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Abstract

In this paper, we introduce the notion of a Public-Key Encryption Scheme that is also a Locally-
Decodable Error-Correcting Code (PKLDC). In essence, this is a protocol that is semantically-secure
in the standard sense, but possesses the additional property that it is a binary error-correcting locally-
decodable code against any polynomial-time Adversary. That is, we allow a polynomial-time Adversary
to read the entire ciphertext, perform any polynomial-time computation and change an arbitrary (i.e.
adversarially chosen) constant fraction of all bits of the ciphertext. The goal of the Adversary is to
cause error in decoding any bit of the plaintext. Nevertheless, the decoding algorithm can decode
all bits of the plaintext (given the corrupted ciphertext) while making a mistake on any bit of the
plaintext with only a negligible in k error probability. In addition, the decoding algorithm has a Local
Decodability property. That is, given a corrupted ciphertext of E(x) the decoding algorithm, for
any 1 ≤ i ≤ n, can recover the i’th bit of the plaintext x with overwhelming probability reading a
sublinear (in |x|) number of bits of the corrupted ciphertext and performing computation polynomial
in the security parameter k.

We present a general reduction from any semantically-secure encryption protocol and any compu-
tational Private Information Retrieval (PIR) protocol to a PKLDC. In particular, since it was shown
that homomorphic encryption implies PIR, we give a general reduction from any semantically-secure
homomorphic encryption protocol to a PKLDC. Applying our construction to the best known PIR
protocol (that of Gentry and Ramzan), we obtain a PKLDC, which for messages of size n and security
parameter k achieves ciphertexts of size O(n), public key of size O(n+ k), and locality of size O(k2).
This means that for messages of length n = ω(k2+ε), we can decode bit of the plaintext from a cor-
rupted ciphertext while doing computation sublinear in n. We emphasize that this protocol achieves
codewords that are only a constant times larger than the underlying plaintext, while the best known
locally-decodable codes (due to Yekhanin) have codewords that are only slightly subexponential in the
length of the plaintext. In addition, we believe that the tools and techniques developed in this paper
will be of independent interest in other settings as well.
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1 Introduction

Error correction has been an important field of research since Shannon laid the groundwork for a mathe-
matical theory of communication in the nineteen forties. An error correcting code is a pair of algorithms
C and D such that given a message x, C(x) is a codeword such that, given a string y, if the Hamming
Distance between d(C(x), y) is “small”, then D(C(x)) = x. When speaking of an error correcting code,
two of its most important characteristics are the information rate, which is the ratio of the message size
to the codeword size |x|

|C(x)| , and the error rate which is the smallest ε such that if d(C(x), y) > ε|C(x)|
then D(C(x)) fails to recover x uniquely. Since the field’s inception, many codes have been found that
exhibit both constant information rate, and constant error rate, which, in a sense, is optimal. These
codes all share the property that to recover even a small portion of the message x from the codeword y,
the receiver must decrypt the entire codeword. In [21], Katz and Trevisan posed the question: can codes
be found in which a single bit of the message can be recovered by decoding only a small number of bits
from the codeword? Codes of this type are called locally-decodable, and would be immensely useful in
encoding large amounts of data which only needs to be recovered in small portions, for example any kind
of database or archive. Currently the best known locally-decodable codes are due to Yekhanin [35], they
can tolerate a constant error rate, but achieve only slightly better than exponentially small information
rates1.

It was shown by Katz and Trevisan [21], that any information-theoretic Private Information Retrieval
(PIR) scheme can be transformed into a locally-decodable code. While this provides a new approach to
the problem of constructing efficient locally-decodable codes, so far it has not lead to any codes with
significantly sub-exponential size codewords, as we are still unable to construct efficient information-
theoretic Private Information Retrieval schemes.

In 1994, Lipton examined the notion of error-correction in the computationally bounded channel
model [24]. In this model, errors are not introduced in codewords at random, but in a worst case fashion
by a computationally bounded adversary. This realistic restriction on the power of the channel allowed for
the introduction of cryptographic tools into the problem of error correction. In [24] and [14] it was shown
how, assuming a shared private key, one can use hidden permutations to achieve improved error correcting
codes in the private key setting. Recently, Micali, Peikert, Sudan and Wilson used the computationally
bounded channel model to show how existing error correcting codes could be significantly improved in
the public-key setting [28]. After seeing the dramatic improvement of error-correcting codes in this
model, a natural question then becomes whether locally-decodable codes can also be improved in the
computationally bounded channel model.

The first real progress in this setting was by Ostrovsky, Pandey and Sahai [31], where they construct
a constant information-rate, constant error-rate locally-decodable code in the case where the sender and
receiver share a private key. This left open the question whether the same can be accomplished in the
Public-Key setting, which does not follow from their results. Indeed, a näıve proposal (that does not
work) would be to encrypt the key needed by [31] separately and then switch to the private-key model
already solved by [31]. This however leaves unresolved the following question: how do you encrypt the
private key from [31] in a locally-decodable fashion? Clearly, if we allow the adversary to corrupt a
constant fraction of all the bits (including encryption of the key and the message), and we encrypt the
key separately, then the encryption of the key must consume a constant fraction of the message, otherwise
it can be totally corrupted by an Adversary. But if this is the case all hope for local decodability is lost.
Another suggestion is to somehow hide the encryption of the key inside the encryption of the actual
message, but it is not clear how this can be done.

A more sophisticated, but also flawed, idea is to use Lipton’s code-scrambling approach [24]. In his
paper, Lipton uses a private shared permutation to “scramble” the code and essentially reduce worst-case
error to random error. A first observation is that we can use PIR to implement a random permutation in
the public-key setting. We proceed as follows: the receiver will generate a random permutation σ ∈ Sr,
and the receiver’s public key would be a set of PIR queries Q1, . . . , Qr, where Qi is a PIR query for the
σ(i)th block of an r block database, using some known PIR protocol. The sender would then break their
message x into blocks, x1, . . . , xr, apply standard error correction to each block, calculate the Q1, . . . , Qr

on their message, apply standard error correction to each PIR response Ri = Qi(ECC(x)), and send the
message ECC(R1), . . . ,ECC(Rr). If ECC and PIR have constant expansion rates, as is the case with
many ECCs and the Gentry-Ramzan PIR [11], the resulting code has only constant expansion rate. But

1Yekhanin achieves codewords of size 2n1/ log log n

for messages of length n, assuming there exist infinitely many Mersenne
primes.
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an adversary can still destroy a single block, by focusing damage on a single PIR response. If we add
redundancy by copying the message c times, and publishing cr PIR queries, the adversary can still destroy
a block with non-negligible probability by destroying constant number of blocks at random, and with
non-negligible probability the adversary will destroy all c responses corresponding to the same block, and
the information in that block will be lost. Recall that we demand that no bit of information should be
destroyed except with negligible probability. Hence this method does not work either. Of course, this
can be fixed by increasing the redundancy beyond a constant amount, but then the codeword expansion
becomes more than constant as does the public key size. Thus, this solution does not work either, and
new ideas are needed. Indeed, in this paper, we use PIR to implement a hidden permutation, but we
achieve a PKLDC which can recover from constant error-rate with only constant ciphertext expansion.

1.1 Previous Work

The first work on error correction in the computationally bounded channel model was done by Lipton in
[24]. In [24] and [14] it was shown how to use hidden permutations to achieve improved error correcting
codes in the private key setting. The computationally bounded channel model was first considered in the
public key setting only recently. In [28], Micali et al used a generic public key signature scheme combined
with list-decoding to demonstrate a class of binary error correcting codes with positive information rate,
that can uniquely decode from 1

2−ε error rate, under the assumption that one-way functions exist. These
codes decode from an error rate above the proven upper bound of 1

4 − ε in the (unbounded) adversarial
channel model. Here, again, we emphasize the reasonableness of the computationally bounded channel
model, since under the assumption that one-way functions exist, Micali et al show that all channels (that
don’t hold the messages for an exponential amount of time) must be computationally bounded, or they
could be used as inverters of the one-way function. The first application of the computationally bounded
channel to Locally Decodable Codes was in [31], although their work was in the private-key setting.

In addition to extending the work in the computationally bounded channel model, our work draws
heavily from the field of Computational Private Information Retrieval (PIR). The first computational
PIR protocol was [22], and since then there has been much progress, see for example [4], [5], [20], [23],
[11]. For a survey of work relating to computational PIR see [30].

1.2 Our Results

In this paper, we present a general reduction from semantically-secure encryption and a PIR protocol to
a Public Key Encryption system with local decodability (PKLDC). We also present a general reduction
from any homomorphic encryption to a PKLDC. In §7 we present the first Locally Decodable Code with
constant information-rate which does not require the sender and receiver to share a secret key. To achieve
this, we work in the Computationally Bounded Channel Model, which allows us to use cryptographic tools
that are not available in the Adversarial Channel Model. Our system presents a significant improvement in
communication costs over the best codes in the information-theoretic setting. Yekhanin’s Codes, described
in [35], which are currently the shortest known locally decodable codes in the information-theoretic setting,
still have codewords which are almost exponential in the message size, while our codewords are only a
constant times larger than the message.

Informally, our results can be summarized as follows,

Main Theorem (informal). Given a computational PIR protocol with query size |Q|, and response
size |R| which retrieves dk bits per query, and a semantically-secure encryption protocol, there exists
a Public Key Locally Decodable Code which can recover from a constant error-rate in the bits of the
message, which has public key size O(n|Q|/(dk2) + k) and ciphertexts of size O(n|R|/(dk2)), where n is
the size of the plaintext and k is the security parameter. The resulting code has locality O(|R|k/d), i.e.
to recover a single bit from the message we must read O(|R|k/d) bits of the codeword.

Combining the main theorem with the general reduction from homomorphic encryption to PIR, we
obtain

Corollary 1. Under any homomorphic encryption protocol which takes plaintexts of length m to cipher-
texts of length αm, there is a Public-Key Locally Decodable Code which can recover from a constant
error-rate in the bits of the message, with public key size O(nkβ β

√
n) and ciphertexts of size O(nαβ−1k),

for any β ∈ N, where n is the size of the plaintext and k is the security parameter. The resulting code
has locality O(αβ−1k2), i.e. to recover a single bit from the message we must read O(αβ−1k2) bits of the
codeword.
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We can further improve efficiency if we have a Length-Flexible Additively Homomorphic Encryption
like D̊amgard-Jurik [8], using this cryptosystem we obtain

Corollary 2. Under the Decisional Composite Residuousity Assumption [32] there is a Public-Key Lo-
cally Decodable Code which can recover from a constant error-rate in the bits of the message, with public
key size O(n log2(n) + k) and ciphertexts of size O(n log(n)), where n is the size of the plaintext and k
is the security parameter. The resulting code has locality O(k2 log(n)), i.e. to recover a single bit from
the message we must read O(k2 log(n)) bits of the codeword.

We also give a specific construction of a system based on the Φ-hiding assumption (see §7), in this
situation we obtain

Corollary 3. Under the Small Primes Φ-Hiding Assumption (Assumption 1) there is a Public-Key
Locally Decodable Code which can recover from a constant error-rate in the bits of the message, with
public key size O(n) and ciphertexts of size O(n), where n is the size of the plaintext and k is the security
parameter. The resulting code has locality O(k2), i.e. to recover a single bit from the message we must
read O(k2) bits of the codeword.

Note that in full generality, our main result requires two assumptions, the existence of a PIR protocol
and a semantically-secure encryption protocol. In practice, however, two separate assumptions are usually
not needed, and all the corollaries apply under a single hardness assumption.

Our construction does have a few disadvantages over the information-theoretic codes. First, our
channel is computationally limited. This assumption is fairly reasonable, but it is also necessary one for
any type of public key encryption. In [28], Micali et al. show that if a true adversarial channel exists,
which can always introduce errors in a worst-case fashion, then one-way functions cannot exist. Second,
our code has a larger “locality” than most information-theoretic codes. For example, in Yekhanin’s Codes,
the receiver is only required to read three letters of the codeword to recover one letter of the message. In
our code in §7 the receiver must read O(k2) bits to recover 1 bit of the plaintext, where k is the security-
parameter. It should be noted, however, that to maintain the semantic security of the cryptosystem, the
receiver must read ω(log k) bits to recover any single bit of the message. It is an interesting question
whether the locality of our code can be reduced from O(k2) to O(k). For long messages (i.e. n = ω(k2+ε))
our code still presents a very significant improvement in locality over standard error correcting codes.

2 Preliminaries

2.1 Notation

In this paper, we adopt the following naming conventions.

• x or X will denote a plaintext message, which will usually be n bits in length.

• k will denote our security parameter.

• ν(k) will denote a function which is negligible in k.

We will use the notation ∈R, to denote an element drawn uniformly at random from a set.

3 Computationally Locally Decodable Codes

3.1 Modelling Noisy Channels

When discussing error correcting, or locally-decodable codes, it is important to consider how the errors
are introduced by the channel. While it may be natural to assume the errors are introduced “at random”,
small changes in the exact nature of these errors can result in substantial changes in the bounds on the
best possible codes.

The first definition of a noisy channel is due to Claude Shannon [34]. Shannon defined the symmetric
channel where each message symbol is independently changed to a random different symbol with some
fixed probability, called the error rate. An alternative definition of a noisy channel is Hamming’s adver-
sarial channel, where one imagines an adversary corrupting bits of the message in a worst-case fashion,
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subject only to the total number of bits that can be corrupted per block. Most error correcting and
locally-decodable codes were designed for Hamming’s model.

In 1994, Lipton [24] observed that the adversarial channel model assumes that the adversarial channel
itself is computationally unbounded. In that paper, Lipton proposed a new model of computationally
bounded noise, which is similar to Hamming’s adversarial channel, except the adversary is restricted
to computation which is polynomial in the block length of the code. This restriction on the channel’s
ability to introduce error is a natural one, and it is implied by the existence of any one-way function [28].
Throughout this paper, we use Lipton’s model.

3.2 Definitions

We use the standard definition of computational indistinguishability for public key encryption, where we
also view the size of the plaintext as a function of the security parameter. That is, we set the plaintext
x to be of length kα, where k is the security parameter and α > 1.

The primary difference between our definition and the standard definition of semantic security is
the local decodability property of the cryptosystem. Roughly, this says that given an encryption c of a
message x, and a corrupted encryption c′ such that the hamming distance of c and c′ is less than δ|c|, the
time it takes the decoder to decode any bit xi of the plaintext x from c′ is much shorter than the length
of the message, and does not increase as the message length increases.

Definition 1. We call Public Key Cryptosystem semantically-secure (in the sense of indistinguishability)
and δ-computationally locally-decodable if there is a triple of probabilistic polynomial-time algorithms
(G,E,D), such that for all k and for all α sufficiently large

• (PK,SK)← G(1k, α),

• c ← E(PK, x, r) (where |x| = kα is a plaintext message of length polynomial in k, and r is the
randomness of the encryption algorithm);

• b′ ← D(SK, c′, i)

so that for all probabilistic polynomial-time adversaries A,A′:

Pr[(PK,SK)← G(1k, α); {x0, x1, γ} ← A(PK);A′(E(PK, xb, r), γ) = b] <
1
2

+ ν(k),

where x0 and x1 must both be of length kα, and the probability is taken over the key generation algorithm’s
randomness, b, randomness r used in the encryption algorithm E and the internal randomness of A and
A′.2 Furthermore, it is computationally, locally-decodable. That is, for all probabilistic polynomial-time
adversaries A′′ and A′′′,

Pr[(PK,SK)← G(1k, α);
(x, γ)← A′′(PK);
c← E(PK, x, r);
{c′, i} ← A′′′(c, γ) :

D(SK, c′, i) = xi] > 1− ν(k),

where xi denotes the ith bit of x, x must be of the length kα, c′ and c must be of the same length
and the hamming distance between c′ and c is at most δ|c|, and where the probability is taken over the
key generation algorithm’s randomness, the randomness r used in the encryption algorithm E and the
internal randomness of both A′′ and A′′′. The information-rate is |m|

|c| and we call the decryption algorithm
locally-decodable if its running time is o(kα), and the efficiency of the local decodability is measured as a
function of k and α.

2As is standard practice, to allow the adversary A to pass state information γ, which could include information about
the plaintexts x0, x1, which might be of use in determining which plaintext is encrypted by E(PK, xb, r).
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4 Building Blocks

Our construction relies on a number of standard cryptographic tools and for completeness we briefly
review them here

4.1 Private Information Retrieval

A computational Private Information Retrieval protocol (PIR) is a protocol in which a user or client to
query a position from a database, while keeping the position queried hidden from the server who controls
the database. In particular the user generates a decryption key DPIR, picks a position j and generates a
query Qj . Then, given Qj , the server who has database (or message) x, can execute query Qj on x and
obtain a response Rj . The privacy requirement is that server cannot guess the position j with probability
noticeably greater than random. The correctness requirement is that given DPIR, and Rj the user can
correctly recover the jth position of the message x. The efficiency of a PIR protocol is measured in the
communication complexity, i.e. the sizes of Q and R. Currently, the most efficient PIR protocol is that
of Gentry and Ramzan [11], which has |Q| = |R| = O(k) where k is a security parameter, and each query
successfully retrieves approximately k/4 bits of the message x.

Formal definitions and concrete constructions of computational Private Information Retrieval proto-
cols can be found in [22], [19], [4], [5] or [11].

4.2 Semantically-Secure Public Key Encryption

Our construction requires a semantically-secure encryption protocol, SSE. The only requirement we
make on the protocol SSE, is that for a message x, |SSE(x)| = O(|x|). For concreteness, we assume
|SSE(x)| = c1|x| for some constant c1. This is achieved by many cryptosystems for example [32], [8], [29],
[10], or the Φ-hiding based scheme in described §7.2.

To avoid making additional intractability assumptions, it is natural to choose hardness assumption
that yields both a semantically-secure encryption protocol as well as a PIR protocol. In practice this is
almost always the case, for example Paillier’s Cryptosystem [32] and Chang’s PIR [5], or Gentry-Ramzan
[11] (or Cachin-Micali-Stadler PIR [4]) and the encryption protocol outlined in Section 7.2. It is also
worth noting that since [19] shows that any homomorphic encryption protocol immediately yields a PIR
protocol, if we have a homomorphic encryption, we need not make an additional assumption to obtain a
PIR protocol.

4.3 Reed-Solomon Codes

Our construction uses a standard error-correcting code as building block. In this paper we use the Reed-
Solomon code for three reasons. First, it is very simple algebraically; second it is almost universally known
and understood; and third, when recovering from a constant error rate it has only a constant expansion
factor. It should be clear, however, that these codes can be replaced by any efficient error-correcting
code.

The Reed-Solomon Error Correcting Code (RS-ECC) works as follows: first we fix a prime p of length
k, and all computations are done in the field Z/pZ. Then, given a plaintext x of length n, we represent
x as a polynomial fx of degree n/k− 1 over Z/pZ. This can be done in many ways, perhaps the simplest
is to break x into blocks of size k and view these as the coefficients of fx. Then, the encoding of x is
simply the evaluation of fx at a number of points in Z/pZ. We need at least n/k evaluations uniquely
determine a polynomial of degree n/k− 1, the RSECC adds redundancy by evaluating fx at more points,
RSECC(x) = (fx(1), . . . , fx(ρn/k)) for some ρ > 1. For distinct plaintexts x, y, we have fx − fy 6= 0, and
since a nonzero polynomial of degree n/k − 1 has at most n/k − 1 zeros, RSECC(x) and RSECC(y) must
have hamming distance at least (ρ − 1)n/k + 1, thus this code can recover from (ρ − 1)n/(2k) errors in
the evaluation points, i.e. it can recover from an error rate of 1

2 −
1
2ρ in the digits of the code.

From now on we will view RSECC(x) as a ρn/k-tuple which can be successfully decoded from an error
rate of 1

2 −
1
2ρ in its digits.

4.4 Binary Error Correction

A desirable property of any error-correcting code is the ability to recover from a constant fraction of errors
among the bits of the codeword. A drawback of many error-correcting codes, and locally-decodable codes,
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is that they are defined over large alphabets, and can only recover from a constant fraction of errors in
the alphabet of the code. The natural alphabet of the RSECC described above is the field Z/pZ. In
practice, all these codes are implemented on computers, where the natural alphabet is {0, 1}. Thus when
we say that a code like Reed-Solomon code can tolerate a constant fraction of errors, we mean a constant
fraction of errors in their natural alphabet. In the Reed Solomon code, if one bit of each evaluation point
is corrupted, there are no guarantees that the message will not be corrupted. Binary error correcting
codes do exist, but they are generally not as efficient as codes over larger alphabets.

To allow our code to tolerate a constant fraction of errors in the bits of the ciphertext, we will make
use of a binary error correcting code ECC, with two properties

• |ECC(x)| = c2|x| for some constant c2,

• ECC can recover from an error-rate of 1
2 − δ in the bits of ECC(x).

Such codes exist, for δ > 1
4 in the unbounded adversarial channel model, and δ > 0 in the computa-

tionally bounded channel model. See Appendix B for a more in-depth discussion.

5 Construction

5.1 High Level Outline of Our Construction

A public key will be a list of t PIR queries Q1, . . . , Qt, along with the public key to the semantically-
secure encryption SSE. The private key will be the private key for the semantically-secure encryption,
the private key for the PIR protocol and a permutation σ ∈ St such that Qj is a query for the σ(j)th
position of the message. To encrypt an n-bit message X, we first divide X into r blocks X1, . . . , Xr, then
we encrypt each block using our semantically-secure encryption (this can be done by further subdividing
the block if necessary). Then we encode each block using the Reed-Solomon code, thus obtaining a list
of evaluation points that constitute the Reed-Solomon encoding of this block. Next, we concatenate the
evaluation points for all the blocks, and, treating this list as a single database, we evaluate all t PIR
queries on it. Finally, we encode each PIR response with a standard binary error correcting code ECC.

In more detail, we assume that when we evaluate a PIR query Q on a message X, the PIR response
R encodes dk bits of X where k is our security parameter and d depends on the specific PIR protocol
used. For example the Gentry-Ramzan protocol has d ≈ 1

4 , while a PIR protocol like [4] which only
retrieves a single bit at a time has d = 1/k. Next, we fix a prime p of length k which will determine
the base-field of the RSECC. Then, we set r = n/(`k), thus each block Xi has |Xi| = `k, where ` is
the parameter that will determine the “spread” of our code. Next we encrypt each block Xi using SSE,
obtaining SSE(X1), . . . ,SSE(Xr) where |SSE(Xi)| = c1`k. Then we encode each encrypted block as c1ρ`
field elements in Z/pZ using RSECC. Thus we can recover any block Xi as long as no more than 1

2 −
1
2ρ

of the field elements that encode it are corrupted. Finally, we concatenate all c1rρ` field elements, thus
at this point our “database” is c1rρ`k = c1nρ bits. Next we evaluate all t queries Q1, . . . , Qt on this
database. Since we wish to retrieve all the information in X, we need t = c1nρ/(dk). Thus we obtain t
PIR responses R1, . . . , Rt. Finally, we send the t-tuple (ECC(R1), . . . ,ECC(Rt)).

Thus our final encryption is of size c1c2nρ|Rj |/(dk). If |Rj | ≈ k as is case in [4], [5], [11], then our
encryption will be of length c1c2ρn/d. If we use the PIR protocol in [11] then, d will be constant, thus
our code will have constant information rate. Notice that the spread parameter ` has no effect on the
length of the encryption. This encryption is error correcting because as long as no more than 1

2 −
1
2ρ

of the responses that encode a given block are corrupted, the block can be recovered correctly by first
decoding each point usinc ECC, and then reconstructing the block using the RSECC. This cryptosystem
is also locally-decodable since to decrypt a given block, it suffices to read the c1ρ`

dk PIR responses that
encode it.

5.2 Error Correcting Public Key Encryption

We now define a triple of algorithms G,E,D for our encryption scheme.

Key Generation: G(1k, α).

• Fix a prime p of length k.
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• Generate public-key private-key pair for SSE, PKE , SKE .

• Generate a PIR decryption key DPIR.

• Generate a random permutation σ ∈ St.

• Generate t PIR queries Q1, . . . , Qt, where Qj queries the block of dk bits at position
(σ(j)− 1)c1dk + 1 of a c1nρ bit database.

The public key will then be
PK = (PKE , Q1, . . . , Qt)

and the secret key will be
SK = (σ, SKE , DPIR)

Thus the public key will be of length t|Q|+ |SKE | = c1nρ|Q|/(dk). If we use [11], then |Q| = k and
d is constant, so assuming |SKE | = O(k), we obtain |PK| = O(n+ k).

Encryption: given an n-bit message X,

• Break X into r = n
`k blocks Xi of size `k.

• Encrypt each block using SSE. If SSE can only encrypt strings of length k, we simply divide Xi

into shorter strings, encrypt the shorter strings and then concatenate the encryptions.

• For each encrypted block, SSE(Xi) we encode it as a list of c1ρ` field elements Zi,1, . . . , Zi,c1ρ` in
Z/pZ using the RSECC.

• Concatenate all the evaluations, creating X̃ = Z1,1, . . . , Z1,c1ρ`, . . . , Zr,1,Zr,c1ρ`. Thus |X̃| = rc1ρ`k =
c1nρ bits, and we run each PIR query {Q1, . . . , Qt} on X̃ receiving responses R1, . . . , Rt. Since each
PIR query recovers dk bits, we will need c1/d queries to recover each field element Z.

• Encode each Rj individually using the binary error correcting code ECC.

• The encryption is then the t-tuple (ECC(R1), . . . ,ECC(Rt)).

Decryption: to recover the ith block, of a message X from the t-tuple (ECC(R1), . . . ,ECC(Rt))

• We wish to retrieve the encoding Zi,1, . . . , Zi,c1ρ`, which are the bits of X̃ in positions
(i− 1)c1ρ`/d+ 1, . . . , ic1ρ`/d, Thus we select the c1ρ`/d responses that encode Xi,
{ECC(Rσ−1((i−1)c1ρ`/d+1)), . . . ,ECC(Rσ−1(ic1ρ`/d))}.

• Decode each ECC(Rj) to obtain {Rσ−1((i−1)c1ρ`/d+1), . . . , Rσ−1(ic1ρ`/d)}.

• Decode each of the c1ρ`/d PIR responses Rj to obtain Zi,1, . . . , Zi,c1ρ`.

• Using the RSECC reconstruct SSE(Xi) from Zi,1, . . . , Zi,c1ρ`.

• Decrypt SSE(Xi).

Notice that to recover block Xi we only need to read c1c2|R|ρ`/d bits of the encryption. In the Gentry-
Ramzan PIR |R| = k and d = 1/4, so we are reading only O(`k) bits of the message. For correctness we
will choose ` = k, thus in this case our scheme will achieve locality O(k2).
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5.3 Local-Decodability

One of the most interesting features of our construction is the local-decodability. To recover a small por-
tion of the messageX, only a small portion of the ciphertext (ECC(R1), . . . ,ECC(Rt)) needs to be decoded.
During encryption the message X is broken into blocks of length `k bits, and this is the smallest number
of bits that can be recovered at a time. To recover a single bit ofX, or equivalently the entire blockXi that
contains it, we must read c1ρ`/d blocks of the ciphertext {ECC(Rσ−1((i−1)c1ρ`/d+1)), . . . ,ECC(Rσ−1(ic1ρ`/d))}.
Since |ECC(Rj)| = c2|Rj |, we must read a total of c1c2|R|ρ`/d bits. Since the probability of error will be
negligible in `, we will set ` = k. Here c2 and ρ are parameters that determine the error-rate of our code.

Using the Gentry-Ramzan PIR, we have |R| = k and d = 1/4, so the locality is O(k2). Using the
Chang’s PIR [5] based on Paillier’s cryptosystem [32] we have |R| = 2k and d = 1/2 so we achieve the
same encryption size and locality, although in this situation the public key size is O(n3/2) instead of O(n)
in the Gentry-Ramzan case.

5.4 Extensions

For convenience, in our proof of correctness (§6.2) we set the parameter ρ equal to 1/2. It should be clear
that this value is somewhat arbitrary and that by increasing ρ we increase the error tolerance of the code
along with the ciphertext expansion. Similarly, in our proof we set the parameter ` to be the security
parameter k. We can change `, and an increase in ` corresponds to a decrease in the probability that
the channel succeeds in introducing an error, and a decrease in the locality of the code. In particular our
code fails with probability that is negligible in `, and the smallest number of bits that can be recovered
from the message is O(`k).

Our protocol also benefits nicely from the idea of Batch Codes [20]. Since our protocol requires making
multiple PIR queries to the same message, this is an ideal application of Batch Codes, which can be used
to amortize the cost of making multiple PIR queries to a fixed database. By first “batching” the message
X̃ in §5.2, we can significantly decrease server computation by slightly increasing ciphertext expansion,
or we can decrease ciphertext expansion by paying a slight increase in server computation. It should be
noted that batch codes are perfect, in the sense that batching the message in this way does not change
the probability of correctness.

We can also increase the efficiency of our construction by further taking advantage of the bounded
channel model. If in addition to the sender knowing the receiver’s public key, we assume that the receiver
knows the verification key to the senders signature algorithm (a reasonable assumption since anyone
receiving messages from the sender should be able to verify them), our scheme benefits nicely from the
sign and list-decode methods described in [28]. As in §5.2, we break our message X into `k-bit blocks
X1, . . . , Xt. Then, before applying the RSECC to each block, we sign each block using any Public Key
Signature Scheme which is existentially unforgeable under a chosen message attack. The existence of such
a scheme is implied by the existence of a one-way function [33]. We can also improve the efficiency of
the digital signature by using the standard trick of first hashing the message, the signing the hash. Since
every PIR protocol is a collision-resistant hash function [19], we can first “hash” each block Xi then sign
the hash of each block. Now, we proceed as before, encoding each signed block using the RSECC, and
finally each of these blocks is further encoded by a binary ECC. As mentioned above (in §4.4), the rate
of the binary ECC can also be improved via this method. Again, we note that this construction requires
the receiver to know the public key for the sender’s signature scheme, in addition to the sender knowing
the public key to the receiver’s encryption scheme.

To decode in this situation, we first decode the binary ECC, then we list-decode the RSECC. Then,
with all but negligible probability, only one of the possible decodings will be a valid signed block. This
has the effect of improving the information rate of the RSECC. It should be noted that our scheme has
constant codeword expansion, and can recover from constant error-rate even without these improvements.
The use of digital signatures before applying the RSECC or the binary ECC has the effect of increasing the
maximum tolerable error-rate, and decreasing the codeword expansion. Unlike the application of Batch
Codes above, this sign and list-decode technique will slightly increase the probability that a message fails
to decrypt, although it still remains negligible.

5.5 Constructions Based on Homomorphic Encryption

It was shown in [19] that any homomorphic encryption protocol yields a PIR protocol, thus our construc-
tion can be achieved based on any homomorphic encryption protocol. In this situation, it is unnecessary
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to first encrypt each block Xi before applying the RSECC since the PIR protocol described in [19] is
already semantically-secure. Thus the idea of coupling encryption and error-correction is even more nat-
ural in this situation. Using the construction in [30] to construct a PIR protocol from a homomomorphic
encryption protocol and then applying our construction yields

Corollary 1. Under any homomorphic encryption protocol which takes plaintexts of length m to cipher-
texts of length αm, there is a Public-Key Locally Decodable Code which can recover from a constant
error-rate in the bits of the message, with public key size O(nkβ β

√
n) and ciphertexts of size O(nαβ−1k),

for any β ∈ N, where n is the size of the plaintext and k is the security parameter. The resulting code
has locality O(αβ−1k2), i.e. to recover a single bit from the message we must read O(αβ−1k2) bits of the
codeword.

Using a Length-Flexible Additively Homomorphic Encryption protocol such as the one described in
[8] yields an even more efficient PIR protocol. Using the methods outlined in [30] and applying our
construction we arrive at the following result

Corollary 2. Under the Decisional Composite Residuousity Assumption [32] there is a Public-Key Lo-
cally Decodable Code which can recover from a constant error-rate in the bits of the message, with public
key size O(n log2(n) + k) and ciphertexts of size O(n log(n)), where n is the size of the plaintext and k
is the security parameter. The resulting code has locality O(k2 log(n)), i.e. to recover a single bit from
the message we must read O(k2 log(n)) bits of the codeword.

6 Proof of Security

6.1 Overview

The semantic security of our scheme follows immediately from the semantic security of the underlying
encryption SSE. The full proof of the correctness (i.e. local decodability) of our scheme requires some
care. Here, we outline only the high-level ideas of the proof. The structure of the proof is as follows.
Given an encryption (ECC(R1), . . . ,ECC(Rt)). The outer ECC forces an adversary to concentrate their
errors among only a few Rj . Thus, we may assume that the adversary is only allowed to introduce errors
into a constant fraction of the Rj . Then, we note that any polynomial-time adversary cannot tell which
remainders Rj encode which block Xi by by the privacy of the PIR protocol. Thus any errors introduced
in the Rj will be essentially uniform among the Z’s that make up the Reed-Solomon encryptions. Next,
we note show that our code has sufficient “spread” so that errors introduced uniformly among the Rj

will cluster on the Rj encoding a given block Xi with only negligible probability. Finally, if the errors are
not clustered among the Rj that encode a given block, we show that the RSECC will correctly recover
that block.

Thus we arrive at the following result

Main Theorem. Given a computational PIR protocol with query size |Q|, and response size |R| which
retrieves dk bits per query, and a semantically-secure encryption protocol SSE, there exists a Public Key
Locally Decodable Code which can recover from a constant error-rate in the bits of the message, which
has public key size O(n|Q|/(dk2) + k) and ciphertexts of size O(n|R|/(dk2)), where n is the size of the
plaintext and k is the security parameter. The resulting code has locality O(|R|k/d), i.e. to recover a
single bit from the message we must read O(|R|k/d) bits of the codeword.

6.2 Proof of Local-Decodability

Here, we show correctness, i.e. that our system is computationally locally-decodable up to a constant
fraction of errors. By an encryption of a message X, we mean a t-tuple (ECC(R1), . . . ,ECC(Rt)) where
t = ρn

dk , and each Rj is a PIR response to query Qj . For concreteness, we set ρ = 2, and we show that our
decoding algorithm decodes correctly with all but negligible probability, at most a 1

4 − δ fraction of the
bits of the encryption have been corrupted by a polynomial-time adversary A. Notice that our algorithm
will decode a block Xi correctly whenever no more than 1

4
2`
d of the Rj that encode it are corrupted. Thus

we will show that any polynomial-time adversary that corrupts a 1
4 − δ fraction of the bits, only corrupts

more than 1
4 of the Rj that encode a given block of the message with negligible probability. We prove

this through a series of lemmas.
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We begin by noticing that any adversary A that corrupts at most 1
4 − δ fraction of the bits of the

message, can only corrupt at most a 1
2 − δ − δ

2 fraction of the Rj .

Lemma 1. Given (ECC(R1), . . . ,ECC(Rt)), where ECC recovers from a binary error-rate of 1
2 − δ, any

adversary A that corrupts at most 1
4 − δ bits of the entire codeword, can corrupt no more than 1

2 − δ+ δ2

of the Rj

Proof. This is simply counting. A can corrupt a total of (1
4−δ)ct|Rj | bits, and to corrupt one Rj A needs

to spend (1
2 − δ)c|Rj |, thus A can corrupt at most (1

2 − δ − δ
2)t of the Rj since(

1
4 − δ

)
ct|Rj |(

1
2 − δ

)
c|Rj |

≤
1
4 −

δ
2 −

δ
2 + δ2 − δ2

2 + δ3

1
2 − δ

t

=

(
1
2 − δ − δ

2
) (

1
2 − δ

)
1
2 − δ

t

=
(

1
2
− δ − δ2

)
t.

�

For the rest of the proof of correctness, we assume that A is restricted to corrupting a 1
2 − δ − δ

2

fraction of the Rj , rather than 1
4 − δ bits of the message.

Now, we show that any such corrupting adversary cannot detect whether inputs are “well-formed”,
i.e. A behaves in an indistinguishable manner whether the t-tuple (R1, . . . , Rt) is a valid encryption or
not.

Lemma 2. For all probabilistic polynomial-time adversaries A, such that A introduces errors in t-tuples
(R1, . . . , Rt), where eachRj is a response to queryQj and eachQj queries distinct position in the database,
then A will also introduce errors in t-tuples (R1, . . . , Rt) where each Qj queries the same position of the
database.

Proof. Instead of running A on a t-tuple where each query Qj queries a distinct position in the database,
we provide A with t-tuple in which each PIR query Qj queries the the same position in the database.
Assume A fails to introduce errors on this malformed input with non-negligible probability ε. Now we
proceed via hybrid argument. Since the probability the A fails on t queries querying the same position is
ε greater than when each Qj queries a different position, then the triangle inequality tells us that there
must be some t∗ < t such that,

|Pr[A fails when t∗ Qj query the same position ]− Pr[A fails when t∗ + 1 Qj query the same position ]| > ε

t
.

We can now use A to break the privacy of the PIR protocol. Given a query Q∗ such that Q∗ queries
position i∗ where i∗ equals i0 or i1, we construct t∗ queries Q1, . . . , Qt∗ that query position i0, and
t − t∗ − 1 queries Qt∗+1, . . . , Qt−1 that query positions other than i0, i1. We then run A, on the t-tuple
(R1, . . . , Rt−1, R

∗) where Rj is a response to Qj for 1 ≤ i < t, and R∗ is a response to Q∗. If A fails to
introduce errors on this t-tuple, we say that Q∗ queries position i0. This algorithm correctly distinguishes
whether Q∗ queries position i0 or i1 with probability at least 1

2 + ε
2t . Although, we do not know the exact

value of t∗, we can we can guess it with probability 1
t , to obtain an algorithm which decides whether Q∗

queries position i0 with advantage ε
2t2

which is a violation of the privacy of the PIR protocol. �

If each Qj queries the same position i, then A must distribute errors randomly among the blocks,
since the notion of blocks in this case is completely arbitrary. Since A must behave identically when
each Qj queries the same position as when they all query different positions, we notice that an adversary
cannot focus the errors on the remainders encoding a specific block. To make this formal, recall that the
message X was divided into blocks r = n

`k blocks Xi, and for each block RSECC(SSE(Xi)) was encoded by
2c1`/d PIR responses, and t was the total number of responses t = 2c1n

dk . If we define Si ⊂ {R1, . . . , Rt}
to be the set of remainders encoding block Xi, Si = hσ−1(2(i−1)c1`/d+1), . . . , hσ−1(2c1i`/d), then |Si| = 2`/d,
and we obtain the following lemma.
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Lemma 3. If A is a probabilistic polynomial-time machine which introduces errors in {R1, . . . , Rt}, the
distribution of the errors in the set {S1, . . . , Sr} is computationally indistinguishable from the uniform
random distribution on {S1, . . . , Sr}.

Proof. Suppose there exists a distinguisher D that can distinguish the corruptions A introduces among
the Si from uniform random with advantage ε. Then we run D on A’s output when A is given queries
that query between one and t distinct positions. When we run A on a t-tuple (R1, . . . , Rt) where each Qj

queries the same position, in this situation A must distribute errors uniformly, since A has no information
about the underlying subsets Si. Thus in this situation, D cannot distinguish A’s corruptions from random
with probability greater than 1

2 , since in this case A’s corruptions are random. Now we proceed via a
hybrid argument. When A is run on queries that query t distinct positions, then D can distinguish A’s
corruptions from random with advantage ε, thus by the triangle inequality, there exists a t∗ < t such
that D can distinguish A’s output when A is run on queries, t∗ of which are then same, from A’s output
when A is run on queries, t∗ + 1 of which are the same, with advantage ε

t . This allows us to break the
privacy of the PIR in exactly the manner described before. Given a query Q∗ that queries either i0 or
i1, we construct t∗ queries Q1, . . . , Qt∗ which all query position i0, and t− t∗− 1 queries Qt∗+1, . . . ,mt−1

which all query different positions. Then we run D on A’s output, when A is given (R1, . . . , Rt−1, R
∗).

By the definition of t∗ D succeeds in distinguishing whether Q∗ queries position i0 with advantage ε
2t .

Thus by guessing a random value in {1, . . . , t− 1} for t∗, we break the privacy of the PIR protocol with
advantage ε

2t2
, a contradiction. �

Lemma 4. If A distributes (1
4 − δ)t errors uniformly among the t responses, the probability that A

destroys any given block Xi is negligible in `.

Proof. If A distributes errors at random, then we can view A as selecting field elements Zi,ι to corrupt
uniformly at random . The adversary A destroys a blockXi exactly when A corrupts more than 1

2−δ of the
points Zi,ι that encode that block, the probability that A destroys a block is exactly the probability that
more than (1

2 − δ)
2c1`

d points that encode Xi are corrupted. This distribution is then the Hypergeometric
Distribution, where 2c1`

d items are selected and (1
2 − δ − δ

2)t of which are corrupted. In [18], Hush and
Scovel give the bound

Pr
[

# of errors in encoding of block Xi >

(
1
2
− δ
)

2c1`
d

]
< e

−2
“

d
2c1`+d

”„
4δ4c21`2

d2 −1

«
,

where the probability is taken over the uniform distribution on the t remainders, and this probability is
clearly negligible in `. �

Lemma 5. If at most (1
4 − δ)t of the t encryptions are corrupted by a probabilistic polynomial-time

adversary A, then the probability that any bit of the message fails to decode properly is negligible in k.

Proof. For a given block Xi the probability that that block is damaged under the corruptions created by
A is negligibly different in k than if A produced the corruptions at random, which itself would damage
Xi with only negligible probability in `. Taking ` ≈ k, we have that the block Xi is damaged with at
most negligible probability in k. The union bound then gives that the probability that any block Xi is
damaged is at most t times the probability that a specific block is damaged, which remains negligible in
k. �

7 A Concrete Protocol Based on Φ-Hiding

We now present a concrete example of our reduction based on the Gentry-Ramzan [11] PIR protocol. A
straightforward application of our main construction in §5.2 already yields a PKLDC with public key size
O(n) and constant ciphertext expansion, but the Gentry-Ramzan PIR protocol has many nice properties
which can be exploited to simplify the construction and further increase the efficiency of the protocol.
The construction we present here differs from the straightforward application of our general reduction to
the Gentry-Ramzan protocol in two ways. First, we are able to integrate the basic semantically-secure
encryption protocol into our construction, thus reducing the ciphertext expansion by a constant factor,
and eliminating the need for another hardness assumption. Second, we use the Chinese Remainder
Theorem Error Correcting Code (CRT-ECC) instead of the Reed-Solomon code used in the general
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construction. This is because the Φ-hiding assumption allows us to do hidden chinese-remaindering, and
so it is a more natural code to use in this context. This does not change the arguments in any substantial
way, since from the ring-theoretic perspective, the CRT-ECC and the Reed-Solomon ECC are exactly
the same (see Appendix E).

7.1 The Small Primes Φ-Hiding Assumption

The Φ-Hiding Assumption is a relatively new computational hardness assumption, which relates to the
difficulty of finding small prime factors of ϕ(m), where ϕ is the Euler Totient Function. If a prime p
divides ϕ(m), we say that m Φ-hides p. The Φ-Hiding assumption was first proposed by Cachin, Micali
and Stadler in [4], and a variant was proposed by Gentry and Ramzan in [11]. Our constructions require
only the security of the Gentry-Ramzan PIR scheme, and so we make the following variant of the Φ-Hiding
Assumption

Let Pk denote the set of primes of bit-length k
2 , Hk be the set of products of two primes in Pk with

gcd(p− 1, q − 1) = 2, and let Hπ
k ⊂ Hk denote the set of composite moduli that Φ-hide π, i.e.

Hπ
k = {m : m = pq, {p, q} ⊂ Pk, gcd(p− 1, q − 1) = 2, p ≡ 1 mod π}.

Assumption 1. The Small Primes Φ-Hiding Assumption
For all small prime powers, π0, π1 such that 3 < π0 < π1 < 2

k
4
−1, given b ∈R {0, 1} and m ∈R Hπb

k ,
for all probabilistic polynomial-time algorithms A, we have

Pr [A(π0, π1,m) = b] ≤ 1
2

+ ν(k),

for some negligible function ν(k), where the probability is taken over all m ∈ Hπb
k , b ∈ {0, 1}, and the

internal randomness of A.

Thus we are asserting that no probabilistic polynomial-time adversary can determine which prime
power a given modulus Φ-hides. We will sometimes find it convenient to use a slightly different form.
Specifically, we assert that given two modulim0,m1 which Φ-hide two prime powers π0, π1, no probabilistic
polynomial-time adversary can tell whether π0 = π1 with probability better than one half.

Lemma 6. Under the Small Primes Φ-Hiding Assumption, if π0 ∈R {5, . . . , b2
k
4
−1c}, S0 = {π0}, S1 =

{5, . . . , b2
k
4
−1c} \ {π0}, b∗ ∈R {0, 1}, π1 ∈R Sb∗ , b ∈R {0, 1} and m0 ∈R Hπb

k and m1 ∈R H
π1−b

k . Then for
all probabilistic polynomial-time adversaries A,

Pr[A(m0,m1) = 0 and π0 = π1] + Pr[A(m0,m1) = 1 and π0 6= π1] ≤
1
2

+ ν(k),

for some negligible function ν(k), where the probability is taken over the internal randomness of A, the
choice of π0, π1, m0,m1, and the choice of b∗ and b.

Proof. Assume there exists a polynomial-time adversary A which can correctly determine whether π0 = π1

with probability 1
2 + ε(k) for some non-negligible function ε(k). Given π0, π1 and m such that πb | ϕ(m),

we wish to construct an algorithm A′ that guesses b, as follows: Pick a random b′ ∈ {0, 1}, and generate
m′ ∈ Hπb′

k . Then run A on (m,m′). If A returns 0 then A′ returns b′, otherwise A′ returns 1− b′. Since
A succeeds with probability 1

2 + ε(k), A′ succeeds with probability 1
2 + ε(k) which is still non-negligible

in k, and thus a violation of the Φ-Hiding assumption �

In particular, we are asserting that there is no efficient algorithm which can match the πi to the moduli
mi significantly better than by guessing randomly. Notice that in the small primes Φ-hiding assumption
we have excluded π = 2 or 3, this is because every odd number Φ-hides 2, and m ≡ 2 mod 3, only if m
Φ-hides 3. Notice also that we restrict the πi to be smaller than 4

√
mi, this is to prevent the lattice based

attack described in [7], [6]. When the pi’s and the πi’s are chosen subject to these restrictions, there are
no efficient algorithms known for breaking the Φ-Hiding assumption.
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7.2 A Φ-hiding based Semantically-Secure Encryption Protocol

Here, we describe a simple semantically-secure public key encryption scheme, BasicEncrypt that will be
an essential building block of our construction. The encryption protocol consists of three algorithms,
G,E,D described below.

To generate the keys, G(1k) first selects a small prime-power π, then generates m ∈ Hπ
k , i.e. m = pq,

where p, q ∈R Pk, subject to π | p− 1. The public key will be PK = (g,m, π) where g is a generator for
the cyclic group Gm, and SK = ϕ(m)

π .
To encrypt a message x ∈ Z/πZ, we have

E(x) = gx+πr mod m,

for a random r ∈ Z/mZ. To decrypt, we do

D(y) = yϕ(m)/π = gxϕ(m)/π mod ϕ(m) mod m =
(
gϕ(m)/π

)x
mod m,

then, using the Pohlig-Hellman algorithm to compute the discrete logarithm in the group 〈gϕ(m)/π〉, we
can recover x mod π = x. If a is a small prime, and π = ac, the Pohlig-Hellman algorithm runs in time
c
√
a. Thus the decryption requires O(log(m/π) + c

√
a) group operations in Gm which is acceptable for

small primes a. In our locally decodable code, we will require multiple different prime powers π1, . . . , πt,
and we will choose the small primes a, as the first primes, i.e. π1 = 5e1 , π2 = 7e2 , π3 = 11e3 . If we require
t prime powers πi, the Prime Number Theorem, implies that the largest a, will be approximately t log t.
Since t will be less than the message length, n,

√
a will be polynomial in the message length, and hence

polynomial in the security parameter k.
It is worth noticing that this scheme is additively homomorphic over the group Z/πZ, although we do

not have an explicit use for this property. When π = 2, this is just Goldwasser-Micali Encryption [13],
for larger π it was described in [3] and [2]. An extension of this scheme is described in [29].

While this protocol is not new, none of the previous descriptions of this protocol make use of the Φ-
hiding assumption, and instead their security is based on some form of composite residuousity assumption,
i.e. it is impossible to tell whether a random group element h belongs to the subgroup of order π in Gm.
We are able to prove security under the Φ-hiding assumption because the Φ-hiding assumption is strictly
stronger than these other assumptions. The reduction is simple, for suppose there exists an adversary A
which can determine whether a group element h ∈ Gm is a πth power. Noticing that if π | ϕ(m) exactly
1 in π elements will be πth powers, while if gcd(π, ϕ(m)) = 1, then every element is a πth power, by
simply sending random group elements hi to A, and measuring the probability which A says that hi is a
πth power, we can distinguish whether π | ϕ(m).

7.3 The Semantic-Security of BasicEncrypt

We now prove the semantic security of the simple encryption protocol given in §7.2 under the Φ-hiding
assumption, we prove this as a sequence of lemmas, lemma 7 through lemma 9.

Lemma 7. Under the Small Primes Φ-Hiding Assumption, if we define

H0 = {g ∈ Gm : 〈g〉 = Gm, i.e. g generates Gm },

and H1 = Gm \ H0, then, if b ∈R {0, 1}, given m ∈R Hk, g ∈R Hb, no probabilistic polynomial time
distinguisher D can correctly distinguish whether g ∈ H0 with probability noticeably greater than 1

2 .

Proof. Suppose D correctly guesses whether g generates Gm with probability 1
2 + ε for some noticeable

function ε. We will use D to break the Φ-hiding assumption. Our adversary A is given m,π according to
the distributions given in Assumption 1, and will use D as a subroutine to determine whether m ∈ Hπ

k .
First notice that Gm is a cyclic group, so |H0| = ϕ(|Gm|) = ϕ(ϕ(m)/2). A well-known consequence

of the Prime Number Theorem is the lower bound

ϕ(n) >
cn

log log(e2n)
,
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for some constant c and all n (see for example [1]). Thus

|H0| = ϕ(|Gm|)

>
c|Gm|

log log(e2|Gm|)

>
c|Gm|

log log(e2m)
.

In particular |H0|
|Gm| >

c
log log(e2m)

which is noticeable in k, since k ≈ logm. Thus an element drawn
uniformly at random from Gm will be a generator with noticeable probability, we call this probability
ι. Then to determine if m ∈ Hπ

k , we generate a random g ∈ Gm, and send gπ and m to D. If D says
g ∈ H0, A replies that m 6∈ Hπ

k , i.e. m does not Φ-hide π.
To show that we succeed with noticeable probability, we note that if m 6∈ Hπ

k , then gπ ∈ H0 iff g ∈ H0,
so gπ ∈ H0 with probability ι. If m ∈ Hπ

k , then gπ cannot generate Gm, so gπ 6∈ H0.
Thus

π|ϕ(m) π - ϕ(m)
A says gπ ∈ H0

1
2 − ε

1
2 − ε+ 2ιε

A says gπ 6∈ H0
1
2 + ε 1

2 + ε− 2ιε

so A is correct with probability

1
2

(
1
2 + ε+ 2ιε

(1
2 − ε) + (1− ε+ 2iε)

+
1
2 + ε

(1
2 + ε) + (1

2 + ε− 2ιε)

)
=

1
2

(
1
2 − ε+ 2ιε
1− 2ε+ 2ιε

+
1
2 + ε

1 + 2ε− 2ιε

)

>
1
2

(
1
2

+
ιε

1− 2ε+ 2ιε
+

1
2

+
ιε

1 + 2ε− 2ιε

)
>

1
2

(
1
2

+ ιε+
1
2

)
=

1
2

+
ιε

2
.

Which is non-negligible since both ι and ε are non-negligible. �

Next, we prove a straightforward fact about the distribution r mod ϕ(m), where r ∈R Z/mZ.

Lemma 8. If r is selected uniformly at random in Z/mZ, and r′ is selected uniformly at random in
Z/|Gm|Z, then the distributions of r mod |Gm| and r′ are statistically close, i.e.

1
2

∑
x∈Z/|Gm|Z

|Pr[r = x]− Pr[r′ = x]|

is negligible in k.

Proof. Since |Gm| = ϕ(m)
2 = pq−p−q+1

2 , the distribution for r mod |Gm| becomes

P (r = x) =


2
m for |Gm| − p− q + 1 elements

3
m for p+ q − 1 elements

Thus

1
2

∑
x∈Z/|Gm|Z

|Pr[r = x]− Pr[r′ = x]| = 1
2
(|Gm| − p− q + 1)

(
1
|Gm|

− 2
m

)
+

1
2
(p+ q − 1)

(
3
m
− 1
|Gm|

)
.

Now,
1
|Gm|

− 2
m

= 2
(

1
pq − p− q + 1

− 1
pq

)
=
p+ q − 1
m|Gm|

,
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so
1
2
(|Gm| − p− q + 1)

(
1
|Gm|

− 2
m

)
≤ p+ q

2m
.

Similarly, we have

3
m
− 1
|Gm|

=
3(pq − p− q + 1)− 2pq
m(pq − p− q + 1)

=
pq − 3(p+ q − 1)

2m|Gm|
<
pq − p− q + 1

2m|Gm|
=

1
m
.

so
1
2
(p+ q − 1)

(
3
m
− 1
|Gm|

)
≤ p+ q

2m
.

Thus the statistical distance is less than
(p+ q)
m

which is negligible in k since logm ≈ k, and log p ≈ log q ≈ k
2 . �

Now we are ready to prove the semantic security of our cryptosystem.

Lemma 9. The encryption in §7.2 is semantically-secure under the small primes Φ-hiding assumption.

Proof. Given any distinguisher D for the encryption protocol that succeeds with non-negligible probabil-
ity, we construct an adversary A which violates the Φ-hiding assumption with non-negligible probability.
Given m and π where m ∈R Hπ

k with probability 1
2 and m ∈R Hk \Hπ

k with probability 1
2 , the adversary

A picks a g ∈ Gm and sends g,m to the distinguisher D, and D responds with two messages x0, x1. Then
A chooses b ∈R {0, 1}, and r ∈R Z/mZ and computes

c = gxb+πr mod m

and sends c to the distinguisher D. D responds with a bit b∗. If b∗ = b the adversary responds that m
Φ-hides π, otherwise the adversary responds m does not Φ-hide π.

Now we must show that this adversary breaks the Φ-hiding assumption with non-negligible probability.
First, assume g generates Gm. If m Φ-hides π, then c is a valid encryption of xb, and so by the

definition of D, we must have that b∗ = b with probability 1
2 + ε for some non-negligible function ε.

On the other hand, if m does not Φ-hide π, then π ∈ (Z/|Gm|Z)∗. Now, notice that if r′ were chosen
uniformly in Z/|Gm|Z instead of Z/mZ, we would have xb + πr′ mod |Gm| is also uniformly distributed
in Z/|Gm|Z. Thus gxb+πr′ would be uniformly distributed in Gm, and hence any distinguisher D could
guess b from gxb+πr′ with probability at most one half. By lemma 8, the statistical distance between
gxb+πr and gxb+πr′ is negligible, thus any distinguisher D succeeds in guessing b with probability 1

2 + ν
for some negligible function ν.

Then, following this scheme, if g generates Gm with probability a, our algorithm succeeds in breaking
the Φ-hiding assumption with probability 1

2 + ε−ν
2 which is a non-negligible since ε is non-negligible and

ν is negligible.
If, instead, g does not generate Gm, then by lemma 7, D’s output distribution must be negligibly

different from when g generates Gm. Thus in this case as well, A correctly guesses whether π|ϕ(m) with
probability noticeably greater than 1

2 . �

7.4 Outline of Our Φ-hiding based Construction

We begin by fixing a list of t prime powers {π1, . . . , πt} as part of the public parameters. For concreteness
we choose π1 = 5e1 , π2 = 7e2 , . . . as in §7.2. A public key will be a list of t RSA moduli {m1, . . . ,mt},
such that each mj Φ-hides some prime power πj′ . The Private key will be the factorizations of the mj ,
more specifically ϕ(m1), . . . , ϕ(mt), along with a random permutation σ ∈ St such that mj Φ-hides πσ(j).
To encrypt a message X ∈ {0, 1}n, we first divide X into blocks Xi of size `k. Where k is the security
parameter, and ` is a parameter determining the “spread” of the code. As in the Gentry-Ramzan PIR
scheme, we view each block as a number in the range

{
0 . . . 2`k

}
. Our public key will be t = ρn

dk RSA
moduli {m1, . . . ,m ρn

dk
} such that each modulus Φ-hides a prime power πj . We will use s = dρ`/de of the

πj to encode each block Xi. Since there are dn/`ke, and for each block we use dρ`/de prime powers, we use
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a total of n
`k ·

ρ`
d = ρn

dk = t prime powers. The parameter ρ determines the redundancy of the CRT-ECC,
hence increasing ρ increases the error tolerance and also the ciphertext expansion. Recall that d is the
information rate of the Gentry-Ramzan PIR, so d is some fixed constant less than 1/4, for concreteness
you can assume d = 1/5. Exactly which prime is hidden by which modulus will be chosen at random
at the time of key generation, and is part of the receiver’s secret key. For each block Xi, the sender
encrypts Xi modulo the s prime powers {π(i−1)s+1, . . . , πis}, where each πj is roughly of size dk. Notice
here that we have used ρ times as many moduli πj as necessary to encode each block, thus for each block

Xi we have effectively calculated an encoding of Xi under the CRT-ECC which can tolerate
(

1
2 −

1
2ρ

)
`
d

corrupted moduli (see Appendix C). We do this for each block, and thus the resulting encryption is ρ`
d ·

n
`k

residues. Since each residue is of size k, the the encryption of the whole message is now of n
`k

ρ`
d = ρn

dk
encryptions of size k. Finally, we encode each of the ρn/(kd) encryptions independently using the error
correcting code in §4.4. So our final encryption is of size ρc2n/d bits, which is a constant multiple of n.
This encryption is error correcting because as long as no more than 1

2 −
1
2ρ of the residues that encode

a given block are corrupted, the block can be recovered correctly by first decrypting each residue, and
then reconstructing the CRT-ECC. This cryptosystem is also locally-decodable since to decrypt a given
block, it suffices to decrypt the ρ`

d encryptions that encode it.

7.5 Error Correcting Public Key Encryption Based on Φ-hiding

We now define a triple of algorithms G,E,D for our encryption scheme.

Key Generation: G(1k, α).

• Let p1, . . . , pt be primes with 5 ≤ p1 < p2 < · · · < pt, and choose ej =
⌊

k
4 log pj

⌋
, thus ej is the

largest integer such that log
(
p

ej

j

)
< dk, for some d < 1

4 . Set πj = p
ej

j . To encrypt n-bit messages,

we will need to choose t = ρn
dk . Since we assume n = kα, this becomes t = ρkα−1

d .

• Generate a random permutation σ ∈R St, the symmetric group on t elements.

• Generate moduli m1, . . . ,mt such that mj ∈ H
πσ(j)

k , i.e. mj Φ-hides πσ(j).

• Find generators {gj} of the cyclic groups {Gmj}.

The public key will then be
PK = ((g1,m1, π1), . . . , (gt,mt, πt)),

and the secret key will be

SK =
(
σ,
ϕ(m1)
πσ(1)

, . . . ,
ϕ(mt)
πσ(t)

)
.

Encryption: given an n-bit message X,

• Break X into n
`k blocks Xi of size `k, and treat each Xi as an integer in the range {0 . . . 2`k}.

• For block Xi, we will use the s prime powers π(i−1)s+1, . . . , πis to encode Xi. Since the moduli
mσ−1((i−1)s+1), . . . ,mσ−1(is) that correspond to these π’s is unknown to the sender, he must apply
the Chinese Remainder Theorem using all the πj ’s. Thus for each block Xi, using the CRT, the
sender generates X̃i ∈ [1, . . . , (π1 · · ·πt)], such that

X̃i =
{
Xi mod πj for j ∈ [(i− 1)s+ 1, . . . , is],
0 mod πj for j ∈ [1, . . . , (i− 1)s] ∪ [is+ 1, . . . , t].

To recover from error-rate 1
2 −

1
2ρ , we set s = ρ`

d .

• The sender then sets X̃ =
∑ n

`k
i=1 X̃i. Thus for each j, X̃ = Xi mod πσ(j) for the unique i such that

(i− 1)s+ 1 ≤ σ(j) ≤ is.

16



• For j ∈ [1, . . . , t], generate a random rj ∈ {0, . . . , π1 · · ·πt}.

• Then calculate hj = g
X̃+rjπ1···πt

j mod mj for each j ∈ {1, . . . , t}. Thus

hj = E
(
X̃ mod πσ(j)

)
= E(Xi mod πσ(j)),

where (i − 1)s + 1 ≤ σ(j) ≤ is, and E is the encryption protocol described in §7.2. At this point,
partial information about the block Xi is spread over s of the hj ’s.

• Apply the binary Error Correcting Code ECC to each hj individually.

• The encryption is then the t-tuple (ECC(h1),ECC(h2), . . . ,ECC(ht)).

Decryption: to recover the ith block, of a message X from the t-tuple (h1, . . . , ht)

• Select the s encryptions that encode Xi, {ECC(hσ−1((i−1)s+1)), . . . ,ECC(hσ−1(is))}.

• Decode each ECC(hj) to find obtain {hσ−1((i−1)s+1), . . . , hσ−1(is)}.

• Decrypt each of the s encryptions using the decryption algorithm from §7.2. This gives a1, . . . , as

where aj = Xi mod (π(i−1)s+j).

• Using the Chinese Remainder Code Decoding Algorithm, reconstruct Xi from the s remainders
a1, . . . , as. Note that if there are no errors introduced, this step can be replaced by simple Chinese
Remaindering.

8 Analysis

The proof of local-decodability remains essentially the same as in the general setting (see §6.2).
For the locality, we note that to recover a single bit of X, or equivalently the entire block Xi that

contains it, we must read s blocks of the ciphertext {ECC(hσ−1((i−1)s+1)), . . . ,ECC(hσ−1(is))}. Since
|hj | = k and |ECC(hj)| = c2k, we must read a total of sc2k = ρc2`k

d bits. Since the probability of error
will be negligible in `, we set ` ≈ k, and since d < 1

4 , we find that we need to read 5c2ρk2 bits of the
ciphertext to recover one bit of the plaintext, where c and ρ are parameters that determine the error-rate
of our code. Thus our system only achieves local-decodability for n = O(k2+ε). For n ≈ k3, our system
already offers a significant improvement over standard error-correcting codes. It should also be noted,
that for any semantically-secure cryptosystem, to recover one bit of the plaintext, you must read at least
ω(log k) bits of the ciphertext. It is an interesting question whether the locality of such a scheme can be
improved from O(k2) to O(k).

Thus we arrive at the following result

Corollary 3. Under the Small Primes Φ-Hiding Assumption (Assumption 1) there is a Public-Key
Locally Decodable Code which can recover from a constant error-rate in the bits of the message, with
public key size O(n) and ciphertexts of size O(n), where n is the size of the plaintext and k is the security
parameter. The resulting code has locality O(k2), i.e. to recover a single bit from the message we must
read O(k2) bits of the codeword.
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Appendix

A Semantic Security

By a Public Key Cryptosystem, we mean a a triple of probabilistic polynomial time algorithms G,E,D,
such that (PK,SK) ← G(1k), c ← E(PK, x, r) x′ ← D(SK, c) Where PK, SK denote the public and
secret keys and x′ = x w.h.p for the same message. A public key encryption system is semantically-secure
if, given two messages x0 and x1, b ∈R {0, 1}, and an encryption of one of the messages, E(PK, xb), no
polynomial time adversary can determine b with probability significantly greater than one half. That is:

Definition 2. A Public Key Cryptosystem, G,E,D, with security parameter k is called semantically-
secure (in the sense of indistinguishability) if for all message pairs {x0, x1} and for all probabilistic
polynomial time adversaries A, and for all b ∈R {0, 1},

Pr[(PK,SK)← G(1k); {x0, x1} ← A(PK);A(E(PK, xb, r)) = b] <
1
2

+ ν(k)

Where x0 and x1 must be of equal length, and the probability is taken over the key generation algorithm’s
randomness, choice of b, randomness r used in the encryption algorithm E and the internal randomness
of A.

B Constant Rate Binary Error Correcting Codes

For our scheme to have constant information rate, we need to find a binary error-correcting code which
can tolerate an error-rate of 1

2 − δ.
One method for creating such a code, uses the notion of Concatenated Codes, originally described

by Forney in [9]. By combining a Reed-Solomon Code and a Random Linear Code as described in [16],
it is possible to obtain a binary error correcting code which recovers from 1

4 − δ error-rate, but the
information-rate of the resulting code is very low, about 10−4 for their construction.

Since we are working in the computationally bounded channel model, we can take advantage of the
constructions described in [28], to create a binary code with error-rate 1

2 − δ, and significantly better
information rates than in the unbounded channel model. Applying Micali et al’s construction to the
binary codes with list-decoding rate 1

2 and information rate δ4 described in [15], we obtain a code which
uniquely decodes from error-rate 1

2 − δ, and has information rate about 1
δ4 .

C CRT-Based Error Correction

It was observed in the 1970s [25], [26], [27], that the Chinese Remainder Theorem could be used to make
efficient Error Correcting Codes. If π1, . . . , πn,πn+1, . . . , πn+t an increasing sequence of pairwise coprime
integers, i.e. π1 < π2 < · · · < πn+t, and gcd(πi, πj) = 1 whenever i 6= j. Then for any integer x with
x <

∏n
i=1 πi, we encode x as the (n + t)-tuple {x mod p1, . . . , x mod pn+t}. If x and x′ are distinct

integers less than
∏n

i=1, then the two vectors E(x) = {x mod π1, . . . , x mod πn+t} and E(x′) = {x′
mod π1, . . . , x

′ mod πn+t} must differ in at least t+1 coordinates since the residue of x modulo any n of
the moduli πi uniquely determines x. Thus the minimum distance in this code is t, and so it can correct
b t

2c errors. Thus if we take n+ t = ρn, this code can recover from error-rate 1
2 −

1
2ρ , in the digits of the

code.
This code differs significantly from most other error correcting codes in that each “digit”, i.e. each

remainder, of the codeword carries a different amount of information. Thus the Hamming distance
between two codewords, measured as the number of remainders in which they differ is not the natural
distance to consider for this code. This fact made finding an efficient decoding algorithm a nontrivial task.
In his original paper in 1972, Mandelbaum proposed an algorithm that ran in expected polynomial-time.
Since then, many variants of that algorithm have appeared, but it was not until 2001 [17] that the first
polynomial-time decoding algorithm was found. Since the Chinese Remainder Codes are efficiently list
decodable [12], [17], we can apply the technique in [28] of combining list-decoding with digital signatures
to our protocol to further improve the information-rate.
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D Gentry-Ramzan PIR

While our scheme does not explicitly rely on the Gentry-Ramzan PIR scheme, our protocol was inspired
by their use of the Φ-hiding assumption to do “hidden” Chinese Remaindering. In the interest both
of giving some context for our scheme, and of showing what else can be achieved by hidden Chinese
Remaindering, we briefly sketch the Gentry-Ramzan Private Information Retrieval scheme [11]. This
scheme allows computationally private single database PIR with constant communication rate under the
Φ-hiding assumption. Here “constant” means proportional to the security parameter. The scheme allows
retrieval of entire blocks at once, and the scheme we describe will retrieve an `-bit block from an n-bit
database.

The scheme assumes some initial set-up. First, sequence of small primes p1, . . . , pt are fixed in advance.
Then we set ` = dn/te, and ci = dlogpi

`e. Setting πi = pci
i , we have that πi > 2` for all i, and the integers

π1, . . . , πt are pairwise relatively prime. This initial set-up is assumed to be known to both the user and
the database, and is not included in the communication complexity of the scheme.

To begin the scheme, the database must do some pre-processing. Instead of viewing the database as
a single n-bit string, we instead view it as a concatenation of t `-bit integers a1, . . . , at. Recall that we
have chosen our πi such that ai < πi for each i. Using the Chinese Remainder Theorem, the database
can find an integer e <

∏t
i=1 πi, such that e mod πi = ai.

To retrieve the jth block of the database, aj , the user then chooses an RSA modulus m = pq that
Φ-hides πj , and a g for cyclic the group Gm, i.e. g has order ϕ(m)

2 in (Z/mZ)∗. Since πj |ϕ(m), we have
that Gm has a subgroup of order πj . Letting q = ϕ(m)

2πj
, this subgroup is generated by gq. The user then

sends both m, and g to the database. The database calculates ge mod m and returns the result.
Given ge mod m, the user then calculates (ge)q = (gq)e = ge mod πj mod m since gq has order πj in

Gm. Then by performing (a tractable) discrete-log computation in the subgroup of order πj generated
by gq the user recovers e mod πj = aj . Using Pohlig-Hellman algorithm this discrete-log computation
can be calculated in O(cj

√
pj) time.

If log2(m) = k, then the user sends 2k bits to the database, and the database replies with k bits, so
the total communication complexity is 3k bits. To avoid the lattice-based attacks described in [7] and
[6], we must choose m such that πi < m

1
4 for all i, i.e. ` < 4k.

E Why the CRT-ECC and the Reed-Solomon Code Are The Same

The general form of the Chinese Remainder Theorem states that if R is a commutative ring and I1, . . . , It
are pairwise coprime ideals (i.e. Ii + Ij = R for all i 6= j) then

R/(I1I2 · · · It) ' R/I1 ×R/I2 × · · · ×R/It.

Taking R = Z and Ij = mjZ for pairwise coprime integers mj we arrive at the classical form of the
Chinese Remainder Theorem. Now, noting that

ψ : Z/pZ[x]/(x− a)→ Z/pZ
f(x)→ f(a)

is a ring isomorphism, we can view evaluating f ∈ Z/pZ[x] at a point a as quotienting out by the ideal
(x− a). Applying the Chinese Remainder Theorem to R = Z/pZ[x] and Ij = (x− a), we obtain exactly
the setting of the Reed-Solomon code. In both situations, the minimal distance for the code remains
exactly the same since an element in R/(I1 · · · It) is uniquely determined by its t images in the quotient
rings R/Ij .
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