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Abstract

Suppose that we are given an ideal oblivious transfer protocol (OT).
We wish to construct a larger OT by using the above OT as a blackbox.
Then how many instances of the given ideal OT should be invoked ?
For this problem, some lower bounds were derived using entropy. In
this paper, we show more tight lower bounds by using combinatorial
techniques. Roughly speaking, our lower bounds are two times larger
than the previous bounds.

Keywords: Oblivious Transfer, Reduction, Lower bound, Combina-
torial Approach

1 Introduction

1.1 OT reduction

In the ideal model of 1-bit (1, 2)-Oblivious Transfer (OT), the sender (Alice)
has secret two bits, s0 and s1, and sends them to the trusted third party
(TTP). The receiver (Bob) has a choice bit c and sends it to the TTP.
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Finally, the TTP sends sc to Bob. A two-party 1-bit (1, 2)-OT is a two-
party protocol which implements the ideal 1-bit (1, 2)-OT without TTP. A
two-party L-bit (1, 2)-OT is a generalization such that s0 and s1 are L-bit
strings.

Such OT is a fundamental primitive in cryptography. Most notably, any
secure multiparty computation can be based on OT [11, 8, 9].

It is known that L-bit (1, 2)-OT is equivalent to 1-bit (1, 2)-OT. OT
reduction is to construct a two-party L-bit (1, 2)-OT by using the ideal
model of 1-bit (1, 2)-OT t times, where t should be small. 1 The resulting
L-bit (1, 2)-OT must satisfy receivers’s privacy and sender’s privacy.

• Receiver’s privacy means that any infinitely powerful sender A∗ learns
no information on c.

• Sender’s privacy means that any infinitely powerful receiver B∗ learns
no information on s1−c.

Sender’s privacy can be further defined in two ways.

• Strong privacy: B∗ learns no information s1−c.

• Weak privacy: B∗ learns almost no information s1−c.

Then some OT reductions are known as follows. (See Table 1.)

1. Brassard, Cŕepeau and Santha used zigzag functions [2]. Their L-bit
(1, 2)-OT satisfies strong privacy and it never aborts. In this construc-
tion, it is known that t/L ≥ 3.5277.

2. Brassard and Crépeau used privacy amplificaiton technique [1]. The
resulting protocol satisfies weak privacy and it never aborts. In this
protocol, t/L = 2 + ε, where ε is a negligible factor.

3. Crépeau and Savvides used interactive hashing [6]. The resulting pro-
tocol satisfies weak privacy and it aborts with small probability. In
this protocol, t/L = 1 + ε, where ε is a negligible factor.

1The other dirctsion is easy.
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Table 1: Known OT-Reductions

Privacy Abort t/L

Zigzag function [2] strong no ≥ 3.5277
Privacy amplificaiton [1] weak no 2 + ε

Interactive hashing [6] weak yes 1 + ε

Table 2: Lower Bound on OT-Reduction

Lower bound technique
Dodis and Micali [7] t ≥ L entropy

This paper t ≥ 2× L combinatorial technique

1.2 Lower bound on OT reduction

Then what is a lower bound on t/L ? For strong privacy with no abort,
Dodis and Micali showed a lower bound such that t ≥ L by using entropy
[7].

In this paper, we show a better lower bound such that t ≥ 2×L by using
a combinarotial technique for strong privacy with no abort. (See Table 2.)
Our lower bound implies that there exists a clear separation between strong
privacy with no abort and weak privacy with abort. (See table 3.)

1.3 Generalization

Our result can be generalized as follows. (1, n)-OT is a generalization of
(1, 2)-OT such that Alice has n strings s0, · · · , sn−1, and Bob receives one

Table 3: Implication of Our Bound

Privacy abort known reduction our bound
strong no t/L ≥ 3.5277 t/L ≥ 2
weak no t/L = 2 + ε ?
weak yes t/L = 1 + ε ?
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Table 4: Generalization

Lower bound technique
Dodis and Micali [7] t ≥ L/` entropy

This paper t ≥ 2× L/` combinatorial technique

of them. Suppose that the ideal `-bit (1, n)-OT is used t times to construct
an L-bit (1, n)-OT. Then what is a lower bound on t ? Dodis and Micali
showed that t ≥ L/` by using entropy. Roughly speaking, we show that
t ≥ 2× L/` by using a combinatorial technique. See table 4.

1.4 Related work

Wolf and Wullschleger presented another lower bound on the reduction of
L-bit (1, N)-OT to `-bit (1, n)-OT [10]. However, their bound is the same
as the one of Dodis and Micali for N = n.

2 Oblivious Transfer (OT)

As an `-bit (1, n)-Oblivious Transfer, imagine an ideal world as follows. Alice
has n secret strings of ` bits s0, s1, · · · , sn−1 ∈ {0, 1}`, and Bob has a secret
c ∈ {0, 1, · · · , n− 1}.

1. First, Alice sends s0, s1, · · · , sn−1 to a trusted third party (TTP), and
Bob sends c to TTP.

2. Next TTP sends sc to Bob.

We say that the above three party protocol (Alice, Bob, TTP) is the ideal
`-bit (1, n)-Oblivious Transfer.

By using the above ideal `-bit (1, n)-Oblivious Transfer as a building
block, we are interested in to construct a two-party L-bit (1, N)-Oblivious
Transfer protocol (Alice, Bob) which satisfies the following three conditions,
where L ≥ ` and N ≥ n.

Completeness. If Alice and Bob follow the protocol, then Bob receives sc.
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Receiver’s privacy. For any infinitely powerful Ã, Ã learns no information
on c when (Ã, B) is executed.

Sender’s privacy. For any infinitely powerful B̃, B̃ learns no information
on s0, s1, · · · , sN−1 other than some sc when (A, B̃) is executed.

More formally, sender’s privacy is defined as follows. For i = 0, 1, · · · , N−
1, let Si denote the random variable induced by si ∈ {0, 1}L. For each i, we
assume that

Pr(Si = α) > 0

for any α ∈ {0, 1}L. We also assume that each Si is independent each other.
Let view denote the view of Bob (receiver) which consists of his random

coin tosses and the messages that he received from Alice. Let V iew denote
the random variable induced by view.

Definition 2.1 (Sender’s privacy) We say that (strong) sender’s privacy
is satisfied if for any infinitely powerful B̃ and his any possible view, there
exists c ∈ {0, 1, · · · , N − 1} such that for any i 6= c,

Pr(Si = α | V iew = view) = Pr(Si = α) > 0

for any α ∈ {0, 1}L.

For two strings R0 and R1, let R0||R1 denote the concatenation.

3 Previous Lower Bounds

Suppose that we want to construct an L-bit (1, 2)-OT from t instances of
the ideal `-bit (1, 2)-OT. Dodis and Micali showed the first lower bound on
t as follows [7].

Proposition 3.1 Suppose that there exists an L-bit (1, N)-OT which in-
vokes t instances of the ideal `-bit (1, n)-OT. Then we have

t ≥ L

`
× N − 1

n− 1
.

Wolf and Wullschleger presented another lower bound as follows [10].
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Proposition 3.2 Suppose that there exists an L-bit (1, N)-OT which in-
vokes t instances of the ideal `-bit (1, n)-OT. Then we have

t ≥ log N/ log n, (1)

t ≥ L/`. (2)

In particular, for N = n = 2 and ` = 1, we have the following corollary
from Proposition 3.1 and Proposition 3.2. This is the most tight bound
known so far for N = n = 2 and ` = 1.

Corollary 3.1 Suppose that there exists an L-bit (1, 2)-OT which invokes
t instances of the ideal 1-bit (1, 2)-OT. Then we have t ≥ L.

Also, eq.(2) is the best known bound for L ≥ ` and N < 2n − 1. All the
above bounds were derived by using entropy.

4 Our First Lower Bound

In this section, we derive our lower bounds by using a simple counting ar-
gument (while the previous bounds were derived by using entropy). We
consider the reduction of L-bit (1, 2)-OT to 1-bit (1, 2)-OT first, and then
the reduction of L-bit (1, n)-OT to `-bit (1, n)-OT. Our bounds are more
tight than the previous bounds. See Sec.2 for the definition of ideal OT.

4.1 Lower Bound for (1, 2)-OT

Theorem 4.1 Suppose that there exists an L-bit (1, 2)-OT which invokes t

instances of the ideal 1-bit (1, 2)-OT. Then we have

t ≥ 2L− 1.

(Proof) Suppose that there exists an L-bit (1, 2)-OT which invokes t in-
stances of the ideal 1-bit (1, 2)-OT. In the L-bit (1, 2)-OT protocol,

• Alice has two secret strings s0, s1 ∈ {0, 1}L and Bob has a choice bit
c.

• At the end, Bob receives sc.
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We denote by Alice(RA; s0, s1) Alice who has RA as her random tape and
s0, s1 as her input, where s0, s1 ∈ {0, 1}L. We also denote by Bob(RB; c)
Bob who has RB as his random tape and c as his input, where c ∈ {0, 1}.
Let com(Alice(RA; s0, s1), Bob(RB; c)) denote the communication sequence
between Alice(RA; s0, s1) and Bob(RB; c) other than the t invocations of the
ideal 1-bit (1, 2)-OT.

Fix RA, s0 and s1 arbitrarily. For any R0 and c = 0, let

com0 = com(Alice(RA; s0, s1), Bob(R0; 0)). (3)

Since Alice learns no information on c, there exists some R1 for c = 1 such
that

com0 = com(Alice(RA; s0, s1), Bob(R1; 1)). (4)

Fix the above R0, com0 and R1. Then all the inputs to Alice are fixed.
Therefore, her input to the ideal 1-bit (1, 2)-OTs are determined. Suppose
that (xi, yi) is her input to the ith OT for i = 1, · · · , t.

Without loss of generality, we can assume that Bob behaves as follows.

• Bob(R0; 0) receives (x1, · · · , xt) and finally computes s0.

• Bob(R1; 1) receives (y1, · · · , yt) and finally computes s1. 2

First suppose that t = even. Consider a malicious B̃ who has R0||R1 and
receives Z = (x1, · · · , xt/2, y(t/2)+1, · · · , yt). B̃ behaves in the same way as
Bob(R0; 0) except for that it receives Z. Alternatively, we can say that B̃

behaves in the same way as Bob(R1; 1) except for that it receives Z. Hence
com0 is the communication sequence between Alice(RA; s0, s1) and B̃ other
than the t invocations of the ideal 1-bit (1, 2)-OT.

Everything is fixed here. In particular, The view of B̃ is fixed, where the
view is given by view′ = (R0||R1, Z, com0).

Now fixing the above view′, we do not fix RA, s0 and s1 any more. (In
other words, we consider conditional probability distribution on RA, s0 and
s1 given view′.) Then B̃ has no information on either s0 or s1 from Sender’s
privacy. Without loss of generality, suppose that B̃ has no information on

2Suppose that Bob(R1; 1) receives some xi. It is an easy exercise to show that our

bound holds even in this case.
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s0. This means that s0 can be any L-bit string because for any L-bit string
α ∈ {0, 1}L,

Pr(S0 = α | V iew = view′) = Pr(S0 = α) > 0.

Here it is helpful to note the following: (honest) Bob is an interactive
Turing machine. But there exists a (usual) algorithm (based on Bob) such
that

• it outputs s0 on input (R0, (x1, · · · , xt), com0), and

• it outputs s1 on input (R1, (y1, · · · , yt), com0).

By using this algorithm (which is essentially Bob), B̃ can compute

• s0 on input (R0||R1, (x1, · · · , xt), com0), and

• s1 on input (R0||R1, (y1, · · · , yt), com0).

Now (xt/2+1, · · · , xt) are not included in the view′. This means that
(xt/2+1, · · · , xt) ∈ {0, 1}t/2 uniquely determine s0 ∈ {0, 1}L. In other words,
there exists an onto mapping F : {0, 1}t/2 → {0, 1}L. This implies that
t/2 ≥ L. Hence

t ≥ 2L. (5)

Next suppose that t = odd. Let t0 = bt/2c and t1 = dt/2e. Consider
malicious B̃ who receives (x1, · · · , xt0 , yt1 , · · · , yt) in the t invocations of the
ideal (1, 2)-OT. Then by using the same argument as above, we obtain that
t0 ≥ L or t1 ≥ L. Hence t1 ≥ L. This means that t0 = t1 − 1 ≥ L − 1.
Therefore,

t = t0 + t1 ≥ L + (L− 1) = 2L− 1. (6)

From eq.(5) and eq.(6), we obtain that t ≥ 2L− 1.
Q.E.D.

4.2 Generalization to (1, n)-OT

Theorem 4.2 Suppose that there exists an L-bit (1, n)-OT which invokes t

instances of the ideal `-bit (1, n)-OT. Then we have

t ≥ 2dL/`e − 1.
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(Proof) Suppose that there exists an L-bit (1, n)-OT which invokes t in-
stances of the ideal `-bit (1, n)-OT. In the L-bit (1, n)-OT protocol,

• Alice has n secret strings s0, · · · , sn−1 ∈ {0, 1}L and Bob has a secret
c ∈ {0, · · · , n− 1}.

• At the end, Bob receives sc.

We use the same notation and the same argument as shown in the proof
of Theorem 4.1. Although c ∈ {0, · · · , n − 1}, we consider Bob(R0; 0) for
c = 0 and Bob(R1; 1) for c = 1.

First suppose that t = even. Then similarly to the proof of Theorem
4.1, there exists an onto mapping F : {0, 1}`t/2 → {0, 1}L. This implies that
`t/2 ≥ L. Hence we have

t ≥ d2L/`e. (7)

Next suppose that t = odd. Then similarly to the proof of Theorem 4.1,
we have

t = t0 + t1 ≥ dL/`e − 1 + dL/`e = 2dL/`e − 1. (8)

From eq.(7) and eq.(8), we obtain that t ≥ 2dL/`e − 1. Q.E.D.

5 Improved Bounds

In this section, we improve our lower bounds by using orthogonal arrays for
large L.

5.1 Orthogonal Array

We define orthogonal arrays as follows.

Definition 5.1 An orthogonal array OA(m, k, d) is a k × md matrix of m

symbols such that in any d rows, every one of the possible md tuples of
symbols appears exactly once.

For example, the following matrix is an OA(2, 3, 2). That is, in any two
rows, each of (00)T , · · · , (11)T appears exactly once. 0011

1001
0101

 .

9



Then Bush bound is known as follows [3, 5].

Proposition 5.1 (Bush bound) An orthogonal array OA(m, k, d) with d >

1 exists only if

k ≤


m + d− 1 if m even and d ≤ m,

m + d− 2 if m odd and 3 ≤ d ≤ m,

d + 1 if d ≥ m.

In particular, the thirs bound tells that for OA(2, k, d), it must be that
k ≤ d + 1 if d ≥ 2.

5.2 Improvement of Theorems 4.1 and 4.2

By using Bush bound, we can improve Theorems 4.1 and 4.2 as shown below.

Theorem 5.1 For L ≥ 3, suppose that there exists an L-bit (1, 2)-OT which
invokes t instances of the ideal 1-bit (1, 2)-OT. Then we have

t ≥ 2L.

Theorem 5.2 Let L/` be an integer such that L/` ≥ 2` + 1. Suppose that
there exists an L-bit (1, n)-OT which invokes t instances of the ideal `-bit
(1, n)-OT. Then we have

t ≥ 2L/`.

5.3 Proof of Theorem 5.1

From Theorem 4.1, it holds that t ≥ 2L − 1. Suppose that t = 2L − 1. We
use the same notation as in the proof of Theorem 4.1, and fix R0, R1, com0

as in the proof of Theorem 4.1.
Let Y0 be the set of all (y1, · · · , yt) such that

Pr( Bob receives s1 = 0L ) > 0.

Let P be a t × |Y0| matrix which consists of all (y1, · · · , yt)T ∈ Y0. We will
show that P is an OA(2, t, L− 1).

Similarly to the proof of Theorem 4.1, consider malicious B̃ who receives

Z = (x1, · · · , xL, yL+1, · · · , y2L−1)

10



in the t instances of the ideal 1-bit (1, 2)-OT. It must be that B̃ has no
information on either s0 or s1. Suppose that B̃ has no information on s0.
Then similarly to deriving eq.(5), we obtain that L − 1 ≥ L. However, this
is a contradiction.

Therefore, B̃ has no information on s1. In this case, there must exist
an onto mapping F : {(y1, · · · , yL)} → {s1}. This means that there exists a
bijection between {(y1, · · · , yL)} and the set of all l-bit strings. Hence

Pr((y1, · · · , yL) = 0L) > 0.

Therefore, we have

Pr((y1, · · · , yL−1) = 0L−1) > 0.

Now for (y1, · · · , yL−1) = 0L−1, it is to easy to show that there exists a bijec-
tion between {(yL, · · · , y2L−1)} and the set of s1 such that (y1, · · · , yL−1, yL, · · · , y2L−1) =
(0L−1, β) determines s1 uniquely.

In particular, there exists a unique β0 ∈ {0, 1}L such that (y1, · · · , y2L−1) =
(0L−1, β) determines s1 = 0L. This means that (0L−1, β0)T is a column of
P and 0L−1 appears exactly once in the first L− 1 rows. Similarly, for some
β1, (1L−1, β1)T is a column of P and 1L−1 appears exactly once in the first
L − 1 rows. By the same argument, in the first L − 1 rows, each L − 1 bit
string appears exactly once. That is,

P =

(
(0 · · · 0)T · · · (1 · · · 1)T

β0 · · · β1

)
.

The above observation holds in any L−1 rows. Hence P is an OA(2, t, L−
1). Then from Bush bound, it must be that

t ≤ (L− 1) + 1 = L

because L ≥ 3 > 2. However, this is impossible because t = 2L− 1.
Hence t 6= 2L− 1. Therefore, it must be that t ≥ 2L.

5.4 Proof of Theorem 5.2

From our assumption, η = L/` is an integer. From Theorem 4.2, it holds
that t ≥ 2L/` − 1 = 2η − 1. Suppose that t = 2η − 1. We use the same
notation as in the proof of Theorem 4.2. Fix R0, R1, com0.
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Let Y0 be the set of all (y1, · · · , yt) such that

Pr( Bob receives s1 = 0L ) > 0.

Let P be a t × |Y0| matrix which consists of all (y1, · · · , yt)T ∈ Y0. We will
show that P is an OA(2`, t, η − 1).

Similarly to the proof of Theorem 4.1, consider malicious B̃ who receives

Z = (x1, · · · , xη, yη+1, · · · , y2η−1)

in the t (= 2η − 1) instances of the ideal `-bit (1, n)-OT. It must be that B̃

has no information on either s0 or s1. Suppose that B̃ has no information
on s0. Then similarly to deriving eq.(7), we obtain that `(η− 1) ≥ L. Since
`η = L, it implies L− ` ≥ L. However, this is a contradiction.

Therefore, B̃ has no information on s1. In this case, there must exist
an onto mapping F : {(y1, · · · , yη)} → {s1}. This means that there exists a
bijection between {(y1, · · · , yη)} and the set of s1 because |{(y1, · · · , yη)}| =
|{0, 1, . . . , 2` − 1}η| = 2`η = 2L and |{s1}| = |{0, 1}L| = 2L. Hence for any
γ ∈ {0, 1, . . . , 2` − 1}η,

Pr((y1, · · · , yη) = γ) > 0.

In particular, we have

Pr((y1, · · · , yη−1) = 0η−1) > 0.

Now for (y1, · · · , yη−1) = 0η−1, we can see that there exists a bijection be-
tween {(yη, · · · , y2η−1)} and the set of s1 such that (y1, · · · , yη−1, yη, · · · , y2η−1) =
(0η−1, β) determines s1 uniquely.

In particular, there exists a unique β ∈ {0, 1, . . . , 2` − 1}η such that
(y1, · · · , y2η−1) = (0η−1, β) determines s1 = 0L. This means that (0η−1, β)T

is a column of P and 0η−1 appears exactly once in the first η − 1 rows. By
the same argument, in the first η − 1 rows, each β ∈ {0, 1, . . . , 2` − 1}η−1

appears exactly once.
The above observation holds in any η−1 rows. Hence P is an OA(2`, t, η−

1). Then from Bush bound, it must be that

t ≤ (η − 1) + 1 = η

because η−1 ≥ 2` from our assumption. However, this is impossible because
t = 2η − 1.

Hence it must be that t ≥ 2η.
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6 Discussion

The following table shows a comparison of our bounds with the best known
bounds. It is clear that our bounds are more tight.

Reduction L-bit (1, 2)-OT to L-bit (1, n)-OT to
1-bit (1, 2)-OT `-bit (1, n)-OT

Previous t ≥ L t ≥ L/`

(Corollary 3.1) (eq.(2))
This paper (1) t ≥ 2L− 1 t ≥ 2dL/`e − 1

(Theorem 4.1) (Theorem 4.2)
This paper (2) t ≥ 2L t ≥ 2L/`

if L ≥ 3 if η = L/` is an integer and η ≥ 2` + 1
(Theorem 5.1) (Theorem 5.2)

Our bounds hold as far as there exists c ∈ {0, 1, · · · , n− 1} such that for
any i 6= c,

Pr(Si = α | V iew = view) > 0

for any α ∈ {0, 1}L.
We derived our bounds by using our combinatorial techniques while the

previous bounds [7, 10] were derived by using entropy. We believe that our
approach gives a new insight into more understanding of oblivious transfer.
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