total degree
less than or equal tot (a constant) and hasV ⊂ F (Rm) then we have(

t
√

log(|R|)
)
m ∈ Ω(t

√
n)

In particular, if |R| is independent ofn, thenm ∈ Ω(t
√
n).

Proof: Let f ∈ R[X1, ..., Xm] be of total degreet. We do not assume thatR is commutative, so
there could be a total of

∑t
k=0m

k = O(mt) terms. Note that we can simulatef with a polynomial
f ∈ R[Y1, ..., YO(mt)] of total degree1. I.e., ifN =

∑t
k=0m

k and

f =
N∑

k=1

[
rk

∏
j

Xαk(j)

]
+ r0

whereαk : [t] −→ [m], then we’ll set

f =
N∑

k=1

rkYk + r0

Then of course
f(X1, ..., Xm) = f(

∏
j

Xα1(j), ...,
∏

j

XαN (j))

9

The point being that any function whichf computes, we can compute withf . But now observe
that f − r0 ∈ HomZ((R,+)mt

, (R,+)). Componentwise applying this toF = (F1, ..., Fn) as
given above, we have a functionF : (R,+)mt −→ (R,+)n which is an affine map, and which can
simulate the functionality ofF . Hence, it will of course have the property thatV ⊂ F ((R,+)mt

).
Now we can directly apply Theorem 2.3 to this situation since(R,+) is of course an abelian group.
Therefore,

log(|R|mt

) ∈ Ω(n)

and hencelog(|R|)mt ∈ Ω(n) so that(
t
√

log(|R|)
)
m ∈ Ω(t

√
n)

as desired.�

3 Applications of Algebraic Results

We will discuss here a number of protocols which are both easy to state, and would provide desir-
able functionalities, yet under algebraic assumptions, they cannot be very well implemented with
existing technology.

3.1 Private Database Modification (PIR Writing)

As seen in [5], the ability to privately modify an encrypted database in a communication efficient
way could provide a valuable tool for private computation. One very natural approach to such
a problem, is to proceed in a manner analogous to many PIR protocols, and use homomorphic
encryption as a building block.

The protocol would then communicate encrypted values which encode the modification to take
place, and then the database owner would execute some algebraic operations on the encrypted
database and the modification description to update the database contents. Then, since all of the
communication consisted only of encrypted values, CPA-type security comes easily. Unfortu-
nately, we have very limited structures available to homomorphic encryption schemes. Almost
always, what is preserved is the operation of an abelian group. At best, the ability to evaluate
polynomials of total degree 2 is provided (see [3]). It will follow from our preliminary algebraic
results, that these type of algebraic protocols cannot be very well implemented with existing en-
cryption schemes. We’ll often speak of “algebraic” maps, which will usually mean functions that
are obtainable from some type of formula involving only the operations of the algebraic structure.
A precise, formal, and detailed exposition of this idea is given in Section 4, especially Section 4.1.

We’ve placed some of the formal protocol-type definitions in the appendix to improve the
readability, since there isn’t much surprising about them, and most readers of this paper could
likely re-invent them in a few minutes. We’ll instead give an informal description of the protocol
here. For precise statements, see Definitions 5.1, 5.2 and 5.3, as well as Definition 5.4 which are
discussed at length in the appendix.

LetU be a user that wishes to update the database, and denote byDB the database owner. We’ll
summarize a protocol for algebraic database modification betweenU andDB via the following
steps, in which we assume thatG is an abelian group. Below, we’ll just describe the algebra
involved. In an actual protocol, everything will be computed on ciphertext in some homomorphic
encryption scheme overG.

10

1. U selectsmi = (g1, ..., gm) to modify positioni and sendsmi to DB.

2. DB computes an algebraic functionF (X,mi, H) of the databaseX ∈ Gn, the modification
descriptionmi, and other inputs of his own,H ∈ Gε.

3. DB replacesX byX ′ = F (X,mi, H)

Clearly the algebra involved in this protocol implies the ability to algebraically generate com-
plete sets of characteristic vectors:

Claim 3.1 An algebraic protocol for database modification over an abelian group implies an al-
gebraic function (affine map) with a complete set of characteristic vectors in the image.

Proof sketch: Define a databaseX = {0G}n
i=1, which is the identity in all positions. Apply

DB’s function to obtainX ′ = F (X,mi, H) wheremi describes a modification for positioni. Then
clearlyX ′ = vi, a characteristic vector inGn, non-identity at positioni. �

Therefore, by Theorem 2.3, if we build such a protocol based on a homomorphic cryptosystem
overanyabelian group, it will necessarily have linear communication complexity. Note the strong
sense in which this is true: abelian group formulas always correspond to affine maps, but certainly
not every affine map comes from such a formula.3 Furthermore, Theorem 2.3 did not even assume
that the groups were the same. So, even if the database elements are encrypted in some other
cryptosystem and over some other group than the descriptions, and even if we were provided the
ability to compute all algebraic maps from one to the other on ciphertext, we still couldn’t produce
a non-trivial protocol over abelian groups.

We’ll summarize these ideas as

Corollary 3.2 There are no non-trivial Algebraic Oblivious Database Modifiers over an abelian
group. I.e., any oblivious database modifier based on the operations of an abelian group has
communication complexityΩ(n).

3.2 Algebraic and Homomorphic Protocols for PIR

As a second corollary, we consider “algebraic”, or “homomorphic” protocols for private informa-
tion retrieval. One may have observed, as the authors have, that the query results for PIR protocols
usually fall into one of two categories: either (a) they have no (or very limited) algebraic value4

or homomorphic properties, or (b) the server side communication is non-constant, i.e., the results
of a query return many items, not just an encryption of one value in the database5. A protocol for
private information retrieval that returns encryptions of single values which retain algebraic and

3For a simple example, considerG = Zp × Zp andϕ ∈ HomZ(G, G) by (a, b) 7→ (b, a). So, we’ve shown that
even if we allowDB to somehow compute arbitrary affine maps on the ciphertext values, it still does not suffice to
accomplish this task.

4See the work of [7] for an example of such a PIR protocol having limited algebraic value.
5See [14] for such an example, but virtually every PIR based on homomorphic encryption (over an abelian group)

has this property.

11

homomorphic properties could be a very useful tool in private computation6, especially in non-
interactive settings. In what follows, we present evidence that the absence of such protocols is not
just a random coincidence.

We’ll try to establish a basic definition that captures the properties that we desire, and encap-
sulates most existing work possessing these properties. Suppose that the values in a database have
some algebraic structure. For now, say that of an abelian group. We will denote the return value of
a PIR query for thei-th position of a database byPIR(i), which consists of one or more encrypted
database elements. LetSi = {sj}k

j=1 denote the set of values from the database that are returned
by a PIR query for positioni.

Suppose for a moment that the domain from which PIR query returns reside has the algebraic
structure of a group, say(G′, ?). To name just a few, we have the PIR protocols of [14], [6],
[7] as examples of such systems. Suppose also that the database elements themselves also come
from a domain having the algebraic structure of a group, say(G, ·).7 Then we make the following
definition:

Definition 3.3 Using the notation established above, we say that a PIR protocol ishomomorphic
if for a given databaseX ∈ Gn, we have thatD(PIR(i)?PIR(j)) = Si ·Sj whereD is the function
from the PIR protocol that decrypts the query results.

Note also that for such a PIR protocol to be of much utility as a subroutine in some private
computation, it is almost essential to have|Si| = 1, or at least bounded by a small constant. If
not, then the party which is to perform a computation on the return values of a homomorphic PIR
query will likely not have any information about where the relevant element is in the query results.
Hence, if such a party wishes to perform a computation ont variables obtained via homomorphic
PIR queries, it would in general require repeatedly performing the computation on all|Si|t possible
sequences to ensure that the right variables were involved at least once. Furthermore, it may not
be possible for any party to distinguish which of the resulting outputs in fact corresponds to the
desired computation, even after decryption.

Finally note that from the definition of homomorphic PIR, we see that the results of queries are
in fact encryptions of elements in some homomorphic cryptosystem. To create such a PIR proto-
col, a very natural approach is to manipulate the algebraic structure of some such homomorphic
cryptosystem. This motivates the following definition.

Definition 3.4 We say that a PIR protocol isalgebraic if the following hold:

1. A query consists of an ordered sequence of ciphertexts in some cryptosystem where the plain-
text setA has some algebraic structure.

2. To process a query, the database owner computes on ciphertext some algebraic function of
the query’s array, this function being determined by the contents of the database to obtain
an array of ciphertext which will be the results of the query.

6For example, in the keyword search of [18], the dictionary size could be reduced.
7There is no assumption that the group representing the query returns are the same as the database elements, or

even that they are encryptions of database elements, exactly. It could be the case that as a part of the encryption, the
group that the database elements come from is first homomorphically transformed, and then transformed back as a
part of decryption. The general way that we’ve stated our algebraic results allows us to reason about such a general
definition.

12

For precise definitions regarding “algebraic function”, please see Section 4, specifically Defi-
nition 4.2. For abelian groups, we’ll again have affine maps as our model of algebraic functions.

Corollary 3.5 Consider an abelian group algebraic PIR protocol with sender-side communication
complexityg(n) and server-side communication complexityh(n). Theng(n)h(n) = Ω(n). More
specifically, ifk(n) is any positive integer-valued function and if the server’s response consists of
k(n) encrypted values, then the sender-side communication complexity isΩ(n/k(n)).

Proof: We will show in a straight-forward way that the algebra involved for any such PIR
protocol will imply the ability for algebraically generating a complete set of characteristic vectors,
and hence, cannot be done with with small communication using the algebra of an abelian group.

Let δij ∈ {0, 1} defined byδij = 1 ⇐⇒ i = j. Define databases{X(i)}n
i=1 by the formula

X(i)j = δijα whereα 6= 0G ∈ G. Each one of these databases has an associated functionFi :
Gm+ε −→ Gk, a homomorphism of groups. Again, theε variables provided by the database owner
are independent of them variables that comprise the query. (If not, the function can of course be
re-written to make it so.)8 Now define mapsfi ∈ HomZ(Gm+ε, G) by fi(x) =

∑k
j=1 Fi(x)j (i.e.,

we just composeFi with the map from the sum toG that is guaranteed to exist by the universal
mapping property of coproducts). Next, defineF = (f1, ..., fn) so thatF ∈ HomZ(Gm+ε, Gn).
Note that in terms of them variables corresponding to the queries,F ′ = f+c is an affine map from
Gm −→ Gn, again, since theε variables from the database are independent. Now by construction,
this affine map has a complete set of characteristic vectors in the image. However, each vector
hask non-identity entries. So, by Lemma 2.10 and Corollary 2.11, we see that this protocol for
oblivious database modification has communication complexityΩ(n/k). However, this is precisely
the sender-side complexity of the PIR protocol as well. So, since the protocol clearly has server-
side complexityΩ(k) (with a tight bound if the group size is a constant) then we see that the
product of the complexities is of courseΩ(n). �

Using Corollary 2.12, we can generalize this result to cryptosystems that may have additional
homomorphic properties (see [3]), showingΩ(t

√
n) bounds if total degreet polynomials over a

ringR can be computed on ciphertext.
For example, if given a cryptosystem that allows polynomials of fixed total degreet to be

computed on ciphertext over some ringR, we can easily construct an algebraic PIR protocol with
sender-side communicationΘ(t

√
n) and server-side complexityΘ(1) (see [3], or section 5 for

details of a simple example). However, this is in fact meets a lower bound: In general, if such a
protocol has sender-side complexityg(n) and server-side complexityh(n), then we can show that
g(n)h(n) = Ω(t

√
n), which is a simple consequence of Corollary 2.12.

3.3 Private Keyword Searching [18]

As another relatively simple corollary, we resolve (under our algebraic assumptions) an open
problem posed by Ostrovsky and Skeith [18] regarding extending the query semantics for pri-
vate searching on streaming data. We show that without new homomorphic encryption schemes
with additional properties, their methods cannot be extended to perform conjunctive queries.

8Also, note again that this contains all possible algebraic formulas of the inputs, as well as potentially a large
number of maps that are not necessarily obtainable from such formulas.

13

Corollary 3.6 The problem of private keyword search on streaming data as proposed in Ostrovsky
and Skeith [18], has no non-trivial algebraic solution for a conjunctive query of two or more terms
if the underlying cryptosystem is only group homomorphic over an abelian group.

Remark: We will assume the same basic framework as developed in [18] for a solution and show
that there is no such solution that performs conjunctive queries. Specifically, we assume that a
dictionary with an associated array of ciphertexts is used to conditionally encrypt documents as in
[18].

Proof: First note that the protocol inherently gives rise to an algebraic method for generating
complete sets of characteristic vectors: Suppose that the dictionaryD has sizem. Each word has
its role in the query encoded via an encrypted group element, say in some groupG. Look at the
encoded dictionary (un-encrypted) as the setGm. Suppose we have a protocol as described in [18]
for some query that involvesk variables. Running this protocol onmk documents which run over
all uniquek-tuples from the dictionary gives us a set of characteristic vectors inside ofG(mk). So,
we can think of this as an algebraic map fromGm −→ G(mk), which (unless the query is somewhat
trivial) contains a complete set of characteristic vectors in the image. But, now the question is how
many positions are non-identity in each vector? This of course depends on the query. Suppose that
the query is a disjunction of terms. Each vector inG(mk) will have at leastmk−1k positions that are
non-identity, sincek− 1 entries could be arbitrary as long as one contains a keyword. So, the ratio
of total positions to non-identity positions is less thanm and our algebraic lower bounds give no
contradiction (which of course should be the case since [18] gives such a construction). But now
consider a conjunctive query, just of two terms. In the same way as described above, this gives rise
to an algebraic function for characteristic vectors fromGm −→ G(m2), however this time we have
O(1) positions of each vector are non-identity. So, applying Corollary 2.11, we see that no such
protocol can exist based on an abelian group. More generally, from Corollary 2.12, we see that if
given the ability to compute total degreet polynomials, we can construct a protocol that executes
a conjunction ofat mostt terms. �

We believe that this example illustrates particularly well a situation in which the bounds proved
in this work are especially useful. The entire method of [18] critically depends on the ability to
generate these types of characteristic vectors so that the final representation is an encryption in
a homomorphic scheme. This is the case since the functionality of characteristic vectors is used
as a subroutine for the larger procedure, and so to continue the computation (i.e., writing to the
buffer, etc.) it is necessary that the output have algebraic value. So, since we have proven that
this subroutine is impossible to implement in the critically important manner desired, it seems that
improving the work of [18] would require either a completely new approach, or new designs of
homomorphic encryption schemes, such as fully-homomorphic encryption.

It is this type of information that we hope will save researchers time and effort in the future.
Applying these bounds may not give an absolute impossibility, but it can quickly eliminate a very
large space of what might otherwise seem to be feasible approaches to the problem.

14

4 Formalizations Regarding Computation by Algebra

4.1 Unification of Algebraic Formulas

We speak often of the idea of an “algebraic formula” over some algebraic structure, and it will be
very convenient to make definitions at such a level of abstraction. Clearly, we need an abstract
definition of “algebraic formula” before we can continue. We hope to establish an appropriate
definition in this section that applies to a wide variety of categories of algebraic structures.

To begin, we’ll examine rings of polynomials in an abstract setting, and see if we can’t extract
the ideas about it that characterized it as the set of “algebraic formulas”. LetR be a commutative
ring with identity. This is one of the most natural structures to our intuition, and we will use it to
extend our intuition to other possibly less natural structures. What plays the role of an arbitrary
algebraic formula inn variables overR? We can add and multiply, but there isn’t much else we can
compute from just the operations ofR. This leads us towards the ringR[x1, ..., xn] serving as the
set of all generic algebraic formulas overR. Next note that in this situation, the ringR[x1, ..., xn]
satisfies an interesting universal mapping property: we always have anevaluation mapthat takes
an assignment of elements to variables and gives us a homomorphism fromR[x1, ..., xn] −→ R
that “evaluates” each polynomial using that assignment of variables. This evaluation map is exactly
what we are after when talking about a general algebraic formula. More formally, and a bit more
abstractly, consider the following claim (see [12] for details) which we state here without proof:

Claim 4.1 LetR,S be commutative rings with identity. Letϕ : R −→ S be a homomorphism
and letα : X = {xi}n

i=1 −→ S be a set map. Then there exists a unique homomorphismϕ :
R[x1, ..., xn] −→ S such that

1. ϕ|
X

= α, and

2. ϕ|
R

= ϕ

Here, we identified the set of variables,X, and the ringR as subsets of the ring of polynomials
R[X]. More generally, we’ll have canonical injectionsιX : X ↪→ R[X] and ιR : R ↪→ R[X].
Then the conditions onϕ becomeα = ϕ ◦ ιX andϕ = ϕ ◦ ιR, rather than the restrictions being
equal.

As it turns out this mapping property is exactly what we need to characterize algebraic formulas
in general. We’ll see in a moment that any such object is in fact unique up to isomorphism. We
begin with the following definition.

Definition 4.2 Let C be a concrete category. LetA be an object inC, and letX be a set. We
define the object ofA-algebraic formulas overX to be an objectFA[X] in C together with maps
ιX : X −→ FA[X] andιA : A −→ FA[X] such that for any objectB in C, morphismϕ : A −→ B
and set mapα : X −→ B, there exists a unique morphismϕ : FA[X] −→ B such that

1. α = ϕ ◦ ιX and

2. ϕ = ϕ ◦ ιA

The following uniqueness theorem justifies our giving a specific name to such an object as
above.

15

Theorem 4.3 Let A be an object in a concrete categoryC. Suppose that(F,X, ιX , ιA) and
(F ′, X ′, ι′X′ , ι′A) are both objects ofA-algebraic formulas overX,X ′ respectively, and suppose
that there exists a bijectionβ : X ↪→→ X ′. ThenF, F ′ are equivalent objects inC.

Proof: We need to show that there are morphisms inHom(F, F ′) andHom(F ′, F) such that the
composition is the identity morphism. Consider the mapα : X −→ F ′ defined byα = ιX′ ◦β and
defineϕ = ι′A. SinceF is a set ofA-algebraic formulas overX, this gives us a unique morphism
ϕ : F −→ F ′ such that

• ιX′ ◦ β = ϕ ◦ ιX and

• ι′A = ϕ ◦ ιA

And symmetrically, we have a mapϕ′ : F ′ −→ F such that

• ιX ◦ β−1 = ϕ′ ◦ ιX′ and

• ιA = ϕ′ ◦ ι′A
But now, consider the mapϕ′ ◦ ϕ ∈ Hom(F, F). Note thatϕ′ ◦ ϕ ◦ ιX = ϕ′ ◦ ιX′ ◦ β and
(ϕ′ ◦ ιX′) ◦β = ιX ◦β−1 ◦β = ιX = ιX ◦β−1 ◦β = ιX . Very similarly,ϕ′ ◦ϕ ◦ ιA = ϕ′ ◦ ι′A = ιA.
So, composingϕ′◦ϕwith ιX , ιA gives us backιX , ιA, respectively. However, applying the universal
property ofF to itself, usingιX in the place ofα andιA in the place ofϕ, we see that there is a
unique map with the properties we’ve just demonstratedϕ′ ◦ ϕ to have. But, note of course that
the identity morphism,1F , is also such a map, and thereforeϕ′ ◦ ϕ = 1F . Similarly, we can show
thatϕ ◦ϕ′ = 1F ′, and henceϕ is an equivalence of objects inC. I.e., up to isomorphism, the set of
A-algebraic formulas (on bijective sets of variables) is unique.�

4.1.1 Examples

Here we’ll give a short list of examples to illustrate the definition, and to (hopefully) see that it very
well matches our intuition about what algebraic formulas should be. Many of the incarnations of
these objects will involve free objects, a somewhat related idea, and as such, we’ll begin with a
brief account of free objects before stating the specific examples.

Recall that afree objectin a concrete categoryC (one in which the objects can be thought of as
sets) is an objectF with a setX and a mapι : X −→ F such that for any other objectA of C and
for any set mapφ : X → A, there is a unique morphism ofC, φ : F → A such thatφ ◦ ι = φ. In
this case we say thatF is free on the setX.

It is sometimes convenient to identify the setX with its imageι(X) in F , and then the mapping
property becomesφ|

X
= φ.

Perhaps the most commonly known example is that of a vector spaceV over a fieldF. In this
language, we have thatV is a free object in the category of allF-modules (it is free on any basis).
Another simple example is thatZn is a free object in the category of abelian groups. It is easy to
verify that it is free on the set of vectors{(1, 0, ..., 0), ..., (0, ..., 0, 1)}, for example.

Now, let’s move on to some concrete examples.

Example 4.4 (Commutative Rings.) IfR is a commutative ring with identity, we have that the set
of all R algebraic formulas on variables{xi}n

i=1 is simplyR[x1, ..., xn].

16

It is quite straightforward to construct the needed maps. As mentioned, the “evaluation” map
is what does the trick. All that is needed is a proper formalization, which can be found in [12].X

This seems to match our intuition very well regarding algebraic formulas. However, what about
a fieldF? This is of course a commutative ring with identity, but it seems like we could accomplish
more with division, and perhaps rational functions would correspond better to algebraic formulas.
But notice a critical difference in this case: if the denominator has roots inF, then we cannot
freely assign variables to values and evaluate such a function on that assignment. This could have
serious implications in cryptographic computation as well- in this scenario, it may be the case that
attempting such an evaluation which leads to “division by zero” will produce some distinguishable
behavior in a method that shouldn’t disclose any information about the underlying values.

Note that in non-commutative rings, the set of formulas is more complex than justR[x1, ..., xm]
since coefficients and variables cannot always be written so concisely. We’ll see this in more detail
later on.

Example 4.5 (Groups.) For a groupG, the set of allG-algebraic formulas on a set of variables
X is the free product of the free group onX withG, i.e.,F (X) ∗G.

A general formula seems to correspond to a word in a free group, only mixed in with elements
of G, which lines up exactly withF (X) ∗G. Using the universal mapping property of free objects
and that of the free product of groups (which is a coproduct in groups), it is easy to verify the
mapping property forG-algebraic formulas. From the free objectF (X), we have that any map
α : X −→ A for some groupA leads to a unique map fromF (X) −→ A that agrees withα. Then
sinceF (X) ∗ G is a coproduct, we have that given a map of the two components toA there is a
unique map from the free product toA that agrees with all previous maps. Putting these together,
we see that it suffices to give a map fromX −→ A and a map fromG −→ A to uniquely determine
a map from the free product toA, which implies thatF (X) ∗G is the set ofG-algebraic formulas.
X

Example 4.6 (Abelian Groups.) For an abelian groupG, the set ofG-algebraic formulas overn
variables is simplyZn ⊕G.

This follows exactly as in the preceding example sinceZn is a free object in the category of
abelian groups, and since⊕ is a coproduct in abelian groups.X

Recall that in our applications, we modeled abelian group algebraic formulas by affine maps,
and of course, every element inZn ⊕ G corresponds to an affine map. So, we’ve validated our
initial intuition and model for this situation: Indeed, (a subset of) affine maps play the very same
role for abelian groups as polynomials do for commutative rings. Of course, not every affine map
comes from such a formula, so in algebraic terms, the model we analyzed is actually stronger.

Example 4.7 (R-Modules.) More generally than abelian groups, we haveR-modules. In a very
analogous way, we see that for anR-moduleM , the set ofM -algebraic formulas overn variables
isRn ⊕M .

As a final example, we’ll take a moment to illustrate what is meant by evaluating such a for-
mula, which will let us speak of classes of functions say fromAm −→ A which correspond to
formulas inFA[{x1, ..., xm}] (which we’ll often write asFA[x1, ..., xm], or just asFA[X] when it
is clear how many variables are involved, and when it is unnecessary to explicitly name them).

17

Example 4.8 Every formulaσ ∈ FA[x1, ..., xm] can be associated with a functionfσ : Am −→ A
as follows. Letϕ = 1A, the identity morphism onA, and lety = (y1, ..., ym) ∈ Am. Letα : X −→
A be the map that sendsxi 7→ yi for all i ∈ [m]. Then the pair(ϕ, α) determines a unique map
ϕy : FA[x1, ..., xm] −→ A, as in Definition 4.2. We define

fσ(y) = ϕy(σ)

It will in fact be useful to give a name to such functions that arise from someσ ∈ FA[X].

Definition 4.9 LetA be an object in a concrete categoryC whereFA[X] exists for all finite sets
X. A functionf : Am −→ A is said to beA-algebraicif f = fσ for someσ ∈ FA[x1, ..., xm] as
described above. We will denote the set of allA-algebraic functions with variables inX byFA[X].

Note: we may also refer to a functionf : Am −→ An asA-algebraic, in which case it is meant
that for eachi ∈ [n] there existσi ∈ FA[x1, ..., xm] such thatf = (fσ1 , ..., fσn). These functions
will be denoted byF n

A[X], or simplyFA[X] if the context is clear.

4.2 Towards Other Unifying Formalizations

We’ve now established what seems to be a very good idea of “algebraic formula”. However, this
is just a statement about functions from one algebraic set to another. The basic functionalities
investigated in this work were not algebraic: they were just functions involving general sets. So,
how do we model an arbitrary function from one set to another via some algebraic function? There
are quite a few possible ways to formalize this idea, and a number of them actually turn out to be
meaningful. Some quite plausible ideas however, turn out to be completely void of meaning. We
will explore these ideas in some detail now, which will hopefully give us a pleasant and precise
vocabulary to talk about such ideas.

In what follows,S will be a set, andAwill be some algebraic structure from a concrete category
C, e.g., groups, rings, modules, etc. We’ll assume thatFA[X] exists inC for any finite setX, which
as we’ve seen in the examples above, is usually the case for the algebraic objects we study. We
would like to formalize the idea that a function on the setS can be somehow computed using an
algebraic structure. To begin, we offer the following definition.

Definition 4.10 Let f : Sm −→ Sn. We say thatf is Algebraically RepresentableoverA, some
algebraic structure, if we have the following:

• {ik : S −→ A}m
k=1

• {pj : A −→ S}n
j=1

• f̃ : Am −→ An

such that
f = p ◦ f̃ ◦ i

wheref̃ ∈ F n
A[x1, ..., xm].

18

Note that ifm = n = 1, then this definition becomes completely meaningless. If this were
the case, then all of the information off can be encoded intoi or p (or both) and have absolutely
nothing to do with the algebra ofA. However, withm andn greater than one, it is a very useful
definition that in fact captures a great many situations.

However, if in fact such a representationdoeshave meaning at the level ofm = n = 1, then
we have something very special. In this case, all information aboutf is represented iñf in a very
strong and complete way, which gives us great flexibility. Consider the following definition.

Definition 4.11 We say that a functionf : Sm −→ Sn is Composably RepresentableoverA for
an algebraic structureA, if there exist the following:

• i : S ↪→ U ⊆ A

• p : U −→−→ S

• f̃ : Am −→ An

Such that

1. f̃ ∈ F n
A[X] with f̃(Um) ⊂ Un

2. i ◦ p = 1S (extendingp, i to the sum, as usual)

3. f = p ◦ f̃ ◦ i

4. [a]p = [a′]p =⇒ [f̃(a)]p = [f̃(a′)]p, where[a]p = {y ∈ Um | p(y) = a} represents the
equivalence class ofa ∈ Um under the relation defined by the fibers ofp (extended to sums).

With this definition, it is easy to see that the behavior off is found completely inside of the
behavior off̃ , just re-labeling elements, and grouping them together with the fibers ofp. If one
believes the axiom of choice, then this definition is equivalent to the following condition (but in
any case the above condition implies the one below):

Claim 4.12 Supposef : Sm −→ Sn is composably representable overA via a functionp : U ⊆
A −→−→ S and an algebraic functioñf : Um −→ Un. Then,for anyi : S ↪→ U with p ◦ i = 1S we
have that

f = p ◦ f̃ ◦ i

Proof: Let i′ : S ↪→ U be any function such thati′ ◦ p = 1S. By definition, there existsi : S ↪→
U ⊆ A andf̃ such thatf = p ◦ f̃ ◦ i. Let s ∈ S. Then by definition,[i(s)]p = [i′(s)]p, and then
by the definition of composably representable, we have that[i(f(s))]p = [f̃(i(s))]p = [f̃(i′(s))]p
so that indeed,(p ◦ f̃ ◦ i′)(s) = f(s) as desired.�

As mentioned above, the condition of the claim is easily seen to be equivalent to the definition
of composably representable, but in the infinite case, this requires the axiom of choice to construct
functionsi by selecting an element from each fiber ofp.

The following claim shows the motivation for our choice of nomenclature.

19

Claim 4.13 If f : Sm −→ Sm is composably representable overA by (p, i, f̃), then for any
k ∈ Z+, fk is composably representable overA by(p, i, f̃k). In particular, for anyi : S ↪→ U ⊆ A
such thatp ◦ i = 1S we have

fk = p ◦ f̃k ◦ i

Proof: Suppose thatk = 1. Then this is trivially true from the definition. Now, suppose that the
theorem is true for all integers less than or equal tok. So, we have that[a]p = [a′]p =⇒ [f̃k(a)]p =
[f̃k(a′)]p. Next, notice that by the definition, and by our inductive hypothesis,[f̃ r(i(s))]p =
[i(f r(s))]p for all r ∈ [k] and hence

[f̃k+1(i(s))]p = [f̃k(f̃(i(s)))]p = [f̃k(i(f(s)))]p = [i(fk(f(s)))]p = [i(fk+1(s))]p

Therefore,
fk+1 = p ◦ f̃k+1 ◦ i

which completes the proof.�

For simplicity, we consider the case off : Sm −→ Sm, but in fact in the general case, if any
functionf is composably representable byf̃ , then any composition off ’s which makes sense can
be computed by the analogous composition off̃ ’s. For example, if we couldcomposablyrepresent
f : {0, 1}2 −→ {0, 1} wheref = NAND(a, b), usingf̃ , then we could also composably represent
OR(a, b) by f̃(f̃(a, a), f̃(b, b)).

In what follows, we provide a few simple examples.

Example 4.14 Let G be a group andH < G such that|G : H| = 2. Then the function
f : {0, 1}2 −→ {0, 1} defined by(x, y) 7→ x + y mod 2 = x XORy is alwayscomposably
representable overG as follows: leti(0) = e, i(1) = g ∈ G \ H, and letp(H) = {0} and
p(G \H) = {1}, and finally, letf̃(x, y) = x · y where· is the operation of the groupG. It is easy
to verify the equality

f(x, y) = x+ y = p ◦ f̃ ◦ i

is satisfied, no matter what representatives are chosen from the fibers ofp, since subgroups if index
2 are always normal (right cosets must coincide with left cosets).

Example 4.15 LetX ∈ Gm and define the equality functionfX : Gm −→ {0, 1} by

fX(Y) =

{
1 if X = Y
0 otherwise

This function is not algebraically representable over any abelian group of size|G| (e.g.,G
itself).

Question: forf : {0, 1}m −→ {0, 1}, what is the minimum size (as a function ofm) of an
abelian groupG that can algebraically representf?

Example 4.16 For primesp, q with q - p− 1, we have[CR(Zp) = CR(Zq)] ⇐⇒ p = q. (Here
CR(G) denotes the set of composably representable functions over an algebraic structureG.)

20

Example 4.17 Let G be a group. Any functionf : {0, 1}m −→ {0, 1}n is composably repre-
sentable overG if a functionA : G×G −→ G such thatA(g, h) = 1G ⇐⇒ (g = 1G or h = 1G)
can be algebraically computed inG.

Example 4.18 Any functionf : {0, 1}m −→ {0, 1}n is composably representable overR, where
R is any domain. Why: You already have a group (abelian in fact) and now the multiplication of
R is exactly the functionA from the previous example.

Example 4.19 (Private Information Retrieval.)

For a PIR protocol, one can define the underlying functions for query processing asfX : Sq −→
Sr, indexed byX = Sn such that there exist a collection{Qi}n

i=1 ⊂ Sq wherefX(Qi)h(i) = Xi,
whereQi ∈ Sq represents the user’s query,X ∈ Sn represents the database, andh is some function
that determines which part of the response is the desired database valueXi. The original work of
[14] on computational PIR (at the basic level) gives an explicit algebraic representation of such a
set of functions{fX} overZN where eachfX is represented with the same functions(p, i) but of
course with different̃fX . The work presented in Section 3 shows that ifqr < n, then no such set
of functions can be algebraically represented over any abelian group (with uniform(p, i)). X

In the following subsection, we’ll devote a little extra attention to an interesting example.

4.3 Finite Non-Abelian Simple Groups and Composable Representability

We will prove a few elementary lemmas, and then the main result (which again, uses only basic
techniques from algebra). We begin, however, with some famous results that will be essential to
our result. Recall that a groupG is referred to assimpleif it has no proper normal subgroups.

Theorem 4.20 (Feit-Thompson) Every non-abelian simple group has even order.

The proof of this theorem is on the order of 250 pages. For that, among other reasons, we will
state this theorem without proof.

Theorem 4.21 (Cauchy) LetG be a finite group, and letp be a prime integer such thatp||G|. Then
G contains an element of orderp.

Proof of this theorem can be found in virtually any undergraduate or graduate text on algebra.
(See [11] or [12] for a nice proof by J.H. McKay.) Combining the above results, we see that

Fact 4.22 Every non-abelian simple group of finite order has an element of order 2.

This fact is the only dependence of this work on previous results.
Recall that a groupG is calledperfect if its commutator subgroup〈[G,G]〉 is in fact all of

G. Since the commutator subgroup is always normal (it is in fact fully invariant), and since the
commutator subgroup of a non-abelian groupG is also always non-trivial, we see that every non-
abelian simple group is perfect. In general, for any subsetsX, Y ⊂ G, we will denote by[X, Y]
the set of all commutators inX, Y , i.e., [X, Y] = {xyx−1y−1 | x ∈ X, y ∈ Y }. We will need a
similar, but stronger condition than perfect, which we can derive from the property of being simple.
Note that these results do not apply to all perfect groups. For example, the perfect groupSL2(F5)
cannot be shown to have the ability of performing all computation by the means given here.

21

Lemma 4.23 Let G be a finite group and suppose thatS ⊂ G is conjugation invariant (i.e.,
∀s ∈ S, g ∈ G we havegsg−1 ∈ S). Then〈S〉 C G.

Proof: Let x ∈ 〈S〉. Thenx = s1s2 · · · sk for somek ∈ Z. Let g ∈ G be an arbitrary element.
Observe that

gxg−1 = g(s1s2 · · · sk)g
−1

= gs1(g
−1g)s2(g

−1g) · · · sk−1(g
−1g)skg

−1

= (gs1g
−1)(gs2g

−1) · · · (gskg
−1)

= s′1s
′
2 · · · s′k ∈ 〈S〉

since alls′i ∈ S by our assumption. Therefore,〈S〉 C G as desired.�
Now, let us consider for a moment conjugacy classes. For an elementx ∈ G, we will denote

the conjugacy class byClG(x). I.e.,

ClG(x) = {y ∈ G | y = gxg−1 someg ∈ G}

Recall that we can define a natural action ofG on ClG(x) for anyx ∈ G: for all s ∈ ClG(x),
simply defineg · s = gsg−1.

Now, letG be a non-abelian simple group of finite order. From Cauchy’s theorem, we know
that there existsx ∈ G such thatx has order 2. ConsiderClG(x). Let |ClG(x)| = k. It must be
the case thatk > 1. If not, then every element ofG conjugatesx to itself, and hence we have
x ∈ Z(G), the center ofG. But of course this is impossible since the center of a group is always
normal and we assumed thatG is simple. So, the conjugacy class ofx has at least two elements.
Recall next, that whenever a group acts on a setS of sizek, there is an induced homomorphism,

ϕ : G −→ Sk

Since the action ofG on ClG(x) is obviously transitive, and since the sizek of the class ofx is
greater than1, we see thatϕ cannot be the trivial homomorphism which sends all elements to the
identity, and henceker(ϕ) 6= G. But, sinceG is simple, we in fact know thatker(ϕ) must be
the trivial subgroup{e}, since the kernel is always normal.Therefore, every element ofG acts
non-trivially on the setClG(x).

We will extract exactly the useful information into the following lemma which we have just
now proved.

Lemma 4.24 LetG be a finite, non-abelian simple group, and letx ∈ G be an element of order2.
Then there exists an elementy ∈ ClG(x) such thatyxy−1 6= x, and hence, such that[x, y] 6= e.

Using these facts, we can now state and prove the following:

Theorem 4.25 LetG be a finite non-abelian simple group. Then any functionf : {0, 1}m −→
{0, 1}n is composably representable overG.

Proof: We will simply show that the functionNAND(a, b) is computable in this way, which
suffices to prove the theorem since any such functionf : {0, 1}m −→ {0, 1}n can be written in
terms of compositions ofNAND alone. More precisely, we will show that for an elementx of

22

order2, the set{e, x} can be identified with{0, 1} respectively, and the operationNAND can be
computed solely in terms of the group operation ofG.

So, to begin, letx ∈ G be of order2, which as we discussed exists by Cauchy’s theorem.
DefineC = ClG(x). As discussed,|C| > 1. ConsiderS = [C,C], the set ofcommutators inC.
Note that the subsetS is conjugation invariant since it is generated byC = ClG(x), which is quite
clearly conjugation-invariant. Hence by Lemma 4.23, the subgroup generated bythese specific
commutators, is a normal subgroup:

〈S〉 = 〈[C,C]〉 C G

However, by Lemma 4.24, we know that|S| > 1, as there are at least 2 non-commuting elements.
But, we assumed thatG was simple. Therefore, we have in fact that〈S〉 = G. So, in particular,
there exists some product,s1s2 · · · sk of commutators inC such that

s1s2 · · · sk = x

So, eachsi = [ri, ti] whereri and ti are both conjugate tox. Therefore we have sequences of
group elements,{gi}k

i=1 and{hi}k
i=1 such that

[gixg
−1
i , hixh

−1
i] = si

We are now ready to define ourNAND(a, b). First, define the functionAND(a, b) as follows:

AND(a, b) =
k∏

i=1

[giag
−1
i , hibh

−1
i]

It is now easy to observe that it performs the appropriate function on our inputs from{e, x}2.
Whenevera or b is set to the identity, every commutator will of course be the identity since all
elements commute withe. However, if botha andb are set to the group elementx, the by our
design, we will haveAND(x, x) = x, exactly as desired. Now, sincex has order2, we can simply
defineNAND(a, b) = AND(a, b)x. This completes the proof.�

Corollary 4.26 Constructing a fully homomorphic encryption scheme over a ring with identity is
equivalent to constructing a group homomorphic encryption overany finite non-abelian simple
group. In particular, it is equivalent to constructing a homomorphic encryption scheme overA5,
the smallest such group.

To better illustrate the proof, we will provide an explicit construction for the groupA5, which
is of course the smallest non-abelian simple group.

Example 4.27A5 can computeNAND.

First, we need an element of order2. As we’ve seen, any such element will suffice. For
example, letx = (1, 2)(3, 4). We know that commutators of conjugates ofx will generate all of
A5, in particular,x itself. But to simplify things a bit, we’ll first construct standard generators
of A5 out of such commutators, and then write downx in terms of the standard generators. For
generators, we’ll useA5 = 〈{X, Y }〉 with X = (1, 2, 3, 4, 5) andY = (3, 4, 5). Let’s begin. Note
that

(3, 5, 4)(1, 2)(3, 4)(3, 4, 5) = (1, 2)(3, 5)

23

(2, 4, 3)(1, 2)(3, 4)(2, 3, 4) = (1, 4)(2, 3)

and that
[(1, 2)(3, 5), (1, 4)(2, 3)] = ((1, 2)(3, 5)(1, 4)(2, 3))2 = (1, 2, 3, 4, 5)

So, we’ll setg1 = (3, 5, 4) andh1 = (2, 4, 3). Next, note that

(3, 4, 5)(1, 2)(3, 4)(3, 5, 4) = (1, 2)(4, 5)

and that
[(1, 2)(4, 5), (1, 2)(3, 4)] = ((1, 2)(4, 5)(1, 2)(3, 4))2 = (3, 4, 5)

So, we’ll letg2 = (3, 4, 5) andh2 = e. Next we’ll writex = (1, 2)(3, 4) in terms of our generators:

(1, 2)(3, 4) = X−1Y −1X−1Y −1X2

Finally, using the simple observations that[x, y]−1 = [y, x], and that ifa, b have order two then
they are their own inverses, we can write down an explicit expression forNAND(a, b) in terms of
the group operation alone, wherea, b ∈ {e, x}:

NAND(a, b) =
h1bh

−1
1 g1ag

−1
1 h1bh

−1
1 g1ag

−1
1 bg2ag

−1
2 bg2ag

−1
2 h1bh

−1
1 g1ag

−1
1 h1bh

−1
1 g1ag

−1
1 \

bg2ag
−1
2 bg2ag

−1
2 g1ag

−1
1 h1bh

−1
1 g1ag

−1
1 h1bh

−1
1 g1ag

−1
1 h1bh

−1
1 g1ag

−1
1 h1bh

−1
1 x

X

References

[1] D. Barrington. Bounded-Width Polynomial-Size Branching Programs Recognize Exactly
Those Languages in NC. STOC 1986: 1-5

[2] D. Boneh, G. Crescenzo, R. Ostrovsky, G. Persiano. Public Key Encryption with Keyword
Search. EUROCRYPT 2004: 506-522

[3] D. Boneh, E. Goh, K. Nissim. Evaluating 2-DNF Formulas on Ciphertexts. TCC 2005:
325-341

[4] D. Boneh, R. Lipton. Searching for Elements in Black Box Fields and Applications. In
Advances in Cryptology-Crypto’96, LNCS1109, pp. 283-297, Springer-Verlag, 1996.

[5] D. Boneh, E. Kushilevitz, R. Ostrovsky, W. Skeith. Public Key Encryption that Allows PIR
Queries. Manuscript, 2005.

[6] Y. C. Chang. Single Database Private Information Retrieval with Logarithmic Communica-
tion. ACISP 2004

[7] C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval with
polylogarithmic communication. In J. Stern, editor,Advances in Cryptology – EUROCRYPT
’99, volume 1592 ofLecture Notes in Computer Science, pages 402–414. Springer, 1999.

[8] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval. InProc.
of the 36th Annu. IEEE Symp. on Foundations of Computer Science, pages 41–51, 1995.
Journal version:J. of the ACM, 45:965–981, 1998.

24

[9] T. ElGamal. A Public-Key Cryptosystem and a Signature Scheme Based on Discrete Log-
arithms. IEEE Transactions on Information Theory, v. IT-31, n. 4, 1985, pp469472 or
CRYPTO 84, pp1018, Springer-Verlag.

[10] S. Goldwasser and S. Micali. Probabilistic encryption. In J. Comp. Sys. Sci, 28(1):270–299,
1984.

[11] I. N. Herstein. Abstract Algebra. Prentice-Hall, 1986, 1990, 1996.

[12] T. W. Hungerford. Algebra. Springer-Verlag, Berlin, 1984.

[13] Y. Ishai, E. Kushilevitz, R. Ostrovsky. Sufficient Conditions for Collision-Resistant Hash-
ing. In Proceedings of the Second Theory of Cryptography Conference (TCC-2005)Springer-
Verlag Lecture Notes in Computer Science, 2005.

[14] E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database,
computationally-private information retrieval. InProc. of the 38th Annu. IEEE Symp. on
Foundations of Computer Science, pages 364–373, 1997.

[15] H. Lipmaa. An Oblivious Transfer Protocol with Log-Squared Communication. IACR ePrint
Cryptology Archive 2004/063

[16] U. Maurer and S. Wolf. Lower bounds on generic algorithms in groups. In Advances in
Cryptology – EUROCRYPT ’98, number 1403 in Lecture Notes in Computer Science, pages
72–84.

[17] W. Maurer and J. Rhodes. A property of finite non-Abelian simple groups. In proc. Am.
Math. Soc., vol. 16, pages 522-554 (1965).

[18] R. Ostrovsky and W. Skeith. Private Searching on Streaming Data. InAdvances in Cryptology
– CRYPTO 2005

[19] R. Ostrovsky and W. Skeith Computational Private Information Retrieval: A Survey.
Manuscript, 2006.

[20] P. Paillier. Public Key Cryptosystems based on CompositeDegree Residue Classes. Advances
in Cryptology - EUROCRYPT 99, LNCS volume 1592, pp. 223-238. Springer Verlag, 1999.

[21] R. L. Rivest, L. Adleman and M. L. Dertouzos, On data banks and privacy homomorphisms,
In Foundations of Secure Computation, eds. R. A. DeMillo et al., Academic Press, 1978, pp.
169-179.

[22] R. L. Rivest, A. Shamir, and L. Adleman A method for obtaining digital signatures and public
key cryptosystems, Commun. ACM 21 (1978), 120126.

[23] T. Sander, A. Young, M.Yung. Non-Interactive CryptoComputing For NC1 FOCS 1999:
554-567

[24] V. Shoup. Lower Bounds for Discrete Logarithms and Related Problems. In Eurocrypt ’97,
LNCS 1233, pages 256–266. Springer-Verlag, 1997.

[25] H. Werner. Finite simple non-Abelian groups are functionally complete. In Bull. Soc. Roy.
Sci. Liège, vol. 43, pp. 400, (1974)

25

5 Appendix

5.1 Notations

The natural numbers will be denotedN, and the integers byZ. For n ∈ Z, the symbolZn will
denote the ringZ/nZ, or the group(Z/nZ,+). We will sometimes denote the set of integers
{1, 2, ..., n} by [n] for simplicity. If G is a group, then0G or 1G will represent the identity element
of G, depending on whether additive or multiplicative notation is being used for the operation of
G. The symbol× will be used to denote a direct product (in sets, groups, rings, modules, etc.),
and if X is a set (or group, ring, module...) thenXn represents the direct product ofn copies
of X. Occasionally, ifA is a subset of a group (ring, module, etc.) the symbol〈A〉 will denote
the subgroup (sub-ring, sub-module, etc.) that is generated byA. I.e., the intersection of all sub-
structures containingA. However, we adhere to standard notations in more specific situations. Let
R be a ring and letM be anR-module. IfA andB are sub-modules ofM , then we denote the sum
ofA andB asA+B. We will denote the external direct sum of any twoR-modulesA,B byA⊕B.
For anya ∈ M , Ra will denote the submodule ofM defined byRa = {ra | r ∈ R}, so that if
1 ∈ R andM is unitary then〈{a}〉 = Ra. The set of allR-module homomorphisms fromA toB
will be denoted byHomR(A,B). For an abelian groupG, the ring of endomorphismsHomZ(G,G)
will be denoted byEnd(G). For any setX, F (X) will denote the free group generated byX.

5.2 Algebraic PIR from Degreet Polynomials

To see how to construct an algebraic PIR with constant server-side communication given a cryp-
tosystem that allows polynomials of total degreet to be computed on ciphertext, you can see the
work of [3]. For completeness however, we sketch such a protocol below. Proceed as follows.
First, organize a database of bits int-coordinate addresses. Now to produce a query for an address
(i∗1, i

∗
2, ..., i

∗
t), createt vectors of lengtht

√
n according to the formula(vk)j = δj,i∗k . Encrypt these

vectors and send them to the server as a query. Label the encrypted vectors aswk = E(vk) and
suppose that the bits of the database have been labeledX = {xi1,...,it}ik∈[0, t

√
(n)−1]

. Then for any

X ∈ {0, 1}n, define

FX(Y1,1, ..., Y1, t√n−1, ..., Yt,1, ..., Yt, t√n−1) =
n∑

i1,...,it∈[0, t
√

(n)−1]

[
t∏

k=1

Yk,ik

]xi1,...,it

which can of course be computed on ciphertext for anyX ∈ {0, 1}n since the exponents can
be computed via theZ-module action and each term has degreet. So, there exists̃F , efficiently
computable from public information such that ifw = E(v) thenD(F̃ (w)) = F (v). So, the
database algorithm simply computesF̃ ((w1)1, ..., (wt) t√n−1) as the response to the query, which
will clearly be an encryption ofxi∗1,...,i∗t

. Under the assumption that the cryptosystem is CPA-secure,
security of this PIR protocol comes from a standard hybrid argument since the only information
exchanged was a few arrays of ciphertext.

26

5.3 Additional Definitions

5.3.1 Oblivious Modifiers

Let (K, E ,D) be a CPA-secure cryptosystem, with plaintext setG1 and ciphertext setG2. We
consider the following setting: A userU initially holds a database{xi}n

i=1 and gives to a storage
providerS an arrayX = {ci}n

i=1 of ciphertexts, whereci = E(xi). Subsequently, any number of
users with the public key may wish to modify one of the underlyingxi in the database, and they
wish to do so without revealing any information toS about the modification.

Definition 5.1 We define anOblivious Database Modifierto be the following three algorithms:

1. Key-Gen(k). This algorithm takes a security parameterk and generates all public and
private parameters for the system, including public and private keys for the underlying cryp-
tosystem.

2. GetModifier : {1, 2, ..., n} × N → M. This takes an integeri ∈ {1, 2, ..., n} and some
integer randomness, and then outputsmi ∈ M which describes the modification to be done
to the database.

3. Modify : Gn
2 ×M → Gn

2 . This takesX ∈ Gn
2 andmi ∈ M and outputsX ′ ∈ Gn

2 such that
D(Xi) 6= D(X ′

i) ⇐⇒ mi ∈ GetModifier({i} × N).

The above algorithms describe a one round protocol for oblivious database modification.GetModifier
is executed by the various users which send the result to the database owner who executesModify
on that input and the database.

Definition 5.2 (Correctness) If wheneveri ∈ {1, 2, ..., n},mi ∈ GetModifier({i} × N), X ∈ Gn
2 ,

andX ′ =Modify(X,mi) it holds that

(D(Xj) 6= D(X ′
j) ⇐⇒ i = j)

with overwhelming probability (over any randomness used inGetModifier andModify) then the
Oblivious Database Modifier is said to becorrect.

For such a system, the goal is to conceal what database element is being modified. So, we
would like to have no information about the selected index to be efficiently computable from the
protocol’s execution with any noticeable probability. I.e., nothing abouti is efficiently computable
from mi. Clearly, this will depend on the security of the underlying cryptosystem.

Definition 5.3 (Privacy) We define semantic security in terms of the following game between an
adversaryA and a challengerC. The game consists of the following steps:

1. C runs Key-Gen(k) and sends toA all public parameters, including a description of the
underlying cryptosystem.

2. A can ask queries of the formi ∈ {1, 2, ..., n} andC responds withGetModifier(i).

3. A selectsi0, i1 ∈ {1, 2, ..., n} and sends both toC.

27

4. C randomly choosesb ∈ {0, 1} and sendsGetModifier(ib) toA.

5. A may send moreGetModifier queries toC, andC will respond properly.

6. A outputs a guessb′ ∈ {0, 1}.
We say thatA wins if b′ = b and loses otherwise. Define the adversary’s advantage to be

AdvA(k) =
∣∣∣Pr[b′ = b]− 1

2

∣∣∣
where the probability is taken over all internal randomness ofA andC. We say that the Oblivious
Database Modifier isCPA-secureif AdvA(k) is a negligible function ink.

5.3.2 Algebraic Oblivious Modifiers

Let (K, E ,D) be a CPA-secure group homomorphic encryption scheme with plaintext groupG.
Suppose thatG is an abelian group. (We will consider other structures, e.g. rings and monoids
later on.) By homomorphic, we will mean that for alla, b ∈ G

D(E(a)E(b)) = ab

Given the fact that CPA-secure ciphertexts contain no information that is computable by a user
or the database owner, what could an oblivious database modification protocol’s algorithm look
like? To preserve privacy, the computation performed byGetModifier must involve every cipher-
text in the database, and it logically must involve every underlying plaintext. Indeed, for virtually
all PIR protocols derived from an encryption scheme, the only operations on the underlying plain-
text are group operations. Here, we consider programs that are restricted to computing algebraic
formulas on the underlying plaintext. In order to discuss lower bounds for such a system in a
mathematical setting, we’ll use our formalization of “arbitrary algebraic formula” developed in the
preceding section. Recall that for any objectA in a concrete category, we used the notationFA[X]
to denote the set of allA-algebraic formulas withX as the set of variables, and the corresponding
functions fromAm −→ An are denoted byF n

A[X], or more simplyFA[X].

Definition 5.4 We define anAlgebraic Oblivious Database Modifierto be an Oblivious Database
Modifier with the following constraints:

1. The underlying cryptosystem is homomorphic, preserving the algebraic structure of the
plaintext set,G1 (be it a group, ring, field, et cetera).

2. The modification description set,M, is simplyGm
2 , orderedm-tuples of ciphertexts.

3. TheModify protocol will computeψ ∈ FG2 [X], an algebraic function to determine the
updated database contents. Here, the setX represents variables for every database element
and for all elements ofM.

Clearly correctness and privacy will have the same definitions as a general modifier (see defini-
tions 5.2 and 5.3, respectively). And as we have formalized above, the phrase “algebraic formula”
now has precise meaning as well.9

9If the encryption map were deterministic, so that a homomorphic encryption functionE was actually a homomor-
phism of groups, we could make a slightly more appealing definition, in which we would useE : G1 −→ G2 to obtain
our evaluation map. This way, we could still phrase things in terms of aG1-algebraic formula.

28

