MPC vs. SFE: Perfect Security in a Unified Corruption Model

Zuzana Beerliova-Trubiniova, Matthias Fitzi, Martinrtd Ueli Maurer, and Vassilis Zikas

Department of Computer Science, ETH Zurich
{bzuzana, fitzi, hirt, maurer, vzi kas}@nf. et hz. ch

Abstract. Secure function evaluation (SFE) allows a set of playersoropute an arbitrary agreed function of their
private inputs, even if an adversary may corrupt some of kigeps. Secure multi-party computation (MPC) is a gener-
alization allowing to perform an arbitrary on-going (alsaled reactive or stateful) computation during which playe
can receive outputs and provide new inputs at intermediates.

At Crypto 2006, Ishaet al. considered mixed threshold adversaries that either gagsiorrupt some fixed number of
players, or, alternatively, actively corrupt some (srmfiked number of players, and showed that for certain tholeish
cryptographic SFE is possible, whereas cryptographic MPi.

However, this separation does not occur when one consigefectsecurity. Actually, past work suggests that no such
separation exists, as all known general protocols for p#yfesecure SFE can also be used for MPC. Also, such a
separation does not show up wianeral adversariesharacterized by a collection of corruptible subsets effayers,
when considering passive and active corruption.

In this paper, we study the most general corruption modelrevtiee adversary is characterized by a collection of ad-
versary classes, each specifying the subset of playersahabe actively, passively, or fail-corrupted, respetyjvend
show that in this model, perfectly secure MPC separates frerfectly secure SFE. Furthermore, we derive the exact
conditions on the adversary structure for the existencedéptly secure SFE resp. MPC, and provide efficient prdsoco
for both cases.

1 Introduction
1.1 Secure Function Evaluation and Secure Multi-Party Comptation

Secure function evaluation (SFE) allows a ®et= {pi,...,p,} of n players to compute an arbitrary agreed
function f of their inputsz,...,z, in a secure way. Security means that dishonest players dtrentalsify

the output of the computation, nor can obtain informationutlihe honest players’ inputs (except what they
can derive from their own inputs). (Reactive) secure rmatity computation (MPC) is a slight generalization of
SFE. Here, the function to be computed is reactive, meahigigpiayers can give inputs and get outputs several
times during the course of the computation, and every owanitdepend on all inputs given so far.

A bit more formally, SFE and MPC can be best described by denisig a hypothetical trusted party which
performs the specified task on behalf of the players. In SR&rusted party is non-reactive: it takes inputs
from the players, evaluates the function, and announcesutmeits (and disappears). In MPC, the trusted party
is reactive: it continuously interacts with the playergirg inputs and sending outputs. It maintains an internal
state which is updated with every input, and every outpubimmuted based on this state. The goal of SFE
and MPC is tosimulatethis trusted party among the sptof players. The potential dishonesty of players is
modeled by a central adversary corrupting players, whergeps can be actively corrupted (the adversary takes
full control over them), passively corrupted (the adversaan read their internal state), or fail-corrupted (the
adversary can make them crash at any suitable time). A atgslager stops sending any messages, but the
adversary cannot read the internal state of the player gsiriie is actively or passively corrupted at the same
time).

Typical examples of SFE include e-voting, i.e., the comiioreof the sum of the players’ secret votes, or the
double-agent problem, i.e., the identification of idertmatries in several confidential databases. An example
of MPC is the simulation of a fair stock market, where inpggy(new trading orders) are given and outputs
(e.g. current stock prices) are provided while the compmngiroceeds.

SFE (and MPC) was introduced by Yao [Yao82]. The first gensphltions were given by Goldreich, Mi-
cali, and Wigderson [GMW87]; these protocols are secureeusdme intractability assumptions. Later solu-
tions [BGW88,CCD88,RB89,Bea9lb] provide informatiordhetic security.

1.2 Summary of Known Results

In the seminal papers solving the general SFE and MPC prablra adversary is specified by a single corrup-
tion type (active or passive) and a thresholoh the tolerated number of corrupted players. Goldreicttali
and Wigderson [GMW87] proved that, based on cryptograpitia¢tability assumptions, general secure MPC
is possible if and only it < n/2 players are actively corrupted, or, alternatively, if amdyaf ¢ < n players
are passively corrupted. In the information-theoretic gipBen-Or, Goldwasser, and Wigderson [BGW88] and
independently Chaum, Crépeau, and Damgard [CCD88] drtivat unconditional security is possible if and
only if ¢ < n/3 for active corruption, and for passive corruption if andyoiflt < n/2.

These results were unified and extended by fail-corruptigfiHM98] by proving that perfectly secure MPC
is achievable if and only i8¢, + 2t, + t; < n, wheret,, t,, andt; denote the upper bounds on the number of
actively, passively and fail corrupted players, respetyiv

Another line of generalization is concerned with so-caliesheral adversaries: Here, the adversary is not
characterized by a threshold, but rather by an enumerafitmegossible subsets of players that the adversary
can corrupt In [HM97] it was proved that perfect security is possibleritieonly if no two corruptible subsets
cover the full players set (passive adversary), respdgtive three corruptible subsets cover the full player set
(active case). These results naturally generalize thelibté results o2t < n, respectivel\3t < n. These results
were unified to a mixed general adversary in [FHM99], wheeeativersary is characterized by an enumeration
of classes, each class consisting of an actively corrgptibbset of players and of a passively corruptible subset
of the players. Fail-corruption was not considered. Thenldswon the existence of perfectly secure MPC are a
natural combination of the bounds in the threshold model.

! This allows to model non-symmetric settings where not epéayer’s potential dishonesty is modeled in exactly theesamy. Some
coalitions of colluding players might be more likely thahets, and some players might have a higher level of dishpttest others.

A similar development of generalizations (from threshold @ual-failure to general adversaries) can be
observed in the area of Byzantine agreement protocols [2EF82,LF82,MP91,GP92,FM98,AFM99].

Recently, Ishaét al. [IKLPO06] considered a mixed model in which the adversaryei#irer corrupt,, players
actively, or,alternatively ¢, players passively (in contrast to previous work [FHM98] enthe adversary could
corruptt, players actively, and, simultaneously,players passively). They showed thatfpr< n andt, < n/2
cryptographically secure SFE is possible, whereag,fer n—1 andt, > 1, cryptographically secure (reactive)
MPC is not possible.

1.3 Contributions of this Paper

The original motivation for this paper was to determine tk@ot conditions for SFE and MPC in the natural and
most general adversary model where all corruption typescauar. We characterize the adversary’s corruption
capability by aradversary structure€ = {(A1, E1, F1),...,(Am, Em, Fn)}, whereAy, Ey, F, C P andAy C

Ej and A, C Fj. The adversary can (secretly) choose an arbiteayersary classZ, = (Ag, Ex, Fi) € Z
and actively corrupt the players iy, passively corrupt the players i, and fail-corrupt the players ify. In

the technical sections of this paper, we present and proaet eéonditions on the adversary structure to allow
perfectly secure MPC and perfectly secure SFE. This unifigsreviously considered models, where either
not all three types of corruption were considered, or whiaeecbrruption capability was specified in terms of
thresholds.

Interestingly, the conditions for SFE and MPC are differdritis is surprising since all known results on
perfectly secure protocols suggest no such separatiorarticglar, when considering active, passive and fail-
corruption (but onlythresholdtype), then no such separation has been observed [FHM98nWbnsidering
general adversaries (with active and passive corruptionwiihout fail-corruptior), no separation can be ob-
served neither [FHM99]. However, in the combination of bibise models, the separation shows up. This indi-
cates that the most general adversary model consideredsheoéh natural and appropriate since all restricted
models hide the fact that SFE and MPC separate.

We describe a simple example of an adversary structure vdaphrates, i.e., for which SFE with perfect
security is possible but MPC is not. LBt = {p1,p2,p3,ps} andZ = {7, Z5, Z3}, whereZ; = (0, {p1},0),

Zy = ({p2},{p2}, {p2,p4}), andZs = ({ps}, {ps}, {p3,p4}). In other words, the adversary can either corrupt
p1 passively, or corrupby actively and fail-corrupp,, or corruptps actively and fail-corrupp,.?

A protocol for SFE works as follows: First ugg as the trusted party with the constraint thatsends the
output of the function first tp; and then tg, andps. If p4 crashes, then restart the protocol ugings trusted
party (the crashing gf, guarantees that the adversary did not chadse Z and hence that; is uncorrupted).

If p; has received the output from beforep, crashed, then he forwards it e andps, otherwise he evaluates
the function on the inputs received py andps and sends them the output. The security of this protocoligtr

to verify. The impossibility of MPC for this example followfsom the observation that if some intermediate
valuev — part of the state of an MPC protocol — is not knownptq then there is no protocol that always
reveals it to him. Indeed, if in such a protocol the adversanshes, and forcesp, or p3 to send random
messages whenever he is instructed to send something (li® canby choosing’; or Z3), then with non-zero
probability, p; will not be able to decide whethey or ps is misbehaving and will accept a value different than
v, contradicting perfect security.

2 The Model

We consider the standard secure-channels model introdad&GW88,CCD88]: The playerg,...,p, are
connected by a complete network of bilateral synchronoaarsechannels. The computation is described as an
arithmetic circuit over some finite fiel, consisting of addition (or linear) gates and multiplioatigates.

The security of our protocols is information-theoretic waitit error probability, which is callegerfectse-
curity and is the strongest possible security notion. Aquol is defined to be secure if it realizes a trusted
functionality (computing the functiory), where the term “realize” is defined via the simulation plégen

2 Additionally, Zs = ({pa}, {pa}, {pa}) could be tolerated, but this would unnecessarily commitia¢ example.

2

[Can00,MR91,Bea91a,DM00,PWO01] which, in a nutshell, gntees that whatever the adversary can achieve
in the real world where the protocol is executed, he could athieve in the ideal setting with the trusted func-
tionality.2 This security notion implies in particular that the adveyseannot obtain any information about the
players’ inputs beyond what is implied by the outputs (segreand that he cannot influence the outputs other
than by choosing the inputs of the corrupted players (ctress).

The adversary’s corruption capability is characterizedahyadversary structur€ = {(A4,, F4, Fy), ...,
(Am, Em, F,)} (for somem). The adversary chooses a tripledmon-adaptively, i.e., before the beginning of
the protocol; this triple is denoted a8 = (A*, E*, F*) and is called thactual adversary classr simply the
actual adversary. The playersrf, E*, andF* are actively, passively and fail-corrupted, respectiviigte that
Z* is not known to the honest players and appears only in theiseanalysis. A protocol is calle&-secureif
it is secure against an adversary with corruption poweradtarized byZ.

For notational simplicity we assume thdt C F andA C F for any (A, E,F) € Z (anyway, an ac-
tively corrupted player can behave as being passively be@arupted). Furthermore, as most constructions only
need to consider the maximal classes of a structure, we difinmaximal structure€ = {(A4,E,F) € Z :
A(A"E'.F') € Z with (4,E,F) # (A',E',F')andAC A, ECE',F C F'}.

To simplify the description, we adopt the following convent Whenever a player does not receive a mes-
sage (when expecting one), or receives a message outside eXpected range, then the special symbg|F
is taken for this message. Note that after a player has bashex, he only sends. If a player has followed the
protocol instructions correctly up to a certain point, heafledcorrect at that point, independently of whether
he is actually corrupted. A player who has deviated from ttodgeol (e.g., has crashed or has sent inconsistent
messages) is callédcorrect

3 Tools (Sub-protocols)

In this section we present some protocols that will be usdalidding blocks in the main sections. Several of
these protocols are non-robust, i.e., they might abort videlts occur. In case of abortion, all (correct) players
agree on a non-empty sBt C P of incorrect players; we say then thihe protocol aborts withB.

3.1 Broadcast and Consensus

A broadcast protocobllows a sendep with input valuew to distributev among a seP of players, where it is
guaranteed that all correct playersfnoutput the same valug (consistency), and that = v when the sender
is correct during the execution of the protocol (correcsheSimilarly, aconsensus protocalllows a setP of
players, each holding an input valug to reach agreement, such that every correct play@raatputs the same
valuev’ (consistency), and that = v if all (correct) players hold as input(correctness).

In [AFM99] a tight condition on the existence of perfectlyesire broadcast and consensus is given for the
model with active and fail-corruption. The presented prots assume pairwise authenticated (but not neces-
sarily private) channels, hence they remain secure even tigeadversary is allowed to passively corrupt any
number of players. Therefore these conditions immediatahslate to our model:

Lemma 1. In the secure channels model, perfeclysecure broadcast and consensus among ®sgtplayers
is possible if and only i€z (P, Z) holds, where

CBC(P, Z) = V(Al,El,Fl), (AQ,EQ,FQ), (Ag,Eg,Fg) € Z: A1 U AQ U A3 U (F1 NFyN F3) 75 P.

We denote the broadcast and the consensus protocol of [AFdIroadcast andConsensus, respectively.

3 While our protocols can be proven secure in any of these sitionl-based frameworks, with perfect indistinguishapidif the real
and the ideal world, we will in this paper not give full-fledsimulation-based security proofs; this is consistenhwht previous
literature on secure SFE and MPC.

“ In contrast, amdaptiveadversary can corrupt more and more players during thegubéxecution, subject only to the constraint that
the corrupted sets are within one of the triplesZinWe do not consider the adaptive setting in this paper, butesults could be
generalized to it.

3.2 Crash Detection

We present a protocol which allows the player®ito commonly detect whether a specific playet P is alive

or has crashed. Such a decision cannot be sharp, as anyactivelpted player can always behave as having
crashed, i.e., not send any messages during the executiba sfib-protocol. However, we require that correct
players are always identified as “alive”, and crashed pkages always identified as “crashed”.

Protocol CDP(P, Z, p)

1. p sends d-bit to everyp; € P.

2. Everyp; € P setsh; = 1if he received d-bit, andb; = 0 otherwise.

3. The players ir? invoke Consensus on inputsby, . . . , by,.

4. Everyp; € P outputs “alive” when the output of the consensus protoco| &nd “crashed” otherwise.

Lemma 2. If Cpc(P, Z) holds, then the protocdDP (P, Z, p) has the following properties: Consistency: The
(correct) players agree on the output. Correctnessy I6 correct until the end oE£DP, then every (correct)
player outputs “alive” and ifp has crashedeforethe invocation ofCDP, then every (correct) player outputs
“crashed”.®

3.3 Strong Broadcast

Intuitively, a fail-corrupted player never sends a “wromgéssage; in the worst case, he sends no message at all.
This intuition does not apply to broadcast (according tostia@dard definition): When the sender of a broadcast
protocol crashes, only consistency of the output is guagghtBut the output value can be arbitréry.

We lift the intuition that fail-corrupted players never géwrong” messages to broadcast by introducing the
notion ofstrong broadcastA protocol with sendep, holding inputv, achieves strong broadcast when it achieves
broadcast and additionally ensures that the output{is,in. } when the sender is not actively-corrupted. We show
how to construct a protocol fgr to strongly broadcast, given a protocol for broadcast (e.@roadcast) and
CDP.

Protocol StrongBroadcast(P, Z, p, v)

1. InvokeBroadcast to havep broadcast his input. For eactp; € P, letv; denotep;’s output inBroadcast.
2. InvokeCDP to detect whethep is alive or has crashed.

3. Everyp; € P outputsv; whenp is alive, andL whenp has crashed.

Lemma 3. If Cgc(P, Z) holds, then the protocdbtrongBroadcast(P, Z, p,v) has the following properties:
Consistency: All (correct) players output the same valu€orrectness: If the senderis correct, theny’ = v;
if p crashedbeforethe invocation of the protocol, therh =_1; if p crashes during the protocol, theh € {v, 1 }.

3.4 Secret Sharing

A secret-sharing scheme allows a player (called the deal€lidtribute a secret, in such a way that only qualified
sets of players can reconstruct it. As secret-sharing sehememploy a sum sharing (i.e., the secret is split into
summands that add up to the secret), folded with a replicatiaring (i.e., every summand is given to a subset
of the players): Such a sharing is characterized blgaaing specificatiorss , which is a vector of subsets of the

player setP. A value s is sharedwith respect to a sharing specificatioh= (Si,...,S,,), when there exist
summandss, ..., s, With s = Y sx, andsy is given to everyp; € Si. For a playerm; € P, we consider
the vector(s;, , ..., s;,) of summands held by; to bep;'s shareof s, denoted ags);. The vector of all shares,
denoted ags) = ((s)1,(s)2,...,(s)n), is asharingof s. We say thafs) is a (consistent) sharing efaccording

to (P, S), if for eachsS; € S all (correct) players ir5; have the same view on ands = >, s;.

® Note that in any case the adversary learns the outpGDG¥.
® In [AFM99], the output of broadcast can even be chosen bydireraary, when the sender crashes.

4

For an adversary structur&, we say that a sharing specificatighis Z-private if for any sharing(s)
according toS and for any adversary iZ, there exists a summang which this adversary does not know.
Formally, S is Z-private if V(A,E,F) €¢ 23S € § : SN E = (). For an adversary structutg with
maximal classeZ = {(-,Ei,"),..., (-, En,-)}, we denote the natura-private sharing specification by
Sz = (P\Ei,...,P\En).

The following protocol allows a dealerto share a value among the players i? according to a sharing
specificationS. The protocol is a modification of the sharing protocol frddau02] to tolerate fail-corruption.
It may abort wherp is incorrect.

Protocol Share(P, Z, S, p, s)
S|

1. Dealerp chooses the summangs ..., 5|5 randomly and sets; = s — » /", sy.
2. Execute the following steps far=1,...,|S|:

(a) p sendssy, to everyp; € Si, who denotes the received valueséié (L when no value is received).

(b) Everyp; € Sy send59,(;) to everyp; € Si, who denotes the received valueségzs7)

(c) Foreachp; € S;, StrongBroadcast is invoked to havey; broadcast a complaint i, ;, whereby, ; = 1
whens,g) =1 orsk) ¢ {sk , L} for somei, andby, ; = 0 otherwise.

(d) If a complaint was reported (i.eb; ; = 1 for somej), thenStrongBroadcast is invoked to havep

broadcasky, and everyp; € Sy, sets,s§C 7) to the broadcasted value.
3. If p broadcastd. in Step 2d, therShare aborts withB = {p}.

Lemmad. If Cgc(P,Z) holds andS is a Z-private sharing specification, then the protocShare
(P, Z,S,p,s) has the following properties. CorrectnesShare either outputs a consistent sharing of some
s', wheres' = s unless the dealer is actively corrupted, or it aborts wigh= {p}; it does not abort ifp is
correct. Secrecy: No information arnleaks to the adversary.

Reconstructing a shared value towards a player is stréagivard: All players send the summands they
know (i.e., their share) to the output player, who tries td fime correct value for each summand and computes
the secret as the sum of the summands. However, finding thectemalue of a summand is not always possible
when corrupted players send wrong values or no value to ttmubplayer, so we need an extra condition on
the adversary structure to ensure that the output playealezays decide on the value of every summand. We
can slightly relax this condition when a sharing is recaretd publicly (rather than towards a dedicated output
player): In this case, the players can decide dependingepuhlished values whether a summand is uniquely
defined or not, and if not, agree on a $tC P of incorrect players.

In the sequel, we present the protocBlsnounce and Reconstruct to announce a summand, respectively
reconstruct a sharing, towards a dedicated player, andrttegols PublicAnnounce and PublicReconstruct
to announce a summand, respectively to reconstruct a ghddwards all players. The latter protocols are
non-robust; they might abort with a non-empty &tC P of incorrect players. The abortion of the protocol
PublicAnnounce will allow to derive information on the actual adversarysdawhich will be helpful in the
output protocol of SFE.

Protocol Announce(P, Z, Sk, Sk, P)

1. Everyp; € S; sendss; to p, who denotes the received valuesé@ (L when no value is received).

2. LetV C T denote the set of valueghat are “explainable” with some adversarydni.e., for which there is
an adversary clagsi, E, F') € Z, such thaf{p; € S : sﬁ? =1} C Fand{p; € S : 3,(:) ¢ {v,1}} C A

3. p setss; to be the smallest element ¥n.

Lemmabs. If V(Ay, Ey1, F1), (A, Es, Fy) € Z: S, & A1UA2U(F1NFy), then the protocohnnounce robustly
announces;, to p.

Proof. We have to prove that (i) the sé&t contains the correct summang and (ii) the setV contains no
other values. (i) Observe that the summangjé received byp satisfy that{p; € Sj : sgc =1} C F* and

5

{pi € S : 3,(:) ¢ {si, L}} C A*, where(A*, E*, F*) denotes the actual adversary class.(AS, E*, F*) €
Z, it follows that s, € V. (ii) Consider any values € V. There exists an adversary clas$, £, F) € Z
such that{p; € S, : s,(:) =1} C Fand{p;, € Sk : sg) ¢ {v,L1}} C A. By assumption we know that
Sy € AU A* U (F N F*), hence there exists a playgre Sy with s,(f) #1,p; ¢ Aandp; ¢ A*. This implies
thatv = s? = 5. O

Protocol Reconstruct(P, Z, S, (s), p)

1. ForeveryS; € S, Announce is invoked to have the correct summasg)dannounced towards
2. p computess = EL‘S:‘I s and outputss.

Lemma6. If Vk =1,...,|S|, V(41, E1, F1), (Ag, B2, Fy) € Z: S, € A1 U Ay U (Fy N Fy), then the protocol
Reconstruct robustly reconstructs towardsp.

The proof follows immediately from Lemma 5.

Protocol PublicAnnounce(P, Z, Sk, sk)

1. Everyp; € S; publishes his value fot;, (denoted as,(j)) usingStrongBroadcast.

2. Everyp; € P: determine the set’ C F of values that are “explainable” with some adversaryZirfsee
protocolAnnounce).

3. Everyp; € P:outputs;, € V' if |[V| = 1, otherwise abort wittB = {p; C S}, : s,(f) =1}

Lemma 7. If Cpc(P, Z) holds andv(Ay, -,), (Asz,-,-) € Z: S € A1UA,, then the protocoPublicAnnounce
either publicly announcesy, or aborts with a non-empty sé& C P of incorrect players. When it aborts, then
there exists an adversary clagd, F, F') € Z such thatS, C A* UAU (F* N F).

Proof. As V' contains at least the correct summandsee proof of Lemma 5), it is clear thBtiblicAnnounce
either outputss;, or aborts. It remains to be shown that when it aborts iththen|B| > 0 and there exists an
adversary clasgA, F, F) € Z such thatS, C A*U AU (F* N F). Note thats;, € V, hencePublicAnnounce
aborts only when there exists a valuet s, with v € V. Thisimplies that there is an adversary cladsE, F') €
Z with {p; € S : s,(j) =1} C Fand{p; € Sk : sfj) ¢ {v,L1}} C A. Becausev # si, we need
{pi € Sk : s,(;) #1} C AU A*, which implies thatS, C A* U A U (F* N F). Furthermore,B must be
non-empty, because otherwiSg C (A* U A) would hold, contradicting the assumption in the Lemma. O

Protocol PublicReconstruct(P, Z, S, (s))
1. ForeveryS; € S, PublicAnnounce is invoked to have the correct summa#idannounced. If an invocation

of PublicAnnounce aborts withB, then alsdPublicReconstruct aborts withB.
2. Everyp; € P computess = ZL‘i‘l s and outputss.

Lemma 8. If Csc(P, Z) holds andvk = 1,...,|S|, Y(A1,-,), (A2,-,-) € Z: S € A1UA,, then the protocol
PublicReconstruct either publicly reconstructs, or aborts with a non-empty sét of incorrect players.

The proof follows immediately from Lemma 7.

3.5 Multiplication

We present a protocol for securely computing a sharing optbeduct of two shared values. The protocol is a
variation of the multiplication protocol of [Mau02], capiing fail-corruptions. The multiplication protocol may
abort when faults occur, with outputting a $&tC P of incorrect players.

The idea of the protocol is the following: Asandt are shared according %, we can use the summands
81,...,8|5] @ndty, ..., t s to compute the product asst = ‘,ﬂ,:l ste. To do so, each termy, o = s, of
this sum is shared by every player knowing bethandt,. Then the players perform consistency checks on the
shared summands, and compute the sum of the sharedtgmahich results in a sharing of.

6

Protocol Mult(P, Z, S, (s), (t))
1. Forevery(Sk, S¢) € S x S, the following steps are executed:
(@) Everyp; € (S N S;) computes the products; ; = sit, and invokesShare(P, Z, S, p;, zj ¢); denote
the resulting sharing 3(9,(;’)@.
(b) Letp; denote the player with the smallest index 5, N S¢). For everyp; € (S N S;), the differenc

(x,(c”;)) —{ ;Z’)Z) is computed and, by invokinBublicReconstruct, reconstructed.

(c) If all differences aré), then the sharin@x%) of p; is adopted as sharing of, 4, i.e., (z;¢) = (:v,(;)e).
Otherwise (i.e., some difference is non-ien@bnblicAnnounce is invoked to have botk;, andi, an-
nounced, and a default sharifg,) of 2, = st is created (e.g., the first summand is set @ and
the other summands are setjo

2. Each player irP (locally) computes his share of the produttas the sum of his shares of all termys,.
3. If any of the invoked sub-protocols aborts with then alsaviult aborts withB.

1%

Lemma 9. Assuming thas is a Z-private sharing specificatior(s) and (t) are consistent sharings according
to S, Crc(P, Z) holds,VSy, Sy € S,V(A,-,-) € Z: S, NS, € A, andVS, € S,V(A1,-,-),(As,-,") € Z :
Sk € A1 U As, the protocolMult(P, Z, S, (s), (t)) has the following properties. Correctness: It either ougpu
a sharing ofst according to(P, S) or it aborts with a non-empty sé® C P of incorrect players. Secrecy: No
information on the inputs (i.e., of) and(¢)) leaks to the adversary.

Proof. Correctness: The conditions in the lemma are sufficient for tlee invoked sub-protocols
(Share,PublicReconstruct,PublicAnnounce). The conditionVSy, S, € S,V(4,-,:) € Z: S, NS, € A en-
sures that every,, , is known to at least one playes who is not actively corrupted; hence if no invocation
of Share aborts and all differences are zero, then the shared vataasoarect. Privacy: Due to the security of
Share, the invocations ofhare do not leak information to the adversary. FurtherméngslicAnnounce is only
invoked on summands;, ¢, when two players irb, N Sy contradict each other; at least one of these players is
actively corrupted, hence the adversary already kngw beforePublicAnnounce is invoked. O

3.6 Resharing

In the context of MPC, we will need to reshare shared valuesrding to a different sharing specification.
The key idea is to have every summas)dn the original sharing being reshared according to the reaviisg
specification, and then distributively add the sharinghefdtummand, resulting in a new sharing of the original
value. Due to space restrictions, the protdRedhare(P, Z,S,S’, (s)) is given in full detail in Appendix A. The
following lemma, proved in Appendix A, states the achievecusity.

Lemma 10. Assuming thatS’ is a Z-private sharing specifications) is a consistent sharing according &
Cpc(P, Z) holds, andvS, € S,S,. € &', (A1,+,°),(A2,,) € Z: (S, € A1t UA2) A (S}, € A1 U Ay),
the protocolReshare(P, 2,8, S8’, (s)) has the following properties. Correctness: It either ougpa sharing ofs
according to(P, S’) or it aborts with a non-empty sé C P of incorrect players. Secrecy: No information on
the inputs (i.e., or{s)) leaks to the adversary.

4 (Reactive) Multi-Party Computation
In this section we prove the sufficient and necessary camdin the adversary structugefor the existence of
perfectly Z-secure multi-party computation protocols. The sufficieoicthe condition is proven by constructing
an MPC protocol. The necessity is proven by an impossikdiigument.
Theorem 1. A set P of players can perfectlyZ-securely compute any (reactive) computation when
CMULT(Pa Z) andCrgc ('P, Z) hold, where
CMULT(P, Z) < V(Al, El,Fl), (AQ, EQ,FQ), (Ag, Eg,Fg) € Z: F{UFEyUA3U (F1 NFyN F3) 7é P

CREC(P, Z) < V(Al, El,Fl), (AQ, EQ,FQ), (Ag, Eg,Fg) €Z: EF{UA3UA3U (FQ N F3) 7é P

The conditionCyiurr is needed for (non-robust) multiplication. The conditi®fprc is needed for robust
reconstruction.

4.1 The MPC Protocol

The circuitC to be computed consists of input, addition, multiplicataond output gate§The reactiveness of
the computation is modeled by assigning to each gate a poiimhé when it should be evaluated.

The circuit is evaluated in a gate-by-gate fashion, wher@nfaut, multiplication and output gates, the corre-
sponding sub-protocd@hare, Mult, andReconstruct, respectively, is invoked. Due to the linearity of the shgyi
addition (or linear) gates can be evaluated locally by tlges.

The non-robustness of the used sub-protocols is addred$extmtly depending on the type of the gate:
When in an input gate the input player does not share his itipeitplayers just pick a default sharing of some
pre-agreed default value. The reconstruction protocdhefautput gate is robust under the necessary condition
for MPC. The multiplication of shared values can abort (veitbetB C P of incorrect players). If this happens,
the multiplication is retried in a smaller setting, namelithathe player se®” = P \ B and the adversary
structureZ’ which contains only those adversary classes which are dilstgavith the fact that the players
in B are incorrect. More precisely, first both factors are reesthdo the new setting wit#®’ and Z’, then the
multiplication sub-protocol is invoked within this setjinand upon success, the resulting sharing of the product
is re-shared to the original setting withand Z. This process is repeated until the multiplication sucseadd
with each repetition, the active player $&tbecomes smaller.

For the sake of clarity, we introduce two operators on adwgrstructures: For a sé¢ C P, we denote
by Z|?<" the sub-structure af that contains only adversaries who can fail-corrupt allgtagers inB, i.e.,
Z|°<" = {(A,E,F) € Z: B C F}. Furthermore, for asé®’ C P, we denote byZ|,, the adversary structure
with all classes inZ restricted to the player s&', i.e.,Z|,, = {(ANP,ENP ,FNP'): (A E,F) € Z}.

As syntactic sugar, we writg| =" for (Z|°<") |,..

It immediately follows from the above definitions that whee players inB have been detected to be incor-
rect, then the actual adversafy is in Z|”<". Furthermore, we exclude the playersArfrom the multiplication
protocol, and the new setting® = P\ B andZ’' = Z|;; . One can easily verify that the conditiofi§c,
Crurt, andCrec hold in (P \ B, 2|75) when they hold in(P, Z), for an arbitraryB C P. This results in
the following MPC protocol:

Protocol MPC(P, Z,C)
1. Initialize the set of detected as incorrect player®to= (. Set the default sharing specificatién= Sz.
2. For every gate to be evaluated, do the following:
— Input gate forp: Invoke Share to havep share his input according P, S). If Share aborts, then ja
default sharing of some pre-agreed default value is taken.
— Addition gate:Everyp; € P locally computes the sum of his respective shares.
— Multiplication gate: Denote the sharings of the factors @ and (¢), respectively, and denote the
set of active players a® = P \ P, and the adversary structure compatible wikh being in-
correct asZ' = Z |,’Z§,§f, and the correspondingZ(-private) sharing specification @& = Sz:. In-
voke Reshare(P’, 2", S,S8', (s)) andReshare(P’, Z', S, S’, (t)) to obtain the sharing&)’ and(¢)’ for
(P',S"), respectively. InvokéMult(P’, Z', (s)’, (t)') to obtain a sharingst)’ of the product, according
to (P’,S’). Invoke Reshare(P’, 2, S', S, (st)’) to reshare this product according(tB, S).2 If any of
the sub-protocols aborts with sBtthen setP, = P, U B and repeat the gate.
— Output gate fop: Invoke Reconstruct to have the output reconstructed towapds

2 Reshare outputs a sharing according (@', S), which is trivially also a sharing according (®, S) since all players irP \ P’ are
incorrect.

Lemma 11. The above MPC protocol is perfect-secure ifCyiurr (P, Z£) and Crec (P, £) hold.

Proof (sketch)One can easily verify that the conditions in the lemma impllg@nditions required in the sub-
protocols, hence the security of the MPC protocol follovesrirthe security of the sub-protocols. O

” This does not exclude probabilistic circuits, as a randote gan be simulated by having each player input a random eaideake
the sum of those values as the output.

4.2 Impossibility of MPC

In this section we prove that perfectly secure (reactive)OMR not possible for some circuits when
Cyvurnr (P, Z) or Crec(P, 2) is violated. We first prove that whebhyrr(P, Z) is violated, then even non-
reactive computations cannot be securely evaluated (LefrffhaSecondly, we prove that whé&rrpc (P, 2)

is violated, then the players iR cannot hold a secret joint state, which excludes the evatuaf (non-trivial)
reactive circuit (Lemma 13).

Lemma 12. If C\iurr(P, 2) is violated, then there exist (even non-reactive) circwitéch cannot be evaluated
perfectly Z-securely.

Proof. ConsiderP and Z with C\y11(P, £) violated, and assume for the sake of contradiction, thagvery
circuit C, a perfectlyZ-secure protocol exists. There exist;, E1, F), (A, Es, Fy), (A3, E5, F3) € Z with
EiUFE,UA3U (F1 ﬂFQﬂFg,) =P.LetF=FNFHNF;,P = P\F, and for: = 1,2, 3, IetA;. = AZ\F and

E! = E;\ F. The alleged protocol must also be perfectly secure for ldngep setP’ and the adversary structure
(with only active and passive corruptio) = {(A}, E}), (44, EY), (A5, E4)}, because one particular strategy
of the adversary is to fail-corrupt the playersihand make them crash at the very beginning of the protocol.
However, for(P’, Z') perfectly secure (non-reactive) MPC protocols do not exisgll circuits, as proven in
[FHM99, Thm. 1]. O

Lemma 13. If Crrc(P, 2) is violated, then the players cannot hold a secret jointestgith perfect security.

Proof. Consider P and Z with Cgrpc(P,Z) violated, hence there existAi, F1, F1), (As, Es, F5),
(Ag,Eg, Fg) € Zwith B4y U Ay U A3 U (F2 N Fg) 7'5 P. WlOg assume thatt;, = {p1}1 Ay = {pQ}, Az = {pg},
andF, = F3 = {p4}. We denote the view qgf; asv;. For the sake of contradiction, assume that these views de-
fine a secret joint state Privacy requires that; does not determine, hence there exists a different state# v
which could be represented by the viefws, v}, v5, v}). Now consider the following two cases: (i) The secret
state isv, and the adversary corruptd,, F», F5) and make®, crash ang- take a random view, which (with
perhaps negligible probability) could b§. (i) The secret state ig’, and the adversary corruptsls, Es, F5)

and make, crash anas take a random view, which (with perhaps negligible prohghitould bevs. In both
cases, the views of the players dre, v}, v3, L), but the joint state is once and onces’ # v, contradicting
perfect security. O

5 Secure Function Evaluation

In this section we prove the sufficient and necessary camdin the adversary structugefor the existence of
perfectly Z-secure function evaluation protocols. The sufficiencyhef ¢ondition is proven by constructing an
SFE protocol, and necessity is proven by an impossibiliggarent. Note that the condition for SFE is weaker
than the condition for MPC.

Theorem 2. A setP of players can perfectl-securely compute any function if and onlyif;yr (P, Z) and
Cxrec hold, where
CMULT(P, Z) <~ V(Al, El,Fl), (AQ, EQ,FQ), (Ag, E3,F3) A E1 U E2 U Ag U (F1 N F2 N Fg) 7é P,
Cxrec(P, Z) <= there exists an orderin§(A1, E1, Fi), ..., (Amn, Em, F,)) of Z s.t8
Vi, j, k € {1,...,m},i <k: EkUAiUAjU(FiﬂFj) £ P.

The conditionC\ur;r is needed for (non-robust) multiplication. The conditiGRrec is needed for non-
robust reconstruction. Essentially, the latter conditidiows for a reconstruction protocol in which the actual
adversary gets information on the output only once it cadisitirb the protocol anymore.

8 Remember thaE denotes the maximum classesdnOne can verify that such an ordering exists Boexactly if it exists forZ.

5.1 The SFE Protocol

Our SFE protocol follows the standard approach of SFE poddpaamely to first secret-share all inputs, then to
evaluate the circuit gate by gate, then to reconstruct thgubuHowever, the protocol employs sharings which
are not robustly reconstructible. This means that the advgrcan break down the computation in such a way
that all sharings are lost. As the circuit is non-reactive,a&n handle such an abortion by repeating the whole
protocol, including the input stage. The correct playerl give the same inputs in every iteration, but the
adversary might give different inputs. However, in a faiiexiation, the adversary does not get any information
about any secrets (more precisely, the adversary coulégibrfsimulate all messages received within a failed
iteration already beforehand), so the inputs chosen bydkersary in the successful iteration are independent
of the other players’ inputs.

Termination is guaranteed by the fact that whenever antiberaborts, then a non-empty sBt C P of
incorrect players is identified, and the next iteration ilbceed without these players. Hence the number of
iterations is bounded by.

The delicate task is the output protocol. For simplicity, eescribe the protocol only for a single public
output s; however, it naturally extends to a vectéof several public outputs, which then can be extended to
capture private outputs with standard techniques (theubudlayer inputs a one-time pad used for perfectly
blinding the private element of the output vector).

The intuition of the output protocol is as follows: First ebge that in our sharing, the privacy against each
adversary is protected by a particular summand. More @icifor every adversary clagsiy, Ey, Fy,) € Z
there exists a summang which is given only to the players if;, € S with S, N E, = () (we even have
Sr = P\ Ei). As long as this summand is not published, an adversaryast¢Hy,, Ey, Fi,) does not obtain
information about the output (from the point of view of thevatsary,s; is a perfect blinding of the output,
and all other summands are either known to the adversary or are distributed unifgrnSecond, observe
that whenever the publishing of some summapdails (i.e. the protocoPublicAnnounce aborts), then a set
B C P of incorrect players is identified. The information that tllayers inB are incorrect leaks information
about the actual adversafyl*, E*, F*), namely thatB C F*. The key idea of the output protocol is to publish
the summands in such an order that whenduaslicAnnounce aborts with B, then the information that the
players inB are incorrect excludes the possibility that the actual eshrg is from a class whose summand has
already being published. In other words: Whenever an adweds clasq A;, F;, F;) could potentially abort the
announcing of the summang associated with the adversary cléss., Ey, F};), then the summangl, must be
announced strictly before the summands announced.

Let ((Al, E\,F),...,(An, En, Fy,)) denote an ordering of the maximum struct@esatisfying

V1<i, gk <m,i< k:EkUAiUAjU(FiﬂFj) # P,
and letS denote the induced sharing specificati®r= (Si,...,Sy,) with S, = P \ Ej. Then the following
protocol perfectlyZ-securely publicly reconstructs a sharifxy according taS, or aborts with a non-empty set

B C P of incorrect players. Privacy of the protocol is guaranteeder the assumption that those summands of
(s) that are unknown to the adversary are uniformly distribuiéds is the case for all sharings in our protocols.

Protocol OutputGeneration(P, 2,8 = (S1,...,8m),(s))
1. Fork =1,...,m, the following steps are executsdquentially
(@) PublicAnnounce(P, Z, Sk, si) is invoked to have the correct summangdpublished.
(b) If PublicAnnounce aborts withB, thenOutputGeneration immediatelyaborts withB.
2. Everyp; € P (locally) computess = >}, s; and outputss.

Lemma 14. Assuming thasS is a Z-private sharing specification constructed as explair€gq (P, Z) holds,
andVvsy € S,(A1,+,-),(As,-,:) € Z: S € A1 U Ay, and(s) is a consistent sharing according & with
the property that those summands that are unknown to thersattyeare randomly chosen, then the protocol
OutputGeneration either publicly reconstructs, or it aborts with a non-empty sé& C P of incorrect players.

If OutputGeneration aborts, then the protocol does not leak any informatiors ¢m the actual adversary.

10

Proof. First observe that the pre-conditionsRafblicAnnounce are satisfied. Second, observe that by construc-
tion of S, we havevi, j,k € {1,...,m},i < k: (P\ Si) UA;UA;U(F;NF;)# P.Now assume that the
invocation ofPublicAnnounce(P, Z, Sk, si) aborts withB C P. It follows from Lemma 7 that the actual adver-
sary(A*, E*, F*) satisfies the property that there exists;, F;, F;) € Z such thatS, C A* U A; U (F* N Fy).

By the construction ofS, no adversary clasg;, F;, F;) € Z with i < k satisfies this condition, hence the
summand associated with actual adversary has not yet beenrzed. O

With this protocol, the SFE protocol can be constructedyasi

Protocol SFE(P, Z,C)
0. LetS = (P\ Ei,..., P\ Ey,) for the assumed orderind A, E1, F\), ..., (Am, B, Fr)) of Z.
1. Input stage:For every input gate i, Share is invoked to have the input playex share his input:;
according toS.2
2. Computation stageThe gates inC' are evaluated as follows:
— Addition gate:Everyp; € P locally computes the sum of his respective shares.
— Multiplication gate:Invoke Mult to compute a sharing of the product accordingto
Output stageinvoke OutputGeneration(P, Z, S, (s)) for the sharings) of the public output.
4. If any of the subprotocols aborts wifh, then setP + P \ B, and setZ to the adversary structure which

is compatible withB being incorrect, i.e.Z «+ Z|7-", and go to Step 1.

w

21fin a later iteration a playep; ¢ P should give input, then the playersipick the default sharing of a default value.

Lemma 15. The above SFE protocol is perfectBrsecure ifCyrurr (P, £) and Cxrec (P, Z) hold.

Proof (sketch)One can easily verify that the conditions in the lemma impllg@nditions required in the sub-
protocols, hence the security of the SFE protocol followsfthe security of the sub-protocols.

Special care needs to be taken for the fact that the advecsarabort the protocol and provoke repetitions.
Termination of this process is obvious, as in every repetithe player set shrinks. Also correctness is straight-
forward. Privacy is argued as follows: The adversary caffieptly simulate his view in every iteration which
aborts (even without knowing the public output), hence hgability to abort an iteration does not give him any
additional power. 0

5.2 Impossibility of SFE

In this section we prove that perfectl§-secure SFE is not possible for some circuits wiigny (P, Z) or
Cnrec(P, 2) is violated. The necessity f@ryurr (P, Z) follows immediately from Lemma 12. It remains to
show thatCxrec (P, Z) is necessary:

Lemma 16. If Cxrec(P, Z) is violated, then there exist functions which cannot bewatald perfectlyZ-
securely.

Proof. Consider P and Z with Cxgrrc(P,Z) violated, i.e., for every ordering
(A1, E1, F1),...,(An, Em, Fy)) of Z there existsi,j,k € {l,...,m} such thati < & and
E, U A; U A; U (F; N F;) = P. Consider the identity function, where every playgr € P inputs
some valuer;, and the public output is the vect¢#,...,z,). For the sake of contradiction, assume that
there exists a perfectly-secure SFE protocol for this function. This protocol irojily defines for every
set . C P the protocol round in which the players i obtain full joint information about the output. We
denote the index of this round agL), i.e., the joint view of the players i in round ¢(L) gives full
information on(zy,...,x,), but their joint view in round$(L) — 1 does not give full information. The
function ¢ implies an ordering((A1, E1, F1), ..., (Am, Em, F,)) on the adversary classes B such that
foreveryl < i < k < m : ¢(F;) < ¢(Fx). Denote byi, j, k those indices that satisfy < %k and
E, U A; UA; U (F; N F;) = P (which are assumed to exist for contradiction). The advgrsarrupts

11

(A;, F;, F;) and behaves as follows: Up to rougdE;) — 1, the adversary lets the corrupted players behave
correctly. In roundgp(E;), the adversary crashes the playersjm F}, and has the players iA; \ (F; N F})
send random values (also in all subsequent rounds). &glladversary obtains full information on the output in
round ¢(E;) (he knows all correct messages that were sent, respecthelyld have been sent to the players
in E;). However, the players i) do not have full informatiorbeforeround ¢(Ey) > ¢(E;). Hence these
players cannot with certainty distinguish the currentatittn from the situation when the output vector would
be different, the players in clagd;, £, F;) would be corrupted, those ifi; N F; would be crashed, and those
in A; \ (F; N F;) would send random messages. Hence the adversary has dbfiaineformation about the
output vector, but some uncorrupted players do not, coictiag perfect security. O

6 Separation and Conclusions

We have considered an adversary whose corruption capabitiescribed by a collectio& of adversary classes
(A, E, F), where the adversary may actively corrupt the playerd ipassively corrupt the players i, and
fail-corrupt the players irf’. This model unifies all corruption models considered in ttezdture, as they are
all special cases, either in terms that not all corruptiqresywere considered, or in terms that only threshold
corruption was considered.

For this general adversary model, we have derived exactitoomsl for the existence of perfectly secure
multi-party computation (MPC) and secure function evatwa{SFE). It turned out that the condition for SFE
is strictly weaker than the condition for MPC. In fact, thene simple adversary structures for which per-
fectly secure SFE is possible, but perfectly secure MPC aidiable secret sharing are not possible. This
separation does not show up in the restricted models carsid® far. The following theorem states this sepa-
ration. It follows immediately from the separating examipie¢he introduction withP = {pi, p2,p3,p4} and

Z={0.{p1},0), {2}, {2}, {p2,ps}). ({p3}, {p3}, {p3, pa})-

Theorem 3. Perfectly secure MPC and SFE separate, i.e., there &k@td Z such that perfecthZ-secure SFE
among the players if? is possible, whereas perfect-secure MPC is not.

12

References

[AFM99] Bernd Altmann, Matthias Fitzi, and Ueli Maurer. Byatine agreement secure against general adversariesdnahéilure
model. InDistributed Computing — DISC '9%olume 1693 o£ NCS pages 123-137, 1999.

[Bea91la] Donald Beaver. Foundations of secure interactweputing. InAdvances in Cryptology — CRYPTO ;9blume 576 of
LNCS pages 377-391, 1991.

[Bea91lb] Donald Beaver. Secure multiparty protocols and-keowledge proof systems tolerating a faulty minoritjournal of
Cryptology 4(2):370-381, 1991.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigders@ompleteness theorems for non-cryptographic fault-aoiedis-
tributed computation. IM\CM Symposium on the Theory of Computing — STOCp&8es 1-10, 1988.

[Can00] Ran Canetti. Security and composition of multiparyptographic protocolsJournal of Cryptology13(1):143—202, 2000.

[CCD88] David Chaum, Claude Crépeau, and lvan Damgardtipéuty unconditionally secure protocols (extended edug). INACM
Symposium on the Theory of Computing — STOCpages 11-19, 1988.

[DMO00] Yevgeniy Dodis and Silvio Micali. Parallel reducitty for information-theoretically secure computationn Advances in
Cryptology — CRYPTO 20000lume 1880 of.NCS pages 74-92, 2000.

[DS82] Danny Dolev and H. Raymond Strong. Polynomial aldponis for multiple processor agreement. AGM Symposium on the
Theory of Computing — STOC ’'S8gages 401-407, 1982.

[FHM98] Matthias Fitzi, Martin Hirt, and Ueli Maurer. Tradj correctness for privacy in unconditional multi-partymgmutation. In
Advances in Cryptology — CRYPTO ,9%lume 1462 of NCS pages 121-136, 1998. Corrected version is availableanlin

[FHM99] Matthias Fitzi, Martin Hirt, and Ueli Maurer. Geraradversaries in unconditional multi-party computatitmAdvances in
Cryptology — ASIACRYPT '990lume 1716 oL NCS pages 232-246, 1999.

[FM98] Matthias Fitzi and Ueli Maurer. Efficient Byzantingr@ement secure against general adversarieBistnibuted Computing
— DISC '98 volume 1499 ot NCS pages 134-148, 1998.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson.aw to play any mental game — a completeness theorem for pistoc
with honest majority. IFACM Symposium on the Theory of Computing — STOCp&8des 218-229, 1987.

[GP92] Juan A. Garay and Kenneth J. Perry. A continuum ofifailmodels for distributed computing. Distributed Algorithms,
6th International Workshop — WDAG '9%2olume 647 oLNCS pages 153-165, 1992.

[HM97] Martin Hirt and Ueli Maurer. Complete characteriat of adversaries tolerable in secure multi-party comipara In ACM
Symposium on Principles of Distributed Computing — PODG {#fes 25-34, 1997. Full version appearedaarnal of
Cryptology13(1): 31-60, 2000.

[IKLPO6] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, drErez Petrank. On combining privacy with guaranteed outiglivery in
secure multiparty computation. Advances in Cryptology — CRYPTO 2006lume 4117 of. NCS pages 483-500, 2006.

[LF82] Leslie Lamport and Michael J. Fischer. Byzantinegafs and transaction commit protocols. Technical Reppus®2, SRI
International (Menlo Park CA), TR, 1982.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pe@ke byzantine generals proble®iCM Transactions on Programming
Languages and Systeyg3):382—401, 1982.

[Mau02] Ueli Maurer. Secure multi-party computation matepde. InThird Conference on Security in Communication Networks —
SCN 2002volume 2576 oLLNCS pages 14-28, 2002. Full version appeareDiscrete Applied Mathematic454(2):370-
381, 2006.

[MP91] Fred J. Meyer and Dhiraj K. Pradhan. Consensus witl tailure modes.IEEE Transactions on Parallel and Distributed
Systems2(2):214-222, 1991.

[MR91] Silvio Micali and Phillip Rogaway. Secure computati In Advances in Cryptology — CRYPTO ;9blume 576 ofLNCS
pages 392-404, 1991.

[PWO01] Birgit Pfitzmann and Michael Waidner. A model for asfironous reactive systems and its application to secursages
transmission. INEEE Symposium on Security and Privapgiges 184—200, 2001.

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sh@rnd multiparty protocols with honest majority. ACM Symposium
on the Theory of Computing — STOC ,§fges 73-85, 1989.

[Yao82] Andrew C. Yao. Protocols for secure computations. IHEE Symposium on the Foundations of Computer Science —
FOCS '82 pages 160-164, 1982.

13

Appendix
A Protocol Reshare

The following protocol allows the players iR to Z-securely reshare a sharing @f) according to sharing
specificationS to the new sharing specificatiati.

Protocol Reshare(P, Z,S8,8’, (s))
1. ForeveryS; € S, the following steps are executed:

(@) Everyp; € Sy invokesShare(P, Z,S8’, p;, si); denote the resulting sharing (aé?).

(b) Letp; denote the player with the smallest indexdp For everyp; € S, the difference(s,(c”) - <s§;>>
is computed and, by invokinBublicReconstruct, publicly reconstructed.

(c) If all differences are, then the sharinq(s,(;)> of p; is adopted as sharing @, i.e., (sx) = (s,i”).
Otherwise (i.e., some difference is non-zef)blicAnnounce is invoked to haves;,, announced, and a
default sharing s,) of s; according taS’ is created.

2. Everyp; € P (locally) computes the sum of his shares of all summands
3. If any of the invoked sub-protocols aborts with then alsdReshare aborts withB.

Lemma 10. Assuming thatS’ is a Z-private sharing specifications) is a consistent sharing according &
Cac(P, Z) holds, andvS, € S,S,. € &', (A1,+,-),(A2,+,-) € Z: (S, € ALt UA2) A (S, € A1 U Ay),
the protocolReshare(P, 2,8, S8’, (s)) has the following properties. Correctness: It either ougpa sharing ofs
according to(P, S’) or it aborts with a non-empty sét C P of incorrect players. Secrecy: No information on
the inputs (i.e., or{s)) leaks to the adversary.

Proof. Correctness: The conditions in the lemma are sufficient fir tle invoked sub-protocols
(Share,PublicReconstruct,PublicAnnounce). The conditionvSy, € S,V(A1,-,-), (A2,-,-) € Z: S € A1 U Ay
implies thatvS, € S,V(A4,-,-) € Z: Sy € A, which ensures that every, is known to at least one player
p; Who is not actively corrupted; hence if no invocationS¥fare aborts and all differences are zero, then the
shared values are correct. Privacy: Due to the securiBhafe, the invocations ofhare do not leak information

to the adversary. FurthermorBublicAnnounce is only invoked on the summang. when two players inSy
contradict each other; at least one of these players isehctorrupted, hence the adversary already kngws
beforePublicAnnounce is invoked. O

B Proofs of Lemmata

Lemma 2 (Crash Detection).If Cgc(P, Z) holds, then the protocdlDP(P, Z, p) has the following proper-
ties: Consistency: The (correct) players agree on the dutparrectness: If is correct until the end of£DP,
then every (correct) player outputs “alive” andjifhas crashedeforethe invocation oL DP, then every (cor-
rect) player outputs “crashed”.

Proof. Correctness: Whenis correct, then every (corregty € P setsb; = 1, and by definition of consensus,
all correct players decide dnand output “alive”. Whem has crashed befokeDP is invoked, then every correct
p;j € P setsb; = 0, and hence all correct players output “crashed”. Consigteis the output is decided by
using consensus, the output of all correct players is idehti O

Lemma 3 (Strong Broadcast).If Cgc(P, Z) holds, then the protocdbtrongBroadcast(P, Z,p,v) has the

following properties: Consistency: All (correct) playessitput the same valu€. Correctness: If the sender

is correct, thenw’ = v; if p crashedbeforethe invocation of the protocol, thert =_; if p crashes during the
protocol, thenw' € {v, 1L}.

14

Proof. Consistency follows immediately from the consistency proypof Broadcast and the consistency prop-
erty of CDP. For correctness we consider 3 cases: (a)lf the senidecorrect through the whole protocol, then
the consistency property &roadcast implies that for all correcp; s, v; = v and the correctness property of
CDP implies that all correct players will output “alive” iGDP, hence they will all output in StrongBroadcast.

(b) If p has already crashdmkforethe invocation of5trongBroadcast, then this is detected in Step 2 (R{pP)
and the protocol outputs. (c) If p crashes during the protocol but is correct up to that polmen teither this

is detected in Step 2 and the protocol outputsor p is still alive at the beginning of Step 2 and has correctly
broadcast his input. Since, wherp is not actively-corrupted one of the above 3 cases must toddoutput of
StrongBroadcast for such g is always in{v, L}. 0

Lemma 4 (Share).If Csc(P, Z) holds andS is a Z-private sharing specification, then the proto&iare

(P, Z,8,p,s) has the following properties. Correctnesshare either outputs a consistent sharing of soghe
wheres’ = s unless the dealer is actively corrupted, or it aborts with= {p}; it does not abort ifp is correct.
Secrecy: No information osnleaks to the adversary.

Proof. Correctness: The consistency of the sharing is guaranteemlbe correct players either hold the same
value for acommon summand, or they complain and get a censiglue for the summand by strong broadcast.
Because all sent and broadcasted summands,anech thats =) s, it is clear that the shared valuessvhen

the dealer is correct. Lastly, the protocol only aborts whendealer is incorrect in an invocation of strong
broadcast. Secrecy: BecauSeis Z-private we know that the summands of corrupted players daeweal
information ons. On the other hand, the dealer only broadcasts summandshfoha complaint is broadcast,
i.e., two players (claim to) have different values for thatnsnand. This only happens when the dealer or one
of the disputing players is actively corrupted, or when tealdr has crashed. In the first case, the adversary
is entitled to know the summand, and in the second case, thenand will not be broadcasted (the dealer is
crashed). O

C Implications Among the Conditions

The following figure summarizes the implications betweesdbnditions: An arrow from Condition 1 to Con-
dition 2 means that 1 implies 2; an erased arrow means thag ihan example (i.e., an adversary structdje
that strictly separates the two conditions.

Crec(P,2) XX > Cvionr (P, 2)

Cnxrec(P, 2) > Cge(P, 2)

A
X

15

