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Abstract

The low-density attack proposed by Lagarias and Odlyzko is a powerful algorithm against
the subset sum problem. The improvement algorithm due to Coster et al. would solve almost
all the problems of density < 0.9408... in the asymptotical sense. On the other hand, the subset
sum problem itself is known as an NP-hard problem, and a lot of efforts have been paid to
establish public-key cryptosystems based on the problem. In these cryptosystems, densities of
the subset sum problems should be higher than 0.9408... in order to avoid the low-density attack.
For example, the Chor-Rivest cryptosystem adopted subset sum problems with relatively high
densities. In this paper, we further improve the low-density attack by incorporating an idea
that integral lattice points can be covered with polynomially many spheres of shorter radius
and of lower dimension. As a result, the success probability of our attack can be higher than
that of Coster et al.’s attack for fixed dimensions. The density bound is also improved for fixed
dimensions. Moreover, we numerically show that our improved low-density attack makes the
success probability higher in case of low Hamming weight solution, such as the Chor-Rivest
cryptosystem, if we assume SVP oracle calls.

Keywords. subset sum problem, knapsack-based cryptosystem, low-density attack, lattice
problem, public-key cryptosystem

1 Introduction

For a given set of positive integers A = {a1, . . . , an} (ai �= aj) and a given positive integer s,
determining whether there exists a subset of A with its sum being s, or finding a vector e =
(e1, . . . , en) ∈ {0, 1}n satisfying

∑n
i=1 aiei = s, is called the subset sum problem (or the knapsack

problem), and is known as an NP-hard problem in general (see, e.g., [4]). Brickell [1] and Lagarias
and Odlyzko (LO algorithm) [6] independently proposed an algorithm to solve subset sum problems,
using lattice reductions. Both methods almost always solve the problem in polynomial time if the
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density of the subset sum problem is < 0.6463, where the density d is defined by

d = n/(log2 max
i

ai).

Then Coster, Joux, LaMacchia, Odlyzko, Schnorr, and Stern (CJLOSS algorithm) improved the
bound to 0.9408 [2]. Since these algorithms are effective against relatively-low-density subset sum
problems, they are sometimes called the “low-density attack”. But the problem is still hard in
general density case. In these attacks, the subset sum problem is reduced to the Shortest Vector
Problem (SVP) of a related lattice, and a single SVP oracle call is assumed. While no polynomial-
time algorithms are known to solve the SVP precisely, the polynomial-time algorithm by Lenstra,
Lenstra and Lovász (LLL algorithm) solves it with good approximation in practice [5]. One can also
use the BKZ algorithm [11] (as in [12]), which provides better approximation but may not work in
polynomial-time.

In this paper, we improve the success probability and the density bound of the low-density
attack by using polynomially many lattice oracle calls. Note that Coster et al. showed that their
algorithm is optimal in a sense as n → ∞ (Proposition 5.1 in [2]). Our improvement is a natural
extension of CJLOSS algorithm and the asymptotic behavior of our algorithm coincides with that
of CJLOSS algorithm. Since we consider an improvement for any fixed n and the optimality of
CJLOSS algorithm is obtained in an asymptotic sense, our results do not contradict that of Coster
et al.

Because of the NP-hardness of the subset sum problem, many researchers have used it to estab-
lish secure public-key cryptosystems. Merkle and Hellman [7] firstly proposed some cryptosystems
by using the subset sum problem and they then were attacked by Shamir [13] on the charge of their
intrinsic weakness. After that, Brickell [1] and Lagarias and Odlyzko [6] independently proposed
the low-density attack and derived that the density of the subset sum problem used in the cryp-
tosystem should be > 0.6463 in order to avoid the attack. Furthermore, Chor and Rivest proposed
a cryptosystem that can use subset sum problems with relatively high densities [3]. While the
cryptosystem was attacked by an algebraic approach [14], the attack may not be valid in general
cases. Moreover, Okamoto, Tanaka and Uchiyama [10] proposed another cryptosystem intended to
resist adversaries that can run on quantum computers.

In some cryptosystems such as the Chor-Rivest cryptosystem, the Hamming weight of solutions
is bounded by βn for a small constant β ≤ 1/2. We can take β = 1/2 in general case, whereas we
may assume that β ≈ 0.1 in case of the Chor-Rivest cryptosystem with its recommended parameters.
In [2], Coster et al. gave a remark that the density bound of the attack can be improved when the
solution is known to have small Hamming weight. Through this paper, we refer the algorithm based
on their remark as CJLOSS+ algorithm.

As mentioned, we improve CJLOSS+ algorithm and show that our improvement achieves higher
success probability and better density bound for any fixed n. To this end, we firstly give a full
analysis of CJLOSS+ algorithm, incorporate a further property of high dimensional lattices into the
analysis technique, and then analyze our improved algorithm by using the new technique. (Note
that Coster et al. [2] did not give detailed analysis of CJLOSS+ algorithm.) Consequently, we
obtain that our algorithm can achieve better density bound than CJLOSS+ algorithm for any fixed
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n in general subset sum problems. We also obtain that our algorithm can work with high success
probability in low Hamming weight case such as the Chor-Rivest cryptosystem.

2 Previous Works: From the Viewpoint of Lattice Covering Prob-

lem

In this section, we review the low-density attack by Lagarias-Odlyzko (LO algorithm) and an im-
provement by Coster et al. (CJLOSS/CJLOSS+ algorithm), from the viewpoint of the lattice covering
problem. The success probability of these algorithms is closely related to the radius of n-spheres
covering the solution candidates in the n-cube. Specifically, the radius of the spheres, the center
points of the spheres and the number of spheres are important parameters for the algorithms.

Let (e1, . . . , en) ∈ {0, 1}n and β be a rational constant. We denote the set of integer lattice
points satisfying

∑n
i=1 ei ≤ βn as Mβ. Note that M1 = {0, 1}n.

LO algorithm covers lattice points M1/2 with a single sphere of radius rLO =
√

n/2 centered at
(0, . . . , 0), and by the symmetry of the lattice, it covers M1 with two spheres of radius rLO. CJLOSS

algorithm covers M1 with a single sphere of radius rC =
√

n/4 centered at (1/2, . . . , 1/2). Coster et
al. remarked the further improvement(CJLOSS+ algorithm) for small β by using a sphere centered
at (β, . . . , β) with the radius

√
β(1 − β)n. In addition, Coster et al. showed that CJLOSS algorithm

is optimal in the following sense:

Proposition 2.1 (Proposition 5.1, [2]) Any sphere of radius
√

γn, γ < 1/4, in R
n contains at

most (2 − δ)n points of {0, 1}n, for δ = 2(1 − eγ−1/4) > 0.

At a glance, Proposition 2.1 seems to claim that it is impossible to cover M1 = {0, 1}n with
polynomially many spheres of radius smaller than rC. However, it does not say that covering M1/2

with polynomially many spheres of radius
√

n/4 − o(n) is impossible. In fact, in this paper, we
cover M1/2 with polynomially many spheres of radius

√
n/4 − O(1).

Table 1 summarizes attributes of each algorithm. In Table 1, k is a positive integer with k ≤ βn

and βk = βn
n−k > β. Other details on our proposed algorithm will be described later.

Table 1: Attributes of each low-density attack
Algorithm Center point(s) Radius Lattice points #sphere

LO (0, . . . , 0)
√

n/2 M1/2 1
((0, . . . , 0), (1, . . . , 1)) (

√
n/2) (M1) (2)

CJLOSS (1/2, . . . , 1/2)
√

n/4 M1 1
CJLOSS+ (β, . . . , β)

√
β(1 − β)n Mβ (β ≤ 1/2) 1

Ours (0, . . . , 0, βk, . . . , βk), ...
√

β(1 − βk)n Mβ (β ≤ 1/2) O(nk)
(βk, . . . , βk, 1, . . . , 1) for βk > β (k: const.)
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3 Theoretical Results

In this section, we improve the low-density attack by using polynomially many lattice oracle calls.
Before describing our algorithm, we analyze the suggested improvement of Coster et al. based on
the remark in Section 5 of [2] (CJLOSS+ algorithm). Note that, as mentioned in the previous
section, we use spheres of radius

√
β(1 − β)n − O(1) while CJLOSS+ algorithm uses a sphere of

radius
√

β(1 − β)n. This implies that the asymptotical behavior of our algorithm coincides with
CJLOSS+ algorithm. However, for any fixed n, our algorithm can achieve better success probability
than CJLOSS+ algorithm regarding one lattice oracle call. Numerical comparison will be given in
the next section.

3.1 Analysis of CJLOSS+ Algorithm

With regard to CJLOSS+ algorithm, we have the following theorem.

Theorem 3.1 Let β ≤ 1/2 be a positive rational constant, A a positive integer, and a1, . . . , an

random integers with 0 < ai ≤ A for 1 ≤ i ≤ n. Let e = (e1, . . . , en) ∈ {0, 1}n satisfy
∑n

i=1 ei ≤ βn

and let s =
∑n

i=1 eiai. If the density d of {a1, . . . , an} satisfies

d < d0 = ((log2 e)δβ,0(u0))−1,

then the subset sum problem defined by a1, . . . , an and s can be almost always solved in polynomial-
time with a single call to a lattice oracle.

In the above statement, δβ,0(u0) is the minimum value of the following function of u ∈ R
+:

δβ,0(u) = β(1 − β)u + ln θ(e−u), θ(z) = 1 + 2
∞∑

j=1

zj2
.

We denote (log2 e)δβ,0(u0) by c0. The proof, we will give in the following, is based on the proof in
[2]. Their proof uses results by Mazo and Odlyzko [8] as a main technique. Because the centers of
the covering spheres are (0, ..., 0) or (1/2, ..., 1/2) in [2], their proof uses a special case of results in
[8], while the following proof uses general cases.
Proof. Let e �= (0, . . . , 0) be fixed, s =

∑n
i=1 eiai, and t =

∑n
i=1 ai. LO algorithm uses the

following vectors b1, b2, . . . , bn, bn+1:

b1 = (1, 0, . . . , 0,Na1),

b2 = (0, 1, . . . , 0,Na2),
...

bn = (0, 0, . . . , 1,Nan),

bn+1 = (0, 0, . . . , 0,Ns),

where N is a positive integer larger than
√

n/2. Let L be an (n + 1)-dimensional lattice spanned
by b1, . . . , bn+1, namely,

L =

{
n+1∑
i=1

zibi | zi ∈ Z, 1 ≤ i ≤ n + 1

}
.
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Then the vector ê = (e1, . . . , en, 0) is contained in L.
CJLOSS+ algorithm uses

b′n+1 = (β, . . . , β,Ns)

instead of bn+1. Let L′ be an (n + 1)-dimensional lattice spanned by b1, . . . , bn, b′n+1. Then the
vector ê is not contained in L′; but instead

ê′ = (e′1, . . . , e′n, 0) = (e1 − β, . . . , en − β, 0) ∈ L′.

Since 0 < β ≤ 1/2 and
∑n

i=1 ei ≤ βn, we have ||ê′||2 ≤ β(1−β)n. We should consider the probability
that there exists a vector x̂ = (x1, . . . , xn+1) satisfying the following conditions:

||x̂|| ≤ ||ê′||, x̂ ∈ L′, x̂ �∈ {0,±ê′}. (1)

We choose a positive integer N with N >
√

β(1 − β)n. Then x̂ satisfies the condition (1) only when
xn+1 = 0, because, if not, we have ||x̂|| ≥ |xn+1| ≥ N >

√
β(1 − β)n ≥ ||ê′|| which contradicts the

condition (1).
Without loss of generality, we may assume |t − s/β| ≥ α/2 for α = max ai

1. If

x̂ =
n∑

i=1

yibi + yb′n+1

satisfies the condition (1), then x̂ = (x1, . . . , xn+1) is given by

xi = yi + βy (i = 1, . . . , n), xn+1 = N

(
sy +

n∑
i=1

aiyi

)
= 0.

Hence we have −ys =
∑n

i=1 ai(xi − βy), namely,
∑n

i=1 aixi = βy(t − s/β). Thus we have

|βy(t − s/β)| =

∣∣∣∣∣
n∑

i=1

xiai

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
i=1

||x̂||ai

∣∣∣∣∣ ≤ ||x̂||
∣∣∣∣∣

n∑
i=1

ai

∣∣∣∣∣ ≤ n
√

nα
√

β(1 − β).

Since |t − s/β| ≥ α/2, we have

|y| ≤ 2
√

β−1 − 1 · n3/2.

Let us estimate the probability P where there exists a vector x̂ which satisfies the condition
(1). If we denote the denominator of the reduced fraction of β by D, the vector x = (x1, . . . , xn)
satisfies the condition

x ∈ {z + (j/D, . . . , j/D) | z ∈ Z
n, 0 ≤ j < D}.

1Let us consider the case |t − s/β| < α/2. If α is included in s, by setting s′ = s − α, t′ = t − α, we have

|t′ − s′/β| = |t−α− s/β + α/β| = |t− s/β + α(1/β − 1)| ≥ α/2. If α is included in t− s, by setting s′ = s, t′ = t−α,

we have |t′ − s′/β| = |t − s/β − α| ≥ α/2.
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Then P is estimated by

P ≤ Pr

[
∃x̂, y | ||x̂|| ≤ ||ê′||, |y| ≤ 2

√
β−1 − 1 · n3/2,

x̂ �∈ {0,±ê′},
n∑

i=1

xiai = βy(t − s/β)

]

≤ Pr

[
n∑

i=1

xiai = βy(t − s/β)
∣∣∣||x̂|| ≤ ||ê′||, |y| ≤ 2

√
β−1 − 1 · n3/2, x̂ �∈ {0,±ê′}

]

· ∣∣{x̂ : ||x̂|| ≤ ||ê′||}∣∣ · ∣∣∣{y | |y| ≤ 2
√

β−1 − 1 · n3/2
}∣∣∣ . (2)

For the first factor of the equation (2), we rewrite
∑n

i=1 xiai = βy(t − s/β) as
n∑

i=1

ziai = 0 (zi = xi − βy + yei).

Since x̂ �= 0, we have z = (z1, . . . , zn) �= 0. By multiplying the probability bound by n, we may
assume without loss of generality that z1 �= 0. If we set z′ = −(

∑n
i=2 aizi/z1),

Pr

[
n∑

i=1

aizi = 0

]
= Pr[a1 = z′] =

A∑
j=1

Pr[a1 = z′|z′ = j] · Pr[z′ = j]

=
A∑

j=1

Pr[a1 = j] · Pr[z′ = j] =
1
A

A∑
j=1

Pr[z′ = j] ≤ 1
A

.

The second factor of the equation (2) is estimated by

|{x̂ | ||x̂|| ≤ ||ê′||}|
≤ ∣∣{x : ||x|| ≤

√
β(1 − β)n}∣∣

≤ ∣∣{w ∈ Z
n : ||w|| ≤

√
β(1 − β)n}∣∣

+
D−1∑
j=1

∣∣{w ∈ Z
n | ||w − (j/D, . . . , j/D)|| ≤

√
β(1 − β)n}∣∣.

The first term is bounded by

2(log2 e)δβ,0(u)n

for arbitrary u ∈ R
+ by using the technique of Mazo and Odlyzko [8]. The absolute value of each

term in the summation is bounded by

2(log2 e)δβ,0(u)n+γβ
√

n

for some constant γβ, by using Theorem 2 in [8]. Thus, we have

|{x : ||x|| ≤
√

β(1 − β)n}|
≤ min

u
2(log2 e)δβ,0(u)n + (D − 1)min

u′ 2(log2 e)δβ,0(u
′)n+γβ

√
n

≤ 2(log2 e)δβ,0(u0)n(1 + (D − 1)2γβ
√

n)

= 2c0n(1 + (D − 1)2γβ
√

n).

6



By putting them all together, we have

P ≤ n
(
4
√

β−1 − 1 · n3/2 + 1
) 2c0n(1 + (D − 1)2γβ

√
n)

A
.

If the density of the subset sum problem is smaller than 1/c0, we have P = 0 (as n → ∞). �

3.2 Covering with Polynomially Many Spheres

As we mentioned in Section 2, Proposition 2.1 does not imply the impossibility to cover M1/2 with
polynomially many spheres of radius

√
n/4 − o(n). In this section, we discuss the case when the

radius is
√

n/4 − O(1).
Let k be a fixed positive integer with k ≤ βn. Our basic strategy is as follows. In order to find

a solution e ∈ {0, 1}n, we firstly fix k coordinates (i.e., k bits) and check remaining (n − k) bits by
calling lattice oracles. We have

(n
k

)
ways to select k bits and 2k ways of the truth assignment on

these coordinates. Then the dimension of the lattice call is reduced from n + 1 to n − k + 1 (for k

is fixed). Moreover, the radius can be reduced to

r =
√

β(1 − βk)n <
√

β(1 − β)n, where βk =
βn

n − k
.

As to the reason we can use β(1 − βk) in dimension n instead of βk(1 − βk) in dimension n − k,
refer to the proof of Theorem 3.2. Since βk is not a constant, this case is not ruled by Proposition
2.1. At the return of each oracle call, we will check whether the returned value provides the true
solution.

Thus our proposed algorithm is summarized as follows:

Input: a1, ..., an and s

Output: (e1, ..., en) ∈ {0, 1}n s.t.
∑n

i=1 aiei = s

Procedure:

foreach J ⊂ {1, ..., n} with |J | = k

/* J = {j1, ..., jk} and I = {1, ..., n} \ J = {i1, ..., in−k} */
foreach (u1, ..., uk) ∈ {0, 1}k

invoke a lattice oracle with the following basis
for (n − k + 1)-dimensional lattice:

bi1 = (1, 0, ..., 0,Nai1 ),
bi2 = (0, 1, ..., 0,Nai2 ),

...
bin−k

= (0, 0, ..., 1,Nain−k
),

b′n−k+1 = (βk, βk, ..., βk , N(s −∑k
l=1 ajl

ul));
let (e′i1 , ..., e

′
in−k

, 0) be the return value;
let (ei1 , ..., ein−k

) = (e′i1 + βk, ..., e′in−k
+ βk);

let (ej1 , ..., ejk
) = (u1, ..., uk);

if
∑n

i=1 aiei = s and (e1, ..., en) ∈ {0, 1}n
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then output (e1, ..., en) and halt;
end;

end.

We remark some special case of our algorithm. In the above algorithm, there is a step in which
we choose (u1, ..., uk) from {0, 1}k . If the Hamming weight of the solution is guaranteed to be larger
than k, like in Chor-Rivest cryptosystem case, we may set (u1, ..., uk) = (1, ..., 1). In this case we
can speed up the algorithm 2k times faster and the radius

√
β(1 − βk)n is reduced to

√
β′

k(1 − β)n,
where β′

k = βn−k
n−k .2

With regard to the above algorithm, we have the following theorem.

Theorem 3.2 Let β ≤ 1/2 be a positive rational constant and k a positive integer with k ≤ βn.
Let A be a positive integer, and a1, . . . , an random integers with 0 < ai ≤ A for 1 ≤ i ≤ n. Let
e = (e1, . . . , en) ∈ {0, 1}n satisfy

∑n
i=1 ei ≤ βn and let s =

∑n
i=1 eiai. Let d be a constant.3 If the

density d of {a1, . . . , an} satisfies

d < dk = ((log2 e)δβ,k(uk))−1,

then the subset sum problem defined by a1, . . . , an and s can be almost always solved in polynomial
time with O(nk) calls to a lattice oracle.

In the above statement, δβ,k(uk) is the minimum value of the following function of u ∈ R
+:

δβ,k(u) = β(1 − βk)u + ln θ(e−u).

We denote (log2 e)δβ,k(uk) by ck. Note that the function δβ,0 used in Theorem 1 is a special case of
the function δβ,k(u). In other words, our result is a natural generalization of the improvement by
Coster et al.
Proof. Our proof is similar to the proof of Theorem 1. Let Vn(αn) denote the number of lattice
points in the n-dimensional sphere of radius

√
αn centered at some fixed point. In the estimation

of the failure probability, we should consider Vn−k(βk(1− βk)(n− k)) in stead of Vn(β(1− β)n), as
we use lattice oracle calls of dimension n− k. Nevertheless, we may consider Vn(β(1− βk)n) in our
case, because the following inequality holds:

Vn−k(βk(1 − βk)(n − k)) ≤ Vn(βk(1 − βk)(n − k)) = Vn(β(1 − βk)n).

2The reduced radius is obtained from the fact that Vn−k(β′
k(1−β′

k)(n−k)) ≤ Vn(β′
k(1−β′

k)(n−k)) = Vn(β′
k(1−β)n),

where Vn(αn) denote the number of lattice points in the n-dimensional sphere of radius
√

αn centered at some fixed

point.
3We can relax the condition on the value of d. The value of d could depend on n. Some slight care about the

closeness between d and dk must be taken in order to guarantee that the failure probability P converges to 0.

8



When we represent βk by a reduced fraction, the denominator is bounded by nD. Taking these
differences into account, the probability estimation will be modified as follows:

|{x : ||x|| ≤
√

β(1 − βk)n}|
≤ min

u
2(log2 e)δβ,k(u)n + (nD − 1)min

u′ 2(log2 e)δβ,k(u′)n+γβ,k
√

n

≤ 2(log2 e)δβ,k(uk)n(1 + (nD − 1)2γβ,k
√

n)

= 2ckn(1 + (nD − 1)2γβ,k
√

n)

for some constant γβ,k. Thus the failure probability P of our algorithm will be

P ≤ (n − k)
(
4
√

(βk)−1 − 1 · (n − k)3/2 + 1
) 2ckn(1 + (nD − 1)2γβ,k

√
n)

A
.

If the density of the subset sum problem is smaller than 1/ck, P is exponentially vanishing since dk

converges to d0 which does not depend on n. �

4 The Effect of Our Algorithm

In this section we consider the effect of our algorithm numerically. Specifically speaking, we show
that our algorithm is more effective than the previous algorithms for instances of any fixed n and
density d such that d0 < d < dk. First, we calculate the value of δβ,k(uk) for some specific cases
and see how much our algorithm improves the success probability of the attack. Then, we also see
the Chor-Rivest cryptosystem case with its recommended parameters.

4.1 Improvement of the Success Probability

In the proof of Theorem 3.2, we evaluated the failure probability P of our proposed attack. The
dominant term of P is 2(1/dk−1/d)n, where dk = 1/(log2 e)δβ,k(uk) and d is the density of the given
problem. Hence, if d < dk, the failure probability P is exponentially vanishing. When n is fixed in
the cryptographic-use range, our algorithm makes dk larger by increasing k, which means that the
failure probability of one lattice oracle call becomes smaller.

Here we consider the best case when the Hamming weight of the solution is guaranteed to be
larger than k. In this case, we can always take (u1, ..., uk) = (1, ..., 1), and the radius

√
β(1 − βk)n

is reduced to
√

β′
k(1 − β)n, where β′

k = (βn − k)/(n − k). We can replace δβ,k(u) with δ′β,k(u):

δ′β,k(u) = β′
k(1 − β)u + ln θ(e−u).

In this case we denote the density bound by d′k. We computed d′k for β = 0.5, 0.3, 0.1, k =
0, ..., 5, n = 100,200, ..., 500. We show the values of d′k’s in Tables 2,3,4, and plot them in the
appendix. The figures in the appendix show that the effect of our attack is prominent when β is
small. Note that the case k = 0 coincides with CJLOSS+ algorithm.

For example, let us consider the case β = 0.1 and n = 200. As 1/d′0 = 0.5264... and 1/d′2 =
0.4903..., which mean that the density bound is improved, we have (1/d′0 − 1/d′2) × 200 = 7.22....
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Table 2: β = 0.5
n 100 200 300 400 500

k = 0 0.9408 0.9408 0.9408 0.9408 0.9408
1 0.9467 0.9438 0.9428 0.9423 0.9420
2 0.9529 0.9467 0.9448 0.9438 0.9432
3 0.9593 0.9498 0.9467 0.9452 0.9444
4 0.9660 0.9529 0.9488 0.9467 0.9455
5 0.9729 0.9561 0.9508 0.9483 0.9467

Table 3: β = 0.3
n 100 200 300 400 500

k = 0 1.0502 1.0502 1.0502 1.0502 1.0502
1 1.0666 1.0583 1.0556 1.0542 1.0534
2 1.0840 1.0666 1.0610 1.0583 1.0566
3 1.1027 1.0752 1.0666 1.0624 1.0599
4 1.1228 1.0840 1.0723 1.0666 1.0632
5 1.1444 1.0932 1.0781 1.0708 1.0666

Table 4: β = 0.1
n 100 200 300 400 500

k = 0 1.8994 1.8994 1.8994 1.8994 1.8994
1 2.0392 1.9659 1.9430 1.9318 1.9252
2 2.2113 2.0392 1.9895 1.9659 1.9521
3 2.4287 2.1206 2.0392 2.0016 1.9800
4 2.7128 2.2113 2.0925 2.0392 2.0090
5 3.1010 2.3133 2.1497 2.0788 2.0392
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This implies that if we take k = 2, our algorithm makes the failure probability of one lattice oracle
call 27.2 times smaller than CJLOSS+ algorithm case.

Regarding the running time, our algorithm needs to make O(nk) lattice oracle calls, while
CJLOSS+ algorithm needs just one lattice oracle call. The dimension of the lattice in our case is
n − k + 1 and slightly smaller than n + 1 in the CJLOSS+ case.

4.2 Chor-Rivest Cryptosystem Case

CR1 CR2 CR3 CR4

n 197 211 243 256
h 24 24 24 25
β 0.121827 0.113744 0.0987654 0.0976563
d 1.0769191 1.1386548 1.2776327 1.2799999

k = 0 1.6728719 1.7470959 1.9150294 1.9294014
1 1.7191829 1.7962555 1.9705846 1.9831705
2 1.7694137 1.8495713 2.0308281 2.0412799
3 1.8240947 1.9076058 2.0963944 2.1042906
4 1.8838584 1.9710296 2.1680401 2.1728660
5 1.9494646 2.0406485 2.2466747 2.2477973

Table 5: Recommended parameters of the Chor-Rivest cryptosystem and d′k of our improved attack

Next, let us consider the Chor-Rivest cryptosystem. Security parameters of the cryptosystem
are a prime power n and a positive integer h < n such that the discrete logarithm problem in
GF (nh) is tractable. A plaintext is an n-bit sequence e = (e1, . . . , en) ∈ {0, 1}n with Hamming
weight h, namely

∑n
i=1 ei = h. A ciphertext s corresponding to e is given by s =

∑n
i=1 aiei where

ai ∈ Z/(nh − 1)Z. Here the density of the Chor-Rivest cryptosystem is given by

d =
n

log2 (nh − 2)
≈ n

h log2 n
=

1
β log2 n

,

where β = h/n. Table 5 shows the recommended parameter sets CR1 ∼ CR4 for the Chor-Rivest
cryptosystem. Note that these parameters are considered to be secure against the low-density attack
by Coster et al. (CJLOSS algorithm) because their densities are beyond 0.9408.

For each parameter set, we compare the density d and the d′k’s of our attack in Table 5. As in
the table, the d′k’s of our improved attack (including CJLOSS+ algorithm) are far larger than the
density d. Thus the failure probability of our improved attack will be very small.

5 Concluding Remarks

In this paper, we gave yet another improved low-density attack algorithm to solve the subset sum
problem. Our improvement was based on the idea that lattice points can be covered with polynomi-
ally many spheres of shorter radius and of lower dimension than the previous algorithms. Though

11



the asymptotical behavior of our algorithm coincides with one of the suggested algorithm by Coster
et al., our algorithm makes the success probability higher for fixed parameters. For example, if
we consider a typical setting where n = 200, k = 2, β = 0.1, our algorithm can make the failure
probability of one lattice oracle call 27.2 times smaller. We also showed that the failure probabil-
ity of our improved attack will become very small against the Chor-Rivest cryptosystem with its
recommended parameters, if we assume an SVP oracle call.
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A Figures of d′k

In this appendix, we give some figures in order to show the effect of our proposed attack. As in
Section 4, we computed d′k of our improved attack for β = 0.5, 0.3, 0.1, k = 0, ..., 5. We plot the
values for each β in Fig.1,2,3, respectively. In each figure, the horizontal axis denotes the value of
n and the vertical axis denotes the value of d′k.
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Figure 1: d′k (β = 0.5;k = 0, 1, 2, 3, 4, 5)
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Figure 2: d′k (β = 0.3;k = 0, 1, 2, 3, 4, 5)
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Figure 3: d′k (β = 0.1;k = 0, 1, 2, 3, 4, 5)
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