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Abstract. The hash function HAVAL is an Australian extension of well
known Merkle-Damgard hash functions such as MD4 and MD5. It has
three variants, 3-, 4- and 5-pass HAVAL. On 3-pass HAVAL, the best
known attack finds a collision pair with 27 computations of the compres-
sion function. To find % collision pairs, it requires 2”k computations. In
this paper, we present a better collision attack on 3-pass HAVAL, which
can find k collision pairs with only 2k + 33 computations. Further, our
message differential is different from the previous ones. (It is important
to find collisions for different message differentials.)
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1 Introduction

The hash function HAVAL was proposed by Zheng, Pieprzyk, and Seberry at
Auscrypt 792 [8]. It is an Australian extension of well known Merkle-Damgard
hash functions such as MD4 and MD5. ® HAVAL has three variants, 3-, 4- and
5-pass HAVAL, which means that the compression function has 96, 128, and
160 rounds, respectively. The compression function H of HAVAL takes a 256-bit
initial value and a 1024-bit message M = (my, ..., m31) as input, and produces
256-bit hash value as output, where each m; is a 32-bit word.

On 3-pass HAVAL, Rompay, et al. [2] presented a collision attack that re-
quires 2%° computations of the compression function. Their attack can find a
one-block (1024-bit) collision pair M = (my,...,m31) and M’ = (mg,...,m4;)
with the differential

Amag = 2° =1 and Am; = 0 for the other i.

X.Y.Wang et al. [4] showed a much better collision attack with 27 computations
of the compression function. Their attack can find a one-block collision pair
M = (mog,...,mz1) and M’ = (myg, ..., mb5;) with the differential

Amg =2 Amqq =231, Amag = 23, and Am,; = 0 for the other i.

3 The newest version is HAVAL 1.1. We can download the program source code at
the website [1]. The difference between the first version and HAVAL 1.1 is only the
order of initial values and the other constant values.



To find k collision pairs of 3-pass HAVAL, the best known attack [4] requires
27k computations.

In this paper, we present a better collision attack on 3-pass HAVAL which
can find £ collision pairs with only 2k 4+ 33 computations. Further, our message
differential is different from the previous ones. 4 (It is important to find collisions
for different message differentials.)

The previous attacks [2, 4] are one-block collision attacks (i.e. a collision pair
is a pair of 1024-bit message block). On the other hand, our attack is a two-block
collision attack which can find a two-block (2048-bit) collision pair My||M; =
(mo_ro, <oy MO,31, M1,05 -« o m1731) and Mé”M{ = (’/TL/0707 caey m’0,31, m’l,o, ..
my 37) with the differential

*9

231 if j = 5,

Am;; =m/ , —m;; mod 232 = .
75t it 7t 0 otherwise.

J

In our attack, we first find a near-collision pair (M, M) such that H(My)
and H(M]) are almost the same. We then find many full collision pairs (M| M,
M{||M7) by using the freedom of (My, M7). Theoretically, our near-collision pair
can be found by about 33 computations of the compression function. Once a near
collision pair is found, a full collision pair can be found with probability 1/2.
Hence we can find k collision pairs with 2k 4+ 33 computations. (See Table 1.)

HRornpaLy7 et al. [2]‘X.Y.Wang et al. [7]‘ Proposed ‘

Amo = 210 31
0 31 Amo5 =2
Am; Amog =2" =1 Ami =2 3
3 Am175 =2
Amlg =2
complexity for first collision 2%9 27 2+33
complexity for k collision pairs 229k 27k 2k + 33
message length 1024 bits 1024 bits 2048 bits

Table 1. Collision attacks on 3-pass HAVAL

In our personal computer simulation:

1. We found 15147 near-collision pairs by 500000 trials, which agrees with our
theoretical estimate because 500000/15147 = 33.0098 - - -.

2. From a single near-collision pair, we found 249630 full collision pairs by
500000 trials, which also agrees with our theoretical complexity because
500000,/249630 == 2.

* Our differential is used in an attack on 4-pass HAVAL by H.Yu et al. [7], but it is
new for 3-pass HAVAL.



It took about one minute for the first 500000 trials. It also took about one minute
for the next 500000 trials.

(Related wroks:)

— Modular differential attack was presented in 1997 by X.Y.Wang [3] and for-
malized in Eurocrypt '05 [5,6]. They showed that it is very powerful to
break MD4, MD5, SHA-0, SHA-1 and HAVAL. Our attack is also based on
the modular differential approach.

— On 4-pass HAVAL, H.Yu et al. [7] showed two two-block collision attacks
that require 243 and 236 computations of 4-pass HAVAL, respectively. On
5-pass HAVAL, the H.Yu et al. [7] showed a one-block collision attack with
2123 computations of the compression function.

This paper is organized as follows. In Section 2, we provide a simple descrip-
tion of 3-pass HAVAL. In Section 3, we give an outline of our attack. In Section
4, we present the algorithm of our attack, and calculate the complexity. In Sec-
tion 5, we report on our computational experiment and a collision example. In
Section 6, we conclude this paper. In this paper, almost Tables and Figures are
in the Appendix.

2 3-Pass HAVAL

HAVAL consists of three phases: (1) message padding phase, (2) main hashing
phase and (3) optional compression phase.

2.1 Message Padding Phase

HAVAL pads an input message by appending some bit string so that its bit-
length becomes a multiple of 1024.

2.2 Main Hashing Phase

HAVAL is a Merkle-Damgard hash function based on a compression function
H as follows. Let My||M;||- - -||M; be the padded message, where |M;| = 1024.
Then for ¢ =0, ---, ¢, compute

IViy1 = H(IV;, M;)
where |IV;| = 256 and IV, = (a,b,¢,d, e, f, g, h) is the initial value such that

a = 022436488, b = 0x85a308d3, ¢ = 0x13198a2e, d = 0203707344,
e = 0xad093822, f = 0x299131d0, g = 0x082¢efa98, h = Oxecde6c89.

The hashed value is given by IV;y.
H is described as follows. First define three functions as follows.



Fl(xo,$1,$2,1'3,1'4,$5,$6) = (IQ L 1"3)

D(zo @xy) Dy D (xo0xs)® (21 @ T5),
FQ($0,$1,$2,$3,$4,$5,[E6) = (330 .:CQ) @(
@

x10T) D (11 @x3) D (x0®x30T5)

(x1022025) B (x3 0x5) D (T4 ® T5)
D ® (x5 ® x6),

F3(x0,x1,x2, X3, T4, T5, Tg) = To D(xg@x3) D (r1 @x4) D (T2 0 25)
D(x3 @ xy @ x5) D (3 @ 26),

where z; is a 32-bit word, x; e z; is the bit-wise multiplication of x; and x;, and
x; @ x; is the bit-wise modulo 2 addition.
H next runs the following algorithm H on input

IV = ((LO, bO) €o, dO) €0, angOa hO)a

M = (mo,ml, - ,mgl),
where each of ag, ..., hg and m; is a 32-bit word.
For(i = 0 to 95){
Jji=11/32] +1;
pi : = Fj(as,bi, ci,di, e, fiy 9i);
aip1 2= (pi > 7) 4 (hi > 11) + mypq) + ki mod 2°%; (1)
bit1:=a;, Cip1:=b;, dip1:=ci, €541 = dj,

fiv1 = es, giv1 = fi, hiv1 = gs;

}

where z > s denotes the s-bit right rotation of x, + denotes the modulo

addition, and the word processing orders ord(i) and the constant values k; are

given in Table 3. Note that H consists of 96 rounds, 0-round through 95-round.
Finally, H outputs the following 256-bit value

232

IV + H(IV, M)
= (ao + ags, bo + boe, co + cos, do + doe, €0 + €96, fo + foe, go + gos, ho + hoe).

Figure 1 is an outline sketch of H. In the Appendix, we provide more detailed

sketches for each round. (See Figure 2, 3, and 4.)

2.3 Optional Compression Phase

HAVAL supports hash-sizes of 128, 160, 192, 224 and 256 bits. The main algo-
rithm computes 256-bit hash-values, and the other sizes are obtained by post-
processing the 256-bit hash-value.
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Fig. 1. The compression function H of 3-pass HAVAL.

3 Outline of our Attack

3.1 Notation

For H(IV, M), a;,b;,--- denote the local values which appear in é-round. Simi-
larly, for H(IV,M’), a}, b}, -- denote the local values which appear in i-round.

We denote by aag, bbg, cco, ddy, eeq, f fo, 990, Rho the 8 words of I'V;. Define
Aa; = a — a; mod 232 and so on.
We denote by z; ; the j-th bit of 32-bit word z;.

— a} = x;[j] means that z is obtained by changing the jth bit of x; from 0 to
L. That is, z; = z; except for that z; ; =0 and z} ; = 1.

— x§ = x;[—j] means that z} is obtained by changing the jth bit of z; from 1
to 0. That is, #} = x; except for that z; ; = 1 and z; ; = 0.

— x; = z;[£j] means that x; ; # x| ;.

— For example, a14[—21, 22] is the value obtained by modifying the 21-th and
22-th bit of a4 from 1 to 0 and 0 to 1, respectively.

3.2  Attack
We show an efficient method to find a two-block (2048-bit) collision pair

Mpo||My = (moy,...,Mm0,31,M1,0,...,M1,31)

Mg|| M = (mg g, - - - M 31, M 05 - -, M 31)-
The proposed method first finds a near collision pair (Mg, M]) such that
AIVy = TV) — 1V, = (0,2%1,0,0,0,0,0,0)
We next find a pair (M;, M7) such that

AA = H(IV{,M;) — H(IVy, M)
=(0,2%1,0,0,0,0,0,0) or (0,—2%,0,0,0,0,0,0) (2)



Then it holds that
H(IV{, M{) = IV{ + H(IV{,M}) = IV, + H(IVy, My) = H(IV1,M:) ~ (3)
That is,
ATV = 0 Moo Apyy OILMD 44 A
Therefore, (Mo|| My, Mj||M;) is a collision pair. 3
We use a message differential such that
231 if § =5,

J 0 otherwise

Amj; = m/ﬁ —m;; mod 232 — {
for 7 = 0 and 1. ® That is,
AM, = (0,0,0,0,0,2%,0,---,0)
AM; = (0,0,0,0,0,2°%,0,---,0)
Note that ms is the input to the 5-, 32-, and 94-round in each block because
5=ord(5) = ord(32) = ord(94)

from Table 3. Now we will find the first block pair (M, M{) that causes a local
collision at the 32-round. Then (My, M{)) is automatically a near collision pair
just after 94-round with difference (0, +231,0,0,0,0,0,0). This can be seen from
the following table.

round 0 e 5 e 32 e 94 95
Am;  [Amg =0|---|Ams = 231 - [Ams = 23] . .| Amy =251
H(IV,M) collision near collision|near collision

Similarly we will find the second block pair (M, M{) which satisfy eq.(2),
where IVy = H(IVy, My) and IV/ = H(IVy, M{)). Then My||M{ and M;||M] are
a full collision pair from eq.(3).

We present the (so called) differential path in Table 4 and Table 5. 7 In these
Table, for example,

round ¢|m}|Aa;4+1|Outputs al, b}, ¢}, d;, e}, fl, gi, bl

) ) ) ) )

6 |me| 0 |ar,a6[32],a5,a4,a3,a2,a1,a0

means that we want the outputs (a%, %, %, db,es, f7, g%, h%) in the 6-round
of H(IV/, MI) to be (a7, b7[32], Cr, d7, €7, f7, ar, h7) Note that (a7, b7, Cr, d77 er,
fr,97,h7) = (a7, a6, as5,a4,a3,az2,a1,a0). We can find a full collision if all the
conditions of these tables are satisfied.

® The operation + is the word-wise modular 23? addition.
6 This differential was used for 4-pass HAVAL [7]. Tts complexity is 2*3.
" Table 4 was given in [7]. We constructed Table 5.



3.3 Sufficient Conditions

In Table 6, 7, and 8, we present sufficient conditions for the differential path
to hold. If Table 6, 7, and 8 are satisfied, then Table 4 and 5 are satisfied. As
an example, we prove that the conditions for 5- and 6-round given in Table 6
guarantee that the conditions for 0- to 6-round shown in Table 4. The other
conditions are derived similarly.

Since Amg = --- = Amy = 0, the differential path of 0- to 4-round hold. In
5-round of H(IV{, My), if the sufficient condition of 5-round in Table 6, that is,
ag32 = 0, then ag 30 = 1 and ag ; = ag; for i # 32 (i.e. ag = ag[32]), because

( D5 > 7) + (h5 > 11) + mord(5) + k5

= (p5 > 7) + (hg > 11) +m},, 45 + ks

= (p5 > 7) + (hs > 11) + (Mopaes) + 2°1) + ks

= (p5 > 7) + (hs > 11) + myyas) + ks + 23!
= Q¢ + 231.

In 6-round of H(IVy, M), if the sufficient condition of 5-round in Table 6, that
is, ag,32 = 0 then, since

pe = Fi(ag, bs, cs, ds, €6, f6, g6)
= Fl(aﬁaa/5aa/4)a’3)a2)a’1)a’0)
= (as®a3) ® (as 0 az) ©az ® (ag ® ag) D (a5 ® a1),

we have

4,32 @ a2.32) D az 32 D (a6,32 ® ap,32) ® (as,32 ® a1 32),
(4,32 ® 4332 a4,32 ® a232) B az,32 D (000) B (a5 32 @ ai,32),
4,32 ® as ,32 4,32 ® a232) B a2,32 B 0B (as5,32 ® a1,32),

= (as,32 ® az32) ® ( )
( )@ ( )
( )@ ( )
Po32 = (ah 30 @ a3 32) © (@) 30 ® ah 35) D a5 30 © (ag 32 @ ap 32) D (a5 32 ® ) 32),
( )@ ( )
=( )@ ( )

D6,32 =

! ! ! ! ! !
Ay 32 ® a3 ,32 (y 37 ® (3 33) D Ay 39 D (le0)® (a5,32 b a1,32)7
! ! !
Ay32 ® a3 32 Qy,32 ® 43 32

! ! !
© ay 30 D 0D (a5 30 @ @) 30),

Hence, pg = ps. Therefore a7 = a7. The above equations for pg 32 and p 3, are
clear by Figure 2.

4 Detalils

In this section, we present the details of our algorithm, and calculate the com-
plexity to find a collision pair.

4.1 Our Algorithm

We observe that from ay,---,as2, Mg = (mg, ..., ms1) is uniquley determined
from eq.(1), and ass, - - -, ags are also uniquely determined. Now in Table 6, all
the rows except the last three rows specify the conditions on ay,- - -, aze. Hence:



1. We choose a1, - - -, asz which satisfy these conditions randomly.
2. We compute My = (mo, ..., ms1) from eq.(1). 8
3. If the last three rows are also satisfied, then we have done.

Next for given My, we apply the same strategy to find Mj.

1. We choose a,---,a32 which satisfy the conditions of Table 7 and Table 8
randomly.

2. We compute M; from eq.(1).

3. If the last row of Table 8 is also satisfied, then we have done.

Finding Mj:
1. Randomly select ay,...,ass
that satisfy the sufficient conditions for 0-31 rounds.
2. For i = 0 to 31,
bit1 := a;, ciy1 = b, dip1 1= ¢, €541 1= dj,
fiv1 = eq, gix1 = fi, hiv1 = g5
3. Calculate py, ..., ps1 of the algorithm of H in Section 2
and mg, ..., ms; as follows,
pi = Fi1(ai, b, ci, d;i, eq, fi, gi),
m; = Qij+1 — (pi > 7) - (hz > 11) — k; mod 232,
4. Execute 32- to 95-round of the compression function.
5.If ags 32 = 1, aga 32 = 1, bbg 32 = 0, ffo,320 =0,
cco,32 = ddp 32, and aag,3z2 = 0,
then fix MO = (mo, ey mgl).

Finding M;:
6. Randomly select a,...,as2
that satisfy the sufficient conditions for 0-31 rounds.
7. For¢=0 to 31,
bit1:=a;, ciy1 = b, dip1 1= ¢, €41 = dj,
fir1 =€, giv1 = fi, hiy1 = gi.
8. Calculate po, ..., ps1 of the algorithm of H in Section 2
and mg, ..., m3y as follows,
Di 1= Fl(ai;bi;Ci;diaeiafiagi)a
m; == a1 — (p; > 7) — (h; > 11) — k; mod 232.
9. Execute 32- to 95-round of the compression function.
10. If aga 32 = 1, then output (Mp||M;) and (M||M7) as a collision pair.

4.2 Success Probability
Assume that

P?‘[l’i’j = 0] = Pr[xm- = 1] = 1/2 (4)

8 Note that our algorithm doesn’t requre message modification.



for any word z;. We can find My if the last three condition are satisfied in Table
6. Thereore, the success probability P of finding M, is given by

P = Prlags 32 = 1,a92,32 = 1,aa0,32 = 0,bbg 32 = 0, cco 32 = ddo 32, f fo,32 =0,
= 1/25 X P?‘[bbo,g,g = 0}

For bby, note that

Thus, if ags 31, ags,30, 95,29, Or ags,28 is 0, or ags,31 = ags,30 = Ags,29 = Ags,28 = 1
and 95,27 = A95,26 = 0, then bb0732 = 0. Hence

P?‘[bbo,g,g = 0}
> Prlags 31 = 0,a95,30 = 0, ag5,20 = 0, or ags 28 = 0]

+Prlags 31 = ags,30 = 95,20 = Q95,28 = 1 and ags 27 = ags,26 = 0]
= (1 — Pr[a95731 = 17a95730 = 1,a95,29 = 1, and a95,28 = 1}) + 1/26
=(1-1/2%)+1/64=15/16 + 1/64 = 61/64.

Therefore
P>1/2°x61/64 =61/2" ~1/33.

Next suppose that the above Mj is given. Then we can find M if the last
row of Table 8 is satisfied. Thereore, the success probability of finding M; is
given by

PT[QQQ",?,Q = 1] = 1/2

4.3 How to Find Many Collisions

We can find many collision pairs from fixed (Mp, M{) by running the algorithm
”Finding M;” many times. In this method, the complexity of finding & collision
pairs is 2k + 33.

5 Computational experiment

We implemented our attack by a personal computer. First we found 15,147
desired Mps by running the algorithm ”Finding M;y” 500,000 times. In this
experiment, the success probability 15,147/500,000 ~ 1/33. It coincides with
our theoretical probability shown in Section 3.

Next for fixed My, we found 249,630 desired Mjs by running the algo-
rithm ”Finding M;” 500, 000 times. ? In this experiment, the success probability
249, 630/500, 000 ~ 1/2. It coincides with our theoretical probability shown in
Section 3.

In total, we found 249,630 full collision pairs by running the algorithms
"Finding My” 39 times and ”Finding M;” 500, 000 times.

Consequently, our experiment supports our claim that we can find k collision
pairs with 2k 4+ 33 computations of the compression functions. We illustrate one
of the 249630 collision pairs in Table 2.

9 Tt takes about one minute on our computer.



c7£10962
12704097
f7e7bael

08cf4eOc ddfd60a8
2b027££7 32247646
ca89b85f 2d5a3e0f

597cbd0d b050440c
8056892d 906fecab
8b4557da 8596d1bb

20556040 84569b2f 43b834dc
ala6bdec fbcllaca d12586db
2bf5el1fd b5b7£669 9445ea09

343860ec
ccde7£72
d3555dbd
3afdac64
447f0ebe

5c746759 bbce300c
c195d858 ebe2bafl
6bf9Ib53a 694e5fff
f0f67£58 60dd3e5d
b03eaa86 9fal2c2a

d0985871 5229b382
af7db590 84ddea8e
e96766dc 2d541b98
aec84176 575012f1
e98b9370 2e5cb0ic

8dab9e3e £89f39d6 9179329
5990fd91 £6865eab 9db928ce
d394d721 6a84b2c2 0d2bdlal
24878a2f 304720ed 25eed9ae
a2e23d56 cdaf12f2 2efb842d

My

c7£10962
12704097
f7e7bael
343860ec
ccde7£72
d3555dbd
3afdac64
447f0ebe

08cf4eOc ddfd60a8
2b027££7 32247646
ca89b85f 2d5a3e0f
5c746759 bbce300c
c195d858 ebe2bafl
6bf9b53a 694ebfff
f0£f67£58 60dd3e5d
b03eaa86 9fal2c2a

597¢cbd0d b050440c
8056892d 906fecab
8b4557da 8596d1bb
d0985871 5229b382
af7db590 84ddea8e
e96766dc 2d541b98
aec84176 575012f1
e98b9370 2e5cb0ic

a05560d0 84569b2f 43b834dc
ala6bdec fbcllaca d12586db
2bf5el1fd b5b7£669 9445ea09
8dab9e3e £89f39d6 9179329b
d990£fd91 £6865eab 9db928ce
d394d721 6a84b2c2 0d2bdlal
24878a2f 304720ed 25eed9ae
a2e23d56 cdaf12f2 2efb842d

M},

M,

| }{||69f26b47 513d34a2 0ad20al17 3d207470 04848b80 fc90ccOa efi1cf172 d48c0d25

Table 2. Collision example.

6 Conclusion

On 3-pass HAVAL, the best known attack finds a collision pair with 27 com-
putations of the compression function. To find k collision pairs, it requires 27k
computations.

In this paper, we presented a better collision attack on 3-pass HAVAL using
modular differential method. It can find %k collision pairs with only 2k + 33
computations. Further, our message differential is different from the previous
ones. (It is important to find collision pairs for different message differentials.)
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Appendix : Tables and Figures

L& 1 ord(i)
0 to 31 01 2 3 45 6 7 8 9 101112131415
° 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 to 63 5 1426181128 7 16 0 232022110 4 8
° 30 3 21 9 172429 6 19 12 15 13 2 25 31 27
64 to 95 19 9 42028 17 8 22 29 14 25 12 24 30 16 26
° 311567 3 1 0 182713 6 21102311 5 2
L ki |
0 to 31 00000000

452821e6 38d01377 beb466cf 34e90c6¢c cOac29b7 c97c50dd 3£84d5b5 b5470917
9216d5d9 8979fb1lb d1310ba6 98dfbSac 2ffd72db d01adfb7 b8elafed 6a267e96
ba7c9045 £12c7£99 24a19947 b3916cf7 0801f2e2 858efcl16 63692048 71574e69
a458fea3 £4933d7e 0d95748f 728eb658 718bcd58 82154aee 7b54ad41d c25a59b5
9¢30d539 2af26013 c5d1b023 286085f0 ca417918 b8db38ef 8e79dcb0 603a180e
6c9e0e8b b0le8a3e d71577cl bd314b27 78af2fda 55605c60 e65525f3 aab5ab94
57489862 63e81440 55ca396a 2aab10b6 bdccbc34 1141e8ce alb486af 7c72e993
b3eel1411 636fbc2a 2ba9cbbd 741831f6 cebc3el6 9b87931e afd6ba33 6c24cfbc

32 to 63

64 to 95

Table 3. Word processing orders ord(i) and constant values k; (hexadecimal numbers).
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Fig. 3. i-round (32 <4 < 63) in the compression function.
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Fig. 4. i-round (64 <4 < 95) in the compression function.
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|round z| m;

/ / / / / ’ / ’
Aaiy1|Outputs af, b, ¢, di, e}, 1, gi, b

JATA ao, bo, co, do, €o, fo, go, ho
0 |mo| O |ai1,ao,bo,co,do,eo, fo,90
1 |[mi1| O |az2,a1,a0,bo,co,do,eo, fo
2 ma 0 a37a27a1,a0,b07607d0,60
3 ms3 0 a4,a3,a2,a1,ao,bo,co,do
4 ma| 0 |as,aq,as,az2,a1,a0,bo,co
5 mg 231 a6[32],as,a4,a3,a2,a1,ao,bo
6 me 0 a7,a6[32],a5,a4,a3,a2,a1,ao
7 mr 0 ag,a7,a6[32},a5,a4,a3,a2,a1
8 ms 0 ag,ag,a7,a6[32},a5,a4,a3,a2
9 |me| O |aio,as,as,ar,as[32],as,a4,as
10 |mio| O |a1i1,a10,a9,as,ar,as[32],as, as
11 |mii| 0 |ai2,a11,a10,0a9,as,ar,as[32],as
12 mi2 0 alg,alg,au,am,ag,ag,a7,a6[32]
13 |mas| 2%° |a14[—21,22], a13, @12, a11, a0, a9, as, az
14 |maa| O |ais,a14[—21,22],a13, a12,a11,a10, ag, as
15 |mis| O |ais,a1s,a14[—21,22], a13, a12, a11, aio, ag
16  |mis| O |ai7,ais,a1s,a14][—21,22], a13,a12, a11, a0
17 |maq7| —2% a18[15716, 17,—18},(117,(116,a15,a14[—21,22],a13,a12,a11
18 |mis| 0 |aig,a1s[l5,16,17,—18],a17, aie, a1s, a1a[—21, 22], a13, a1z
19 mig 0 azo,alg,a18[15, 16, 17,—18},(117,a16,a15,a14[—21,22],a13
20 |mao| O |a21,a20,a19,a18[15,16,17, —18], a17, aie, a1s, a14[—21, 22]
21 ma1 0 a22,a21,a20,a19,a18[15, 16,17, —18],0,17,(116,(115
22 mo2 O CL23,CL22,CL21,a207a197a18[15, 16, 17, 718],(117,(116
23 |ma3| 0 |a24,a23,a22,a21,a20,a19,a18[15,16,17, —18], a17
24 mo4a 210 CL25[11L(1,24,(123,(122,(1,21,(1,20,(1,19,&18[157 16, 17,*18}
25 |mas| 0 |age,a2s5[11], a24, a23, a2z, a21, az0, aig
26 |mas| 0 |a27,ass,a2s[11], a4, azs, azz, az1,azo
27 |ma7| 0 |ass,a2r,azes, as[11], aza, azs, azz, a1
28 |mas| 0 |as2e,ass,asr,ase, azs[11], aza, ass, aze
29 |mag| 0 |aso,as29,azs, asr,az,as[11], a4, ass
30 ma3o 0 asi, aso, 29, A28, a27, a26, a25[11]7 a24
31 |ms1| O |as2,asi,aso,az,ass,azr, aze, azs[11]
32 |ms| O l|ass,asz2,as:,aso, a9, ass,azr, 426
94 | mh | =23 |ags[—32], ag4, ass, as2, agi, aso, ase, ass
95 | ma 0 |ags, ags[—32], a4, ags, aga, as, aso, ase
[Vll aao, bbo [32], cCo, ddo7 eeo, ffO, g4go, hho

Table 4. A differential path for H(IVy, Mo) and H (IVo, My).




. ’ ’ / ’ ’ ’ ’ ’ ’
|round 1| my |Aai+1|0utputs a;, by, c;,dy,e;, fl,9:,h;

v/ ag, bo[32], co, do, o, fo, go, ho
0 mo | 0 a1, ao0,b0[32], co, do, €0, fo, go
1 mi 0 |az,a1,a0,bo[32], co,do, eo, fo
2 mo 0 |as,az,a1,a0,bo[32], co, do, eo
3 mg 0 |a4,a3,az2,a1,a0,b0[32], co, do
4 my 0 |as,as,as,az,a1,ao,bo[32],co
5 mg 231 a6[32],a5,a4,a3,a2,a1,ag,b0[32]
6 mg | 220 a7[21], a6[32], as, a4, a3, a2, a1, ag
7 mr7 0 ag,a7[21],a6[32],a5,a4,a3,a2,a1
8 msg | —22% |a9[25, 26, 27, —28], as, ar[21], as[32], as, a4, az, az
9 mo 0 am,a9[25,26,27,728],ag,a7[21],a6[32],a5,a4,a3
10 |mao| —2'"% [a11[19, 20, —21], a10, a9[25, 26, 27, —28], as, a7[21], ag[32], a5, as
11 mi11 0 a127a11[19,20,721],a10,a9[25.,26,27,728],ag,a7[21],a6[32],a5
12 |mao| =2 [a13[12,13,14, 15,16, —17], a12, a11[19, 20, —21], a10,
a9[25,26, 27, —28], as, az[21], ag[32]
13 |[mug| —27 |a14[—8],a13[12, 13,14, 15,16, —17], a12, a11[19, 20, —21], a10,
a9 (25, 26,27, —28], as, az[21]
14 mia 0 a15,a14[78],a13[12, 13,14,15,16,717],(112,(111[19.’20,721],(110
a9 (25, 26,27, —28], as
15 mis5 0 a167a15,a14[78],a13[12,13,14,15,16,717],a12,a11[19.,20,721]
ailo, a9[25, 26, 27, 728]
16 mie 0 1117,(l1(;,ll1571114[—8],11,13[12,13,14,15,16,—17],(1127
a11[19, 20, —21], a10
17 mi7 0 alg,a17,a167a15,a14[78],a13[12,13,14,15,16,717]4112,
a11[19, 20, —21]
18 |mig| 0 |aig,a1s,a17,a1e,a15,a14[—8],a13[12,13,14,15,16, —17], a12
19 |mig| 0 |a20,a19,0a18,017,016,0a15,a14[—8],a13[12,13,14,15,16, —17]
20 |ma20| 0 |a21,a20,a19,a18,0a17,a16,a15, a14[—8§]
21 [ma21| —22% |a22[—29], az1,a20, a19, a1s, a1z, a1s, a1s
22 [maa| —22' |a23[22, 23, 24, —25], ase[—29], a21, a2, aig, ais, air, aie
23 [ma3| —2' |a24[15, 16,17, —18], a23[22, 23, 24, —25], az2[—29], a21, a20, @19,
aig, air
24 [maa| —2'0 |a2s[—11], a24[15, 16,17, —18], a23[22, 23, 24, —25], a22[—29], az1,

a20, @19, 18

25 mas 0 a267a25[711],a24[15, 16, 17,718],a23[22,23,24, 725],(122[729],
as1, @20, a19

26 |mag 0 |a27,aze,a2s5[—11], a24[15, 16,17, —18], a23[22, 23, 24, —25],
a22(—29], a21, a2

27  |mar 0 |a2s, az7,a26,a25[—11], a24[15,16,17, —18], a23[22, 23, 24, —25],
a22[—29], az1

28 mag 0 a29,azg,(127,(1267(125[711],a24[157 16,17, 718],
a23[22, 23, 24, —25], azz[—29)]

29 ma9 0 agg,a297a287a27,a26,a25[711],a24[15, 16,17,718]7
a23[22, 23, 24, —25]

30 |msao 0 |as1,aso, a9, azs, az7, aze, azs[—11], a24[15,16,17, —18]

31 |m31| 0 |asz2,a31,a30,0a29,a2s,a27, a2, a2s[—11]

32 |mf| 0 |ass,asz,as1,aso, a2, azs, a7, e

94 mg +251 |ags [£32], aga, ag3, ag2, ag1, ago, asy, ass

95 ma 0 |ages, ags[£32], aga, ags, aga, ag1, ago, asy

IV, aog~+age, bo[32]+ags [£32], co+aga, do+ags, eo+agz, fo+agr, go+

ago, ho + agg Full Collision !!

Table 5. A differential path for H(IVi, M1) and H(IV{, Mj).




|r0und i|Sufﬁcient conditions for each round

5 ag,32 =0

6 |aos2 =0

7 |az32=0

8 |as,32 = a4,32

9 |ar3 =0

10 (18,32 =1

11 |a10,32 =0

12 |ai2,32 =0

13 |aia21 = 1,a1422 =0

14 |ag,21 =0,ag,22 =0

15 |aio0,21 = 0,a10,22 =0

16 |ai3,21 = a12,21,@13,22 = Q12,22

17 |a1s,15 =0, a1s,16 = 0, a1s,17 = 0, a18,18 = 1, ai5,21 = 0, a1s,22 =
1, a11,22 = 0,a12,22 = 1,a1322 = 1,a16,22 = 1

18 |ai2,15 = 0,a12,16 = 0,a12,17 = 0,a12,18 = 0,a16,21 = 1,a16,22 = 1

19 |a14,15 = 0,a14,16 = 0,a14,17 = 0, a14,18 = 0,a18,21 = 0,a18,22 =0

20 |ai6,15 = ai7,15,016,16 = Q17,16, 16,17 = A17,17, 16,18 = G17,18,
a20,21 = 0,a20,22 =0

21 |ai9,15 = 0,a19,16 = 0,a19,17 = 1,a19,18 = 0,a15,17 = 1,a16,17 =
0,a17,17 = 0,a21,17 =1

22 laz20,15 = 1,a20,16 = 1,a20,17 = 1,a20,18 =1

23 |a22,15 = 0,a22,16 = 0,a22,17 = 0,a22,18 = 0

24 |az24,15 = 0,a24,16 = 0,a24,17 = 0, a24,18 = 1,a25,11 =0

25 |ai9,11 = 1,a20,11 = 0,a22,11 = 0,a21,11 =0

26 |a21,11 =0

27 |a24,11 = a23,11

28 |az6,11 =0

29 la2711 =1

30 |a20,11 =0

31 |az1,11 =0

94 ag95,32 = 1

95 |ag232 =1

| JA% |aa0,32 = 0,bbo,32 = 0, cco,32 = ddo 32, f fo,32 =0

Table 6. Sufficient conditions on a; for the differential path in Table 4.




|r0und i|Sufﬁcient conditions for each round

0 |(fo32=0

1 co,32 = do,32

2 |aosze =0

3 Jaizz=1

4 Jlazz2 =0

5 las32=0,a632=0

6 |ar21 =0,a032=0

7 lai21 =0,a232 =0

8 ages = 0,a9.26 = 0,a027 = 0,a9,28 = 1,a321 = 0,a2;32 = 0,a332 =

0,a4,32 =1,a5,32 =0

9 lar32 =0,a521 = ae,21,a3,25 = 0,a3,26 = 0,a3,27 = 0,a328 =0

10 |a11,19 = 0,a11,20 = 0,a11,21 = 1,as8,32 = 1,as21 = 0,as525 = 0,a526 =
1,a5,27 = 0,a5,28 = 0,as,26 = 0,a6,26 = 1,a4,26 =0

11 |as,19 = 0,a5,20 = 0,a9,21 = as21 + 1,a725 = as,25,a7,26 = as,26,0a8,27 =
ar,27,G7,28 = 8,28, 10,32 = 0

12 |a13,12 = 0,a13,13 = 0,a13,14 = 0,a13,15 = 0,a13,16 = 0,a13,17 = 1,a1232 =
0,a7,19 = 1,a7,20 = 0,a10,25 = 0,a10,26 = 0,a10,27 = 0,a10,28 = 0,as,19
1,a10,19 = 0,a6,19 =0

13 |awas = l,a712 = 0,a7,13 = 0,a7,14 = 0,a7,15 = 1l,a7,16 = 0,a7,17 =

0,a10,19 = @ag,19,@10,20 = @9,20,a10,21 = Q9,21 + 1l,a11,25 = l,a1126 =
1,a11,27 = 1,a11,28 = 0,ar28 = 0,as,28 = 0,as,15 = 0,a9,15 = 0,a10,15
1,a11,15 = 1,a1321 =1

14 lags = 0,a9,12 = 0,a9,13 = 0,a9,14 = 0,a9,15 = 0,a9,16 = 0,a9,17 =
1,a12,19 = 0,a12,20 = 0,a12,21 = 0,a13,25 = 0,a13,26 = 0,a13,27 = 0, a13,28
0,a8,17 = 0,a10,17 = 0,a11,17 =0

15 J|aio,s = 0,a12,12 = a11,12,a12,13 = 0a11,13,Q012,14 = G11,14,012,15 =
aiiis,a12,16 = ai1,16,012,17 = G11,17,013,19 = 1,a1320 = 1,a1321 =
1,a15,25 = 0,a15,26 = 0,a15,27 = 0,a15,28 =0

16 |a13,8 = a12,8,a14,12 = 0,a14,13 = 0,a14,14 = 0,a14,15 = 0,a14,16 = 0, a14,17 =
0,a15,19 = 0,a15,20 = 0,a1521 = 1,a10,21 = 0,a12,21 = 0,a13,21 = 1,a14,21 =
1

17 |ais,8 = 0,a15,12 = 1,a15,13 = 1,a15,14 = 1,a15,15 = 1,a15,16 = 1,a15,17 =

1,a17,19 = 0,a17,20 = 0,a17,201 = 0

18 |aie,8 = 1,a17,12 = 0,a17,13 = 0,a17,14 = 0,a17,15 = 1,a17,16 = 0,a17,17 =
0,a14,15 = 0,a16,15 = 0,a18,15 = 0

19 |ais,s = 0,a19,12 = 0,a19,13 = 0,a19,14 = 0, a19,15 = 0,a19,16 = 0, a19,17 = 0
20 |ai58 =0,a168 =1,a188 =0,a208 =1

Table 7. Sufficient conditions on a; for 0-20 rounds of the differential path in Table 5.



|r0und i|Sufﬁcient conditions for each round |

21 |a22,20 =1

22 la2322 = 0, a2323 = 0, a2324 = 0, a2325 = 1, ais,19 = 1, ai720 = 0,
a1s,29 = 0, a19,29 =0

23 |a24,15 = 0,a24,16 = 0,a24,17 = 0,a24,18 = 1,a18,20 = 0,a17,22 = 1,a17,23 =
0,a17,24 = 0,a17,25 = 0,a18,22 = 0,a19,22 = 0,a20,22 = 1,a2122 = 1

24 lazs,11 = 1l,a21,29 = a20,20,a19,22 = 0,a1923 = 0,a1924 = 0,a1925 =
0,a18,15 = 0,a18,16 = 0,a18,17 = 0,a18,18 = 1,a19,18 = 0,a20,18 = 0, az2,18 =
0

25 |ai911 = 0,a20,15 = 0,a20,16 = 0,a20,17 = 0,a20,18 = 0,a2222 =

a21,22, 22,23 = (21,23, A22,24 = A21,24, 022,25 = 421,25, 023,29 = 0

26 |a21,11 = 0, a23,15 = a22,15, 23,16 = G22,16,023,17 = G22,17,023,18 =
a22,18,a24,22 = 0,a24,23 = 0,a24,24 = 0,a24,25 = 0,a24,29 = 1,

27 |a24,11 = a23,11,0a25,15 = 0,a25,16 = 0,a25,17 = 0,a2518 = 0,a25,22
1,a25,23 = 1,a2524 = 1,a25,25 = 1,a26,29 =0

28 |az6,11 = 0,a26,15 = 1,a26,16 = 1,a26,17 = 1,a26,18 = 1,a27,22 = 0,a27,23
0,a27,24 = 0,a27,25 = 0,a28,29 =0

29  la27,11 = 1,a28,15 = 0,a28,16 = 0,a28,17 = 0,a28,18 = 0,a29,22 = 0, a29,23
0,a29,24 = 0,a24,25 = 0,a25,25 = 1,a27,25 = 0,a29,25 = 1

30  |a29,11 = 0,a30,15 = 0,a30,16 = 0,a30,17 = 0,a30,18 = 1, a25,18 = 0, az26,18
1,a28,18 =0

31 |asz1,11 = 1,a26,11 = 0,a27,11 = 1,a20,11 =0

95  |agez2 =1

Table 8. Sufficient conditions on a; for 21-95 rounds of the differential path in Table
5.



