
Revisiting an efficient elliptic curve key agreement
protocol

Maurizio Adriano Strangio

University of Rome “Roma Tre”, ITALY
strangio@mat.uniroma3.it

Abstract. A recent paper by Wang et al. has revealed a vulnerability in the
ECKE-1 key agreement protocol. In particular, contrary to the author’s claims,
protocol ECKE-1 is shown to be susceptible to a key-compromise impersonation
attack. This attack was also independently pointed out by the author in another
recent paper published in the EURASIP Journal on Embedded Systems. Here
we present a revised version of the protocol, ECKE-1R, that is key-compromise
impersonation resilient at the expense of a higher computational workload and
communication complexity with respect to the original protocol ECKE-1.

Key words:key compromise impersonation, key agreement protocol, elliptic curves

1 Introduction

In general, a secure two-party key agreement protocol should not allow an adversary,
eavesdropping or manipulating message flows in any finite number of protocol runs, to
subvert the security goals (e.g. obtain information on the secret session key, engage in
a successful protocol run while masquerading as a legitimate principal, etc). However,
designing a “good” key agreement protocol that is both efficient and secure is far from
being a simple task; there are so many details involved (including the complicated inter-
actions with the environment) that the designer can never be assured that the protocol is
infallible. In practice, the degree of confidence accompanying a protocol (as with many
other cryptographic primitive) increases with time as the underlying algorithms (and
assumptions) survive many years of public scrutiny without any significant flaws being
discovered.

A recent paper by Wang et al. [10] has revealed a weakness in the ECKE-1 [8]
key agreement protocol. In particular, contrary to the author’s claims, protocol ECKE-
1 is shown to be susceptible to a key-compromise impersonation attack (cfr [9] for
a discussion on KCI attacks). This attack was also independently pointed out by the
author in a recent paper [3].

In this work, we present protocol ECKE-1R, a revised version of ECKE-1, that
is key-compromise impersonation resilient. The new protocol enjoys this property at
the expense of a higher computational workload and communication complexity with
respect to the original version. In particular, protocol ECKE-1R has one more round
of communication (three messages), an increased bit complexity and also requires an
additional exponentiation (and a field multiplication). However, it has the appealing

property of key confirmation which makes it resistant to adaptive corruptions [7, 1] and
allows universal composability [2].

2 The original protocol ECKE-1

In this section we review protocol ECKE-1 [8]. The protocol is defined on a (subgroup
of) elliptic curve E(Fq) over a finite field Fq with q a prime power (the protocol can
also be specified in the generic multiplicative group).

Consider two parties A and B endowed with private-public key pairs (wA,WA),
(wB ,WB) and the relative digital certificates certA, certB respectively, issued by a
mutually trusted Certification Authority (CA). We assume that CAs will supply a valid
digital certificate only to those principals that have provided a “proof of identity” (e.g.
by engaging in a face-to-face enrollment procedure with the Registration Authority—
RA) and a “proof of possession of the private key”. Both the preceding requirements
represent the current practice in many countries (e.g. Italy).

Long term keying material are associated with a set of domain parameters ΦEC =
(q, FR, S, a, b, P, n, h). Recall that q is the underlying field order, FR (field represen-
tation) is an indication of the method used to represent field elements in Fq, the seed S
is for randomly generated elliptic curves, the coefficients a, b ∈ Fq define the equation
of the elliptic curve E over Fq (E(Fq)), the base point P = (P.x, P.y) in E(Fq), the
prime order n of P and the cofactor h =]E(Fq)/n.

The parameters should be appropriately chosen so that no efficient algorithms exists
that solve the Discrete Logarithm Problem (DLP) or the Computational Diffie-Hellman
Problem (CDHP) in the subgroup 〈P 〉. The domain parameters must also undergo a
validation process proving the elliptic curve has the claimed security attributes [4].

We also need two (collision resistant) hash functions, namely F1,F2 : {0, 1}∗ →
Fq. The function kdf represents a standard key derivation function (see [5] for exam-
ples of practical kdfs).

The main actions of protocol ECKE-1 are described as follows (refer to Figure 1 for
the details):

1. A (resp. B) selects a random rA (resp. rB) in [1, n − 1] and computes eA (resp.
eB);

2. If QA ≡ P∞ (resp. QB ≡ P∞), A (resp. B) repeats step 1 otherwise, in the role of
initiator, A sends QA to B;

3. B invokes a procedure to perform public-key validation of QA and aborts the pro-
tocol if the validation fails;

4. B, in the role of responder, sends QB to A;
5. A invokes a procedure to perform public-key validation of QB and aborts the pro-

tocol if the validation fails;
6. A and B compute, respectively, the points TA and TB ;
7. The protocol completes successfully if both A and B accept the same session key

sk.

Correctness of the protocol is determined by the fact that in any honest execution
TA ≡ TB , therefore A and B will both compute the same session key sk = h(rArB +

2

rAeBwB +rBeAwA+eAeBwAwB +cwAwB)P with c = F2(QA.x, QB .x, idA, idB).
The cofactor h is needed in the scalar multiplication to prevent the small-subgroup
attack [6].

On-line computation for each principal requires performing three scalar multiplica-
tions and evaluating both the hash functions F1,F2. The on-line computational com-
plexity for a principal (say A) may be reduced by pre-computation of the 3-tuple
(rA, eA, QA). The resulting workload will be two scalar multiplications and one hash
value computation.

A(wA, WA), B(wB , WB)

A : rA
R← [1, n− 1]

eA ← F1(rA, wA, idA)
QA ← (rA + eAwA)P

A→ B: QA

B : rB
R← [1, n− 1]

eB ← F1(rB , wB , idB)
QB ← (rB + eBwB)P

B → A: QB

A : dA ← wAF2(QA.x, QB .x, idA, idB)
TA ← h((rA + eAwA)QB + dAWB)
sk ← kdf(TA.x)

B : dB ← wBF2(QA.x, QB .x, idA, idB)
TB ← h((rB + eBwB)QA + dBWA)
sk ← kdf(TB .x)

Fig. 1. Protocol ECKE-1

3 The revised protocol ECKE-1R

In previous work [8], Strangio claimed that the security attributes of protocol ECKE-
1 included key-compromise impersonation resilience, forward secrecy, unknown key-
share resilience and partial key control. In practice, however, the protocol suffers from
a vulnerability that exposes it to key-compromise attacks.

Recall that a KCI attack involves an adversary that has obtained the private key of
an honest party. Although direct impersonation of that party would then be straightfor-
ward the adversary may instead want to exploit the long-term key to capture valuable
information about the “corrupted” party (e.g. credit card number). To this end, by im-
personating a legitimate principal, the adversary attempts to establish a known session
key in a run of the protocol with the target principal using the compromised private key.

The details of the KCI attack against protocol ECKE-1 are presented in [10, 3].
We point out that the conclusion drawn by the authors of [10], by which the adversary
does not require a valid long-term key pair for such an attack to succeed is of limited
applicability in this scenario. In fact, to obtain a valid certificate either the adversary
E must reveal her true identity to the CA (A could then simply refuse to communicate

3

with E after verifying her identity) or the CA should (dishonestly) accept to issue a
false certificate for E.

In this section we present protocol ECKE-1R, a revised version of protocol ECKE-
1, which is key-compromise resilient. The new protocol eliminates the need to compute
the values dA, dB and introduces two new constructs sA, sB that act as “signatures”
of the shared secret c (= cA = cB) established in the initial part of the protocol run
(thus depending QA, QB , eA, eB). The main actions of protocol ECKE-1R are shown
in Figure 2. Let H : {0, 1}∗ → Fq denote a collision resistant hash function.

A(wA, WA), B(wB , WB)

A : rA
R← [1, n− 1]

eA ← H(rA, wA, idB)
QA ← (rA + eAwA)P

A→ B: QA

B : rB
R← [1, n− 1]

eB ← H(rB , wB , idA)
QB ← (rB + eBwB)P
TB ← h(rB + eBwB)QA

sk ← kdf(0, TB .x)
cB ← kdf(1, TB .x)
sB ← rB + (eB + cB) · wB (mod q)

B → A: QB , sB

A : TA ← h(rA + eAwA)QB

sk ← kdf(0, TA.x)
cA ← kdf(1, TA.x)
if sBP = QB + cAWB then accept else reject
sA ← rA + (eA + cA) · wA (mod q)

A→ B: sA

A : if sAP = QA + cBWA then accept else reject

Fig. 2. Protocol ECKE-1R

Again, correctness of the protocol follows from the fact that in any honest execution
TA ≡ TB , therefore A and B will both compute the same session key sk = h(rArB +
rAeBwB + rBeAwA + eAeBwAwB)P and shared secret c = cA = cB .

On-line computation for each principal requires performing four scalar multiplica-
tions, one field multiplication and evaluating the hash function H. The on-line compu-
tational complexity for a principal (say A) may be reduced by pre-computation of the
3-tuple (rA, eA, QA). The resulting workload will be of only three scalar multiplica-
tions.

Notice that the KCI attack on protocol ECKE-1 as described in [10] no longer ap-
plies to protocol ECKE-1R. Indeed, the adversary (with knowledge of wA) imperson-
ating B is unable to construct a valid sB , using a nonce of her own choice, since this
requires knowledge of the long-term secret key wB . Note that computation of the values
sA, sB is mandatory to guarantee KCI resilience.

4

4 Security of protocol ECKE-1R

Protocol ECKE-1R is a key agreement protocol that provides key confirmation (its two
round version provides implicit key confirmation only). We now briefly (and infor-
mally) review the main security attributes of the protocol below.

Key privacy. The adversary is unable to compute the session key established by two
honest parties in a run of the protocol assuming the intractability of the CDHP in the
underlying group (and the session key, in the best case, is a randomly distributed value
in {0, 1}` with ` ≥ 128).

Key independence. An adversary with known session keys (e.g. previously estab-
lished by the same parties) has a negligible probability of mounting a successful attack
against the protocol since session keys are uncorrelated (except for the possibility of
nonces repeating, which is extremely unlikely).

Forward secrecy. An adversary that holds one or both of the long-term private
keys wA, wB needs either rA or rB to derive the secret key of the target session (i.e.
a completed session for which the corresponding ephemeral public keys QA, QB are
also known). However, recovering these nonces is computationally infeasible assuming
the intractability of the DLP (intractability of the CDHP precludes deriving the term
rArBP used to compute the session key).

Key-compromise impersonation resilience. Suppose an adversary has obtained A’s
private key wA; she can now easily impersonate A in a run of the protocol. The adver-
sary (impersonating B) may succeed in a KCI attack against A if she is able to produce
a valid sB ; however this is unfeasible unless wB is known (statistically the odds are
2−|Fq| of guessing the correct value of sB).

Unknown key-share resilience. An adversary posing as E cannot deceive A into
believing that messages received from E were actually issued by B. Indeed, A and B
make use of the values eA, eB and signatures sA, sB which bind the identities idB , idA

(respectively) to the exchanged messages QA, QB by means of their respective private
keys; therefore, A may (mistakenly) believe the session key is shared with E (the ad-
versary), but will not derive the same session key as B, who is (correctly) convinced
the session key is shared with A. Strictly speaking, it is common usage to thwart UKS
attacks by including the identities of both principals as arguments to the key derivation
function. However, the strict requirements demanded of CAs (see Section 2) for the
issuance of certificates are by themselves sufficient to counter such attacks.

5 Conclusions and future work

In this paper we presented protocol ECKE-1R, a revised version of its predecessor
ECKE-1 which was found to be vulnerable to key compromise impersonation attacks. It
was informally shown that the new protocol is key-compromise impersonation resilient
and also enjoys common security properties such as forward secrecy, key independence
and unknown key-share resilience.

Future work includes the development of a formal proof of security in an appropriate
model of distributed computing (e.g. in the model of Canetti-Krawczyck [1]). We are
also currently seeking for a protocol specification that is KCI resilient but maintains the
efficiency of protocol ECKE-1.

5

References

1. R. Canetti and H. Krawczyk. Analysis of key exchange protocols and their use for building
secure channels. Advances in Cryptology-EUROCRYPT 2001, LNCS 2045:453–474, 2001.

2. R. Canetti and H. Krawczyk. Universally composable notions of key exchange and secure
channels. Advances in Cryptology-EUROCRYPT 2002, LNCS 2332:337–351, 2002.

3. R. Duraisamy, Z. Salcic, M. Strangio, and M. Morales-Sandoval. Supporting symmetric
128-bit aes in networked embedded systems: an elliptic curve key establishment protocol-
on-chip. EURASIP Journal of Embedded Systems, 2007:9, 2007.

4. D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptography. Springer
Professional Computing, New York, 2004.

5. IEEE-P1363.2/D15. Standard specifications for password-based public key cryptographic
techniques. Institute of Electrical and Electronics Engineers, 2004.

6. L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone. An efficient protocol for authenti-
cated key agreement. Designs, Codes and Cryptography, 28:119–134, 2003.

7. V. Shoup. On Formal Models for Secure Key Exchange. Technical Report RZ 3120, IBM
Research, 1999.

8. M. Strangio. Efficient Diffie-Hellmann Two-Party Key Agreement Protocols based on Ellip-
tic Curves. 20th ACM Symposium on Applied Computing - Security Track, pages 324–331,
2005.

9. M. A. Strangio. On the Resilience of Key Agreement Protocols to Key Compromise Imper-
sonation. Cryptology ePrint Archive, Report 2006/252, http://eprint.iacr.org/2006/252.pdf,
2006.

10. S. Wang, Z. Cao, and R. Lu. Cryptanalysis of an efficient diffie-hellman key agree-
ment protocol based on elliptic curves. Cryptology ePrint Archive, Report 2007/26,
http://eprint.iacr.org/2007/026.pdf, 2007.

6

