
Deniable Authentication on the Internet

Shaoquan Jiang

University of Calgary
Email: jiangshq@math.ucalgary.ca

Abstract. Deniable authentication is a technique that allows one party to send messages to another
while the latter can not prove to a third party the fact of communication. In this paper, we first
formalize a natural notion of deniable security and naturally extend the basic authenticator theorem
by Bellare et al. [2] to the setting of deniable authentication. Of independent interest, this extension is
achieved by defining a deniable MT-authenticator via a game. This game is essentially borrowed from
the notion of universal composition [8] although we do not assume any result or background about it.
Then we construct two deniable MT-authenticators: uncontrollable random oracle based and the PKI
based, both of which are just 3-round protocols. The second construction assumes the receiver owns a
secret key. Such a setup assumption is very popular in the real world. (Without this assumption), all
the previous protocols do not have a widely satisfiable performance when applied in the Internet-like
environment. Finally, as our application, we obtain key exchange protocols that is deniably secure in
the real world.

1 Introduction

Authentication is a communication process, in which a receiver is assured of the authenticity of
the peer identity and the authenticity of the incoming messages. This property can be guaranteed
by means of a signature. Since a secure signature is unforgeable and publicly verifiable, it in other
words means undeniability. This undeniability is not always desirable. For example, when you do
an Internet shopping, you do not want your shopping privacy to be transferred to a third party. In
this paper, we will investigate techniques for achieving deniable authentication.

1.1 Related Work

Deniable authentication was first considered in [15]. Earlier concepts occurred in [12]. Since deniabil-
ity essentially requires that whatever computable through interactions is computable by adversary
himself, a natural tool to achieve it is zero knowledge [20]. However, it is known that under a
general complexity assumption any black-box concurrent zero-knowledge has a round complexity
ω̃(log κ)[33, 26, 32]. This implies that the practical deniability from it is almost impossible as most
of the applications require concurrency. To overcome this barrier, [18, 16, 17, 25, 30, 13] relaxed the
concurrency with a locally timing constraint. However, timing constraint is not satisfiable as it
artificially increases the delay. An alternative approach is to adopt a non-standard complexity as-
sumption. Di Rainmondo et al. [14], based on an assumption of plaintext awareness [3, 11], showed
that SKEME [27] is deniably secure. But the assumption is very strong. Another alternative is to
adopt a common reference string (CRS) model. In this setting, efficient concurrent zero-knowledge
does exist [10, 22]. Unfortunately, it has been pointed out in the literature (e.g., Pass [31]) that
deniability obtained in this way is not satisfiable as the simulator usually owns a secret of CRS
while it is impossible to a real adversary. Similarly, an original random oracle [4] based solution is
not satisfiable, either. Pass [31] defined a revised random oracle model (we call it an uncontrollable

random oracle (uRO) model), which is different from the original one in that the output of the or-
acle is maintained by an uncontrollable third party (instead of a simulator) although the simulator
can still view the input-output pair of each query. Deniability under this model is practical since
whatever computable by the simulator is computable by the adversary himself. However, authenti-
cation is not a research concern in [31]. As a summary, known research in deniable authentication
is still not very satisfiable.

1.2 Contribution

In this paper, we first present an authentication model [2, 6] with featuring a concurrent compu-
tation model [29]. Under this, we formalize a notion of deniable security and naturally extend the
authenticator theorem in [2] to the setting of deniable computation. This extension is essentially
achieved by deploying a universal composition technique. This strategy is of independent interest.
Then we construct two provably deniable MT-authenticators: uncontrollable random oracle based
and PKI based, both of which are 3-round only. We remark that these results do not contradict
the barriers outlined before (e.g., large round complexity). Indeed, in the previous subsection we
implicitly assume that a receiver does not own a secret while in PKI-based protocol a receiver does
own a secret. This setup assumption is very popular in real applications (e.g., key exchange). It
is known [31] that deniability is impossible in the CRS setting. However, since participants in our
protocol have secrets, our simulator has no need to use the secret for CRS. In fact, the protocol
initialization in our model is executed by a third party. Thus, the simulator has no way to access
the secret for CRS. Finally, as our application, we obtain a key exchange protocols that is deniably
UM-secure.

2 Model

Bellare et al. [2, 6] formalized two models for cryptographic protocols: unauthenticated-link model
(UM) and authenticated-link model (AM). This model is very useful in a modular design of UM-
secure protocols. On the other hand, a concurrent composition model (e.g., [29]) is convenient in
analysis of protocols. We now present UM/AM models with featuring [29].

Assume P1, · · · , Pn are n-parties. π is an arbitrary protocol. The execution of π is modeled
as follows. Each party is regarded as a polynomial time interactive Turning machine. Initially,
Pi is invoked with input, identity and random input. Then he waits for an activation. Pi can be
activated by incoming messages from other parties and/or external input. Once activated, Pi follows
the specification of π by computing

π(input, internal state, incoming message)
=(new state, outgoing messages, output).

Initial internal state is the party’s input, identity and random input. After each activation, the
internal state is updated by a new state. Each activation could generate outgoing messages (to
other parties). It may also generate a local output and label the sensitive part as ‘secret’. Each Pi

could concurrently run many copies of π. A copy is called a session. Each session has a session ID.
The only requirement for a session ID is its uniqueness in Pi. The input for different activations of
each session in Pi might be different. It is generated by a probabilistic polynomial time algorithm
Φi. For the ℓth activation of the jth session, the input is xℓ,j = Φi(ℓ, j, xi, hist), where xi is the

2

initial input to Φi and hist is the output history of all copies of π in Pi. Note xℓ,j could be empty.
In order of delivery (also for security), each message sent into the channel is assumed to contain
(sender, sender session ID, receiver, receiver session ID). In addition, we implicitly assume that π
has been ideally initialized by a function I : for r ← {0, 1}κ, I(r) = I(r)0, I(r)1, · · · , I(r)n, where
κ is the security parameter, I(r)0 is the public information known to all participants, and I(r)i is
the secret key for Pi.

2.1 Unauthenticated-link Model

Roughly speaking, the unauthenticated-link model is a model for the concurrent execution of a
protocol where a malicious adversary presents. In this model, the scheduling of events is completely
determined by adversary U . Such a scheduling consists of a sequence of activations to parties. He
can activate any party Pi with an arbitrary incoming message. He can also invoke Pi to start a
new session. In both cases, it is assumed that Φi has already supplied the input (if any). He can
also delete, block, modify and insert any message over the channel. Once a party completes an
activation, the outgoing message and the local output (if any), except the parts labeled as ‘secret’,
are available to U . U can corrupt a party at any time. When one party gets corrupted, all sessions’
internal states and the secret key within this party are available to U . A special note ‘corrupted’ is
appended to the output of this party. It will not produce an output any more. In addition, his future
action is fully taken by U . U can also corrupt a particular session in Pi. In this case, he obtains
the current internal state for this session. A special note of corruption is appended to this session’s
output. Later, it will not produce an output any more. The future execution of this session is fully
taken by U . We assume session corruption is possible only if the session has started. This reflects
the practical concern where a session is attacked only if the attacker sees the session’s activity.

Assume the protocol is initialized by a trusted third party T. Specifically, before the protocol
starts, T takes s ← {0, 1}κ and executes the initialization function I(s) = {I(s)i}

n
i=0. Then he

provides I(s)i to party Pi as his secret. The global public information is I(s)0. At the end of
protocol execution, T outputs

I(s)0 ∪ {I(s)i | Pi corrupted, 1 ≤ i ≤ n}.

The final output of a party is defined to be the concatenation of his output history from all sessions.
Let x = (x1, · · · , xn), where xi is the initial input for Φi. Let r = (r0

0 , r
1
0, r

0
1, r

1
1 , · · · , r

0
n, r1

n) be the
random input, where r1

0 for U , r0
0 for T, r0

i for Pi and r1
i for Φi. Let Φ = (Φ1, · · · , Φn). We use

Advπ,U ,Φ(x, r) to denote the output of U , and use UnAuthπ,U ,Φ(x, r)i to denote the output of Pi.
UnAuthπ,U ,Φ(x, r)0 denotes the output of T. Let

UnAuthπ,U ,Φ(x, r)=Advπ,U ,Φ(x, r), UnAuthπ,U ,Φ(x, r)0, · · · , UnAuthπ,U ,Φ(x, r)n.

Let UnAuthπ,U ,Φ(x) be the random variable describing UnAuthπ,U ,Φ(x, r). Our inclusion of the
output of T in the global output is for defining deniable security later (See Section 2.3).

2.2 Authenticated-link Model

Authenticated-link model is similar to unauthenticated-link model, except that any outgoing mes-
sage sent by an uncorrupted party (if not blocked) will be faithfully delivered.

Authentication Functionality The following functionality (See Figure 1) is to formalize the
authenticated channel. Unlike [8], here we directly consider the multiple sessions of the functionality.

3

F̂ runs with parties P̃1, · · · , P̃n and adversary Â

- Whenever receiving (send, P̃j , m) from P̃i, take id← {0, 1}κ, send (id, P̃i, P̃j , m)
to Â and wait for a bit c from Â. After Â computes c (it could take arbitrary
length of time), it sends (c, id) back to F̂ .

- After receiving (c, id) from Â, if c = 1 and if (id, P̃i, P̃j , m) for some (P̃i, P̃j , m)
has been sent to Â but (∗, id) was not received before, send (receiv, id, P̃i, P̃j , m)
to P̃j . In any case, mark id as ‘answered’.

Fig. 1. Ideal functionality F̂ for authentication

This seems helpful to simplify the presentation. The action of P̃i is defined as follows. Whenever
upon input (send, P̃j ,m), copy it to the input tape of F̂ ; whenever receiving (receiv, id, P̃ℓ, P̃i,m)
from F̂ , directly output it. The procedure (in Figure 1) for P̃i to send m to P̃j is called a session

for P̃i, P̃j and F̂ , respectively. We simply say a F̂-session. Assume an uncorrupted sender P̃i never
sends a message m twice. This convention allows us to easily identify a replay attack. Thus, a
session for an uncorrupted sender can be identified by m itself. A session in F̂ or in a receiver P̃j

can be identified by id (for simplicity, we assume id← {0, 1}κ never repeats in this paper).
However, when a party P̃i is corrupted, our functionality allows Â, in the name of P̃i, to send
any m to P̃j (through F̂). This reflects the concern when one party is adversarial, cryptographic
authentication techniques can not prevent it from flooding a receiver. Further remarks follow. First,
message exchanges between P̃ℓ and F̂ are ideally secure and immediate (i.e., no adversary plays
between). Second, Ã can have an arbitrary delay to return (c, id). This reflects the nature of an
asynchronous network. c = 1 means the message m is not blocked. Third, Â can corrupt any P̃i or
a session in it. If a session is corrupted, the session state (i.e., input or output for this session) is
provided to Â and a note ‘corrupted’ is appended in his output. The future action is fully taken by
Â. If P̃i is corrupted, all the sessions in it are corrupted by Â. In addition, the future action of P̃i

is taken by Â. Especially, Â can represent P̂i to send any message m (including a previously sent
message) through F̂ to a party P̃j .

Authenticated-Link model We are now ready to present the authenticated-link model (AM).
Let P1, · · · , Pn be n parties for executing π. AM follows the order in UM, except messages are
sent/received through F̂ and the adversarial behavior is restricted correspondingly. Formally,

- When Pi needs to send a message m to Pj, it invokes P̃i in Figure 1 with input (send, P̃j ,m) to
do this.

- All incoming messages for a party Pj are received through reading the output of P̃j .

- Upon output (receiv, id, P̃i, P̃j ,m) of P̃j, Pj executes π with incoming message m.

The action of an adversary A is as follows.

• When Pi invokes P̃i with input (send, P̃j ,m), A plays the role of Â in Figure 1 to participate.

• When a session sid in Pi is corrupted, it is assumed that all the F̂-sessions of P̃i that send/receive
messages for session sid are corrupted. As a result, A will receive the internal state of Pi in
π including states from these F̂-sessions. Finally, a noted ‘corrupted’ appears in the output of
session sid. Later it is no longer active. Its action will be fully taken by A.

4

• When a party Pi is corrupted, all sessions in Pi are corrupted. As a result, the secret key I(r)i
and all internal states are available to A. The future action of Pi is taken by A.

The protocol is initialized by a third party T. Specifically, before the protocol starts, T takes
s ← {0, 1}κ and executes the initialization function I(s) = {I(s)i}

n
i=0. Then he provides I(s)i to

party Pi. The global public information is I(s)0 for all parties. In addition, T can execute an extra
function I ′(s′) = {I ′(s′)i}

n
i=0 for s′ ← {0, 1}κ. Initially, I ′(s′)0 and I(s)0 will be provided to A.

Later whenever Pi is corrupted, I(s)i and I ′(s′)i will be provided to A. At the end of protocol
execution, T outputs

{I(s)0, I(s′)0} ∪ {I(s)i, I
′(s′)i | Pi corrupted, 1 ≤ i ≤ n}.

Note our treatment for introducing the extra I ′(s′) is for defining deniable security (See Section
2.3), where I ′(s′) will be the initialization function for the protocol realizing F̂ . As for UM, let
x = (x1, · · · , xn), where xi is the initial input for Φi. Let r = (rf , r0

0, r
1
0 , r

0
1, r

1
1 , · · · , r

0
n, r1

n) be the

random input, where rf is for F̂ , r0
0 is for T, r1

0 is for A, r0
i is for Pi, r1

i is for Φi. Analogous to

UM, we can define the adversary output AdvF̂π,A,Φ,I′(x, r), the output of T AuthF̂
π,A,Φ,I′(x, r)0, the

output of party Pi AuthF̂
π,A,Φ,I′(x, r)i, the global output AuthF̂

π,A,Φ,I′(x, r) and the corresponding

random variable AuthF̂
π,A,Φ,I′(x). Note in the UM case, I ′ is empty. Also since I is already implicitly

included in π, there is no need to explicitly label it on the above variables.

2.3 Deniable Security

For a protocol π to be deniably secure, we essentially hope whatever computable by an attacker
through interactions can be computed by himself alone. There are two factors to prevent a simulator
from executing such a deniable computation. First, x could be unknown. However, if x is private, it
is hard to see what type of deniability can be formalized. To simplify the problem, we only consider
functionalities, where x is not a secret. For instance, in key exchange, xi is a request to carry out
key exchange. One may wonder why not just define the security model such that the adversary
additionally plays the role of Φ to supply protocol inputs. We stress that for some functionalities
such as oblivious transfer and e-voting, the inputs are secret. Thus, the adversary is not allowed
to know them unless the underlying party gets corrupted. The perfect version of security in a
multi-party computation is formalized as an ideal process, where the parties hands their inputs to
a trusted party who feeds back an output for each party by computing the functionality himself.
Details can be found in the literature (e.g., [29]). In our setting, input x is not a secret. It follows
that this formulation can also be regarded as an ideal version of deniable security. Again following
the multi-party tradition, the deniable security of a protocol π can be defined as requiring a ideal
process simulator to simulate a real system such that the global output of the ideal process is
indistinguishable to that in the real execution. However, the second problem comes. Recall that in
π, each party Pi receives a secret key I(r)i from the setup function I and an adversary is unable
to access an uncorrupted I(r)i. Thus, in order to be deniable, a simulator should not be allowed
to know uncorrupted I(r)i either. To do this, we let a third party T to take I(r) = {I(r)i} for
r ← {0, 1}κ and provide I(r)0 to ideal process simulator. Later, I(r)i is provided to the latter if
and only if Pi is corrupted. At the end of the simulation, T output I(r)0 and all corrupted I(r)i.
The global output in the ideal process is expanded with the output of T. If π is a F̂-hybrid protocol,
then I used by T in the above is replaced I and I ′ for an arbitrary given extra I ′.

5

Definition 1. Let π be a protocol with initialization function I for computing a functionality G.
Let I ′ be arbitrary extra initialization function (I ′ is empty if π is a UM protocol). π is said to
be deniably secure if for any feasible x, I ′ and any PPT adversary O against π there exists a PPT
adversary S against the ideal process such that

IDEALG,S,Φ,(I,I′)(x)
c
≡ REALπ,O,Φ,I′(x), (1)

where the left side and right side are the global outputs of ideal process and real process (i.e., in
AM or UM) respectively.

3 Deniable Authentication Theorem

Essentially, we wish to construct a protocol ρ to realize F̂ . Then for any protocol π in the F̂ -
hybrid model (i.e., AM), we replace F̂ by ρ and hope the composed protocol (denoted by πρ)
is secure. Bellare et al. [2] proposed a notion of MT-authenticator, which is a realization of F̂ in
the UM. They confirmed the above result when ρ is a MT-authenticator. However, here we are
mainly interested in finding a ρ that does not introduce undeniability. Original MT-authenticator
does not guarantee this since their simulator initializes the MT-authenticator himself. In order to
be deniable, a simulator should not be allowed to know the secret key of party in ρ unless he is
corrupted. To achieve this, we introduce a third party T to generate and maintain parties’ private
keys. Especially, a simulator is allowed to access I(r)i if and only if party i is corrupted. This is
what we have done in the authenticated-link model. We formalize this intuition into the following
notion of deniable authentication.

Definition 2. Assume ρ is a protocol for computing F̂ . Let π be any protocol in the F̂-hybrid
model. Let Iρ be the initialization function for ρ. πρ is said to be deniably authenticated if for any
adversary U against πρ and any x, there exists an adversary A against π such that

AuthF̂
π,A,Φ,Iρ

(x)
c
≡ UnAuthπρ,U ,Φ(x). (2)

Since MT-authenticator in [2] provides an authenticated transformation for any AM protocol,
a question is whether there exists a natural property for ρ such that as long as ρ satisfies it πρ

will be deniably authenticated for any π. In the following, we introduce a notion of deniable MT-
authenticator. We show that given a deniable MT-authenticator ρ, for any π in the F̂-hybrid model,
πρ is deniably authenticated. We define this notion through two protocol games. These game are
essentially borrowed from the notion of universal composition [8] although we do not need any
result or background about it.

The first game is denoted by G0. Assume P̃1, · · · , P̃n is running ρ in the UM with a dummy
adversary A0. Z is a PPT interactive Turing machine. Assume I(r) = {I(r)i}

n
i=0 is the initialization

function for ρ. Initially, Z will receive the public information I(r)0. On the one hand, Z plays the
role of Φ to supply inputs for P̃i. On the other hand, Z can supply A0 with instructions obeying
the UM rules at any time. These instructions include (1) starting a session at some Pi or (2)
activating a session with a specific incoming message or (3) corrupting a session or a party. Upon
an instruction, A0 executes it faithfully. In case of (1)(2), A0 outputs the outgoing message (if any)
generated by the activated session. In case of (3), A0 outputs the collected information. Z can
read the outputs from all parties including A0. At the end of the game (which is decided by Z),
Z outputs a bit b′. This completes the description of G0. Now we define the second game. Denote

6

it by G1. Assume P̃1, · · · , P̃n is executing F̂ with an adversary A1. A PPT machine Z is described
as follows. Initially, a third party Tρ takes I(r) = {I(r)}ni=0 for r ← {0, 1}κ and provides I(r)0 to
both A1 and Z. Later I(r)i is provided to A0 if P̃i is corrupted. The remaining description for Z
(i.e., supplying inputs to P̃i and instructions to A1) is exactly as in G0, except A1 instead of A0

will respond to these instructions. The action of A1 is arbitrary, except that he follows the rules of
ideal process in computing F̂ (see Section 2.2). At the end of G1, Z generates a bit b′. Now we are
ready to define our notion of deniably secure MT-authenticator.

Definition 3. Let ρ be a protocol for computing F̂ . ρ is a deniable MT-authenticator if there exists
a PPT simulator A1 such that for every PPT machine Z,

Pr[Z(G0) = 1]− Pr[Z(G1) = 1] (3)

is negligible.

Essentially, Gb is placed in a black box. The task of Z is to guess which game is inside. We show
if no Z can win significantly better than a trivial guess, then such a ρ gives arise to a deniable
transformation for any F̂-hybrid protocol.

Theorem 1. If ρ is a deniable MT-authenticator and π is a protocol in the F̂-hybrid model, then
πρ is deniably authenticated.

Before our actual proof, we first present the main idea. Essentially, A follows U , except the part
in executing F̂ , where A activates A1 through a sequence of instructions. If the ideal process in
executing F̂ with A1 is replaced with the real execution of ρ with A0, then A becomes identical to U .
Thus, if (2) is violated, we can construct a PPT machine Zρ to distinguish G0 and G1 as follows. Zρ

simulates {Pi} in π and Φ, and also follows A, except that whenever he needs to simulate a message
transmission, he does it through the challenge Gb for b← {0, 1}. Finally, Zρ provides the simulated
global output to a distinguisher and outputs whenever he does. If b = 1, the global output in the

simulation of Zρ is distributed as AuthF̂
π,A,Φ,Iρ

(x); otherwise, it is distributed as UnAuthπρ,U ,Φ(x).
As a result, violation of (2) implies a non-negligible advantage of Zρ, contradicting the assumption
of ρ. Now we start to implement the above idea.

Proof. Let U be against πρ. Assume I(r) = {I(r)i}
n
i=0 and Iρ(r

′) = {Iρ(r
′)i}

n
i=0 be the initialization

function for π and ρ respectively. With the above idea in mind, we first construct A against π in
the F̂-hybrid model.

a. A receives I(r)0, Iρ(r
′)0 respectively for π and ρ from T, invokes U with I(r)0 and Iρ(r

′)0. Pi

will receive I(r)i and I(r)0 from T. In addition, A initializes A1 with Iρ(r
′)0.

b. Whenever Pi wishes to send m to Pj , he plays the role of P̃i (in Figure 1) to send (send, P̃j ,m)
to F̂ , who will take id← {0, 1}κ and send (id, P̃i, P̃j ,m) to A. A then, in the role of F̂ , activates
A1 with (id, P̃i, P̃j ,m). After seeing any output by A1, forward it to U .

c. Whenever U requests to deliver a message msg to Pj, activate A1 with this request. In turn,
if A1 generates any output msg′, A provides it to U . (Remark: as the output of A0 in such a
query is to report the outgoing message from Pj , the output A1 is supposed to be a simulation
of such a message.) If A1 generates an outgoing message (c, id) to F̂ , A sends (c, id) to F̂ as
his reply for the request of bit c.

7

d. Whenever U requests to see an output of party i, collect the output of Pi in π (not including
the parts labeled as ‘secret’) and provide it to U . Note since both A and U are not allowed to
see the secret parts, this simulation is perfect.

e. Whenever U asks to corrupt a session id in Pi, corrupt the corresponding session in π and obtain
the session state stat. In addition, he, the role of Z in G1, requests A1 to corrupt all the sessions
that sending messages from session id (Recall each message contains the sender session ID of π;
See the protocol syntax in Section 2). As results, A1 will output simulated internal states stat′

for all these sessions. A merges stat′ and stat to provide a complete session state st for session
id of Pi in π. Finally, A provides st to U .

f. Whenever U asks to corrupt a party Pi, corrupt Pi in π to get I(r)i and then obtain the secret
key Iρ(r)i (from T by requesting A1 to corrupt P̃i). Obtain internal states for all sessions in Pi

through session corruption as in item (e). Finally, provide all the information to U .

Finally, A outputs whatever U does.
We claim that A will satisfy (2). Otherwise, we construct a PPT machine Zρ to distinguish

G0/G1 with a non-negligible advantage. To do this, we first show that the simulation of A can be
completed by black-box access to the game G1. Indeed, we only need to check the black-box access
restriction for A can be satisfied.

- In item (a), this will be violated when A initializes A1 with Iρ(r
′)0. However, since T already

initializes A1 with it, this operation is not required any more.
- In item (b), the code exactly follows the description of G1. Thus, A only needs to feed input

(send, P̃j ,m) and read the output from A1.
- In item (c), A only needs to feed the instruction “deliver message msg to Pj” to A1. The

remaining computation will be perfectly simulated in G1.
- Item (d)(e)(f) do not violate black-box restriction.

This revision does not change the global output of the simulation (i.e., AuthF̂
π,A,Φ,Iρ

(x)). On
the other hand, when the black-box G1 is replaced with G0, then the global output of the simulated
game is distributed exactly as UnAuthπρ,U ,Φ(x). Now we are ready to describe the code of Zρ.

Given black-box Gb, auxiliary input x and Iρ(r
′)0, he initializes {I(r)i} for π in F̂ -hybrid mode,

simulates {Pi} faithfully, plays the role of Φ, and also follow the revised A with black-box access
to Gb. Finally, Zρ provides the global output out of the simulated game to the distinguisher of
equation (2) and outputs whatever he does. Note that if b = 0, then out is distributed according
to the right hand of equation (2); the right hand of (2) otherwise. Thus, non-negligible advantage
of the distinguisher implies non-negligible advantage of Zρ, contradiction to assumption on ρ. �

Corollary 1. Assume ρ is deniably MT-authenticator and π is deniably secure in the F̂-hybrid
model, then πρ is deniably secure in the UM.

4 Our Deniable MT-Authenticators

4.1 Uncontrollable Random Oracle Based Deniable MT-Authenticator

In this subsection, we will construct a deniable MT-authenticator from random oracle. Notice that
the original random oracle [4] is completely controlled by a simulator. Especially, if an oracle query
is issued by the simulator himself, he can first choose the output and then decide the query input.

8

This provides too much freedom to a simulator. As pointed out by Pass [31], a solution obtained
in this way is not deniable as a real attacker does not have this right at all. The random oracle
we use here is defined by Pass. This object is maintained by an uncorruptible third party but all
the input-output pairs are seen by the simulator. We call it Uncontrollable Random Oracle (uRO).
Deniability makes sense in this model since whatever computable by a simulator is computable by
an attacker himself.

Pi Pj

m
//

m||Ti(r)||H(r,Pj,Pi,m)
oo

m||H(r,Pi,Pj ,m)
//

Fig. 2. Our Deniable MT-Authenticator uRO-Auth

(Note the complete details appear in the context)

Now we describe our uRO based MT-authenticator. We call it uRO-Auth MT-authenticator.
Assume Pi wishes to send a message m to Pj . Let Ti be the public-key of a trapdoor permutation
owned by party Pi and Di be the trapdoor for Ti. Pi first sends m to Pj . Pj then takes r ← {0, 1}κ,
computes and sends back m‖Ti(r)‖H(r, Pj , Pi,m) to Pi. Receiving m‖α‖β, Pi computes r′ = Di(α).
If r′ 6=⊥, it checks whether β = H(r′, Pj , Pi,m). If yes, he computes and sends out m||γ to Pj , where
γ = H(r′, Pi, Pj ,m). If r′ =⊥ or β is not successfully verified, he does nothing. Upon receiving m‖γ,
Pj checks whether γ = H(r, Pi, Pj ,m). If yes, he generates a local output “(receiv, id, Pi, Pj, m)”
for id← {0, 1}κ; otherwise, it does nothing. The graphic interpretation of the protocol is presented
in Figure 2.

In the following, we show that uRO-Auth is a deniable MT-authenticator. We first outline the
proof strategy, which is quite general and will be used throughout this paper. Assume we generally
need to prove a protocol ρ is a deniable MT-authenticator. Then we need to construct a simulator
A1 such that Definition 3 is satisfied. On the one hand, we let A1 participate in the ideal process
for F̂ . On the other hand, A1 simulates P1, · · · , Pn to execute ρ, where the adversarial behaviors
are described by the instructions from Z. A1 uses the simulated ρ to help compute c (requested by
F̂ in the ideal process). The simulation is so good such that the global outputs in the real ρ and
in the ideal process of F̂ are indistinguishable. As Z only read the output of Gb (b = 0, 1), he only
has a negligible advantage in distinguishing G0/G1.

Theorem 2. If H is an uRO, then uRO-Auth is a deniable MT-authenticator.

Proof. Keep the notations as in the definition of deniable MT-authenticator. We need to construct
a simulator A1 such that for any PPT machine Z

Pr[Z(G0) = 1]− Pr[Z(G1) = 1] (4)

is negligible. The code of A1 is as follows. First of all, T randomly samples {(Ti,Di)} and provides
{Ti} to both Z and A1. The uncontrollable random oracle H is assumed to work as follows. It

9

maintains a list LH which is initially empty. Upon a hash query x, this H-oracle checks whether
x was queried before. If not, it takes y ← {0, 1}κ and adds (x, y) to LH ; otherwise, it takes the
existing record (x, y) from LH . The answer to query x is y. The detailed simulation by A1 is as
follows.

I1 Whenever A1 receives a message (id, P̃i, P̃j ,m) (from F̂) and is asked for a bit c, he internally
simulates Pi to send a flow one message m to Pj in his simulated uRO-Auth and reports this flow
one message to Z (intuitively, let Z believe he is interacting with real execution of uRO-Auth).

I′1 Whenever A1 was requested to start a session in the name of corrupted Pi to authenticate a
message m to Pj , A1 first in the name of corrupted P̃i sends (send, P̃j ,m) to F̂ . The remaining
action of this query is to follow item I1.

I2 Whenever Z requests A1 to deliver a message msg from Pi to a responder Pj (i.e., Pj plays
the authentication receiver in the protocol), A1 does the following. A1 represents Pj to do so
honestly in the simulation of uRO-Auth. If msg is a flow one message, he reports the simulated
flow two message back to Z; otherwise, msg is flow three message. In this case, if the simulated
Pj accepts, c = 1; c = 0 otherwise. Feedback (c, id) to F̂ , where if some (id, P̃i, P̃j ,m) was
received from F̂ but (∗, id) has not been feedback, take id as in this received tuple; otherwise
id← {0, 1}κ. In any case, if c = 1, A1 simulates Pj to generate an output (receiv, id, Pi, Pj ,m).
Denote the event that c = 1 but (id, P̃i, P̃j ,m) was never received before by Bad0; denote the
event P̃i is uncorrupted and c = 1 but (c∗, ∗) on m for a bit c∗ was sent to F̂ by Bad1. Note
under ¬Bad0 ∧ ¬Bad1, outputs of Pj and P̃j are identical.

I3 Whenever A1 is asked to deliver a Flow2 message m||α||β to Pi, A1 checks whether LH has
a record ((r′, Pj , Pi,m), β) for some r′ such that α = Ti(r

′). If the check fails, it terminates
this session; otherwise (in this case r′ is unique since Ti is a permutation), asks H-oracle for
query (r′, Pi, Pj ,m). Assume the answer is γ. He then simulates to send out m||γ to Pj and
reports this message to Z. This simulation is perfect except when β happens to be valid while
(r′, Pi, Pj ,m) satisfying α = Ti(r

′) was not queried to H-oracle (this covers the attack by forging
flow two message without query (r′, Pi, Pj ,m) to H-oracle). We note this event by E1. We know
that the number of Flow2 message is upper bounded by run time of Z (denoted by Rz). Then,
Pr[E1] ≤

Rz

2κ .
I4 Whenever A1 is requested to reveal a session in Pt, A1 represents Pt to do so honestly. No

matter Pt is a sender or receiver of m, we have that before Flow2 message the session state of
Pt is m while after Flow2 message the session state of Pt is m||r′ Note the above session state
is well defined if event ¬E1 holds. A1 then reports the collected session state back to Z.

I5 When A1 is requested to corrupt Pt, he first obtains Dt from T, then combines all the internal
states in sessions in Pt. Finally report them to Z. This simulation is perfect under event ¬E1.

From the above simulation, under ¬Bad0∧¬Bad1, the outputs of Pi and P̃i are exactly identical.
In addition, the simulation of A1 differs from the real execution of uRO-Auth only if E1 occurs.
Thus, under ¬Bad0 ∧ ¬Bad1 ∧ ¬E1, the view of Z is identical to when interacting with G0. So
it remains to show that Pr[Bad0 ∨ Bad1 ∨ E1] is negligible. First, Bad0 occurs if uncorrupted Pj

successfully verifies a flow three message (m,γ) and thus attempts to feedback a bit (c, id) to F but
he never received a (id, P̃i, P̃j ,m) from the latter. Bad1 implies two uncorrupted sessions accepts
m. Since no uncorrupted sender sends the same m twice, at lest one session has no sender session.
Thus, Bad1 occurs only if r taken in these two receiver sessions happen to be identical or otherwise

if (r, Pi, Pj ,m, γ) with different r are consistent for both sessions (which has a probability R2
z

2κ , as
for at least one session (r, Pi, Pj ,m) was not queried to H-oracle prior to receipt of γ). This gives

10

Pr[Bad1] ≤
2R2

z

2κ . We now bound Pr[Bad0∧¬E1]. Let ǫ be the probability that a trapdoor permutation
adversary succeeds within run time Rz. We show that Pr[Bad0∧¬E1] ≤ nRzǫ. Intuitively, a Bad0∧
¬E1 implies Z is able to decrypt the permutation in flow two in order to forge a valid flow three
message. Details follow.

Consider a trapdoor permutation adversary I who takes ℓ ← {1, · · · , n}. Upon receiving the
challenge trapdoor public-key T and a permutation challenge W , he runs Z and plays the code of
F̂ and A1 interacting with it, except that Tℓ is defined to be T. Note the number of the receiver
sessions is bounded by Rz. I takes L← {1, · · · , Rz}, hoping that Bad0 will occur to the Lth receiver
session. The simulation code of I is to play the roles of A1 and F̂ , except the followings.

a. Whenever seeing that a query (r, Pa, Pb, ∗) for any a, b is sent to H-oracle, I first checks whether
Tℓ(r) = W . If yes, it succeeds and terminates; otherwise, it does nothing.

b. when I is requested to activate the Lth receiver session (say at party Pv) with incoming message
m∗, I checks whether the sender implied in m∗ is the owner of Tℓ. If yes, it takes β∗ ← {0, 1}κ

and simulates to send m∗||W ||β∗ to Pℓ and reports this message to Z; otherwise, he aborts (this
implies that the choice of (ℓ, L) is wrong).

c. when Z requests to corrupt Pℓ, or reveal the Lth receiver session or its corresponding sender
session, I is unable to provide Dz for the first case and is unable to provide the state r for the
remaining two cases. He aborts the simulation. Note since Bad0 never happens to a corrupted
sender or revealed session, this abortion event implies the guess of (ℓ, L) is wrong.

d. when I is requested to deliver a Flow2 message m′||W ||β′ to Pj , item (a) guarantees that
(Dℓ(W), Pa, Pb, ∗) was not queried to H-oracle. If m′ = m∗ and β′ = β∗, then I takes γ∗ ←
{0, 1}κ and simulates to send out m∗‖γ∗ to Pv and reports this message to Z. Otherwise, Pℓ

simply rejects and terminates this session. Note the wrong reject implies a E1 event. Thus, under
event ¬E1, the simulation is perfect.

e. when the Lth receiver session (in party Pv) is activated with m∗|γ′ later, I checks if there is
any ((r, Pz , Pv ,m

∗), γ′) in LH such that Tz(r) = W . If yes, it succeeds with r; otherwise, if
γ′ = γ∗ (if γ∗ has been defined), Pv generates a local output “(receiv, id, Pz, Pv,m)” where
take id← {0, 1}κ if it does not exist, otherwise, it simply rejects. Note the wrong reject occurs,
denoted by event E′

1, with probability ≤ Rz

2κ .

Let us denote the global output when Bad0 ∧ ¬E1 ∧ ¬E′
1 happens to (ℓ, L) by Πℓ,L, denote the

global output when E1 ∨ E′
1 occurs by Π1, denote the global output when neither Bad0 nor E1 nor

E′
1 occurs by Π∞. Note before an abortion event occurs, the simulation under ¬E1 ∧¬E′

1 is perfect
as by A1. Therefore, we have

Pr[Succ(I)] = 1
nRz

∑
ℓ,L Pr[x ∈ Πℓ,L]

≥ 1
nRz

Pr[x ∈ ∪ℓ,LΠℓ,L]

= 1
nRz

Pr[Bad0 ∧ ¬E1 ∧ ¬E′
1],

Thus, Pr[Bad0 ∧ ¬E1 ∧ ¬E′
1] ≤ nRzǫ. This implies that Pr[Bad0 ∧ ¬E1] ≤ nRzǫ + Rz

2κ .

Since Pr[Bad0 ∨ E1 ∨ Bad1] ≤ Pr[Bad0 ∧ ¬E1] + Pr[E1] + Pr[Bad1] ≤ nRzǫ + 2Rz+2R2
z

2κ , we have

Pr[Z(G1) = 1]− Pr[Z(G0) = 1] ≤ nRzǫ + 2Rz+2R2
z

2κ too. This concludes our proof. �

4.2 PKI-based Deniable MT-Authenticator

PKI-based deniability is rarely studied in the literature. However, deniability in this case is very
important as lots of protocols (e.g. key exchange) are built under PKI. In this subsection, we will

11

construct a deniable MT-Authenticator based on PKI. An immediate idea is to directly use ring
signatures [34]. However, this solution is not fully deniable as one can conclude one of ring members
signed the message. In the following, we introduce our new construction.

Let (Gen(1κ), E,D) be a public-key encryption system, where Gen(1κ) is the key generation
algorithm for encryption/decrpytion key pair (ek, dk) and E/D are encryption/decryption algo-
rithms. Let (G(1κ), RS,RV) be a ring signature scheme, where G(1κ) is the signing/public key
pair (sk, vk) and S/V are signing/verification algorithms. For a user Pi, the PKI authority takes
(eki, dki) ← Gen(1κ), (ski, vki) ← G(1κ). The cerificate for Pi is the authority’s digital signature
on (edi, vki). Let the global public-key I0 = {eki, vki}

n
i=1. Each user will receive his private key

(ski, dki). For simplicity, we use Ej to represent the encryption using ekj . When the ring of two
users Pi and Pj is clear, we use RSi() to represent the signing process with key ski and simply use
RVij() to represent the verification algorithm for the ring Pi and Pj . In addition, assume Pij is a
non-interactive zero knowledge protocol for relation R = {〈k‖u‖u′, Ei(k;u)‖Ej(k;u′)〉 : k, u, u′ ∈
{0, 1}κ}, where E(x; y) is an encryption of x using randomness y. We also use P to denote such
a protocol where Pi and Pj are unspecified. We use P ij {Ei(k;u)‖Ej(k;u′); k‖u‖u′} to denote a
random proof for an input (Ei(k;u), Ej(k;u′)). Our PKI-Auth MT-authenticator is as follows.

Pi Pj

a← {0, 1}κ
m‖a

//

b, u, u′ ← {0, 1}κ

k = RSj(a, b, Pj , Pi, m, 0)
state={a, b, Pi, Pj , m}

erase other intermiate data

m‖b‖Ei(k; u)‖Ej(k; u′)‖σ
oo

v, v′ ← {0, 1}κ

z = RSi(a, b, Pi, Pj , m, 1)
state={a, b, Pi, Pj , m}

erase other intermiate date

m‖Ei(z; v)‖Ej(z; v′)‖ω
//

Fig. 3. Our Deniable MT-Authenticator PKI-Auth

(Note the complete details appear in the context)

1. When given input (send, Pj ,m), Pi takes a← {0, 1}κ, sends out m‖a.
2. Pj takes b, u, u′ ← {0, 1}κ, computes and sends

m‖b‖Ei(k;u)‖Ej(k;u′)‖σ (5)

to Pi, where k = RSj(a, b, Pj , Pi,m, 0) and σ ← P ij{Ei(k;u)‖Ej(k;u′); k‖u‖u′}. In addition,
Pj defines the internal state to be (a, b, Pi, Pj ,m) and erases other intermediate data.

3. Pi verifies whether σ is valid, decrypts k from Ei(k;u) and checks whether RVij((a, b, Pj , Pi,m, 0), k) =
1. Next, he takes v, v′ ← {0, 1}κ, computes and sends

m‖Ei(z; v)‖Ej(z; v′)‖ω (6)

to Pj , where z = RSi(a, b, Pi, Pj ,m, 1) if Flow2 is successfully verified, z ← {0, 1}κ otherwise,
and ω ← P ij{Ei(z; v)‖Ej(z; v′); z‖v‖v′}. In addition, Pj erases all the intermediate data and
terminates.

12

4. Pj verifies whether ω is valid, decrypts z from Ej(z; v′) and checks whether RVij((a, b, Pi, Pj ,m, 1), z) =
1. If the verifications are successful, then Pj generates a local output “(receiv, id, Pi, Pj ,m)” for
id← {0, 1}κ and terminates; otherwise, it does nothing.

In the following, we show that our PKI-Auth protocol is a deniable MT-authenticator against a
non-adaptive adversary. To do this, we need P to be an adaptive non-interactive zero-knowledge
proof for relation R, where ‘adaptive’ means the system parameter is chosen before the common
input to be proven is chosen; See [28]. The proof of Theorem is put in appendix.

Theorem 3. Assume P is an adaptive non-interactive zero-knowledge proof for relation R with
negligible soundness error. (Gen(1κ), E,D) is a CCA2 secure public-key encryption scheme, and
(RS, V K) is an existentially unforgeable ring signature scheme. Then PKI-Auth is a deniable MT-
authenticator against non-adaptive adversary.

5 Application to Deniable Key Exchange

Key exchange is a communication procedure in which participants establish a temporarily shared
secret key. To evaluate the security, several models are proposed in the literature [2, 4, 6]. Here we
use the model in [24], a slightly revised version of [2]. In this model, an ideal process is defined.
Then a real protocol λ is constructed. λ is said to be secure if for any adversary against λ, there
exists an adversary against the ideal process such that the global output in these two worlds are
indistinguishable. Here the ideal process as well as the security definition should be slightly modified
to be consistent with that in Section 2.3. In [24], a F-hybrid secure key exchange protocol Encr-KE

was proposed (See Figure 4), where (G(1κ), E ,D) is a semantically secure public-key encryption
scheme. Notice that this protocol has an empty initialization function. It follows that Encr-KE is
deniably secure in the F-hybrid model in the sense of Definition 1 (note the original proof needs
to be slightly modified in order to cater our formalization of authenticated-link model).

Pi Pj

(eki, dki)← G(1
κ)

(Pi,Pj ,s,I,eki)
//

k = Ddki
(C)

Output k,
erase other data

k ← K, C = Eeki
(k)

state={k},
erase other data

(Pj ,Pi,s,R,C)
oo

(Pi,Pj ,s,ok)
// Output k

Fig. 4. AM-secure Key Exchange Protocol Encr-KE, Details see [24]

Denote the key exchange protocol obtained by applying uRO-Auth and PKI-Auth to Encr-KE by
uROE-KE and PKIE-KE, respectively. From the deniable authicator theorem, we have

Theorem 4. uROE-KE and PKIE-KE are deniably secure key exchange protocols in the UM, where
the former is adaptively secure while the latter is only non-adaptively secure.

13

References

1. M. Bellare, A. Boldyreva and S. Micali, Public-Key Encryption in a Multi-User Setting: Security Proofs and
Improvements, EUROCRYPT’00, 2000.

2. M. Bellare, R. Canetti, and H. Krawczyk, a modular approach to the design and analysis of authentication and
key exchange protocols, Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, pp.
419-428, 1998, Dallas, Texas, USA.

3. M. Bellare and A. Palacio, Towards Plaintext-Aware Public-Key Encryption without Random Oracles, Advances
in Cryptology-ASIACRYPT’04, Springer-Verlag, 2004.

4. M. Bellare and P.Rogaway, Entity authentication and key distribution, Advances in Cryptology-CRYPTO’93, D.
Stinson (Ed.), LNCS 773, Springer-Verlag, 1993.

5. M. Bellare and P. Rogaway, Random Oracle is Practical: A Paradigm for Designing Efficient Protocols, ACM
CCS’93, pp. 62-73.

6. R. Canetti and H. Krawczyk, analysis of key-exchange protocols and their use for building secure channels,
Advances in Cryptology-EUROCRYPT 2001, B. Pfitzmann (Ed.), LNCS 2045, Springer-Verlag, pp. 453-474,
2001.

7. R. Canetti, Security and Composition of Multi-party Cryptographic Protocols, Journal of Cryptography, Vol. 13,
No. 1, pp. 143-202, 2000.

8. R. Canetti, Universally Composable Security: A New Paradigm for Cryptographic Protocols, FOCS’01, 2001.
9. R. Cramer and V. Shoup, a practical public-key cryptosystem provably secure against adaptive chosen ciphertext

attack, Advances in Cryptology-CRYPTO 1998, H. Krawczyk (Ed.), LNCS 1462, Springer-Verlag, pp. 13-25, 1998.
10. I. D̊amgard, Efficient Concurrent Zero-Knowledge in the Auxiliary String Model, Advances in Cryptology-

Eurocrypt 2000, pp. 418-430, 2005.
11. A. Dent, The Cramer-Shoup Encryption Scheme is Plaintext Aware in the Standard Model, EUROCRYPT’06.
12. Y. Desmedt, Subliminal-Free Authentication and Signature (Extended Abstract), EUROCRYPT 1988, pp. 23-33,

1988.
13. M. Di Raimondo and R. Gennaro, New Approaches for Deniable Authentication, ACM CCS’05, pp. 112-121,

2005.
14. M. Di Raimondo, R. Gennaro and H. Krawczyk, Deniable Authentication and Key Exchange, ACM CCS’06.
15. D. Dolev, C. Dwork, M. Naor, Non-malleable Cryptography. SIAM J. Comput., 30(2): 391-437 (2000). Earlier

version appeared in STOC’91, pp. 542-552, 1991.
16. C. Dwork and M. Naor, Zaps and Their Applications, FOCS’00, pp. 283-293, 2000.
17. C. Dwork, M. Naor and A. Sahai, Concurrent Zero-Knowledge, STOC’98, pp. 409-418.
18. C. Dwork and A. Sahai, Concurrent Zero-Knowledge: Reducing the Need for Timing Constraints, CRYPTO’98,

pp. 442-457.
19. U. Feige, A. Shamir, Zero Knowledge Proofs of Knowledge in Two Rounds, Advanced in Cryptology-CRYPTO’89,

G. Brassard (Ed.), LNCS 435, Springer-Veralg, pp. 526-544, 1989.
20. S. Goldwasser, S. Micali, C. Rackoff, The Knowledge Complexity of Interactive Proof Systems, SIAM J. Comput.,

18(1): 186-208 (1989).
21. O. Goldreich, Foundations of Cryptography: Basic Applications, Cambridge University press, 2004.
22. J. Groth, R. Ostrovsky and A. Sahai, Perfect Non-interactive Zero Knowledge for NP, EUROCRYPT’06, pp.

339-358, 2006.
23. M. Jakobsson, K. Sako, R. Impagliazzo, Designated Verifier Proofs and Their Applications. EUROCRYPT 1996:

143-154.
24. S. Jiang and G. Gong, “Efficient Authenticators with Application to Key Exchange”, the 8th Annual International

Conference on Information Security and Cryptology (ICISC’05), D. Won and S. Kim (Eds.), LNCS 3935, Springer-
Verlag, pp. 81-91, 2006.

25. J. Katz, Efficient and Non-malleable Proofs of Plaintext Knowledge and Applications, EUROCRYPT’03, pp.
211-228.

26. J. Killian and E. Petrank, Concurrent and Resettable Zero-Knowledge in Poly-Logarithmic Rounds, ACM
STOC’01, pp. 560-569, 2001.

27. H. Krawczyk, SKEME: a versatile secure key exchange mechanism for Internet, NDSS’96, pp. 114-127.
28. Y. Lindell, A Simpler Construction of CCA2-secure Public-key Encryption under General Assumptions, EURO-

CRYPT’03, pp. 241-254.
29. Y. Lindell, Lower Bounds and Impossibility Results for Concurrent Self Composition, to appear in Journal of

Cryptology.

14

30. M. Naor, Deniable Ring Authentication, Advances in Cryptology-CRYPTO’02, M. Yung (Ed.), LNCS 2442,
Springer-Verlag, pp. 481-498, 2002.

31. R. Pass, On the deniability in the common reference string and random oracle model, Advances in Cryptology-
CRYPTO’03, D. Boneh (Ed.), LNCS 2729, Springer-Verlag, pp. 316-337, 2003.

32. M. Prabhakaran and A. Sahai, Concurrent Zero Knowledge Proofs with Logarithmic Round-Complexity,
FOCS’02, pp. 366-375, 2002.

33. R. Richardson and J. Kilian, On the Concurrent Composition of Zero-Knowledge Proofs. Advances in Cryptology-
Eurocrypt’99, pp. 415-431, 1999.

34. R. Rivest, A. Shamir and Y. Tauman, How to Leak a Secret, ASIACRYPT’01, pp. 552-565.

Appendix

Proof of Theorem 3. Keep the notations as in G0 and G1. We need to construct A1 against
the ideal process such that for any PPT machine Z,

Pr[Z(G0) = 1]− Pr[Z(G1) = 1] (7)

is negligible. We still use the strategy outlined right before Theorem 2. We use P̃i to denote party i in
ideal process and Pi to denote party i in the execution of PKI-Auth simulated by A1. Detailed code
of A1 follows. Let C be the set of parties corrupted by Z. T first initializes {(eki, dki), (ski, vki)}

n
i=1

and the common reference string crs of P. Then it provides crs and {(dki, ski) : Pi ∈ C} as well as
{eki, vki}

n
i=1 to A1 and Z. Whenever Z provides inputs (resp. instructions) to Pi (resp. A1), the

following will be executed.

I1. Whenever P̃i is given input (send, P̃j ,m), he will copy to the input of F̂ , who will further activate
A1 with a message (id, P̃i, P̃j ,m). Then A1 simulates Pi to send a flow one message (m,a) to
Pj and also reports this simulated message to Z, where a← {0, 1}κ.

I′1 Whenever A1 is instructed, in the name of an corrupted Pi, to authenticate a message m to Pj ,
he sends (send, P̃j ,m) to F̂ . The remaining simulation of A1 in this query follows I1.

I2. Whenever A1 is requested to activate Pj with a Flow1 message m‖a, A1 simulates Pj to execute
as follows. Let Pi be the sender implied in m.

- If Pi ∈ C, then the action for Pj is normal, except that RSj(a, b, Pj , Pi,m, 0) is replaced by
RSi(a, b, Pj , Pi,m, 0). Due to the property of ring signature, this simulation is perfect.

- If Pi 6∈ C, A takes b, k, u′, u← {0, 1}κ and computes and sends out m‖b‖Ei(k;u)‖Ej(k;u′)‖σ
to Pi, where σ ← Pij{Ei(k;u)‖Ej(k;u′); k‖u‖u′}. In addition, he adds a record

(a, b, Pj , Pi,m, 0, Ei(k;u)‖Ej(k;u′))

into a list L which is initially empty.
In any case, report the Flow2 message to Z.

I3. Whenever A1 is requested to activate Pi with a Flow2 message m‖b‖c1‖c2‖σ, A1 does the
following.

- If Pj (the receiver implied in m) is corrupted, then A1 uses dkj to decrypt k from c2, verifies
the validity of σ, and checks whether RVij((a, b, Pj , Pi, 0), k) = 1. If all the verifications are
successful, define z = RSj(r, s, Pi, Pj , 1); otherwise, z ← {0, 1}κ. The remaining simulation
for a Flow3 message is normal.

- If Pj 6∈ C, A1 takes v, z, v′ ← {0, 1}κ, computes and sends out m‖Ei(z; v)‖Ej(z; v′)‖ω to Pj ,
where ω ← Pij{Ei(z; v)‖Ej(z; v′); z‖v‖v′}. In addition, if (a, b, Pj , Pi,m, 0, c1‖c2) ∈ L and
c1‖c2‖σ is consistent, A1 records

(a, b, Pi, Pj ,m, 1, Ei(z; v)‖Ej(z; v′))

15

into L.
In any case, A1 reports the Flow3 message to Z.

I4. Whenever A1 is requested to activate Pj with a Flow3 message m‖γ1‖γ2‖ω, A1 does the fol-
lowing. Let Pi be the sender implied in m.

- If Pi ∈ C, thenA1 decrypts z from γ1 with dki. He then verifies whether RVij((a, b, Pi, Pj ,m, 1), z) =
1 and whether ω is consistent with γ1‖γ2. He sets Flag=1 if both are verified successfully;
otherwise, Flag = 0.

- If Pi 6∈ C, then A1 checks if (a, b, Pi, Pj ,m, 1, γ1‖γ2) ∈ L and if γ1‖γ2‖ω is consistent, where
a‖b is taken from the internal state of Pj . In case of yes, he sets Flag=1; otherwise, Flag=0.

In any case, if ∃ a message (id, P̃i, P̃j ,m) was received from F̂ for some id but (∗, id) has not been
feedback, he sends a message (Flag, id) back to F̂ . If Flag = 1, simulate Pj to generate output
(receiv, id, Pi, Pj ,m) where id is taken as in the (Flag, id) message (w.r.t. m) to F̂ if happens;
id ← {0, 1}κ otherwise. Denote Bad0 the event Flag = 1 but A1 never received (∗, P̃i, P̃j ,m)
from F̂ . Note by item I′1, this happens only when Pi is uncorrupted. Denote Bad1 the event Pi

is uncorrupted and Flag = 1 but (1, id) w.r.t. m was feedback to F̂ before. Note Bad0 implies
P̃j will not output m but the simulated Pj does it; Bad1 implies the simulated Pj outputs m
twice but P̃j only outputs it once.

I5. Whenever A is requested to reveal a session state in Pt, he reports the partial or whole vector
of (a, b,m,Pi, Pj) to Z.

Denote Γ0 the simulated execution of PKI-Auth by A1. Consider a mental variant Γ1 of Γ0,
where the difference is that in the case of Pj 6∈ C at I2 or I3, all the records to L are real (i.e.,
k = RSi(a, b, Pj , Pi,m, 0) for records from the former case and w = RSi(a, b, Pi, Pj ,m, 1) for records
from the latter case). Let Γ2 denote the execution of PKI-Auth in the real world. Then Γ2 and Γ1

is identically distributed, except

Case 1: In the case Pj ∈ C at I3 or Pi ∈ C at I4, where the verifications in Γ1 are successful but
verifications fail in Γ2. This happens only when c1 and c2 at I3 (or γ1 and γ2 at I4) decrypts to
different plaintexts. Denote this event of inconsistent ciphertexts in a game Γl by E1(Γl), l =
0, 1, 2. Then E1(Γl) happens only if Pij in Γl has a soundness error. Let the runtime of Z be
bounded by Rz. Then Pr[E1(Γl)] ≤ Rzǫ1.

Case 2: In case of Pj 6∈ C at I3, (a, b, Pj , Pi,m, 0, c1, c2) 6∈ L but for Di(c1) = k it holds that
V ((a, b, Pj , Pi,m, 0), k) = 1 and that c1|c2|σ is consistent. Similarly, in case of Pi 6∈ C at I4,
(a, b, Pi, Pj ,m, 1, γ1, γ2) 6∈ L but for Dj(γ2) = z it holds that Vvk((a, b, Pi, Pj ,m, 1, z) = 1 and
that γ1|γ2|ω is consistent. Denote either of these events in Game Γl (l=0, 1) by E2(Γl). We
have that in these events it must hold that c1|c2 (resp. γ1|γ2) encrypts an identical message k
(resp. z); otherwise, one can reduce to break the soundness of P. In the following, we always
assume the soundness of P holds. Upon an event E2(Γl), if (a, b, Pj , Pi,m, 0, c̃1, c̃2) ∈ L in case
of the former or (a, b, Pi, Pj ,m, 1, γ̃1, γ̃2) ∈ L in case of the latter, then such an event happens
with negligible probability; otherwise, one can reduce to break the non-malleability of E (Recall
that E is CCA2 secure and that CCA2-security is equivalent to non-malleability under CCA2
attack; See [21, 15]). Details are omitted. We now consider the case (a, b, Pj , Pi,m, 0, ∗, ∗) 6∈ L
(resp. (a, b, Pi, Pj ,m, 1, ∗, ∗) 6∈ L). Note that for any uncorrupted pair Pi and Pj , all the valid
ring signatures in Game Γ1 (or Γ0 if any) generated by simulator must have been recorded
in L. Thus, unrecorded valid signature implies a forgery of ring signature for pair Pi and Pj .
Denote the forgery of ring signature for an attacker with runtime Rz by ǫ2. Then we have
Pr[E2(Γl)] ≤ n2ǫ2, for l = 0, 1.

16

Consider the gap between Γ1 and Γ0. Since the only difference between them is whether records in
L are real or not, a simple Left-Right reduction for encryption allows us to reduce to the 2-user
encryption left-right reduction1, which in turn reduces to the semantical security of E in the multi-
user setting (this again is equivalent to the semantic security of a single user; See Theorem 4.1 in
[1]). Thus, the global outputs in Γ1 and Γ0 are indistinguishable.

Therefore, the global output of Γ0 and Γ2 are indistinguishable. To conclude the proof, we
only need to guarantee that Pr[Bad0 ∨ Bad1] is negligible. First of all, Bad0 does not happen since
Flag = 1 implies the sender session Pj was started. Recall the successful verification of the record
at I4 implies that Pi indeed processed Flow2 in order to send message m to Pj . By item I1, only
after P̃i sends (send, P̃j ,m) to F̂ , can A1 be invoked to simulate Pj (by the message (id, ∗) from
F̂). Bad1 occurs only if Flag=1 at I4 holds while A1 previously sent a message (1, id) to F̂ . This

event implies that b repeats in Pj . Thus, it occurs with probability at most R2
z

2κ , negligible. This
concludes the proof. �

1 Toward this reduction, we need to run the simulator of P . We remark that the NIZK simulator here is only used
to prove the gap between Γ1 and Γ0 is negligible. Our real simulator A1 in Γ0 does not use this simulator thus
does not break the deniability restriction. The game simulated by the left-right attacker is indistinguishable from
Γ0 (resp. Γ1); otherwise, zero knowledge property of P is broken.

17

