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Abstra
t

At Euro
rypt 2005, Boneh, Boyen and Goh presented a 
onstant size 
iphertext hierar
hi
al

identity based en
ryption (HIBE) proto
ol. Our main 
ontribution is to present a variant of the

BBG-HIBE. The new HIBE is proved to be se
ure (without any degradation) in an extension of the

sID model (denoted the s

+

-ID model) and the 
omponents of the identities are from Z

p

, where p is a

suitable large prime. The BBG-HIBE is proved to be se
ure in the sele
tive-ID (sID) se
urity model

and the 
omponents of the identities are from Z

�

p

. In the s

+

-ID model the adversary is allowed to

vary the length of the 
hallenge identity whereas this is not allowed in the sID model. The new HIBE

shares all the good features of the BBG-HIBE. The drawba
k is that the publi
 parameters and the

private key are longer than that of the BBG-HIBE. We also provide two more extensions of the basi



onstant size 
iphertext HIBE. The �rst is a 
onstant size 
iphertext HIBE se
ure in the generalised

sele
tive-ID modelM

2

. The se
ond one is a produ
t 
onstru
tion 
omposed of two HIBEs and a

trade-o� is possible between the private key size and the 
iphertext size.

1 Introdu
tion

An identity based en
ryption (IBE) proto
ol o�ers 
ertain 
exibility over usual publi
 key en
ryption

proto
ol by allowing the publi
 key to be any binary string. This notion was introdu
ed by Shamir [17℄

and the �rst eÆ
ient implementation with a proof of se
urity in an appropriate se
urity model was

given by Boneh and Franklin [5℄. In an IBE, the private key 
orresponding to an identity is generated

by a private key generator (PKG) and is se
urely transmitted to the appropriate entity. En
ryption is

done using the identity and the publi
 parameters of the PKG whereas de
ryption requires the private

key of the identity under whi
h the message has been en
rypted.

The role of the PKG is to distribute private keys. A generalization of IBE is the notion of a

hierar
hi
al IBE (HIBE) [16, 15℄, whi
h allows the task of generating private keys to be delegated to

lower levels. Several 
onstru
tions of HIBE are known [15, 2, 4℄. The 
onstru
tions in [15, 2℄ have

the property that the length of the 
iphertexts, the size of the private keys and 
onsequently, the time

required for en
ryption and de
ryption grow linearly with the number of levels in the HIBE.

In a re
ent work, a very interesting 
onstru
tion of HIBE was presented by Boneh, Boyen and

Goh [4℄, whi
h we 
all BBG-HIBE. The main novelty of the BBG-HIBE is that the size of the 
iphertext

is independent of the depth of the HIBE. This also improves the eÆ
ien
y of en
ryption and de
ryption.
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Perhaps more importantly, the 
onstant size 
iphertext BBG-HIBE leads to improved 
onstru
tions of

forward se
ure en
ryption and publi
-key broad
ast en
ryption proto
ols.

The full se
urity model for IBE was introdu
ed in [5℄ and later extended to HIBE in [15℄. A weaker

se
urity model was introdu
ed in [9, 10℄ and is 
alled the sele
tive-ID model (sID model in short). The

sele
tive-ID di�ers from the full model by restri
ting the adversary to 
ommit to the 
hallenge identity

even before setting up the proto
ol. The HIBE proposed by Boneh-Boyen [2℄, whi
h we 
all BB-HIBE,

and the BBG-HIBE [4℄ are the only known HIBE proto
ols se
ure in the sele
tive-ID model. The

sele
tive-ID se
urity model was generalised in [11℄ to two new models,M

1

andM

2

, and the authors

proposed two HIBEs H

1

and H

2

se
ure in the respe
tive models. The BBG-HIBE has been extended

to modelM

2

in [12℄ and the authors also proposed a 
onstru
tion se
ure in the full model.

Our Contributions: We modify the BBG-HIBE to obtain a new 
onstant size 
iphertext HIBE,

G

1

. A 
onstant size 
iphertext HIBE is an interesting primitive in its own right. Several important

appli
ations of su
h a HIBE has been des
ribed in [4℄. We believe that the importan
e of 
onstant size


iphertext HIBE makes studying variants of the BBG-HIBE an interesting problem in itself.

Compared to the BBG-HIBE, the new HIBE G

1

has the following advantages { it is se
ure (without

any degradation) in an extension of the sID model (see below) and the 
omponents of the identity tuples

are from Z

p

, where p is a suitable large prime. On the other hand, the disadvantage is that the size of

the publi
 parameters and the private key is longer than that of the BBG-HIBE. Note that even though

the size of the private key is longer, the size of the de
ryption subkey is same as that of BBG-HIBE.

Sin
e for de
ryption, only the de
ryption subkey needs to be loaded onto a smart 
ard, to a 
ertain

extent this mitigates the disadvantage of the private key being longer.

In the sID model, the adversary 
ommits to an identity tuple v

�

= (v

�

1

; : : : ; v

�

m

) and in the 
hallenge

phase obtains an en
ryption under v

�

. In parti
ular, the length m of the 
hallenge identity is �xed by

the adversary in the 
ommit stage itself. In the augmented version of the sele
tive-ID model, whi
h we


all sele
tive

+

-ID model, in the 
hallenge phase, the adversary is allowed to ask for an en
ryption under

v

+

= (v

�

1

; : : : ; v

�

m

0

), where 1 � m

0

� m. This provides the adversary additional 
exibility in 
hoosing

the target identity.

In the sID model, the adversary is restri
ted from making private key queries for any pre�x of v

�

.

Consequently, a \natural" intuition is that the adversary be allowed to 
hoose any pre�x of v

�

as a


hallenge identity. Unfortunately, the sID model does not allow this 
exibility to the adversary. In the

s

+

ID model, this 
exibility is introdu
ed and the 
hallenge identity is allowed to be any pre�x of v

�

.

Clearly, any proto
ol se
ure in the s

+

ID model is also se
ure in the sID model, though the 
onverse is

not ne
essarily true.

We show that the se
urity redu
tion for BB-HIBE [2℄ satis�es the notion of s

+

ID se
urity. On the

other hand, the se
urity proof of the BBG-HIBE given in [4℄ does not go through in the s

+

ID model. A

simple modi�
ation of this proof gives a proof of se
urity for the BBG-HIBE in the s

+

ID model. But

this proof yields a multpli
ative se
urity degradation by a fa
tor of h, where h is the maximum number

of levels in the HIBE.

Our idea of modifying the proof of the BBG-HIBE proto
ol 
an be utilised to show that any proto
ol

se
ure in the s

+

-ID model is also se
ure in the sID model with a se
urity degradation by a fa
tor of

h. Admittedly, a se
urity degradation by a fa
tor of h is not mu
h. However, the sID and the s

+

ID

models are really restri
tive models and hen
e one would like to obtain a proto
ol without any se
urity

degradation.
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We next modify this 
onstru
tion to obtain a 
onstant size 
iphertext HIBE, G

2

whi
h is proved to

be se
ure in modelM

2

augmented in the line of s

+

ID model.

Our third 
onstru
tion is a produ
t 
onstru
tion, in the sense that the 
onstru
ted HIBE 
an be

seen to be a \produ
t" of two individual HIBEs. A produ
t 
onstru
tion 
ombining the BB-HIBE and

the BBG-HIBE has been presented earlier in [4℄.

We 
onsider the produ
t of H

1

of [11℄ with G

2

to obtain a new HIBE G

3

. This HIBE is se
ure in

modelM

1

and redu
es the size of the 
iphertext in H

1

by a fa
tor of h, where h is the number of levels

in G

2

. The de
ryption subkey (i.e., the part of the private key required for de
ryption) for both G

1

and

G

2

are equal to that of BBG-HIBE. While in G

3

the size of the de
ryption subkey is redu
ed by a fa
tor

of h over the size of the de
ryption subkeys in H

1

.

2 De�nitions

2.1 Cryptographi
 Bilinear Map

Let G

1

and G

2

be 
y
li
 groups of same prime order p and G

1

= hP i, where we write G

1

additively and

G

2

multipli
atively. A mapping e : G

1

�G

1

! G

2

is 
alled a 
ryptographi
 bilinear map if it satis�es

the following properties:

� Bilinearity: e(aP; bQ) = e(P;Q)

ab

for all P;Q 2 G

1

and a; b 2 Z

p

.

� Non-degenera
y: If G

1

= hP i, then G

2

= he(P; P )i.

� Computability: There exists an eÆ
ient algorithm to 
ompute e(P;Q) for all P;Q 2 G

1

.

Sin
e e(aP; bP ) = e(P; P )

ab

= e(bP; aP ), the map e() also satis�es the symmetry property. The modi�ed

Weil pairing [5℄ and the Tate pairing [1, 14℄ are examples of 
ryptographi
 bilinear maps.

Known examples of e() have G

1

to be a group of Ellipti
 Curve (EC) points and G

2

to be a

subgroup of a multipli
ative group of a �nite �eld. Hen
e, in papers on pairing implementations [1, 14℄,

it is 
ustomary to write G

1

additively and G

2

multipli
atively. On the other hand, some \pure" proto
ol

papers [5, 2, 3, 18℄ write both G

1

and G

2

multipli
atively though this is not true of the initial proto
ol

papers [5, 15℄. Here we follow the �rst 
onvention as it is 
loser to the known examples.

2.2 HIBE Proto
ol

Following [16, 15℄ a hierar
hi
al identity based en
ryption (HIBE) s
heme is spe
i�ed by four algorithms:

Setup, Key Generation, En
ryption and De
ryption. Note that, for a HIBE of height h (hen
eforth

denoted as h-HIBE) any identity v is a tuple (v

1

; : : : ; v

�

) where 1 � � � h.

Setup: It takes as input a se
urity parameter and returns the system parameters together with the

master key. The system parameters in
lude a des
ription of the message spa
e, the 
iphertext spa
e

and the identity spa
e. These are publi
ly known while the master key is known only to the private key

generator (PKG).

Key Generation It takes as input an identity v = (v

1

; : : : ; v

�

) and the private key d

vj��1

for the

identity (v

1

; : : : ; v

��1

) and returns a private key d

v

for v. The identity v is used as the publi
 key while

d

v

is the 
orresponding private key.
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En
rypt: It takes as input the identity v and a message from the message spa
e and produ
es a


iphertext in the 
ipher spa
e.

De
rypt: It takes as input the 
iphertext and a private key d

v

of the 
orresponding identity v and

returns the message or bad if the 
iphertext is not valid.

2.3 Hardness Assumption

Se
urity of our HIBE s
heme is based on the so 
alled de
isional weak bilinear DiÆe-Hellman inversion

problem (h-wDBDHI

�

) introdu
ed by Boneh-Boyen-Goh in [4℄. An instan
e of the h-wDBDHI

�

problem

over hG

1

; G

2

; e()i 
onsists of the tuple (P;Q; aP; a

2

P; : : : ; a

h

P;Z) for some a 2 Z

p

and the task is to

de
ide whether Z = e(P;Q)

a

h+1

or Z is random.

The advantage of a probabilisti
 algorithm B that outputs a bit in solving this de
ision problem is

de�ned as

Adv

h-wDBDHI

�

B

=

�

�

�

Pr[B(P;Q;

�!

Y ; e(P;Q)

a

h+1

) = 1℄� Pr[B(P;Q;

�!

Y ;Z) = 1℄

�

�

�

where

�!

Y = (aP; a

2

P; : : : a

h

P ), and Z is a random element of G

2

. The probability is 
al
ulated over the

random 
hoi
es of a 2 Z

p

and Z 2 G

2

and also the random bits used by B. The quantity Adv

h-wDBDHI

�

(t)

denotes the maximum of Adv

h-wDBDHI

�

B

where the maximum is taken over all algorithms running in time

at most t.

3 Previous HIBE Constru
tions

We brie
y des
ribe the BB-HIBE and the BBG-HIBE. Let G

1

; G

2

and e() be as de�ned in Se
tion 2.

3.1 BB-HIBE

Identities of depth u are of the form (v

1

; : : : ; v

u

) where ea
h v

i

2 Z

p

. Messages are elements of G

2

.

Setup: Sele
t a random generator P 2 G

�

1

, a random x 2 Z

p

and set P

1

= xP . Also pi
k random

elements Q

1

; : : : ; Q

h

; P

2

2 G

1

. The publi
 parameters are

(P; P

1

; P

2

; Q

1

; : : : ; Q

h

)

whereas the master se
ret key is xP

2

. The maximum height of the HIBE is h. De�ne publi
ly 
omputable

family of fun
tions F

j

: Z

p

! G

1

for j 2 f1; : : : ; hg: F

j

(�) = �P

1

+Q

j

.

Key Generation: Given an identity v = (v

1

; : : : ; v

j

) of depth j � h, pi
k random r

1

; : : : ; r

j

2 Z

p

and


ompute

d

v

=

 

xP

2

+

j

X

i=1

r

i

F

i

(v

i

); r

1

P; : : : ; r

j

P

!

d

v


an also be generated given the private key d

vjj�1

of vj

j�1

= (v

1

; : : : ; v

j�1

).
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En
rypt: En
rypt M 2 G

2

for v = (v

1

; : : : ; jI

j

) as

C = (e(P

1

; P

2

)

s

�M; sP; sF

1

(v

1

); : : : ; sF

j

(v

j

))

where s is a random element of Z

p

.

De
rypt: De
rypt C = hA;B;C

1

; : : : ; C

j

i using the private key d

v

= (d

0

; d

1

; : : : ; d

j

as

A�

Q

j

i=1

e(C

i

; d

i

)

e(B; d

0

)

=M

3.2 BBG-HIBE

In this 
ase, identities of depth u are of the form (v

1

; : : : ; v

u

) where ea
h v

i

2 Z

�

p

. (In 
ontrast, re
all

that, in BB-HIBE identity 
omponents are elements of Z

p

). Messages are elements of G

2

.

Setup: Choose a random � 2 Z

p

and set P

1

= �P . Choose random elements P

2

; P

3

; Q

1

; : : : ; Q

h

2 G

1

.

Set the publi
 parameter as (P; P

1

; P

2

; P

3

; Q

1

; : : : ; Q

h

) while the master key is P

4

= �P

2

.

Key Generation: Given an identity v = (v

1

; : : : ; v

k

) of depth k � h, pi
k a random r 2 Z

p

and

output

d

v

= (�P

2

+ r(v

1

Q

1

; : : : ; v

k

Q

k

+ P

3

); rP; rQ

k+1

; : : : ; rQ

h

):

En
rypt: To en
rypt M 2 G

2

under the identity v = (v

1

; : : : ; v

k

), pi
k a random s 2 Z

p

and output

CT = (e(P

1

; P

2

)

s

�M; sP; s(v

1

Q

1

+ : : : + v

k

Q

k

+ P

3

)) :

De
rypt: To de
rypt CT = (A;B;C) using the private key d

v

= (a

0

; a

1

; b

k+1

; : : : ; b

h

), 
ompute

A�

e(a

1

; C)

e(B; a

0

)

=M:

4 Se
urity Models

The relevant de�nitions of 
ryptographi
 bilinear map, HIBE proto
ol and hardness assumption are

given in Appendix 2. Here, we dis
uss about the variants of the sele
tive-ID se
urity models.

The se
urity of a HIBE proto
ol is de�ned in terms of a game between an adversary and a simulator.

The full se
urity model for IBE was introdu
ed in [5℄ and the extension to HIBE was given in [15℄. The

weaker sele
tive-ID model was introdu
ed in [9, 10℄. We de�ne the sele
tive identity, 
hosen 
iphertext

se
urity (IND-sID-CCA) of a HIBE of maximum height h, in terms of the following game.

4.1 Sele
tive-ID Model

Initialization: The adversary outputs a target identity v

�

= (v

�

1

; : : : ; v

�

u

) with u � h, on whi
h it

wishes to be 
hallenged.
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Setup: The 
hallenger sets up the HIBE and provides the adversary with the system publi
 parame-

ters.

Phase 1: Adversary A makes a �nite number of queries where ea
h query is addressed either to the

de
ryption ora
le or to the key-extra
tion ora
le. In a query to the de
ryption ora
le it provides the


iphertext as well as the identity under whi
h it wants the de
ryption. Similarly, in a query to the key-

extra
tion ora
le, it asks for the private key of the identity it provides. Further, A is allowed to make

these queries adaptively, i.e., any query may depend on the previous queries as well as their answers.

The only restri
tion is that it 
annot ask for the private key of v

�

or any of its pre�xes.

Challenge: At this stage A outputs two equal length messages M

0

;M

1

and gets a 
iphertext C

�

whi
h is an en
ryption of M




under v

�

, where 
 is 
hosen uniformly at random from f0; 1g.

Phase 2: A now issues additional queries just like Phase 1, with the (obvious) restri
tion that it


annot ask the de
ryption ora
le for the de
ryption of C

�

under v

�

nor the key-extra
tion ora
le for the

private key of any pre�x of v

�

.

Guess: A outputs a guess 


0

of 
.

The advantage of the adversary A in atta
king the HIBE s
heme is de�ned as:

Adv

HIBE

A

=

�

�

Pr[(
 = 


0

)℄� 1=2

�

�

:

The quantity Adv

HIBE

(t; q

ID

; q

C

) denotes the maximum of Adv

HIBE

A

where the maximum is taken over all

adversaries running in time at most t and making at most q

C

queries to the de
ryption ora
le and q

ID

queries to the key-extra
tion ora
le. Any HIBE s
heme se
ure against su
h an adversary is said to be

se
ure against 
hosen 
iphertext atta
k (in short, IND-sID-CCA-se
ure ). We may restri
t the adversary

from making any query to the de
ryption ora
le. A HIBE proto
ol se
ure against su
h an adversary is

said to be se
ure against 
hosen plaintext atta
ks (in short, IND-sID-CPA-se
ure). Adv

HIBE

(t; q) in this


ontext denotes the maximum advantage where the maximum is taken over all adversaries running in

time at most t and making at most q queries to the key-extra
tion ora
le.

There are generi
 [10, 6℄ as well as non-generi
 [7℄ te
hniques for 
onverting a CPA-se
ure HIBE to

a CCA-se
ure HIBE. In view of this, it is more 
onvenient to initially 
onstru
t a CPA-se
ure HIBE

and then 
onvert it into a CCA-se
ure one.

4.2 Generalised Sele
tive-ID Model

Two new se
urity models,M

1

andM

2

have re
ently been introdu
ed in [11℄. Here we brie
y des
ribe

these two models.

InM

1

the adversary �xes a set of target identities I

�

before the proto
ol is set up where jI

�

j = n.

In Phase 1 and 2 the adversary 
annot make any query to the key extra
tion ora
le for the private key

of an identity tuple v all of whose 
omponents are in I

�

. On the other hand, in the Challenge stage

it must ask for en
ryption under an identity tuple v

�

all of whose 
omponents are in I

�

. This model

is parametrised by the maximum height h of the HIBE and n. This is expli
itly written as (h; n)-M

1

model.

M

2

generalises sID model in the following manner. Before the set-up of the proto
ol, the adversary


ommits to sets of identities I

�

1

; : : : ;I

�

�

, where 1 � � � h and h is the maximum number of levels of the

6



HIBE. Let jI

�

i

j = n

i

. The adversary's 
ommitment �xes the length of the 
hallenge identity to be � .

Also, the set I

�

i


orresponds to the set of 
ommitted identities for the ith level of the HIBE.

In Phases 1 and 2, the adversary is not allowed to query the key extra
tion ora
le on any identity

(v

1

; : : : ; v

j

) su
h that j � � and v

i

2 I

�

i

for all 1 � i � j. The 
hallenge identity is a tuple (v

�

1

; : : : ; v

�

�

)

where v

�

i

2 I

�

i

for all 1 � i � � .

The modelM

2

is parametrized by h and a tuple (n

1

; : : : ; n

h

) of positive integers. This is expli
tly

written as (h; n

1

; : : : ; n

h

)-M

2

model. This model is a generalization of the sID-model whi
h 
an be

seen by �xing all the I

�

i

s to be singleton sets. More spe
i�
ally, (h; 1; : : : ; 1)-M

2

is the sID-model.

4.3 Sele
tive

+

-ID Model

We modify the 
hallenge phase of the sele
tive-ID model to give more power to the adversary.

Challenge: A outputs two equal length messages M

0

;M

1

and an identity v

+

where v

+

is either v

�

or

any of its pre�xes. In response it re
eives an en
ryption of M




under v

+

, where 
 is 
hosen uniformly

at random from f0; 1g.

We refer to this new model as sele
tive

+

-ID model (s

+

ID model in short). This model is more

general than the sID model be
ause now the adversary is allowed to ask for a 
hallenge 
iphertext not

only on v

�

but also on any of its pre�xes. In 
ase of IBE both the models are same as we have only

one level. For HIBE, a proto
ol se
ure in the sele
tive

+

-ID model is obviously se
ure in the sele
tive-ID

model.

5 Constant Size Ciphertext HIBE Se
ure in Sele
tive

+

-ID Model

We augment the BBG-HIBE to obtain a new 
onstant size 
iphertext HIBE se
ure in the sele
tive

+

-ID

model without any se
urity degradation. We 
all this new proto
ol G

1

. The basi
 idea is to repla
e P

3

in BBG-HIBE by a ve
tor

�!

P

3

= (P

3;1

; : : : ; P

3;h

) where P

3;i


orresponds to the ith level of the HIBE.

It is this feature that allows identity 
omponents to be elements of Z

p

and a proof (without se
urity

degradation) in the s

+

-ID model. Also, it is this feature whi
h in
reases the size of the publi
 parameters

and the private key.

Let G

1

; G

2

and e() be as de�ned in Se
tion 2. Let the maximum height of the HIBE be h. The

identities at a depth u � h are of the form v = (v

1

; : : : ; v

u

) where ea
h v

i

2 Z

p

. Note that, unlike the

BBG-HIBE, we allow 0 as a valid identity 
omponent. Messages are elements of G

2

.

Setup: Choose a random � 2 Z

p

and set P

1

= �P . Choose a random element P

2

2 G

1

and two

random h length ve
tors

�!

P

3

;

�!

Q where

�!

P

3

= (P

3;1

; : : : ; P

3;h

) and

�!

Q = (Q

1

; : : : ; Q

h

). Set the publi


parameters to be (P; P

1

; P

2

;

�!

P

3

;

�!

Q) while the master key is P

4

= �P

2

. Instead of P

1

; P

2

, e(P

1

; P

2

) 
an

also be kept as part of PP. This avoids the pairing 
omputation during en
ryption.

Key Generation: Given an identity v = (v

1

; : : : ; v

k

) of depth k � h, pi
k a random r 2 Z

p

and

output

d

v

=

0

�

�P

2

+ r

k

X

j=1

V

j

; rP; rP

3;k+1

; : : : ; rP

3;h

; rQ

k+1

; : : : ; rQ

h

1

A

7



where V

j

= P

3;j

+ v

j

Q

j

. The private key at level k 
onsists of 2(h � k + 1) elements of G

1

. Among

these 2(h�k+1) elements only the �rst two are required in de
ryption, the rest are used to generate the

private key for the next level as follows: Let the se
ret key 
orresponding to the identity (v

1

; : : : ; v

k�1

)

be (A

0

; A

1

; B

k

; : : : ; B

h

; C

k

; : : : ; C

h

), where A

0

= �P

2

+ r

0

P

k�1

j=1

V

j

, A

1

= r

0

P , and for k � j � h,

B

j

= r

0

P

3;j

, C

j

= r

0

Q

j

. Pi
k a random r

�

2 Z

p

and 
ompute

d

v

= (A

0

+B

k

+ v

k

C

k

+ r

�

P

k

j=1

V

k

; A

1

+ r

�

P;

B

k+1

+ r

�

P

3;k+1

; : : : ; B

h

+ r

�

P

3;h

;

C

k+1

+ r

�

Q

k+1

; : : : ; C

h

+ r

�

Q

h

):

If we put r = r

0

+ r

�

, then d

v

is a proper private key for v = (v

1

; : : : ; v

k

).

En
rypt: To en
rypt M 2 G

2

under the identity (v

1

; : : : ; v

k

), pi
k a random s 2 Z

p

and output

CT =

0

�

e(P

1

; P

2

)

s

�M; sP; s

0

�

k

X

j=1

V

j

1

A

1

A

where V

j

is as de�ned in Key Generation.

De
rypt: To de
rypt CT = (A;B;C) using the private key d

v

= (d

0

; d

1

; : : :), 
ompute

A�

e(d

1

; C)

e(B; d

0

)

= e(P

1

; P

2

)

s

�M �

e

�

rP; s

P

k

j=1

V

j

�

e

�

sP; �P

2

+ r

P

k

j=1

V

j

�

=M:

5.1 Dis
ussion

The proto
ol G

1

is a modi�
ation of the BBG-HIBE with a di�erent P

3;i

for ea
h level of the HIBE. This

is required to get a proof of se
urity in the augmented s

+

ID model without any se
urity degradation

as is shown in the next se
tion. Additionally, it allows identities to be elements of Z

p

, instead of Z

�

p

as in BBG-HIBE. On the other hand, this modi�
ation only a�e
ts the eÆ
ien
y of the BBG-HIBE

in a small way. The �rst thing to note is the size of the 
iphertext is still 
onstant (three elements).

Se
ondly, the size of the publi
 parameter as well as private key is linear in the length of the HIBE

and de
reases as we \go down" the HIBE. These two properties ensure that the appli
ations mentioned

in [4℄ also hold for the new HIBE des
ribed above. In parti
ular, it is possible to 
ombine the new HIBE

with the BB-HIBE of [2℄ to get an intermediate HIBE with 
ontrollable trade-o� between the size of the


iphertext and the size of the private key. Further, the appli
ation to the 
onstru
tion of forward se
ure

en
ryption proto
ol mentioned in [4℄ 
an also be done with the new HIBE. The resulting proto
ols will

be se
ure in the augmented sele
tive

+

-ID model. However, the a
tual details for these appli
ations will

be a little di�erent from what is mentioned in [4℄.

A 
omparison of the features of G

1

with the BB-HIBE and the BBG-HIBE is given in Table 1 for

h-level HIBEs. Here the 
olumn \de
ryption subkey size" denotes the number of elements of the private

key whi
h is a
tually required for de
ryption. The entire private key is required for key delegation,

whi
h is a relatively infrequent a
tivity. As mentioned above, the BBG-HIBE has many appli
ations.

The modi�ed proto
ol G

1


an be used for all su
h appli
ations.

8



Table 1: Comparison of HIBE proto
ols Se
ure in sID/s

+

ID Model.

proto
ol se
urity id publi
 max pvt de
ryption

model 
omp parameter key size subkey size

G

1

s

+

ID Z

p

3 + 2h 2h 2

BBG s

+

ID Z

�

p

4 + h h+ 1 2

BBG sID Z

�

p

4 + h h+ 1 2

BB s

+

ID Z

p

3 + h h+ 2 h+ 2

proto
ol 
iphertext en
ryption de
ryption Se
urity

expansion eÆ
ien
y eÆ
ien
y degradation

G

1

2 h+ 2 2 Nil

BBG in s

+

ID 2 h+ 2 2 h

BBG in sID 2 h+ 2 2 Nil

BB h+ 1 2h+ 1 h+ 1 Nil

For a HIBE of maximum height h, the 
olumns for publi
 parameter, max pvt key size, de
ryption

subkey size and 
iphertext expansion denote the number of elements of G

1

, en
ryption eÆ
ien
y denotes

the number of s
alar multipli
ations in G

1

and de
ryption eÆ
ien
y denotes the number of pairing


omputations.

6 Se
urity

Semanti
 se
urity (i.e., (CPA-se
urity) of the above s
heme in the s

+

ID model is proved under the

h-wDBDHI

�

assumption.

Theorem 6.1. For t � 1; q � 1;Adv

G

1

(t; q) � Adv

h-wDBDHI

�

(t+O(�q)), where � is the time for a s
alar

multipli
ation in G

1

.

Proof : Suppose A is a (t; q)-CPA adversary for the G

1

, then we 
onstru
t an algorithm B that solves

the h-wDBDHI

�

problem. B takes as input a tuple (P;Q; Y

1

; : : : ; Y

h

; Z) where Y

i

= �

i

P for some

random � 2 Z

�

p

and Z is either equal to e(P;Q)

�

h+1

or a random element of G

2

. We de�ne the s

+

ID

game between B and A as follows.

Initialization: A outputs an identity tuple v

�

= (v

�

1

; : : : ; v

�

u

) 2 Z

u

p

for any u � h. The restri
tion

on A is that it 
annot ask for the private key of v

�

or any of its pre�x and in 
hallenge it asks for an

en
ryption under v

�

or any of its pre�x. In 
ase u < h, B 
hooses random v

�

u+1

; : : : ; v

�

h

from Z

p

and

keeps these extra elements to itself. (Note that B is not augmenting the target identity to 
reate a new

target identity.)

Setup: B pi
ks random �, �

1

; : : : ; �

h

and 


1

; : : : ; 


h

in Z

p

. It then sets

P

1

= Y

1

= �P ;P

2

= Y

h

+ �P = (�

h

+ �)P ;

and

for 1 � j � u, Q

j

= �

j

P � Y

h�j+1

; P

3;j

= 


j

P + v

�

j

Y

h�j+1

;

for u < j � h, Q

j

= �

j

P ; P

3;j

= 


j

P + v

�

j

Y

h�j+1

.
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The publi
 parameters are (P; P

1

; P

2

;

�!

P

3

;

�!

Q), where

�!

Q = (Q

1

; : : : ; Q

h

),

�!

P

3

= (P

3;1

; : : : ; P

3;h

). The


orresponding master key �P

2

= Y

h+1

+ �Y

1

is unknown to B. B de�nes the fun
tions F

j

= v

�

j

� v

j

for

1 � j � u and F

j

= v

�

j

for u < j � h and J

j

= 


j

+ �

j

v

j

for 1 � j � h.

Phase 1: Suppose A asks for the private key 
orresponding to an identity v = (v

1

; : : : ; v

�

) for � � h.

Note that for any j � u,

V

j

= P

3;j

+ v

j

Q

j

= 


j

P + v

�

j

Y

h�j+1

+ v

j

(�

j

P � Y

h�j+1

)

= (v

�

j

� v

j

)Y

h�j+1

+ (


j

+ �

j

v

j

)P

= F

j

Y

h�j+1

+ J

j

P:

Similarly, for u < j � h

V

j

= P

3;j

+ v

j

Q

j

= 


j

P + v

�

j

Y

h�j+1

+ v

j

�

j

P = F

j

Y

h�j+1

+ J

j

P:

Hen
e, V

j

for 1 � j � h is 
omputable from what is known to B.

Re
all that u is the length of v

�

that the adversary 
ommitted to before the set-up phase. If � � u,

then there must be a k � � su
h that F

k

6= 0, as otherwise the queried identity is a pre�x of the target

identity. In 
ase � > u, it is possible that F

1

= � � � = F

u

= 0. Then by 
onstru
tion, F

u+1

6= 0. We now

pro
eed under the assumption that there is a k su
h that F

k

6= 0 and k is the smallest su
h index. B

pi
ks a random r 2 Z

p

and assigns d

0jk

= (�J

k

=F

k

)Y

k

+ �Y

1

+ rV

k

and d

1

= (�1=F

k

)Y

k

+ rP: Now,

d

0jk

= �

J

k

F

k

Y

k

+ �Y

1

+ �

k

Y

h�k+1

� �

k

F

k

F

k

Y

h�k+1

+ rV

k

= �P

2

+ ~rV

k

where ~r = (r �

�

k

F

k

). Also d

1

= �

1

F

k

Y

k

+ rP = �

�

k

F

k

P + rP = ~rP . For any j 2 f1; : : : ; �g n fkg we have

~rV

j

= (r �

�

k

F

k

)(F

j

Y

h�j+1

+ J

j

P )

= r(F

j

Y

h�j+1

+ J

j

P )�

1

F

k

(F

j

Y

h+k�j+1

+ J

j

Y

k

):

For j < k, F

j

= 0, so B 
an 
ompute all these ~rV

j

s from what it has. It forms

d

0

= d

0jk

+

X

j2f1;:::;�gnfkg

~rV

j

= �P

2

+ ~r

�

X

j=1

V

j

:

To form a valid private key B also needs to 
ompute ~rP

3;j

and ~rQ

j

for � < j � h. Now,

~rP

3;j

=

�

r �

�

k

F

k

�

(


j

P + v

�

j

Y

h�j+1

)

= r(


j

P + v

�

j

Y

h�j+1

)�

1

F

k

�




j

Y

k

+ v

�

j

Y

h+k�j+1

�

;

For j � u,

~rQ

j

=

�

r �

�

k

F

k

�

(�

j

P � Y

h�j+1

) = r(�

j

P � Y

h�j+1

)�

1

F

k

(�

j

Y

k

� Y

h+k�j+1

)
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and for u < j � h,

~rQ

j

=

�

r �

�

k

F

k

�

�

j

P = r�

j

P �

1

F

k

�

j

Y

k

:

All these values are 
omputable from what is known to B. Hen
e, B forms the private key as:

d

v

= (d

0

; d

1

; ~rP

3;�+1

; : : : ; ~rP

3;h

; ~rQ

�+1

; : : : ; ~rQ

h

)

and provides it to A.

Challenge: After 
ompletion of Phase 1, A outputs two messages M

0

;M

1

2 G

2

and the 
hallenge

identity v

+

= v

�

1

; : : : ; v

�

u

0

where u

0

� u � h. B pi
ks a random b 2 f0; 1g and provides A the 
hallenge


iphertext

CT =

0

�

M

b

� T � e(Y

1

; �Q); Q;

0

�

u

0

X

j=1

(


j

+ �

j

v

�

j

)

1

A

�Q

1

A

:

Suppose, Q = 
P for some unknown 
 2 Z

p

. Then

0

�

u

0

X

j=1




j

+ �

j

v

�

j

1

A

�Q = 


0

�

u

0

X

j=1




j

+ �

j

v

�

j

1

A

P

= 


u

0

X

j=1

�




j

P + v

�

j

Y

h�j+1

+ v

�

j

(�

j

P � Y

h�j+1

)

�

= 


u

0

X

j=1

�

P

3;j

+ v

�

j

Q

j

�

= 


0

�

u

0

X

j=1

V

j

1

A

:

If the input provided to B is a true h-wDBDHI

�

tuple, i.e., Z = e(P;Q)

(�

h+1

)

, then

Z � e(Y

1

; �Q) = e(P;Q)

(�

h+1

)

� e(Y

1

; �Q) = e(Y

h

+ �P;Q)

�

= e(P

1

; P

2

)




:

So, the 
hallenge 
iphertext is

CT =

0

�

M

b

� e(P

1

; P

2

)




; 
P; 


0

�

u

0

X

j=1

V

j

1

A

1

A

:

CT is a valid en
ryption of M

b

under v

+

= (v

�

1

; : : : ; v

�

u

0

). On the other hand, when Z is random, CT is

random from the view point of A.

Phase 2: This is similar to Phase 1. Note that A pla
es at most q queries in Phase 1 and 2 together.
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Guess: Finally, A outputs its guess b

0

2 f0; 1g. B outputs 1� b� b

0

.

A's view in the above simulation is identi
al to that in a real atta
k. This gives us the required

bound on the advantage of the adversary in breaking the HIBE proto
ol.

7 More on the Sele
tive

+

-ID Model

We analyse the BB-HIBE and the BBG-HIBE with respe
t to the s

+

-ID model. It is easy to show that

the BB-HIBE is se
ure in the s

+

-ID model without any se
urity degradation. The details are given in

Se
tion A. The 
ase of BBG-HIBE is more interesting and is dis
ussed below.

7.1 The Case of Boneh-Boyen-Goh HIBE

The BBG-HIBE is proved to be se
ure in the sID model (Theorem 3.1 of [4℄). We �rst argue that the

given proof is not suÆ
ient for the s

+

ID model. Using the intuition developed in the argument, we later

sket
h a proof of se
urity for the BBG-HIBE in the s

+

ID model, though with a multipli
ative se
urity

degradation by a fa
tor of h.

In the sID model, an adversary de
lares an identity v

�

that it intends to atta
k before the system is

set up. Suppose v

�

= (v

�

1

; : : : ; v

�

m

) where m � h. In the redu
tion given in [4℄, the following is done. If

m < h then the simulator appends (h �m) zeros to v

�

so that v

�

is a ve
tor of length h. Re
all that,

in the proto
ol, individual 
omonents of an identity are elements of Z

�

p

so the adversary is restri
ted

from making a query where one or more 
omponents of the identity is 0. (BB-HIBE does not have this

restri
tion.) The redu
tion in [4℄ 
ru
ially depends on this step.

In the proto
ol, a single element of G

1

(i.e. Q

i

) is asso
iated with the ith level of the HIBE and we

have another element, namely P

3

whi
h is required for the se
urity redu
tion.

The simulator B is given as input a random tuple (P;Q; Y

1

; : : : ; Y

h

; T ) where Y

i

= �

i

P s for 1 � i � h

for some unknown �. The task of B is to de
ide whether T = e(P;Q)

�

h+1

or T is a random element of

G

2

.

We now reprodu
e the relevant steps of the redu
tion in Theorem 3.1 in [4℄.

Setup: B pi
ks a random 
 2 Z

p

and sets P

1

= Y

1

= �P and P

2

= Y

h

+ 
P . Next, B pi
ks random




1

; : : : ; 


h

2 Z

p

and sets Q

j

= 


j

P � Y

h�j+1

for j = 1; : : : ; h. B also pi
ks a random Æ 2 Z

p

and sets

P

3

= ÆP +

P

h

j=1

v

�

j

Y

h�j+1

. B gives A the publi
 parameters (P; P

1

; P

2

; P

3

; Q

1

; : : : ; Q

h

).

Note that, the e�e
t of v

�

= (v

�

1

; : : : ; v

�

m

) is assimilated in P

3

. In 
ase, m (the depth of the 
hallenge

identity tuple v

�

) is less than h, we have v

�

m+1

= � � � = v

�

h

= 0, so v

�

j

Y

h�j+1

for m < j � h has no e�e
t

on P

3

. The Q

j

s in the publi
 parameter are independent of the target identity and depend only on the

Y

j

s after suitable randomization. In 
ontrast, in 
ase of the BB-HIBE, ea
h Q

j

depends on v

�

j

i.e., the


omponent 
orresponding to level j in target identity v

�

.

Given this setup, Boneh, Boyen and Goh show that all the private key queries of A 
an be answered

(see Phase 1 in the proof of Theorem 3.1 in [4℄ for details).

Now, suppose in the 
hallenge phase A asks the en
ryption under v

+

whi
h is a pre�x of v

�

, i.e.,

v

+

= (v

�

1

; : : : ; v

�

�

), � � m. If � = m, then the original redu
tion goes through and we get a proper

en
ryption ofM

b

provided the input instan
e is a true h-wDBDHI

�

instan
e. However, if � < h, then the

original redu
tion in [4℄ does not give a proper en
ryption of M

b

even if the input is a true h-wDBDHI

�

instan
e as we show below.
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Let Q = 
P for some unknown 
 2 Z

p

, then the third 
omponent of the 
hallenge 
iphertext is

C =

0

�

Æ +

h

X

j=1

v

�

j




j

1

A

Q = 


0

�

h

X

j=1

v

�

j

(


j

P � Y

h�j+1

) + ÆP +

h

X

j=1

v

�

j

Y

h�j+1

1

A

= 
(v

�

1

Q

1

+ : : : ; v

�

m

Q

m

+ P

3

) sin
e v

�

m+1

= � � � = v

�

h

= 0

However, this 
orresponds to an en
ryption under v

�

and not v

+

. To get a valid en
ryption under

v

+

= v

�

1

; : : : ; v

�

�

, the third 
omponent of the 
iphertext should be of the form

C

0

= 
(v

�

1

Q

1

+ � � �+ v

�

�

Q

�

+ P

3

)

= 


0

�

�

X

j=1

v

�

j

(


j

P � Y

h�j+1

) + ÆP +

h

X

j=1

v

�

j

Y

h�j+1

1

A

= 


0

�

�

X

j=1

v

�

j




j

P + ÆP +

m

X

j=�+1

v

�

j

Y

h�j+1

1

A

=

0

�

Æ +

�

X

j=1

v

�

j




j

1

A

Q+ 


m

X

j=�+1

v

�

j

Y

h�j+1

This C

0


annot be 
omputed by B without the knowledge of 
.

A di�eren
e in the BB-HIBE and the BBG-HIBE is that in the former, 
omponents of identities

are elements of Z

p

, whereas in the later the identity 
omponents are elements of Z

�

p

. It is an easy

observation that if zero is allowed to be an identity 
omponent, then the BBG-HIBE is not se
ure.

A sket
h of the argument is as follows. In the sID game, an adversary has to 
ommit to an identity

before the HIBE is set-up. Let adersary A 
ommit to an identity v

�

= (v

�

1

; : : : ; v

�

k

) for some k with

1 � k < h. In the query phase, A issues a private key query for the identity v = (v

�

1

; : : : ; v

�

k

; 0) whi
h

is a valid query if 0 is allowed. In return, A is provided the private key of d

v

= (d

0

; d

1

; : : :). Then

d

0

= �P

2

+ r(v

�

1

Q

1

; : : : ; v

�

k

Q

k

+ 0 � Q

k+1

+ P

3

) and d

1

= rP for some random r 2 Z

p

. Using (d

0

; d

1

),

A 
an de
rypt any message en
rypted for v

�

. Removing 0 from the identity spa
e avoids this situation

and allows a proof of the BBG-HIBE in the sID model.

7.1.1 Modi�ed Se
urity Redu
tion for the BBG-HIBE.

We modify the se
urity redu
tion of BBG-HIBE in the following way. Suppose, as before that the

adversary 
ommitted to an identity tuple v

�

= (v

�

1

; : : : ; v

�

m

) in the 
ommitment stage. During setup, B


hoses a random � from f1; : : : ;mg and forms the publi
 parameters as in the original redu
tion given

in [4℄ assuming that v

+

= (v

�

1

; : : : v

�

�

) will be the target identity in 
hallenge stage. This means that

during setup, the simulator augments v

+

by appending zeros and forming a tuple of length h.

The above 
hange does not a�e
t the simulator's ability to answer key-extra
tion queries. During

the 
hallenge phase, the simulator 
an form a proper en
ryption only if the target identity tuple is v

+

.

The a
tual target identity submitted by the adversary has to be a pre�x of v

�

. If this is not equal to v

+

,

the simulator aborts the game and outputs one with probability half. Otherwise, it returns a proper


hallenge 
iphertext as in the original redu
tion in [4℄.
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Sin
e, 1 � � � m � h and � is 
hosen uniformly at random, we have Pr[abort℄ � 1=h. This leads

to a multipli
ative degradation by a fa
tor of h, i.e., � � h�

0

, where � is the maximum advantage of

atta
king the BBG-HIBE and �

0

is the maximum advantage of solving h-wDBDHI

�

.

7.1.2 Passing From sID model to the s

+

-ID model.

It is not diÆ
ult to see that the idea of modifying the proof of the BBG-HIBE proto
ol to attain

se
urity in the s

+

-ID model is quite general. This idea does not depend upon the parti
ular algebrai



onstru
tion of the BBG-HIBE and hen
e 
an be applied to any HIBE whi
h is se
ure in the sID model.

Thus, any HIBE whi
h is se
ure in the sID model is also se
ure in the s

+

-ID model but with a se
urity

degradation by a fa
tor of h. Though small, in 
ertain 
ases this 
an be avoided, e.g., the BB-HIBE

and G

1

as shown earlier. The other issue is that the sID and the s

+

-ID models are really restri
tive

se
urity models and it would be ni
e to obtain tight se
urity redu
tions in these models.

8 Augmenting toM

+

2

Like the augmentation of the sele
tive-ID model to sele
tive

+

-ID model, we 
an augmentM

2

proposed

in [11℄ in an obvious way toM

+

2

. Suppose the adversary of an h-HIBE has 
ommitted to a set of target

identities, I

�

1

; : : : ;I

�

u

where u � h. Then in the 
hallenge phase it outputs a target identity v

�

1

; : : : ; v

�

u

0

where 1 � u

0

� u and ea
h v

�

j

2 I

�

j

.

The HIBE H

2

proposed in [11℄ is also se
ure inM

+

2

. 

HIBE of [12℄ se
ure inM

2


an be proved

to be se
ure inM

+

2

with a multipli
ative se
urity degradation of h. Here, we show how G

1


an be

augmented toM

+

2

.

8.1 Constru
tion

We augment G

1

to obtain se
urity in modelM

+

2

and 
all this new proto
ol (h; n

1

; : : : ; n

h

)-G

2

or simply

G

2

.

The maximum height of the HIBE be h. The identities at a depth u � h are of the form v =

(v

1

; : : : ; v

u

) 2 (Z

p

)

u

. Messages are elements of G

2

.

Setup: Let hP i = G

1

. Choose a random � 2 Z

p

and set P

1

= �P . Choose a random element

P

2

2 G

1

and a random h length ve
tor

�!

P

3

= (P

3;1

; : : : ; P

3;h

), where ea
h P

3;i

2 G

1

. Also 
hoose

random ve
tors

�!

Q

1

; : : : ;

�!

Q

h

where ea
h

�!

Q

i


onsists of n

i

elements of G

1

. Set the publi
 parameter as

PP = (P; P

1

; P

2

;

�!

P

3

;

�!

Q

1

; : : : ;

�!

Q

h

) while the master key is P

4

= �P

2

. Instead of P

1

; P

2

, e(P

1

; P

2

) 
an

also be kept as part of PP. This avoids the pairing 
omputation during en
ryption.

Note that, while the original BBG s
heme and 

HIBE of [12℄ had a single element P

3

in the publi


parameter, we have a ve
tor

�!

P

3

of length h.

Key-Gen: Let, V (i; y) = y

n

i

Q

i;n

i

+ � � �+yQ

i;1

for any y 2 Z

p

. Given an identity v = (v

1

; : : : ; v

k

) 2 Z

k

p

of depth k � h, pi
k a random r 2 Z

p

and output

d

v

=

0

�

�P

2

+ r

k

X

j=1

V

j

; rP; rP

3;k+1

; : : : ; rP

3;h

; r

�!

Q

k+1

; : : : ; r

�!

Q

h

1

A

14



where V

j

= P

3;j

+ V (j; v

j

) . The private key at level k 
onsists of (2 + h� k +

P

h

i=k+1

n

i

) elements of

G

1

. Among these, only the �rst two are required in de
ryption, the rest are used to generate the private

key for the next level as follows:

Let the se
ret key 
orresponding to the identity v

jk�1

= (v

1

; : : : ; v

k�1

) be

d

v

jk�1

= (A

0

; A

1

; B

k

; : : : ; B

h

;

�!

C

k

; : : : ;

�!

C

h

)

where A

0

= �P

2

+ r

0

P

k�1

j=1

V

j

, A

1

= r

0

P , and for k � j � h, B

j

= r

0

P

3;j

,

�!

C

j

= r

0

Q

j;1

; : : : ; r

0

Q

j;n

j

=

hC

j;n

j

i Pi
k a random r

�

2 Z

p

and 
ompute

d

v

= (A

0

+B

k

+

P

n

k

i=1

v

i

k

C

k;i

+ r

�

P

k

j=1

V

j

; A

1

+ r

�

P;

B

k+1

+ r

�

P

3;k+1

; : : : ; B

h

+ r

�

P

3;h

;

�!

C

k+1

+ r

�

�!

Q

k+1

; : : : ;

�!

C

h

+ r

�

�!

Q

h

):

If we put r = r

0

+ r

�

, then d

v

is a proper private key for v = (v

1

; : : : ; v

k

).

En
rypt: To en
rypt M 2 G

2

under the identity (v

1

; : : : ; v

k

) 2 (Z

p

)

k

, pi
k a random s 2 Z

p

and

output

CT =

0

�

e(P

1

; P

2

)

s

�M; sP; s

0

�

k

X

j=1

V

j

1

A

1

A

where V

j

is as de�ned in Key Generation.

De
rypt: To de
rypt CT = (A;B;C) using the private key d

v

= (d

0

; d

1

; : : :) of v = (v

1

; : : : ; v

k

),


ompute

A�

e(d

1

; C)

e(B; d

0

)

= e(P

1

; P

2

)

s

�M �

e

�

rP; s

P

k

j=1

V

j

�

e

�

sP; �P

2

+ r

P

k

j=1

V

j

�

=M:

8.2 Se
urity

Semanti
 se
urity (i.e., CPA-se
urity) of the above s
heme in model M

+

2

is proved under the h-

wDBDHI

�

assumption. Note that, the additional 
exibility in terms of 
hoosing the target identity

that we allowed to the adversary in the s

+

ID model is also appli
able here.

Theorem 8.1. Let n

1

; : : : ; n

h

; q and n

0

1

; : : : ; n

0

h

be two sets of positive integers with n

0

i

� n

i

for 1 � i �

h. Then for t � 1; q � 1

Adv

(h;n

1

;:::;n

h

)-G

2

(h;n

0

1

;:::;n

0

h

)-M

+

2

(t; q) � Adv

h-wDBDHI

�

(t+O(�nq))

where n =

P

h

i=1

n

i

.

Proof : Suppose A is a (t; q)-CPA adversary for G

2

, then we 
onstru
t an algorithm B that solves the

h-wDBDHI

�

problem. B takes as input a tuple hP;Q; Y

1

; : : : ; Y

h

; T i where Y

i

= �

i

P for some random

� 2 Z

�

p

and T is either equal to e(P;Q)

�

h+1

or a random element of G

2

. We de�ne the modi�edM

+

2

game between B and A as follows.
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Initialization: A outputs sets of target identities for ea
h level of the HIBE as (I

�

1

; : : : ; I

�

u

) where

ea
h I

�

i

is a set of 
ardinality n

0

i

for any u � h.

Setup: B de�nes polynomials F

1

(x); : : : ; F

h

(x) where for 1 � i � u,

F

i

(x) =

Y

v2I

�

i

(x� v)

= x

n

0

i

+ a

i;n

0

i

�1

x

n

0

i

�1

+ : : :+ a

i;1

x+ a

i;0

For u < i � h, de�ne F

i

(x) = a

i;0

where a

i;0

is a random element of Z

�

p

. For 1 � i � u, let a

i;n

0

i

= 1 and

a

i;n

i

= � � � = a

i;n

0

i

+1

= 0. For u < i � h we set n

0

i

= 0 and a

i;n

i

= � � � = a

i;1

= 0. For 1 � i � h de�ne

J

i

(x) = b

i;n

i

x

n

i

+ b

i;n

i

�1

x

n

i

�1

+ : : :+ b

i;1

x+ b

i;0

where b

i;j

are random elements of Z

p

. It then sets

P

1

= Y

1

= �P ; P

2

= Y

h

+ �P = (�

h

+ �)P ; and for 1 � i � h, 1 � j � n

i

Q

i;j

= b

i;j

P + a

i;j

Y

h�i+1

; P

3;j

= b

i;0

P + a

i;0

Y

h�i+1

.

B de
lares the publi
 parameters to be

(P; P

1

; P

2

;

�!

P

3

;

�!

Q

1

; : : : ;

�!

Q

h

);

where

�!

P

3

= (P

3;1

; : : : ; P

3;h

) and

�!

Q

i

= (Q

i;1

; : : : ; Q

i;n

i

). The 
orresponding master key �P

2

= Y

h+1

+�Y

1

is unknown to B. The distribution of the publi
 parameter is as expe
ted by A.

Phase 1: Suppose A asks for the private key 
orresponding to an identity v = (v

1

; : : : ; v

h

0

) for h

0

� h.

Note that for any i � �

0

,

V

i

= P

3;i

+

n

i

X

j=1

v

j

i

Q

i;j

= b

i;0

P + a

i;0

Y

h�i+1

+

n

i

X

j=1

v

j

i

(b

i;j

P + a

i;j

Y

h�i+1

)

= F

i

(v

i

)Y

h�i+1

+ J

i

(v

i

)P:

Hen
e, V

i

is 
omputable from what is known to B.

Re
all that A initially 
ommitted to sets of identities up to level u before the set-up phase. If

h

0

� u, then there must be a k � h

0

su
h that F

k

(v

k

) 6= 0, as otherwise v

j

2 I

�

j

for ea
h j 2 f1; : : : ; h

0

g

{ whi
h the adversary is not allowed by the rules of the Game. In 
ase h

0

> u, it is possible that

F

1

(v

1

) = � � � = F

u

(v

u

) = 0. Then by 
onstru
tion F

u+1

6= 0. So, in either 
ase there is a k su
h that

F

k

(v

k

) 6= 0. Moreover, k is the �rst su
h index in the range f1; : : : ; h

0

g. B pi
ks a random r 2 Z

p

and

assigns d

0jk

= (�J

k

(v

k

)=F

k

(v

k

))Y

k

+ �Y

1

+ rV

k

and d

1

= (�1=F

k

(v

k

))Y

k

+ rP: Now,

d

0jk

= �

J

k

(v

k

)

F

k

(v

k

)

Y

k

+ �Y

1

+ �

k

Y

h�k+1

� �

k

F

k

(v

k

)

F

k

(v

k

)

Y

h�k+1

+ rV

k

= �

J

k

(v

k

)

F

k

(v

k

)

�

k

P + �P

2

� �

k

F

k

(v

k

)

F

k

(v

k

)

Y

h�k+1

+ rV

k

= �P

2

+ ~rV

k
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where ~r = (r�

�

k

F

k

(v

k

)

). Also d

1

= �

1

F

k

(v

k

)

Y

k

+ rP = �

�

k

F

k

(v

k

)

P + rP = ~rP . For any j 2 f1; : : : ; h

0

g n fkg

we have

~rV

j

= (r �

�

k

F

k

(v

k

)

)(F

j

(v

j

)Y

h�j+1

+ J

j

(v

j

)P )

= r(F

j

(v

j

)Y

h�j+1

+ J

j

(v

j

)P )�

1

F

k

(v

k

)

(F

j

(v

j

)Y

h+k�j+1

+ J

j

(v

j

)Y

k

):

Re
all that, k is the smallest in the range f1; : : : ; h

0

g, su
h that, F

k

(v

k

) 6= 0. Hen
e, for j < k, F

j

(v

j

) = 0

and ~rV

j

= rJ

j

(v

j

)P �

J

j

(v

j

)Y

k

F

k

(v

k

)

. For j > k, Y

h+k�j+1

varies between Y

1

to Y

h

. So B 
an 
ompute all

these ~rV

j

s from the information it has. It forms

d

0

= d

0jk

+

X

j2f1;:::;h

0

gnfkg

~rV

j

= �P

2

+ ~r

h

0

X

j=1

V

j

:

To form a valid private key, B also needs to 
ompute ~rP

3;i

and ~r

�!

Q

i

for h

0

< i � h. Now,

~rP

3;i

=

�

r �

�

k

F

k

(v

k

)

�

(b

i;0

P + a

i;0

Y

h�i+1

)

= r(b

i;0

P + a

i;0

Y

h�i+1

)�

1

F

k

(v

k

)

(b

i;0

Y

k

+ a

j;0

Y

h+k�i+1

) ;

~rQ

i;j

=

�

r �

�

k

F

k

(v

k

)

�

(b

i;j

P + a

i;j

Y

h�i+1

)

= r(b

i;j

P + a

i;j

Y

h�i+1

)�

1

F

k

(v

k

)

(b

i;j

Y

k

+ a

i;j

Y

h+k�i+1

) :

All these values are 
omputable from what is known to B. Hen
e, B forms the private key as:

d

v

=

�

d

0

; d

1

; ~rP

3;�+1

; : : : ; ~rP

3;h

; ~r

�!

Q

�+1

; : : : ; ~r

�!

Q

h

�

and provides it to A.

Challenge: After 
ompletion of Phase 1, A outputs two messagesM

0

;M

1

2 G

2

together with a target

identity v

�

= (v

�

1

; : : : ; v

�

u

0

), u

0

� u, on whi
h it wishes to be 
hallenged. The 
onstraint is ea
h v

�

j

2 I

�

j

and hen
e F

j

(v

�

j

) = 0 for 1 � j � u

0

� u. B pi
ks a random b 2 f0; 1g and provides A the 
hallenge


iphertext

CT =

 

M

b

� T � e(Y

1

; �Q); Q;

 

u

0

X

i=1

J

i

(v

�

i

)

!

�Q

!

:

Suppose, Q = 
P for some unknown 
 2 Z

p

. Then

u

0

X

j=1

J

j

(v

�

j

)Q = 


u

0

X

j=1

�

J

j

(v

�

j

)P + F

j

(v

�

j

)Y

h�j+1

�

= 


0

�

u

0

X

j=1

V

j

1

A

:
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If the input provided to B is a true h-wDBDHI

�

tuple, i.e., T = e(P;Q)

(�

h+1

)

, then

T � e(Y

1

; �Q) = e(P;Q)

(�

h+1

)

� e(Y

1

; �Q) = e(Y

h

+ �P;Q)

�

= e(P

1

; P

2

)




:

So, the 
hallenge 
iphertext is

CT =

0

�

M

b

� e(P

1

; P

2

)




; 
P; 


0

�

u

0

X

j=1

V

j

1

A

1

A

:

CT is a valid en
ryption of M

b

under v

�

= (v

�

1

; : : : ; v

�

u

0

). On the other hand, when T is random, CT is

random from the view point of A.

Phase 2: This is similar to Phase 1. Note that A pla
es at most q queries in Phase 1 and 2 together.

Guess: Finally, A outputs its guess b

0

2 f0; 1g. B outputs 1� b� b

0

.

A's view in the above simulation is identi
al to that in a real atta
k. This gives us the required bound

on the advantage of the adversary in breaking the HIBE proto
ol.

9 Produ
t S
heme

We have mentioned that Boneh-Boyen-Goh [4℄ proposed a \produ
t" 
onstru
tion based on the BBG-

HIBE and the BB-HIBE. A similar 
onstru
tion is possible based on the HIBE G

1

of Se
tion 5 and

BB-HIBE. The resulting HIBE is se
ure in s

+

ID model. On the other hand, in [11℄ we have presented

a 
onstru
tion H

1

whi
h is se
ure in modelM

1

. This 
onstru
tion is in a sense an extension of the

BB-HIBE. We propose a 
omposite s
heme based on H

1

and G

2

whi
h we denote as (h; n)-G

3

or simply

G

3

, where h is the maximum number of levels in G

3

and n is a parameter that 
omes from the underlying

se
urity modelM

1

.

The essential idea, as in [4℄ is to form a produ
t of two HIBEs. For this we represent an identity

tuple in the form of a matrix (say II) having (a-priori) �xed number of 
olumns, `

2

(say). When we

look at a row of II, it forms a 
onstant size 
iphertext HIBE, H, while ea
h row taken together as a

single identity forms another HIBE, H

0

. We obtain a produ
t 
onstru
tion by instantiating H

0

to be

H

1

of [11℄ and H to be the 
onstant size 
iphertext HIBE G

2

of Se
tion 8. In this 
ase, the 
omponents

of the identity tuples are from Z

p

and we obtain se
urity inM

1

. Sin
eM

1

allows the target identity

to be of any length up to the maximum height of the HIBE, the adversary has the 
exibility to 
hoose

the length of the target identity in the 
hallenge phase.

9.1 Constru
tion

Let the maximum depth of the HIBE be h � `

1

� `

2

. Here individual identity 
omponents are elements

of Z

p

.
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Setup: Let P be a generator of G

1

. Choose a random se
ret x 2 Z

p

and set P

1

= xP . Randomly


hoose P

2

; an `

1

� `

2

matrix R where

R =

2

6

4

R

1;1

� � � R

1;`

2

.

.

.

.

.

.

.

.

.

R

`

1

;1

� � � R

`

1

;`

2

3

7

5

and `

2

many ve
tors

�!

U

1

; : : : ;

�!

U

`

2

from G

1

, where ea
h

�!

U

i

= (U

i;1

; : : : ; U

i;n

), n being a parameter. The

publi
 parameters are hP; P

1

; P

2

;R;

�!

U

1

; : : : ;

�!

U

`

2

i; while the master se
ret is xP

2

.

Key Generation: Given an identity v = (v

1

; : : : ; v

u

), for any u � h, this algorithm generates the

private key d

v

of v as follows.

Let u = k

1

`

2

+k

2

with k

2

2 f1; : : : ; `

2

g. We represent v by a (possibly in
omplete) (k

1

+1)�`

2

matrix

I where the last row has k

2

elements. Choose (k

1

+ 1) many random elements r

1

; : : : ; r

k

1

; r

k

2

2 Z

p

and

output

d

v

=

0

�

xP

2

+

k

1

X

i=1

r

i

`

2

X

j=1

(V

i;j

+R

i;j

) + r

k

2

k

2

X

j=1

(V

k

1

+1;j

+R

k

1

+1;j

) ; r

1

P; : : : ; r

k

1

P; r

k

2

P;

r

k

2

R

k

1

+1;k

2

+1

; : : : ; r

k

2

R

k

1

+1;`

2

; r

k

2

���!

U

k

2

+1

; : : : ; r

k

2

�!

U

`

2

�

= (a

0

; a

1

; : : : ; a

k

1

; a

k

1

+1

; b

k

2

+1

; : : : ; b

`

2

;

�!




k

2

+1

; : : : ;

�!




`

2

) say:

where V

i;j

=

P

n

k=1

v

k

i;j

U

j;k

and r

k

2

�!

U

i

denotes that ea
h element of

�!

U

i

is multiplied by the s
alar r

k

2

.

Note: Here u = k

1

`

2

+ k

2

, so the �rst k

1

`

2


omponents of the identity tuple 
an be arranged as the

�rst k

1

rows of a matrix having `

2

many 
olumns. Ea
h of these rows taken separately 
an be viewed

as an identity tuple for a 
onstant size 
iphertext HIBE, H, having maximum depth `

2

. Similarly, the

last k

2

� `

2


omponents of the identity tuple 
an be viewed as a separate identity tuple of the same


onstant size 
iphertext HIBE. Next, we view ea
h of the �rst k

1

rows as a single identity 
omponent

of another HIBE, H

0

. We now take a 
loser look at the stru
ture of d

v

. Let,

a

0

= xP

2

+

k

1

X

i=1

r

i

`

2

X

j=1

(V

i;j

+R

i;j

) + r

k

2

k

2

X

j=1

(V

k

1

+1;j

+R

k

1

+1;j

)

= A

1

+A

2

+A

3

Here, A

1

= xP

2

is the master key andA

2

+A

3

is used to generate the private key for v by suitably masking

the master se
ret. A

2

=

P

k

1

i=1

r

i

P

`

2

j=1

(V

i;j

+R

i;j

) { the inner sum is over a single row whi
h forms a

full-length identity tuple for the 
onstant size 
iphertext HIBE H; while the outer sum is over the �rst k

1

rows where we treat ea
h row as a single identity 
omponent for H

0

. A

3

= r

k

2

P

k

2

j=1

(V

k

1

+1;j

+R

k

1

+1;j

)

is for the remaining row having k

2

� `

2

many elements and this row forms an identity tuple of depth k

2

for H. Altogether we have k

1

+1 levels in H

0

and a

1

; : : : ; a

k

1

+1


orrespond to ea
h of these levels. These

elements i.e, (a

0

; a

1

; : : : ; a

k+1

) are suÆ
ient for de
ryption as we will see in the De
ryption algorithm.

The rest of the elements, i.e., b

i

s and

�!




i

s are required for generating the private key for the next level

as we show below.

19



The private key of v 
an also be generated given the private key of v

j

u�1

= v

1

; : : : ; v

u�1

as required.

There are two 
ases to be 
onsidered.

Case 1: Suppose u� 1 = k

1

`

2

+ `

2

= (k

1

+ 1)`

2

, then

d

v

j

u�1

=

0

�

xP

2

+

k

1

+1

X

i=1

r

i

`

2

X

j=1

(V

i;j

+R

i;j

) ; r

1

P; : : : ; r

k

1

P; r

k

1

+1

P

1

A

= (a

0

; a

1

; : : : ; a

k

1

; a

k

1

+1

) (say)

Choose a random r

�

2 Z

p

and form d

v

as

d

v

= a

0

+ r

�

(V

k

1

+2;1

+R

k

1

+2;1

); a

1

; : : : ; a

k

1

+1

; r

�

P; r

�

R

k

1

+2;2

; : : : ; r

�

R

k

1

+2;`

2

; r

�

�!

U

2

; : : : ; r

�

�!

U

`

2

:

Case 2: Let, u� 1 = k

1

`

2

+ k

0

2

with k

0

2

< `

2

then,

d

v

j

u�1

=

0

�

xP

2

+

k

1

X

i=1

r

i

`

2

X

j=1

(V

i;j

+R

i;j

) + r

0

k

2

k

0

2

X

j=1

(V

k

1

+1;j

+R

k

1

+1;j

) ; r

1

P; : : : ; r

k

1

P; r

0

k

2

P;

r

0

k

2

R

k

1

+1;k

0

2

+1

; : : : ; r

0

k

2

R

k

1

+1;`

2

; r

0

k

2

�!

U

k

0

2

+1

; : : : ; r

0

k

2

�!

U

`

2

�

= (a

0

; a

1

; : : : ; a

k

1

; a

k

1

+1

; b

k

0

2

+1

; : : : ; b

`

2

;

�!




k

0

2

+1

; : : : ;

�!




`

2

) (say)

Choose a random r

�

2 Z

p

and form d

v

as

d

v

= a

0

+

n

X

j=1

v

j

u




k

0

2

+1;j

+ b

k

0

2

+1

+ r

�

k

0

2

+1

X

j=1

(V

k

1

+1;j

+R

k

1

+1;j

) ; a

1

; : : : ; a

k

1

; a

k

1

+1

+ r

�

P;

b

k

0

2

+2

+ r

�

R

k

1

+1;k

0

2

+2

; : : : ; b

`

2

+ r

�

R

k

1

+1;`

2

;

�!




k

0

2

+2

+ r

�

�!

U

k

0

2

+2

; : : : ;

�!




`

2

+ r

�

�!

U

`

2

It 
an be veri�ed that d

v

is a proper private key for v.

En
rypt: To en
rypt a messageM 2 G

2

under the publi
 key v = (v

1

; : : : ; v

u

) 
hoose a random s 2 Z

p

and then the 
iphertext is

C =

 

e(P

1

; P

2

)

s

�M; sP; s

`

2

X

j=1

(V

1;j

+R

1;j

); : : : ; s

`

2

X

j=1

(V

k

1

;j

+R

k

1

;j

) ; s

k

2

X

j=1

(V

k

1

+1;j

+R

k

1

+1;j

)

!

where V

i;j

is as de�ned in Key Generation part. Ea
h C

i


orreponds to the ith row of the identity

matrix for v.

De
rypt: Let CT = (A;B;C

1

; : : : ; C

k

1

; C

k

1

+1

) be a 
ipher text and v = v

1

; : : : ; v

u

be the 
orresponding

identity represented as a (k

1

+ 1) � `

2

matrix. Then we de
rypt CT using d

ID

= (d

0

; d

1

; : : : ; d

k

1

+1

; : : :)

as

A�

Q

k

1

+1

i=1

(d

i

; C

i

)

e(B; d

0

)

=M:
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9.2 Se
urity

Se
urity of the above hybrid 
onstru
tion in the generalised sele
tive-ID model (h; n

0

)-M

1

of [11℄ 
an

be redu
ed from the hardness of `

2

-wDBDHI

�

problem. Here we give a sket
h of the proof.

Theorem 9.1. Let h; n; q be positive integers and n

0

be another positive integer with n

0

� n. Then then

Adv

(h;n)-G

3

(h;n

0

)-M

1

(t; q) � Adv

`

2

�wDBDHI

�

(t+O(�nq)):

Proof :

We want to prove (h; n)-G

3

se
ure in model (h; n

0

)-M

1

using a redu
tionist se
urity argument where

1 � n

0

� n. This means that the publi
 parameters of the HIBE depend on n, while the adversary


ommits to a set I

�

of size n

0

in the 
ommit phase.

The simulator is provided with a tuple hP;Q; Y

1

; : : : ; Y

`

2

; T i 2 G

`

2

+2

1

�G

2

. It has to de
ide whether

this is a proper `

2

-wDBDHI

�

instan
e or not.

Adversary's 
ommitment: A 
ommits to a set I

�

, where jI

�

j = n

0

. The restri
tion on the adversary

is that in the private key extra
tion query at least one 
omponent of the identity tuple should be outside

I

�

; while in the 
hallenge phase it asks for the en
ryption under an identity v

�

all of whose 
omponents

are from I

�

.

Set-up: The simulator de�nes

F (x) =

Y

v2I

�

(x� v) = x

n

0

+ � � �+ a

1

x+ a

0

J

(j)

i

(x) = b

i;n

x

n

+ � � �+ b

i;1

x+ b

(j)

i;0

for 1 � i � `

1

; 1 � j � `

2

where ea
h b

i;k

and b

(j)

i;0

is 
hosen at random from Z

�

p

. De�ne a

n

0

= 1 and a

n

= a

n�1

= � � � = a

n

0

+1

= 0.

The simulator de�nes P

1

= Y

1

, P

2

= Y

`

2

+ �P in a similar manner as in the set-up of Se
tion 6. It

further de�nes U

i;j

= b

i;j

P + a

i

Y

h�i+1

for 1 � i � `

2

, 1 � j � n and R

k;j

= b

(j)

k;0

P + a

0

Y

`

2

�j+1

for

1 � k � `

1

, 1 � j � `

2

.

The simulator gives the publi
 parameters hP; P

1

; P

2

;R;

�!

U

1

; : : : ;

�!

U

`

2

i to A, while the 
orresponding

master se
ret is unknown to the simulator.

Phase 1: Suppose A asks for the private key of an identity v = v

1

; : : : ; v

m

where m = k

1

� `

2

+ k

2

.

The simulator �rst forms the (k

1

+ 1) � `

2

matrix I where v

1

is indexed as v

1;1

and v

m

as v

k

1

+1;k

2

.

The last row of the matrix may have elements less than `

2

. As per the rule of the game there is at

least one identity, say v

l

, su
h that F (v

l

) 6= 0. Suppose, v

l

is indexed as k

0

1

; k

0

2

in I. Now 
onsider the

identity tuple ((v

k

0

1

;1

; : : : ; v

k

0

1

;k

0

2

). This by itself 
an be seen as a valid identity tuple of depth k

0

2

for the

HIBE H. Using the te
hnique of Se
tion 6, the simulator forms a private key for (v

k

0

1

;1

; : : : ; v

k

0

1

;k

0

2

) as

(a

0

0

; a

k

0

1

; b

k

0

2

+1

; : : : ; b

`

2

;

�!




k

0

2

+1

; : : : ;

�!




`

2

). Note that, this is a valid private key for an identity tuple of

depth k

0

2

in the 
onstant size 
iphertext HIBE H. It next 
hooses r

1

; : : : ; r

k

0

1

�1

2 Z

p

and 
omputes the
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private key for (v

1

; : : : ; v

l

) as

a

0

= a

0

0

+

k

0

1

�1

X

i=1

r

i

`

2

X

j=1

(V

i;j

+R

i;j

)

a

i

= r

i

P for 1 � i � k

0

i

� 1

Note that, V

i;j

=

P

n

k=1

v

k

i;j

U

j;k

, so

V

i;j

+R

i;j

=

n

X

k=1

v

k

i;j

U

j;k

+R

i;j

=

n

X

k=1

v

k

i;j

(b

j;k

P + a

j

Y

`

2

�j+1

) + b

(j)

i;0

P + a

0

Y

`

2

�j+1

= F (v

i;j

)Y

`

2

�j+1

+ J

(j)

i

(v

i;j

)P

The simulator 
an 
ompute all these from the information it possesses. Hen
e,

(a

0

; a

1

; : : : ; a

k

0

i

�1

; a

k

0

1

; b

k

0

2

+1

; : : : ; b

`

2

; 


k

0

2

+1

; : : : ; 


`

2

)

is a proper private key for v

1

; : : : ; v

l

from whi
h the simulator forms a private key for v and gives it to

A.

Challenge: At this stage, A produ
es two equal length messagesM

0

;M

1

2 G

2

and a 
hallenge identity

v

�

. The 
hallenge identity v

�

= (v

�

1

; : : : ; v

�

u

) should have ea
h v

j

2 I

�

and hen
e F (v

�

j

) = 0 for 1 � j � u.

Based on this fa
t the simulator is able to form a proper en
ryption of M




where 
 is 
hosen uniformly

at random from f0; 1g, if the tuple provided to it is a true h-wDBDHI

�

instan
e.

Phase 2: The key extra
tion queries in this stage are handled as in Phase 1.

Guess: The adversary outputs a guess 


0

. The simulator outputs 1 if 
 = 


0

, else it outputs 0.

A's view in the above simulation is identi
al to that in a real atta
k if the given instan
e is a true

`

2

-wDBDHI

�

instan
e.

The above shows that an adversary's ability to atta
k (h; n)-G

3

HIBE in model (h; n

0

)-M

1


an be


onverted into an algorithm for solving `

2

-wDBDHI

�

problem. The bound on the advantage follows

from this fa
t.

Note that, in the 
ommitment stage we may give the adversary some more 
exibility by allowing it

to 
ommit to sets of identities I

�

1

; : : : ;I

�

h

, where I

�

j


orresponds to the 
ommitment for the jth level of

the 
onstant size 
iphertext HIBE. In this 
ase the restri
tions inM

2

regarding the private key queries

and 
hallenge generation apply. This added 
exibility, however, does not a�e
t the eÆ
ien
y of the

proto
ol.

10 Dis
ussion

The private key 
orresponding to an identity in a HIBE has two roles. The �rst role is to enable

de
ryption of a message en
rypted using this identity, while the se
ond role is to enable generation of
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lower level keys. Not all 
omponents of the private key are ne
essarily required for de
ryption, i.e., the

de
ryption subkey 
an have stri
tly fewer 
omponents than the whole private key. This has also been

observed in [4℄ and in 
ase of the BBG-HIBE, the de
ryption subkey 
onsists of only two 
omponents.

In G

1

and G

2

, the de
ryption subkeys also 
onsist of two 
omponents as in the BBG-HIBE. In G

3

the

size of the de
ryption subkey is redu
ed by a fa
tor of h 
ompared to the size of the de
ryption subkeys

in H

1

.

Having a small de
ryption subkey is important, sin
e the de
ryption subkey may need to be loaded

on to smart 
ards for frequent and online de
ryptions. This is a
hieved in all the HIBE 
onstru
tions

des
ribed in this work. On the other hand, the entire private key is required for key delegation to lower

level entities. Key delegation is a relatively infrequent a
tivity whi
h will typi
ally be done by an entity

from a workstation. Storage in a workstation is less restri
tive and a larger size private key required

only for key delegation is more tolerable.

The size of the private key in the BBG-HIBE and G

1

is proportional to the number of levels in the

HIBE. For G

2

this size is proportional to n�h, where h is the number of levels of the HIBE and n is the

maximum number of 
hallenge identities that the adversary 
an 
ommit to for any level. The size of the

private key in G

3

varies 
y
li
ally with the number of 
omponents j in the identity. Let j = j

1

h + j

2

,

where h is the number of levels in H used in the produ
t 
onstru
tion and j

2

2 f1; : : : ; hg. The size

of the private key then varies as j

1

+ n� j

2

, where n is the number of elements in the set from whi
h

the adversary 
an 
onstru
t the 
hallenge identity. Sin
e j

2

varies in a 
y
li
 manner with period h,

the size of the private key also shows a similar behaviour. (A similar behaviour is also shown by the

size of the private key in the produ
t 
onstru
tion in [4℄.) A modi�
ation of the proto
ols eliminates

the dependen
e of the size of the private key on j

2

. Suppose that key delegation is only allowed to

be performed by the PKG and entities at levels h; 2h; 3h; : : :. For example, in a big organisation, the

hierar
hy may be divided into sub-hierar
hies. The entities at levels h; 2h et
etera are the system

administrators for the sub-hierar
hy of depth h and the delegation of private key is solely managed by

them. The other entities in the sub-hierar
hy are not involved with the business of key-delegation but

they 
an still a

ess the se
ret information en
rypted for their subordinates. In this s
enario, the size

of the private key varies only with j

1

and in fa
t, the private key and the de
ryption subkey be
ome

identi
al.

11 Con
lusion

In this work, we have augmented the sele
tive-ID se
urity model for hierar
hi
al identity-based en
ryp-

tion by allowing the adversary some 
exibility in 
hoosing the target identity tuple during the 
hallenge

phase of the se
urity redu
tion. We have denoted this model by sele
tive

+

-ID model (s

+

ID model). The

Boneh-Boyen HIBE satis�es this notion of se
urity while the 
onstant size 
iphertext HIBE of Boneh,

Boyen and Goh needs some modi�
ation in the se
urity redu
tion to do so. This modi�
ation introdu
es

a multipli
ative se
urity degradation. We have further augmented the BBG-HIBE to 
onstru
t a new

proto
ol se
ure in s

+

ID model without any degradation whi
h maintains all the attra
tive features of

BBG-HIBE. We build on this new 
onstru
tion another 
onstant size 
iphertext HIBE. The se
urity

of our se
ond 
onstru
tion is proved under a generalization of the sele
tive-ID se
urity model. Our

third 
onstru
tion of HIBE is a \produ
t" 
onstru
tion that allows a 
ontrollable trade-o� between the


iphertext size and the private key size.
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A The Case of Boneh-Boyen HIBE

The original redu
tion in [2℄ goes through without almost any modi�
ation for the s

+

ID model. The

only 
hange is in 
hallenge generation as des
ribed below.

Initialization: A 
ommits to a target identity v

�

= (v

�

1

; : : : ; v

�

k

) of height k � h. If k < h, B adds

extra random elements from Z

p

to make v

�

an identity of height h.

Setup: B pi
ks random �

1

; : : : ; �

h

2 Z

p

and de�nes Q

j

= �

j

P � v

�

j

P

1

for 1 � j � h. It gives A the

publi
 parameters PP = hP; P

1

; P

2

; Q

1

; : : : ; Q

h

i. Here the msk = aP

2

= abP is unknown to B. De�ne

the fun
tion F

j

(x) = xP

1

+Q

j

= (x� v

�

j

)P

1

+ �

j

P for 1 � j � h.

Phase 1 and Phase 2: As in [2℄.

Challenge: After 
ompletion of Phase 1, A outputs two messages M

0

;M

1

2 G

2

and an identity

tuple v

+

= (v

�

1

; : : : ; v

�

�

), � � k. B 
hooses a random bit 
 and forms the 
iphertext C = (M




�

Z; 
P; �

1


P; : : : ; �

�


P ). Note that, F

i

(v

�

i

) = �

i

P , so

C = hM




� Z; 
P; 
F

1

(v

�

1

); : : : ; 
F

�

(v

�

�

)i:

If Z = e(P; P )

ab


= e(P

1

; P

2

)




then C is a valid en
ryption of M




.
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