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Abstrat

At Eurorypt 2005, Boneh, Boyen and Goh presented a onstant size iphertext hierarhial

identity based enryption (HIBE) protool. Our main ontribution is to present a variant of the

BBG-HIBE. The new HIBE is proved to be seure (without any degradation) in an extension of the

sID model (denoted the s

+

-ID model) and the omponents of the identities are from Z

p

, where p is a

suitable large prime. The BBG-HIBE is proved to be seure in the seletive-ID (sID) seurity model

and the omponents of the identities are from Z

�

p

. In the s

+

-ID model the adversary is allowed to

vary the length of the hallenge identity whereas this is not allowed in the sID model. The new HIBE

shares all the good features of the BBG-HIBE. The drawbak is that the publi parameters and the

private key are longer than that of the BBG-HIBE. We also provide two more extensions of the basi

onstant size iphertext HIBE. The �rst is a onstant size iphertext HIBE seure in the generalised

seletive-ID modelM

2

. The seond one is a produt onstrution omposed of two HIBEs and a

trade-o� is possible between the private key size and the iphertext size.

1 Introdution

An identity based enryption (IBE) protool o�ers ertain exibility over usual publi key enryption

protool by allowing the publi key to be any binary string. This notion was introdued by Shamir [17℄

and the �rst eÆient implementation with a proof of seurity in an appropriate seurity model was

given by Boneh and Franklin [5℄. In an IBE, the private key orresponding to an identity is generated

by a private key generator (PKG) and is seurely transmitted to the appropriate entity. Enryption is

done using the identity and the publi parameters of the PKG whereas deryption requires the private

key of the identity under whih the message has been enrypted.

The role of the PKG is to distribute private keys. A generalization of IBE is the notion of a

hierarhial IBE (HIBE) [16, 15℄, whih allows the task of generating private keys to be delegated to

lower levels. Several onstrutions of HIBE are known [15, 2, 4℄. The onstrutions in [15, 2℄ have

the property that the length of the iphertexts, the size of the private keys and onsequently, the time

required for enryption and deryption grow linearly with the number of levels in the HIBE.

In a reent work, a very interesting onstrution of HIBE was presented by Boneh, Boyen and

Goh [4℄, whih we all BBG-HIBE. The main novelty of the BBG-HIBE is that the size of the iphertext

is independent of the depth of the HIBE. This also improves the eÆieny of enryption and deryption.
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Perhaps more importantly, the onstant size iphertext BBG-HIBE leads to improved onstrutions of

forward seure enryption and publi-key broadast enryption protools.

The full seurity model for IBE was introdued in [5℄ and later extended to HIBE in [15℄. A weaker

seurity model was introdued in [9, 10℄ and is alled the seletive-ID model (sID model in short). The

seletive-ID di�ers from the full model by restriting the adversary to ommit to the hallenge identity

even before setting up the protool. The HIBE proposed by Boneh-Boyen [2℄, whih we all BB-HIBE,

and the BBG-HIBE [4℄ are the only known HIBE protools seure in the seletive-ID model. The

seletive-ID seurity model was generalised in [11℄ to two new models,M

1

andM

2

, and the authors

proposed two HIBEs H

1

and H

2

seure in the respetive models. The BBG-HIBE has been extended

to modelM

2

in [12℄ and the authors also proposed a onstrution seure in the full model.

Our Contributions: We modify the BBG-HIBE to obtain a new onstant size iphertext HIBE,

G

1

. A onstant size iphertext HIBE is an interesting primitive in its own right. Several important

appliations of suh a HIBE has been desribed in [4℄. We believe that the importane of onstant size

iphertext HIBE makes studying variants of the BBG-HIBE an interesting problem in itself.

Compared to the BBG-HIBE, the new HIBE G

1

has the following advantages { it is seure (without

any degradation) in an extension of the sID model (see below) and the omponents of the identity tuples

are from Z

p

, where p is a suitable large prime. On the other hand, the disadvantage is that the size of

the publi parameters and the private key is longer than that of the BBG-HIBE. Note that even though

the size of the private key is longer, the size of the deryption subkey is same as that of BBG-HIBE.

Sine for deryption, only the deryption subkey needs to be loaded onto a smart ard, to a ertain

extent this mitigates the disadvantage of the private key being longer.

In the sID model, the adversary ommits to an identity tuple v

�

= (v

�

1

; : : : ; v

�

m

) and in the hallenge

phase obtains an enryption under v

�

. In partiular, the length m of the hallenge identity is �xed by

the adversary in the ommit stage itself. In the augmented version of the seletive-ID model, whih we

all seletive

+

-ID model, in the hallenge phase, the adversary is allowed to ask for an enryption under

v

+

= (v

�

1

; : : : ; v

�

m

0

), where 1 � m

0

� m. This provides the adversary additional exibility in hoosing

the target identity.

In the sID model, the adversary is restrited from making private key queries for any pre�x of v

�

.

Consequently, a \natural" intuition is that the adversary be allowed to hoose any pre�x of v

�

as a

hallenge identity. Unfortunately, the sID model does not allow this exibility to the adversary. In the

s

+

ID model, this exibility is introdued and the hallenge identity is allowed to be any pre�x of v

�

.

Clearly, any protool seure in the s

+

ID model is also seure in the sID model, though the onverse is

not neessarily true.

We show that the seurity redution for BB-HIBE [2℄ satis�es the notion of s

+

ID seurity. On the

other hand, the seurity proof of the BBG-HIBE given in [4℄ does not go through in the s

+

ID model. A

simple modi�ation of this proof gives a proof of seurity for the BBG-HIBE in the s

+

ID model. But

this proof yields a multpliative seurity degradation by a fator of h, where h is the maximum number

of levels in the HIBE.

Our idea of modifying the proof of the BBG-HIBE protool an be utilised to show that any protool

seure in the s

+

-ID model is also seure in the sID model with a seurity degradation by a fator of

h. Admittedly, a seurity degradation by a fator of h is not muh. However, the sID and the s

+

ID

models are really restritive models and hene one would like to obtain a protool without any seurity

degradation.
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We next modify this onstrution to obtain a onstant size iphertext HIBE, G

2

whih is proved to

be seure in modelM

2

augmented in the line of s

+

ID model.

Our third onstrution is a produt onstrution, in the sense that the onstruted HIBE an be

seen to be a \produt" of two individual HIBEs. A produt onstrution ombining the BB-HIBE and

the BBG-HIBE has been presented earlier in [4℄.

We onsider the produt of H

1

of [11℄ with G

2

to obtain a new HIBE G

3

. This HIBE is seure in

modelM

1

and redues the size of the iphertext in H

1

by a fator of h, where h is the number of levels

in G

2

. The deryption subkey (i.e., the part of the private key required for deryption) for both G

1

and

G

2

are equal to that of BBG-HIBE. While in G

3

the size of the deryption subkey is redued by a fator

of h over the size of the deryption subkeys in H

1

.

2 De�nitions

2.1 Cryptographi Bilinear Map

Let G

1

and G

2

be yli groups of same prime order p and G

1

= hP i, where we write G

1

additively and

G

2

multipliatively. A mapping e : G

1

�G

1

! G

2

is alled a ryptographi bilinear map if it satis�es

the following properties:

� Bilinearity: e(aP; bQ) = e(P;Q)

ab

for all P;Q 2 G

1

and a; b 2 Z

p

.

� Non-degeneray: If G

1

= hP i, then G

2

= he(P; P )i.

� Computability: There exists an eÆient algorithm to ompute e(P;Q) for all P;Q 2 G

1

.

Sine e(aP; bP ) = e(P; P )

ab

= e(bP; aP ), the map e() also satis�es the symmetry property. The modi�ed

Weil pairing [5℄ and the Tate pairing [1, 14℄ are examples of ryptographi bilinear maps.

Known examples of e() have G

1

to be a group of Ellipti Curve (EC) points and G

2

to be a

subgroup of a multipliative group of a �nite �eld. Hene, in papers on pairing implementations [1, 14℄,

it is ustomary to write G

1

additively and G

2

multipliatively. On the other hand, some \pure" protool

papers [5, 2, 3, 18℄ write both G

1

and G

2

multipliatively though this is not true of the initial protool

papers [5, 15℄. Here we follow the �rst onvention as it is loser to the known examples.

2.2 HIBE Protool

Following [16, 15℄ a hierarhial identity based enryption (HIBE) sheme is spei�ed by four algorithms:

Setup, Key Generation, Enryption and Deryption. Note that, for a HIBE of height h (heneforth

denoted as h-HIBE) any identity v is a tuple (v

1

; : : : ; v

�

) where 1 � � � h.

Setup: It takes as input a seurity parameter and returns the system parameters together with the

master key. The system parameters inlude a desription of the message spae, the iphertext spae

and the identity spae. These are publily known while the master key is known only to the private key

generator (PKG).

Key Generation It takes as input an identity v = (v

1

; : : : ; v

�

) and the private key d

vj��1

for the

identity (v

1

; : : : ; v

��1

) and returns a private key d

v

for v. The identity v is used as the publi key while

d

v

is the orresponding private key.
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Enrypt: It takes as input the identity v and a message from the message spae and produes a

iphertext in the ipher spae.

Derypt: It takes as input the iphertext and a private key d

v

of the orresponding identity v and

returns the message or bad if the iphertext is not valid.

2.3 Hardness Assumption

Seurity of our HIBE sheme is based on the so alled deisional weak bilinear DiÆe-Hellman inversion

problem (h-wDBDHI

�

) introdued by Boneh-Boyen-Goh in [4℄. An instane of the h-wDBDHI

�

problem

over hG

1

; G

2

; e()i onsists of the tuple (P;Q; aP; a

2

P; : : : ; a

h

P;Z) for some a 2 Z

p

and the task is to

deide whether Z = e(P;Q)

a

h+1

or Z is random.

The advantage of a probabilisti algorithm B that outputs a bit in solving this deision problem is

de�ned as

Adv

h-wDBDHI

�

B

=

�

�

�

Pr[B(P;Q;

�!

Y ; e(P;Q)

a

h+1

) = 1℄� Pr[B(P;Q;

�!

Y ;Z) = 1℄

�

�

�

where

�!

Y = (aP; a

2

P; : : : a

h

P ), and Z is a random element of G

2

. The probability is alulated over the

random hoies of a 2 Z

p

and Z 2 G

2

and also the random bits used by B. The quantity Adv

h-wDBDHI

�

(t)

denotes the maximum of Adv

h-wDBDHI

�

B

where the maximum is taken over all algorithms running in time

at most t.

3 Previous HIBE Construtions

We briey desribe the BB-HIBE and the BBG-HIBE. Let G

1

; G

2

and e() be as de�ned in Setion 2.

3.1 BB-HIBE

Identities of depth u are of the form (v

1

; : : : ; v

u

) where eah v

i

2 Z

p

. Messages are elements of G

2

.

Setup: Selet a random generator P 2 G

�

1

, a random x 2 Z

p

and set P

1

= xP . Also pik random

elements Q

1

; : : : ; Q

h

; P

2

2 G

1

. The publi parameters are

(P; P

1

; P

2

; Q

1

; : : : ; Q

h

)

whereas the master seret key is xP

2

. The maximum height of the HIBE is h. De�ne publily omputable

family of funtions F

j

: Z

p

! G

1

for j 2 f1; : : : ; hg: F

j

(�) = �P

1

+Q

j

.

Key Generation: Given an identity v = (v

1

; : : : ; v

j

) of depth j � h, pik random r

1

; : : : ; r

j

2 Z

p

and

ompute

d

v

=

 

xP

2

+

j

X

i=1

r

i

F

i

(v

i

); r

1

P; : : : ; r

j

P

!

d

v

an also be generated given the private key d

vjj�1

of vj

j�1

= (v

1

; : : : ; v

j�1

).

4



Enrypt: Enrypt M 2 G

2

for v = (v

1

; : : : ; jI

j

) as

C = (e(P

1

; P

2

)

s

�M; sP; sF

1

(v

1

); : : : ; sF

j

(v

j

))

where s is a random element of Z

p

.

Derypt: Derypt C = hA;B;C

1

; : : : ; C

j

i using the private key d

v

= (d

0

; d

1

; : : : ; d

j

as

A�

Q

j

i=1

e(C

i

; d

i

)

e(B; d

0

)

=M

3.2 BBG-HIBE

In this ase, identities of depth u are of the form (v

1

; : : : ; v

u

) where eah v

i

2 Z

�

p

. (In ontrast, reall

that, in BB-HIBE identity omponents are elements of Z

p

). Messages are elements of G

2

.

Setup: Choose a random � 2 Z

p

and set P

1

= �P . Choose random elements P

2

; P

3

; Q

1

; : : : ; Q

h

2 G

1

.

Set the publi parameter as (P; P

1

; P

2

; P

3

; Q

1

; : : : ; Q

h

) while the master key is P

4

= �P

2

.

Key Generation: Given an identity v = (v

1

; : : : ; v

k

) of depth k � h, pik a random r 2 Z

p

and

output

d

v

= (�P

2

+ r(v

1

Q

1

; : : : ; v

k

Q

k

+ P

3

); rP; rQ

k+1

; : : : ; rQ

h

):

Enrypt: To enrypt M 2 G

2

under the identity v = (v

1

; : : : ; v

k

), pik a random s 2 Z

p

and output

CT = (e(P

1

; P

2

)

s

�M; sP; s(v

1

Q

1

+ : : : + v

k

Q

k

+ P

3

)) :

Derypt: To derypt CT = (A;B;C) using the private key d

v

= (a

0

; a

1

; b

k+1

; : : : ; b

h

), ompute

A�

e(a

1

; C)

e(B; a

0

)

=M:

4 Seurity Models

The relevant de�nitions of ryptographi bilinear map, HIBE protool and hardness assumption are

given in Appendix 2. Here, we disuss about the variants of the seletive-ID seurity models.

The seurity of a HIBE protool is de�ned in terms of a game between an adversary and a simulator.

The full seurity model for IBE was introdued in [5℄ and the extension to HIBE was given in [15℄. The

weaker seletive-ID model was introdued in [9, 10℄. We de�ne the seletive identity, hosen iphertext

seurity (IND-sID-CCA) of a HIBE of maximum height h, in terms of the following game.

4.1 Seletive-ID Model

Initialization: The adversary outputs a target identity v

�

= (v

�

1

; : : : ; v

�

u

) with u � h, on whih it

wishes to be hallenged.
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Setup: The hallenger sets up the HIBE and provides the adversary with the system publi parame-

ters.

Phase 1: Adversary A makes a �nite number of queries where eah query is addressed either to the

deryption orale or to the key-extration orale. In a query to the deryption orale it provides the

iphertext as well as the identity under whih it wants the deryption. Similarly, in a query to the key-

extration orale, it asks for the private key of the identity it provides. Further, A is allowed to make

these queries adaptively, i.e., any query may depend on the previous queries as well as their answers.

The only restrition is that it annot ask for the private key of v

�

or any of its pre�xes.

Challenge: At this stage A outputs two equal length messages M

0

;M

1

and gets a iphertext C

�

whih is an enryption of M



under v

�

, where  is hosen uniformly at random from f0; 1g.

Phase 2: A now issues additional queries just like Phase 1, with the (obvious) restrition that it

annot ask the deryption orale for the deryption of C

�

under v

�

nor the key-extration orale for the

private key of any pre�x of v

�

.

Guess: A outputs a guess 

0

of .

The advantage of the adversary A in attaking the HIBE sheme is de�ned as:

Adv

HIBE

A

=

�

�

Pr[( = 

0

)℄� 1=2

�

�

:

The quantity Adv

HIBE

(t; q

ID

; q

C

) denotes the maximum of Adv

HIBE

A

where the maximum is taken over all

adversaries running in time at most t and making at most q

C

queries to the deryption orale and q

ID

queries to the key-extration orale. Any HIBE sheme seure against suh an adversary is said to be

seure against hosen iphertext attak (in short, IND-sID-CCA-seure ). We may restrit the adversary

from making any query to the deryption orale. A HIBE protool seure against suh an adversary is

said to be seure against hosen plaintext attaks (in short, IND-sID-CPA-seure). Adv

HIBE

(t; q) in this

ontext denotes the maximum advantage where the maximum is taken over all adversaries running in

time at most t and making at most q queries to the key-extration orale.

There are generi [10, 6℄ as well as non-generi [7℄ tehniques for onverting a CPA-seure HIBE to

a CCA-seure HIBE. In view of this, it is more onvenient to initially onstrut a CPA-seure HIBE

and then onvert it into a CCA-seure one.

4.2 Generalised Seletive-ID Model

Two new seurity models,M

1

andM

2

have reently been introdued in [11℄. Here we briey desribe

these two models.

InM

1

the adversary �xes a set of target identities I

�

before the protool is set up where jI

�

j = n.

In Phase 1 and 2 the adversary annot make any query to the key extration orale for the private key

of an identity tuple v all of whose omponents are in I

�

. On the other hand, in the Challenge stage

it must ask for enryption under an identity tuple v

�

all of whose omponents are in I

�

. This model

is parametrised by the maximum height h of the HIBE and n. This is expliitly written as (h; n)-M

1

model.

M

2

generalises sID model in the following manner. Before the set-up of the protool, the adversary

ommits to sets of identities I

�

1

; : : : ;I

�

�

, where 1 � � � h and h is the maximum number of levels of the

6



HIBE. Let jI

�

i

j = n

i

. The adversary's ommitment �xes the length of the hallenge identity to be � .

Also, the set I

�

i

orresponds to the set of ommitted identities for the ith level of the HIBE.

In Phases 1 and 2, the adversary is not allowed to query the key extration orale on any identity

(v

1

; : : : ; v

j

) suh that j � � and v

i

2 I

�

i

for all 1 � i � j. The hallenge identity is a tuple (v

�

1

; : : : ; v

�

�

)

where v

�

i

2 I

�

i

for all 1 � i � � .

The modelM

2

is parametrized by h and a tuple (n

1

; : : : ; n

h

) of positive integers. This is explitly

written as (h; n

1

; : : : ; n

h

)-M

2

model. This model is a generalization of the sID-model whih an be

seen by �xing all the I

�

i

s to be singleton sets. More spei�ally, (h; 1; : : : ; 1)-M

2

is the sID-model.

4.3 Seletive

+

-ID Model

We modify the hallenge phase of the seletive-ID model to give more power to the adversary.

Challenge: A outputs two equal length messages M

0

;M

1

and an identity v

+

where v

+

is either v

�

or

any of its pre�xes. In response it reeives an enryption of M



under v

+

, where  is hosen uniformly

at random from f0; 1g.

We refer to this new model as seletive

+

-ID model (s

+

ID model in short). This model is more

general than the sID model beause now the adversary is allowed to ask for a hallenge iphertext not

only on v

�

but also on any of its pre�xes. In ase of IBE both the models are same as we have only

one level. For HIBE, a protool seure in the seletive

+

-ID model is obviously seure in the seletive-ID

model.

5 Constant Size Ciphertext HIBE Seure in Seletive

+

-ID Model

We augment the BBG-HIBE to obtain a new onstant size iphertext HIBE seure in the seletive

+

-ID

model without any seurity degradation. We all this new protool G

1

. The basi idea is to replae P

3

in BBG-HIBE by a vetor

�!

P

3

= (P

3;1

; : : : ; P

3;h

) where P

3;i

orresponds to the ith level of the HIBE.

It is this feature that allows identity omponents to be elements of Z

p

and a proof (without seurity

degradation) in the s

+

-ID model. Also, it is this feature whih inreases the size of the publi parameters

and the private key.

Let G

1

; G

2

and e() be as de�ned in Setion 2. Let the maximum height of the HIBE be h. The

identities at a depth u � h are of the form v = (v

1

; : : : ; v

u

) where eah v

i

2 Z

p

. Note that, unlike the

BBG-HIBE, we allow 0 as a valid identity omponent. Messages are elements of G

2

.

Setup: Choose a random � 2 Z

p

and set P

1

= �P . Choose a random element P

2

2 G

1

and two

random h length vetors

�!

P

3

;

�!

Q where

�!

P

3

= (P

3;1

; : : : ; P

3;h

) and

�!

Q = (Q

1

; : : : ; Q

h

). Set the publi

parameters to be (P; P

1

; P

2

;

�!

P

3

;

�!

Q) while the master key is P

4

= �P

2

. Instead of P

1

; P

2

, e(P

1

; P

2

) an

also be kept as part of PP. This avoids the pairing omputation during enryption.

Key Generation: Given an identity v = (v

1

; : : : ; v

k

) of depth k � h, pik a random r 2 Z

p

and

output

d

v

=

0

�

�P

2

+ r

k

X

j=1

V

j

; rP; rP

3;k+1

; : : : ; rP

3;h

; rQ

k+1

; : : : ; rQ

h

1

A

7



where V

j

= P

3;j

+ v

j

Q

j

. The private key at level k onsists of 2(h � k + 1) elements of G

1

. Among

these 2(h�k+1) elements only the �rst two are required in deryption, the rest are used to generate the

private key for the next level as follows: Let the seret key orresponding to the identity (v

1

; : : : ; v

k�1

)

be (A

0

; A

1

; B

k

; : : : ; B

h

; C

k

; : : : ; C

h

), where A

0

= �P

2

+ r

0

P

k�1

j=1

V

j

, A

1

= r

0

P , and for k � j � h,

B

j

= r

0

P

3;j

, C

j

= r

0

Q

j

. Pik a random r

�

2 Z

p

and ompute

d

v

= (A

0

+B

k

+ v

k

C

k

+ r

�

P

k

j=1

V

k

; A

1

+ r

�

P;

B

k+1

+ r

�

P

3;k+1

; : : : ; B

h

+ r

�

P

3;h

;

C

k+1

+ r

�

Q

k+1

; : : : ; C

h

+ r

�

Q

h

):

If we put r = r

0

+ r

�

, then d

v

is a proper private key for v = (v

1

; : : : ; v

k

).

Enrypt: To enrypt M 2 G

2

under the identity (v

1

; : : : ; v

k

), pik a random s 2 Z

p

and output

CT =

0

�

e(P

1

; P

2

)

s

�M; sP; s

0

�

k

X

j=1

V

j

1

A

1

A

where V

j

is as de�ned in Key Generation.

Derypt: To derypt CT = (A;B;C) using the private key d

v

= (d

0

; d

1

; : : :), ompute

A�

e(d

1

; C)

e(B; d

0

)

= e(P

1

; P

2

)

s

�M �

e

�

rP; s

P

k

j=1

V

j

�

e

�

sP; �P

2

+ r

P

k

j=1

V

j

�

=M:

5.1 Disussion

The protool G

1

is a modi�ation of the BBG-HIBE with a di�erent P

3;i

for eah level of the HIBE. This

is required to get a proof of seurity in the augmented s

+

ID model without any seurity degradation

as is shown in the next setion. Additionally, it allows identities to be elements of Z

p

, instead of Z

�

p

as in BBG-HIBE. On the other hand, this modi�ation only a�ets the eÆieny of the BBG-HIBE

in a small way. The �rst thing to note is the size of the iphertext is still onstant (three elements).

Seondly, the size of the publi parameter as well as private key is linear in the length of the HIBE

and dereases as we \go down" the HIBE. These two properties ensure that the appliations mentioned

in [4℄ also hold for the new HIBE desribed above. In partiular, it is possible to ombine the new HIBE

with the BB-HIBE of [2℄ to get an intermediate HIBE with ontrollable trade-o� between the size of the

iphertext and the size of the private key. Further, the appliation to the onstrution of forward seure

enryption protool mentioned in [4℄ an also be done with the new HIBE. The resulting protools will

be seure in the augmented seletive

+

-ID model. However, the atual details for these appliations will

be a little di�erent from what is mentioned in [4℄.

A omparison of the features of G

1

with the BB-HIBE and the BBG-HIBE is given in Table 1 for

h-level HIBEs. Here the olumn \deryption subkey size" denotes the number of elements of the private

key whih is atually required for deryption. The entire private key is required for key delegation,

whih is a relatively infrequent ativity. As mentioned above, the BBG-HIBE has many appliations.

The modi�ed protool G

1

an be used for all suh appliations.

8



Table 1: Comparison of HIBE protools Seure in sID/s

+

ID Model.

protool seurity id publi max pvt deryption

model omp parameter key size subkey size

G

1

s

+

ID Z

p

3 + 2h 2h 2

BBG s

+

ID Z

�

p

4 + h h+ 1 2

BBG sID Z

�

p

4 + h h+ 1 2

BB s

+

ID Z

p

3 + h h+ 2 h+ 2

protool iphertext enryption deryption Seurity

expansion eÆieny eÆieny degradation

G

1

2 h+ 2 2 Nil

BBG in s

+

ID 2 h+ 2 2 h

BBG in sID 2 h+ 2 2 Nil

BB h+ 1 2h+ 1 h+ 1 Nil

For a HIBE of maximum height h, the olumns for publi parameter, max pvt key size, deryption

subkey size and iphertext expansion denote the number of elements of G

1

, enryption eÆieny denotes

the number of salar multipliations in G

1

and deryption eÆieny denotes the number of pairing

omputations.

6 Seurity

Semanti seurity (i.e., (CPA-seurity) of the above sheme in the s

+

ID model is proved under the

h-wDBDHI

�

assumption.

Theorem 6.1. For t � 1; q � 1;Adv

G

1

(t; q) � Adv

h-wDBDHI

�

(t+O(�q)), where � is the time for a salar

multipliation in G

1

.

Proof : Suppose A is a (t; q)-CPA adversary for the G

1

, then we onstrut an algorithm B that solves

the h-wDBDHI

�

problem. B takes as input a tuple (P;Q; Y

1

; : : : ; Y

h

; Z) where Y

i

= �

i

P for some

random � 2 Z

�

p

and Z is either equal to e(P;Q)

�

h+1

or a random element of G

2

. We de�ne the s

+

ID

game between B and A as follows.

Initialization: A outputs an identity tuple v

�

= (v

�

1

; : : : ; v

�

u

) 2 Z

u

p

for any u � h. The restrition

on A is that it annot ask for the private key of v

�

or any of its pre�x and in hallenge it asks for an

enryption under v

�

or any of its pre�x. In ase u < h, B hooses random v

�

u+1

; : : : ; v

�

h

from Z

p

and

keeps these extra elements to itself. (Note that B is not augmenting the target identity to reate a new

target identity.)

Setup: B piks random �, �

1

; : : : ; �

h

and 

1

; : : : ; 

h

in Z

p

. It then sets

P

1

= Y

1

= �P ;P

2

= Y

h

+ �P = (�

h

+ �)P ;

and

for 1 � j � u, Q

j

= �

j

P � Y

h�j+1

; P

3;j

= 

j

P + v

�

j

Y

h�j+1

;

for u < j � h, Q

j

= �

j

P ; P

3;j

= 

j

P + v

�

j

Y

h�j+1

.

9



The publi parameters are (P; P

1

; P

2

;

�!

P

3

;

�!

Q), where

�!

Q = (Q

1

; : : : ; Q

h

),

�!

P

3

= (P

3;1

; : : : ; P

3;h

). The

orresponding master key �P

2

= Y

h+1

+ �Y

1

is unknown to B. B de�nes the funtions F

j

= v

�

j

� v

j

for

1 � j � u and F

j

= v

�

j

for u < j � h and J

j

= 

j

+ �

j

v

j

for 1 � j � h.

Phase 1: Suppose A asks for the private key orresponding to an identity v = (v

1

; : : : ; v

�

) for � � h.

Note that for any j � u,

V

j

= P

3;j

+ v

j

Q

j

= 

j

P + v

�

j

Y

h�j+1

+ v

j

(�

j

P � Y

h�j+1

)

= (v

�

j

� v

j

)Y

h�j+1

+ (

j

+ �

j

v

j

)P

= F

j

Y

h�j+1

+ J

j

P:

Similarly, for u < j � h

V

j

= P

3;j

+ v

j

Q

j

= 

j

P + v

�

j

Y

h�j+1

+ v

j

�

j

P = F

j

Y

h�j+1

+ J

j

P:

Hene, V

j

for 1 � j � h is omputable from what is known to B.

Reall that u is the length of v

�

that the adversary ommitted to before the set-up phase. If � � u,

then there must be a k � � suh that F

k

6= 0, as otherwise the queried identity is a pre�x of the target

identity. In ase � > u, it is possible that F

1

= � � � = F

u

= 0. Then by onstrution, F

u+1

6= 0. We now

proeed under the assumption that there is a k suh that F

k

6= 0 and k is the smallest suh index. B

piks a random r 2 Z

p

and assigns d

0jk

= (�J

k

=F

k

)Y

k

+ �Y

1

+ rV

k

and d

1

= (�1=F

k

)Y

k

+ rP: Now,

d

0jk

= �

J

k

F

k

Y

k

+ �Y

1

+ �

k

Y

h�k+1

� �

k

F

k

F

k

Y

h�k+1

+ rV

k

= �P

2

+ ~rV

k

where ~r = (r �

�

k

F

k

). Also d

1

= �

1

F

k

Y

k

+ rP = �

�

k

F

k

P + rP = ~rP . For any j 2 f1; : : : ; �g n fkg we have

~rV

j

= (r �

�

k

F

k

)(F

j

Y

h�j+1

+ J

j

P )

= r(F

j

Y

h�j+1

+ J

j

P )�

1

F

k

(F

j

Y

h+k�j+1

+ J

j

Y

k

):

For j < k, F

j

= 0, so B an ompute all these ~rV

j

s from what it has. It forms

d

0

= d

0jk

+

X

j2f1;:::;�gnfkg

~rV

j

= �P

2

+ ~r

�

X

j=1

V

j

:

To form a valid private key B also needs to ompute ~rP

3;j

and ~rQ

j

for � < j � h. Now,

~rP

3;j

=

�

r �

�

k

F

k

�

(

j

P + v

�

j

Y

h�j+1

)

= r(

j

P + v

�

j

Y

h�j+1

)�

1

F

k

�



j

Y

k

+ v

�

j

Y

h+k�j+1

�

;

For j � u,

~rQ

j

=

�

r �

�

k

F

k

�

(�

j

P � Y

h�j+1

) = r(�

j

P � Y

h�j+1

)�

1

F

k

(�

j

Y

k

� Y

h+k�j+1

)
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and for u < j � h,

~rQ

j

=

�

r �

�

k

F

k

�

�

j

P = r�

j

P �

1

F

k

�

j

Y

k

:

All these values are omputable from what is known to B. Hene, B forms the private key as:

d

v

= (d

0

; d

1

; ~rP

3;�+1

; : : : ; ~rP

3;h

; ~rQ

�+1

; : : : ; ~rQ

h

)

and provides it to A.

Challenge: After ompletion of Phase 1, A outputs two messages M

0

;M

1

2 G

2

and the hallenge

identity v

+

= v

�

1

; : : : ; v

�

u

0

where u

0

� u � h. B piks a random b 2 f0; 1g and provides A the hallenge

iphertext

CT =

0

�

M

b

� T � e(Y

1

; �Q); Q;

0

�

u

0

X

j=1

(

j

+ �

j

v

�

j

)

1

A

�Q

1

A

:

Suppose, Q = P for some unknown  2 Z

p

. Then

0

�

u

0

X

j=1



j

+ �

j

v

�

j

1

A

�Q = 

0

�

u

0

X

j=1



j

+ �

j

v

�

j

1

A

P

= 

u

0

X

j=1

�



j

P + v

�

j

Y

h�j+1

+ v

�

j

(�

j

P � Y

h�j+1

)

�

= 

u

0

X

j=1

�

P

3;j

+ v

�

j

Q

j

�

= 

0

�

u

0

X

j=1

V

j

1

A

:

If the input provided to B is a true h-wDBDHI

�

tuple, i.e., Z = e(P;Q)

(�

h+1

)

, then

Z � e(Y

1

; �Q) = e(P;Q)

(�

h+1

)

� e(Y

1

; �Q) = e(Y

h

+ �P;Q)

�

= e(P

1

; P

2

)



:

So, the hallenge iphertext is

CT =

0

�

M

b

� e(P

1

; P

2

)



; P; 

0

�

u

0

X

j=1

V

j

1

A

1

A

:

CT is a valid enryption of M

b

under v

+

= (v

�

1

; : : : ; v

�

u

0

). On the other hand, when Z is random, CT is

random from the view point of A.

Phase 2: This is similar to Phase 1. Note that A plaes at most q queries in Phase 1 and 2 together.
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Guess: Finally, A outputs its guess b

0

2 f0; 1g. B outputs 1� b� b

0

.

A's view in the above simulation is idential to that in a real attak. This gives us the required

bound on the advantage of the adversary in breaking the HIBE protool.

7 More on the Seletive

+

-ID Model

We analyse the BB-HIBE and the BBG-HIBE with respet to the s

+

-ID model. It is easy to show that

the BB-HIBE is seure in the s

+

-ID model without any seurity degradation. The details are given in

Setion A. The ase of BBG-HIBE is more interesting and is disussed below.

7.1 The Case of Boneh-Boyen-Goh HIBE

The BBG-HIBE is proved to be seure in the sID model (Theorem 3.1 of [4℄). We �rst argue that the

given proof is not suÆient for the s

+

ID model. Using the intuition developed in the argument, we later

sketh a proof of seurity for the BBG-HIBE in the s

+

ID model, though with a multipliative seurity

degradation by a fator of h.

In the sID model, an adversary delares an identity v

�

that it intends to attak before the system is

set up. Suppose v

�

= (v

�

1

; : : : ; v

�

m

) where m � h. In the redution given in [4℄, the following is done. If

m < h then the simulator appends (h �m) zeros to v

�

so that v

�

is a vetor of length h. Reall that,

in the protool, individual omonents of an identity are elements of Z

�

p

so the adversary is restrited

from making a query where one or more omponents of the identity is 0. (BB-HIBE does not have this

restrition.) The redution in [4℄ ruially depends on this step.

In the protool, a single element of G

1

(i.e. Q

i

) is assoiated with the ith level of the HIBE and we

have another element, namely P

3

whih is required for the seurity redution.

The simulator B is given as input a random tuple (P;Q; Y

1

; : : : ; Y

h

; T ) where Y

i

= �

i

P s for 1 � i � h

for some unknown �. The task of B is to deide whether T = e(P;Q)

�

h+1

or T is a random element of

G

2

.

We now reprodue the relevant steps of the redution in Theorem 3.1 in [4℄.

Setup: B piks a random  2 Z

p

and sets P

1

= Y

1

= �P and P

2

= Y

h

+ P . Next, B piks random



1

; : : : ; 

h

2 Z

p

and sets Q

j

= 

j

P � Y

h�j+1

for j = 1; : : : ; h. B also piks a random Æ 2 Z

p

and sets

P

3

= ÆP +

P

h

j=1

v

�

j

Y

h�j+1

. B gives A the publi parameters (P; P

1

; P

2

; P

3

; Q

1

; : : : ; Q

h

).

Note that, the e�et of v

�

= (v

�

1

; : : : ; v

�

m

) is assimilated in P

3

. In ase, m (the depth of the hallenge

identity tuple v

�

) is less than h, we have v

�

m+1

= � � � = v

�

h

= 0, so v

�

j

Y

h�j+1

for m < j � h has no e�et

on P

3

. The Q

j

s in the publi parameter are independent of the target identity and depend only on the

Y

j

s after suitable randomization. In ontrast, in ase of the BB-HIBE, eah Q

j

depends on v

�

j

i.e., the

omponent orresponding to level j in target identity v

�

.

Given this setup, Boneh, Boyen and Goh show that all the private key queries of A an be answered

(see Phase 1 in the proof of Theorem 3.1 in [4℄ for details).

Now, suppose in the hallenge phase A asks the enryption under v

+

whih is a pre�x of v

�

, i.e.,

v

+

= (v

�

1

; : : : ; v

�

�

), � � m. If � = m, then the original redution goes through and we get a proper

enryption ofM

b

provided the input instane is a true h-wDBDHI

�

instane. However, if � < h, then the

original redution in [4℄ does not give a proper enryption of M

b

even if the input is a true h-wDBDHI

�

instane as we show below.
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Let Q = P for some unknown  2 Z

p

, then the third omponent of the hallenge iphertext is

C =

0

�

Æ +

h

X

j=1

v

�

j



j

1

A

Q = 

0

�

h

X

j=1

v

�

j

(

j

P � Y

h�j+1

) + ÆP +

h

X

j=1

v

�

j

Y

h�j+1

1

A

= (v

�

1

Q

1

+ : : : ; v

�

m

Q

m

+ P

3

) sine v

�

m+1

= � � � = v

�

h

= 0

However, this orresponds to an enryption under v

�

and not v

+

. To get a valid enryption under

v

+

= v

�

1

; : : : ; v

�

�

, the third omponent of the iphertext should be of the form

C

0

= (v

�

1

Q

1

+ � � �+ v

�

�

Q

�

+ P

3

)

= 

0

�

�

X

j=1

v

�

j

(

j

P � Y

h�j+1

) + ÆP +

h

X

j=1

v

�

j

Y

h�j+1

1

A

= 

0

�

�

X

j=1

v

�

j



j

P + ÆP +

m

X

j=�+1

v

�

j

Y

h�j+1

1

A

=

0

�

Æ +

�

X

j=1

v

�

j



j

1

A

Q+ 

m

X

j=�+1

v

�

j

Y

h�j+1

This C

0

annot be omputed by B without the knowledge of .

A di�erene in the BB-HIBE and the BBG-HIBE is that in the former, omponents of identities

are elements of Z

p

, whereas in the later the identity omponents are elements of Z

�

p

. It is an easy

observation that if zero is allowed to be an identity omponent, then the BBG-HIBE is not seure.

A sketh of the argument is as follows. In the sID game, an adversary has to ommit to an identity

before the HIBE is set-up. Let adersary A ommit to an identity v

�

= (v

�

1

; : : : ; v

�

k

) for some k with

1 � k < h. In the query phase, A issues a private key query for the identity v = (v

�

1

; : : : ; v

�

k

; 0) whih

is a valid query if 0 is allowed. In return, A is provided the private key of d

v

= (d

0

; d

1

; : : :). Then

d

0

= �P

2

+ r(v

�

1

Q

1

; : : : ; v

�

k

Q

k

+ 0 � Q

k+1

+ P

3

) and d

1

= rP for some random r 2 Z

p

. Using (d

0

; d

1

),

A an derypt any message enrypted for v

�

. Removing 0 from the identity spae avoids this situation

and allows a proof of the BBG-HIBE in the sID model.

7.1.1 Modi�ed Seurity Redution for the BBG-HIBE.

We modify the seurity redution of BBG-HIBE in the following way. Suppose, as before that the

adversary ommitted to an identity tuple v

�

= (v

�

1

; : : : ; v

�

m

) in the ommitment stage. During setup, B

hoses a random � from f1; : : : ;mg and forms the publi parameters as in the original redution given

in [4℄ assuming that v

+

= (v

�

1

; : : : v

�

�

) will be the target identity in hallenge stage. This means that

during setup, the simulator augments v

+

by appending zeros and forming a tuple of length h.

The above hange does not a�et the simulator's ability to answer key-extration queries. During

the hallenge phase, the simulator an form a proper enryption only if the target identity tuple is v

+

.

The atual target identity submitted by the adversary has to be a pre�x of v

�

. If this is not equal to v

+

,

the simulator aborts the game and outputs one with probability half. Otherwise, it returns a proper

hallenge iphertext as in the original redution in [4℄.
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Sine, 1 � � � m � h and � is hosen uniformly at random, we have Pr[abort℄ � 1=h. This leads

to a multipliative degradation by a fator of h, i.e., � � h�

0

, where � is the maximum advantage of

attaking the BBG-HIBE and �

0

is the maximum advantage of solving h-wDBDHI

�

.

7.1.2 Passing From sID model to the s

+

-ID model.

It is not diÆult to see that the idea of modifying the proof of the BBG-HIBE protool to attain

seurity in the s

+

-ID model is quite general. This idea does not depend upon the partiular algebrai

onstrution of the BBG-HIBE and hene an be applied to any HIBE whih is seure in the sID model.

Thus, any HIBE whih is seure in the sID model is also seure in the s

+

-ID model but with a seurity

degradation by a fator of h. Though small, in ertain ases this an be avoided, e.g., the BB-HIBE

and G

1

as shown earlier. The other issue is that the sID and the s

+

-ID models are really restritive

seurity models and it would be nie to obtain tight seurity redutions in these models.

8 Augmenting toM

+

2

Like the augmentation of the seletive-ID model to seletive

+

-ID model, we an augmentM

2

proposed

in [11℄ in an obvious way toM

+

2

. Suppose the adversary of an h-HIBE has ommitted to a set of target

identities, I

�

1

; : : : ;I

�

u

where u � h. Then in the hallenge phase it outputs a target identity v

�

1

; : : : ; v

�

u

0

where 1 � u

0

� u and eah v

�

j

2 I

�

j

.

The HIBE H

2

proposed in [11℄ is also seure inM

+

2

. HIBE of [12℄ seure inM

2

an be proved

to be seure inM

+

2

with a multipliative seurity degradation of h. Here, we show how G

1

an be

augmented toM

+

2

.

8.1 Constrution

We augment G

1

to obtain seurity in modelM

+

2

and all this new protool (h; n

1

; : : : ; n

h

)-G

2

or simply

G

2

.

The maximum height of the HIBE be h. The identities at a depth u � h are of the form v =

(v

1

; : : : ; v

u

) 2 (Z

p

)

u

. Messages are elements of G

2

.

Setup: Let hP i = G

1

. Choose a random � 2 Z

p

and set P

1

= �P . Choose a random element

P

2

2 G

1

and a random h length vetor

�!

P

3

= (P

3;1

; : : : ; P

3;h

), where eah P

3;i

2 G

1

. Also hoose

random vetors

�!

Q

1

; : : : ;

�!

Q

h

where eah

�!

Q

i

onsists of n

i

elements of G

1

. Set the publi parameter as

PP = (P; P

1

; P

2

;

�!

P

3

;

�!

Q

1

; : : : ;

�!

Q

h

) while the master key is P

4

= �P

2

. Instead of P

1

; P

2

, e(P

1

; P

2

) an

also be kept as part of PP. This avoids the pairing omputation during enryption.

Note that, while the original BBG sheme and HIBE of [12℄ had a single element P

3

in the publi

parameter, we have a vetor

�!

P

3

of length h.

Key-Gen: Let, V (i; y) = y

n

i

Q

i;n

i

+ � � �+yQ

i;1

for any y 2 Z

p

. Given an identity v = (v

1

; : : : ; v

k

) 2 Z

k

p

of depth k � h, pik a random r 2 Z

p

and output

d

v

=

0

�

�P

2

+ r

k

X

j=1

V

j

; rP; rP

3;k+1

; : : : ; rP

3;h

; r

�!

Q

k+1

; : : : ; r

�!

Q

h

1

A

14



where V

j

= P

3;j

+ V (j; v

j

) . The private key at level k onsists of (2 + h� k +

P

h

i=k+1

n

i

) elements of

G

1

. Among these, only the �rst two are required in deryption, the rest are used to generate the private

key for the next level as follows:

Let the seret key orresponding to the identity v

jk�1

= (v

1

; : : : ; v

k�1

) be

d

v

jk�1

= (A

0

; A

1

; B

k

; : : : ; B

h

;

�!

C

k

; : : : ;

�!

C

h

)

where A

0

= �P

2

+ r

0

P

k�1

j=1

V

j

, A

1

= r

0

P , and for k � j � h, B

j

= r

0

P

3;j

,

�!

C

j

= r

0

Q

j;1

; : : : ; r

0

Q

j;n

j

=

hC

j;n

j

i Pik a random r

�

2 Z

p

and ompute

d

v

= (A

0

+B

k

+

P

n

k

i=1

v

i

k

C

k;i

+ r

�

P

k

j=1

V

j

; A

1

+ r

�

P;

B

k+1

+ r

�

P

3;k+1

; : : : ; B

h

+ r

�

P

3;h

;

�!

C

k+1

+ r

�

�!

Q

k+1

; : : : ;

�!

C

h

+ r

�

�!

Q

h

):

If we put r = r

0

+ r

�

, then d

v

is a proper private key for v = (v

1

; : : : ; v

k

).

Enrypt: To enrypt M 2 G

2

under the identity (v

1

; : : : ; v

k

) 2 (Z

p

)

k

, pik a random s 2 Z

p

and

output

CT =

0

�

e(P

1

; P

2

)

s

�M; sP; s

0

�

k

X

j=1

V

j

1

A

1

A

where V

j

is as de�ned in Key Generation.

Derypt: To derypt CT = (A;B;C) using the private key d

v

= (d

0

; d

1

; : : :) of v = (v

1

; : : : ; v

k

),

ompute

A�

e(d

1

; C)

e(B; d

0

)

= e(P

1

; P

2

)

s

�M �

e

�

rP; s

P

k

j=1

V

j

�

e

�

sP; �P

2

+ r

P

k

j=1

V

j

�

=M:

8.2 Seurity

Semanti seurity (i.e., CPA-seurity) of the above sheme in model M

+

2

is proved under the h-

wDBDHI

�

assumption. Note that, the additional exibility in terms of hoosing the target identity

that we allowed to the adversary in the s

+

ID model is also appliable here.

Theorem 8.1. Let n

1

; : : : ; n

h

; q and n

0

1

; : : : ; n

0

h

be two sets of positive integers with n

0

i

� n

i

for 1 � i �

h. Then for t � 1; q � 1

Adv

(h;n

1

;:::;n

h

)-G

2

(h;n

0

1

;:::;n

0

h

)-M

+

2

(t; q) � Adv

h-wDBDHI

�

(t+O(�nq))

where n =

P

h

i=1

n

i

.

Proof : Suppose A is a (t; q)-CPA adversary for G

2

, then we onstrut an algorithm B that solves the

h-wDBDHI

�

problem. B takes as input a tuple hP;Q; Y

1

; : : : ; Y

h

; T i where Y

i

= �

i

P for some random

� 2 Z

�

p

and T is either equal to e(P;Q)

�

h+1

or a random element of G

2

. We de�ne the modi�edM

+

2

game between B and A as follows.
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Initialization: A outputs sets of target identities for eah level of the HIBE as (I

�

1

; : : : ; I

�

u

) where

eah I

�

i

is a set of ardinality n

0

i

for any u � h.

Setup: B de�nes polynomials F

1

(x); : : : ; F

h

(x) where for 1 � i � u,

F

i

(x) =

Y

v2I

�

i

(x� v)

= x

n

0

i

+ a

i;n

0

i

�1

x

n

0

i

�1

+ : : :+ a

i;1

x+ a

i;0

For u < i � h, de�ne F

i

(x) = a

i;0

where a

i;0

is a random element of Z

�

p

. For 1 � i � u, let a

i;n

0

i

= 1 and

a

i;n

i

= � � � = a

i;n

0

i

+1

= 0. For u < i � h we set n

0

i

= 0 and a

i;n

i

= � � � = a

i;1

= 0. For 1 � i � h de�ne

J

i

(x) = b

i;n

i

x

n

i

+ b

i;n

i

�1

x

n

i

�1

+ : : :+ b

i;1

x+ b

i;0

where b

i;j

are random elements of Z

p

. It then sets

P

1

= Y

1

= �P ; P

2

= Y

h

+ �P = (�

h

+ �)P ; and for 1 � i � h, 1 � j � n

i

Q

i;j

= b

i;j

P + a

i;j

Y

h�i+1

; P

3;j

= b

i;0

P + a

i;0

Y

h�i+1

.

B delares the publi parameters to be

(P; P

1

; P

2

;

�!

P

3

;

�!

Q

1

; : : : ;

�!

Q

h

);

where

�!

P

3

= (P

3;1

; : : : ; P

3;h

) and

�!

Q

i

= (Q

i;1

; : : : ; Q

i;n

i

). The orresponding master key �P

2

= Y

h+1

+�Y

1

is unknown to B. The distribution of the publi parameter is as expeted by A.

Phase 1: Suppose A asks for the private key orresponding to an identity v = (v

1

; : : : ; v

h

0

) for h

0

� h.

Note that for any i � �

0

,

V

i

= P

3;i

+

n

i

X

j=1

v

j

i

Q

i;j

= b

i;0

P + a

i;0

Y

h�i+1

+

n

i

X

j=1

v

j

i

(b

i;j

P + a

i;j

Y

h�i+1

)

= F

i

(v

i

)Y

h�i+1

+ J

i

(v

i

)P:

Hene, V

i

is omputable from what is known to B.

Reall that A initially ommitted to sets of identities up to level u before the set-up phase. If

h

0

� u, then there must be a k � h

0

suh that F

k

(v

k

) 6= 0, as otherwise v

j

2 I

�

j

for eah j 2 f1; : : : ; h

0

g

{ whih the adversary is not allowed by the rules of the Game. In ase h

0

> u, it is possible that

F

1

(v

1

) = � � � = F

u

(v

u

) = 0. Then by onstrution F

u+1

6= 0. So, in either ase there is a k suh that

F

k

(v

k

) 6= 0. Moreover, k is the �rst suh index in the range f1; : : : ; h

0

g. B piks a random r 2 Z

p

and

assigns d

0jk

= (�J

k

(v

k

)=F

k

(v

k

))Y

k

+ �Y

1

+ rV

k

and d

1

= (�1=F

k

(v

k

))Y

k

+ rP: Now,

d

0jk

= �

J

k

(v

k

)

F

k

(v

k

)

Y

k

+ �Y

1

+ �

k

Y

h�k+1

� �

k

F

k

(v

k

)

F

k

(v

k

)

Y

h�k+1

+ rV

k

= �

J

k

(v

k

)

F

k

(v

k

)

�

k

P + �P

2

� �

k

F

k

(v

k

)

F

k

(v

k

)

Y

h�k+1

+ rV

k

= �P

2

+ ~rV

k
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where ~r = (r�

�

k

F

k

(v

k

)

). Also d

1

= �

1

F

k

(v

k

)

Y

k

+ rP = �

�

k

F

k

(v

k

)

P + rP = ~rP . For any j 2 f1; : : : ; h

0

g n fkg

we have

~rV

j

= (r �

�

k

F

k

(v

k

)

)(F

j

(v

j

)Y

h�j+1

+ J

j

(v

j

)P )

= r(F

j

(v

j

)Y

h�j+1

+ J

j

(v

j

)P )�

1

F

k

(v

k

)

(F

j

(v

j

)Y

h+k�j+1

+ J

j

(v

j

)Y

k

):

Reall that, k is the smallest in the range f1; : : : ; h

0

g, suh that, F

k

(v

k

) 6= 0. Hene, for j < k, F

j

(v

j

) = 0

and ~rV

j

= rJ

j

(v

j

)P �

J

j

(v

j

)Y

k

F

k

(v

k

)

. For j > k, Y

h+k�j+1

varies between Y

1

to Y

h

. So B an ompute all

these ~rV

j

s from the information it has. It forms

d

0

= d

0jk

+

X

j2f1;:::;h

0

gnfkg

~rV

j

= �P

2

+ ~r

h

0

X

j=1

V

j

:

To form a valid private key, B also needs to ompute ~rP

3;i

and ~r

�!

Q

i

for h

0

< i � h. Now,

~rP

3;i

=

�

r �

�

k

F

k

(v

k

)

�

(b

i;0

P + a

i;0

Y

h�i+1

)

= r(b

i;0

P + a

i;0

Y

h�i+1

)�

1

F

k

(v

k

)

(b

i;0

Y

k

+ a

j;0

Y

h+k�i+1

) ;

~rQ

i;j

=

�

r �

�

k

F

k

(v

k

)

�

(b

i;j

P + a

i;j

Y

h�i+1

)

= r(b

i;j

P + a

i;j

Y

h�i+1

)�

1

F

k

(v

k

)

(b

i;j

Y

k

+ a

i;j

Y

h+k�i+1

) :

All these values are omputable from what is known to B. Hene, B forms the private key as:

d

v

=

�

d

0

; d

1

; ~rP

3;�+1

; : : : ; ~rP

3;h

; ~r

�!

Q

�+1

; : : : ; ~r

�!

Q

h

�

and provides it to A.

Challenge: After ompletion of Phase 1, A outputs two messagesM

0

;M

1

2 G

2

together with a target

identity v

�

= (v

�

1

; : : : ; v

�

u

0

), u

0

� u, on whih it wishes to be hallenged. The onstraint is eah v

�

j

2 I

�

j

and hene F

j

(v

�

j

) = 0 for 1 � j � u

0

� u. B piks a random b 2 f0; 1g and provides A the hallenge

iphertext

CT =

 

M

b

� T � e(Y

1

; �Q); Q;

 

u

0

X

i=1

J

i

(v

�

i

)

!

�Q

!

:

Suppose, Q = P for some unknown  2 Z

p

. Then

u

0

X

j=1

J

j

(v

�

j

)Q = 

u

0

X

j=1

�

J

j

(v

�

j

)P + F

j

(v

�

j

)Y

h�j+1

�

= 

0

�

u

0

X

j=1

V

j

1

A

:
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If the input provided to B is a true h-wDBDHI

�

tuple, i.e., T = e(P;Q)

(�

h+1

)

, then

T � e(Y

1

; �Q) = e(P;Q)

(�

h+1

)

� e(Y

1

; �Q) = e(Y

h

+ �P;Q)

�

= e(P

1

; P

2

)



:

So, the hallenge iphertext is

CT =

0

�

M

b

� e(P

1

; P

2

)



; P; 

0

�

u

0

X

j=1

V

j

1

A

1

A

:

CT is a valid enryption of M

b

under v

�

= (v

�

1

; : : : ; v

�

u

0

). On the other hand, when T is random, CT is

random from the view point of A.

Phase 2: This is similar to Phase 1. Note that A plaes at most q queries in Phase 1 and 2 together.

Guess: Finally, A outputs its guess b

0

2 f0; 1g. B outputs 1� b� b

0

.

A's view in the above simulation is idential to that in a real attak. This gives us the required bound

on the advantage of the adversary in breaking the HIBE protool.

9 Produt Sheme

We have mentioned that Boneh-Boyen-Goh [4℄ proposed a \produt" onstrution based on the BBG-

HIBE and the BB-HIBE. A similar onstrution is possible based on the HIBE G

1

of Setion 5 and

BB-HIBE. The resulting HIBE is seure in s

+

ID model. On the other hand, in [11℄ we have presented

a onstrution H

1

whih is seure in modelM

1

. This onstrution is in a sense an extension of the

BB-HIBE. We propose a omposite sheme based on H

1

and G

2

whih we denote as (h; n)-G

3

or simply

G

3

, where h is the maximum number of levels in G

3

and n is a parameter that omes from the underlying

seurity modelM

1

.

The essential idea, as in [4℄ is to form a produt of two HIBEs. For this we represent an identity

tuple in the form of a matrix (say II) having (a-priori) �xed number of olumns, `

2

(say). When we

look at a row of II, it forms a onstant size iphertext HIBE, H, while eah row taken together as a

single identity forms another HIBE, H

0

. We obtain a produt onstrution by instantiating H

0

to be

H

1

of [11℄ and H to be the onstant size iphertext HIBE G

2

of Setion 8. In this ase, the omponents

of the identity tuples are from Z

p

and we obtain seurity inM

1

. SineM

1

allows the target identity

to be of any length up to the maximum height of the HIBE, the adversary has the exibility to hoose

the length of the target identity in the hallenge phase.

9.1 Constrution

Let the maximum depth of the HIBE be h � `

1

� `

2

. Here individual identity omponents are elements

of Z

p

.
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Setup: Let P be a generator of G

1

. Choose a random seret x 2 Z

p

and set P

1

= xP . Randomly

hoose P

2

; an `

1

� `

2

matrix R where

R =

2

6

4

R

1;1

� � � R

1;`

2

.

.

.

.

.

.

.

.

.

R

`

1

;1

� � � R

`

1

;`

2

3

7

5

and `

2

many vetors

�!

U

1

; : : : ;

�!

U

`

2

from G

1

, where eah

�!

U

i

= (U

i;1

; : : : ; U

i;n

), n being a parameter. The

publi parameters are hP; P

1

; P

2

;R;

�!

U

1

; : : : ;

�!

U

`

2

i; while the master seret is xP

2

.

Key Generation: Given an identity v = (v

1

; : : : ; v

u

), for any u � h, this algorithm generates the

private key d

v

of v as follows.

Let u = k

1

`

2

+k

2

with k

2

2 f1; : : : ; `

2

g. We represent v by a (possibly inomplete) (k

1

+1)�`

2

matrix

I where the last row has k

2

elements. Choose (k

1

+ 1) many random elements r

1

; : : : ; r

k

1

; r

k

2

2 Z

p

and

output

d

v

=

0

�

xP

2

+

k

1

X

i=1

r

i

`

2

X

j=1

(V

i;j

+R

i;j

) + r

k

2

k

2

X

j=1

(V

k

1

+1;j

+R

k

1

+1;j

) ; r

1

P; : : : ; r

k

1

P; r

k

2

P;

r

k

2

R

k

1

+1;k

2

+1

; : : : ; r

k

2

R

k

1

+1;`

2

; r

k

2

���!

U

k

2

+1

; : : : ; r

k

2

�!

U

`

2

�

= (a

0

; a

1

; : : : ; a

k

1

; a

k

1

+1

; b

k

2

+1

; : : : ; b

`

2

;

�!



k

2

+1

; : : : ;

�!



`

2

) say:

where V

i;j

=

P

n

k=1

v

k

i;j

U

j;k

and r

k

2

�!

U

i

denotes that eah element of

�!

U

i

is multiplied by the salar r

k

2

.

Note: Here u = k

1

`

2

+ k

2

, so the �rst k

1

`

2

omponents of the identity tuple an be arranged as the

�rst k

1

rows of a matrix having `

2

many olumns. Eah of these rows taken separately an be viewed

as an identity tuple for a onstant size iphertext HIBE, H, having maximum depth `

2

. Similarly, the

last k

2

� `

2

omponents of the identity tuple an be viewed as a separate identity tuple of the same

onstant size iphertext HIBE. Next, we view eah of the �rst k

1

rows as a single identity omponent

of another HIBE, H

0

. We now take a loser look at the struture of d

v

. Let,

a

0

= xP

2

+

k

1

X

i=1

r

i

`

2

X

j=1

(V

i;j

+R

i;j

) + r

k

2

k

2

X

j=1

(V

k

1

+1;j

+R

k

1

+1;j

)

= A

1

+A

2

+A

3

Here, A

1

= xP

2

is the master key andA

2

+A

3

is used to generate the private key for v by suitably masking

the master seret. A

2

=

P

k

1

i=1

r

i

P

`

2

j=1

(V

i;j

+R

i;j

) { the inner sum is over a single row whih forms a

full-length identity tuple for the onstant size iphertext HIBE H; while the outer sum is over the �rst k

1

rows where we treat eah row as a single identity omponent for H

0

. A

3

= r

k

2

P

k

2

j=1

(V

k

1

+1;j

+R

k

1

+1;j

)

is for the remaining row having k

2

� `

2

many elements and this row forms an identity tuple of depth k

2

for H. Altogether we have k

1

+1 levels in H

0

and a

1

; : : : ; a

k

1

+1

orrespond to eah of these levels. These

elements i.e, (a

0

; a

1

; : : : ; a

k+1

) are suÆient for deryption as we will see in the Deryption algorithm.

The rest of the elements, i.e., b

i

s and

�!



i

s are required for generating the private key for the next level

as we show below.
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The private key of v an also be generated given the private key of v

j

u�1

= v

1

; : : : ; v

u�1

as required.

There are two ases to be onsidered.

Case 1: Suppose u� 1 = k

1

`

2

+ `

2

= (k

1

+ 1)`

2

, then

d

v

j

u�1

=

0

�

xP

2

+

k

1

+1

X

i=1

r

i

`

2

X

j=1

(V

i;j

+R

i;j

) ; r

1

P; : : : ; r

k

1

P; r

k

1

+1

P

1

A

= (a

0

; a

1

; : : : ; a

k

1

; a

k

1

+1

) (say)

Choose a random r

�

2 Z

p

and form d

v

as

d

v

= a

0

+ r

�

(V

k

1

+2;1

+R

k

1

+2;1

); a

1

; : : : ; a

k

1

+1

; r

�

P; r

�

R

k

1

+2;2

; : : : ; r

�

R

k

1

+2;`

2

; r

�

�!

U

2

; : : : ; r

�

�!

U

`

2

:

Case 2: Let, u� 1 = k

1

`

2

+ k

0

2

with k

0

2

< `

2

then,

d

v

j

u�1

=

0

�

xP

2

+

k

1

X

i=1

r

i

`

2

X

j=1

(V

i;j

+R

i;j

) + r

0

k

2

k

0

2

X

j=1

(V

k

1

+1;j

+R

k

1

+1;j

) ; r

1

P; : : : ; r

k

1

P; r

0

k

2

P;

r

0

k

2

R

k

1

+1;k

0

2

+1

; : : : ; r

0

k

2

R

k

1

+1;`

2

; r

0

k

2

�!

U

k

0

2

+1

; : : : ; r

0

k

2

�!

U

`

2

�

= (a

0

; a

1

; : : : ; a

k

1

; a

k

1

+1

; b

k

0

2

+1

; : : : ; b

`

2

;

�!



k

0

2

+1

; : : : ;

�!



`

2

) (say)

Choose a random r

�

2 Z

p

and form d

v

as

d

v

= a

0

+

n

X

j=1

v

j

u



k

0

2

+1;j

+ b

k

0

2

+1

+ r

�

k

0

2

+1

X

j=1

(V

k

1

+1;j

+R

k

1

+1;j

) ; a

1

; : : : ; a

k

1

; a

k

1

+1

+ r

�

P;

b

k

0

2

+2

+ r

�

R

k

1

+1;k

0

2

+2

; : : : ; b

`

2

+ r

�

R

k

1

+1;`

2

;

�!



k

0

2

+2

+ r

�

�!

U

k

0

2

+2

; : : : ;

�!



`

2

+ r

�

�!

U

`

2

It an be veri�ed that d

v

is a proper private key for v.

Enrypt: To enrypt a messageM 2 G

2

under the publi key v = (v

1

; : : : ; v

u

) hoose a random s 2 Z

p

and then the iphertext is

C =

 

e(P

1

; P

2

)

s

�M; sP; s

`

2

X

j=1

(V

1;j

+R

1;j

); : : : ; s

`

2

X

j=1

(V

k

1

;j

+R

k

1

;j

) ; s

k

2

X

j=1

(V

k

1

+1;j

+R

k

1

+1;j

)

!

where V

i;j

is as de�ned in Key Generation part. Eah C

i

orreponds to the ith row of the identity

matrix for v.

Derypt: Let CT = (A;B;C

1

; : : : ; C

k

1

; C

k

1

+1

) be a ipher text and v = v

1

; : : : ; v

u

be the orresponding

identity represented as a (k

1

+ 1) � `

2

matrix. Then we derypt CT using d

ID

= (d

0

; d

1

; : : : ; d

k

1

+1

; : : :)

as

A�

Q

k

1

+1

i=1

(d

i

; C

i

)

e(B; d

0

)

=M:
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9.2 Seurity

Seurity of the above hybrid onstrution in the generalised seletive-ID model (h; n

0

)-M

1

of [11℄ an

be redued from the hardness of `

2

-wDBDHI

�

problem. Here we give a sketh of the proof.

Theorem 9.1. Let h; n; q be positive integers and n

0

be another positive integer with n

0

� n. Then then

Adv

(h;n)-G

3

(h;n

0

)-M

1

(t; q) � Adv

`

2

�wDBDHI

�

(t+O(�nq)):

Proof :

We want to prove (h; n)-G

3

seure in model (h; n

0

)-M

1

using a redutionist seurity argument where

1 � n

0

� n. This means that the publi parameters of the HIBE depend on n, while the adversary

ommits to a set I

�

of size n

0

in the ommit phase.

The simulator is provided with a tuple hP;Q; Y

1

; : : : ; Y

`

2

; T i 2 G

`

2

+2

1

�G

2

. It has to deide whether

this is a proper `

2

-wDBDHI

�

instane or not.

Adversary's ommitment: A ommits to a set I

�

, where jI

�

j = n

0

. The restrition on the adversary

is that in the private key extration query at least one omponent of the identity tuple should be outside

I

�

; while in the hallenge phase it asks for the enryption under an identity v

�

all of whose omponents

are from I

�

.

Set-up: The simulator de�nes

F (x) =

Y

v2I

�

(x� v) = x

n

0

+ � � �+ a

1

x+ a

0

J

(j)

i

(x) = b

i;n

x

n

+ � � �+ b

i;1

x+ b

(j)

i;0

for 1 � i � `

1

; 1 � j � `

2

where eah b

i;k

and b

(j)

i;0

is hosen at random from Z

�

p

. De�ne a

n

0

= 1 and a

n

= a

n�1

= � � � = a

n

0

+1

= 0.

The simulator de�nes P

1

= Y

1

, P

2

= Y

`

2

+ �P in a similar manner as in the set-up of Setion 6. It

further de�nes U

i;j

= b

i;j

P + a

i

Y

h�i+1

for 1 � i � `

2

, 1 � j � n and R

k;j

= b

(j)

k;0

P + a

0

Y

`

2

�j+1

for

1 � k � `

1

, 1 � j � `

2

.

The simulator gives the publi parameters hP; P

1

; P

2

;R;

�!

U

1

; : : : ;

�!

U

`

2

i to A, while the orresponding

master seret is unknown to the simulator.

Phase 1: Suppose A asks for the private key of an identity v = v

1

; : : : ; v

m

where m = k

1

� `

2

+ k

2

.

The simulator �rst forms the (k

1

+ 1) � `

2

matrix I where v

1

is indexed as v

1;1

and v

m

as v

k

1

+1;k

2

.

The last row of the matrix may have elements less than `

2

. As per the rule of the game there is at

least one identity, say v

l

, suh that F (v

l

) 6= 0. Suppose, v

l

is indexed as k

0

1

; k

0

2

in I. Now onsider the

identity tuple ((v

k

0

1

;1

; : : : ; v

k

0

1

;k

0

2

). This by itself an be seen as a valid identity tuple of depth k

0

2

for the

HIBE H. Using the tehnique of Setion 6, the simulator forms a private key for (v

k

0

1

;1

; : : : ; v

k

0

1

;k

0

2

) as

(a

0

0

; a

k

0

1

; b

k

0

2

+1

; : : : ; b

`

2

;

�!



k

0

2

+1

; : : : ;

�!



`

2

). Note that, this is a valid private key for an identity tuple of

depth k

0

2

in the onstant size iphertext HIBE H. It next hooses r

1

; : : : ; r

k

0

1

�1

2 Z

p

and omputes the
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private key for (v

1

; : : : ; v

l

) as

a

0

= a

0

0

+

k

0

1

�1

X

i=1

r

i

`

2

X

j=1

(V

i;j

+R

i;j

)

a

i

= r

i

P for 1 � i � k

0

i

� 1

Note that, V

i;j

=

P

n

k=1

v

k

i;j

U

j;k

, so

V

i;j

+R

i;j

=

n

X

k=1

v

k

i;j

U

j;k

+R

i;j

=

n

X

k=1

v

k

i;j

(b

j;k

P + a

j

Y

`

2

�j+1

) + b

(j)

i;0

P + a

0

Y

`

2

�j+1

= F (v

i;j

)Y

`

2

�j+1

+ J

(j)

i

(v

i;j

)P

The simulator an ompute all these from the information it possesses. Hene,

(a

0

; a

1

; : : : ; a

k

0

i

�1

; a

k

0

1

; b

k

0

2

+1

; : : : ; b

`

2

; 

k

0

2

+1

; : : : ; 

`

2

)

is a proper private key for v

1

; : : : ; v

l

from whih the simulator forms a private key for v and gives it to

A.

Challenge: At this stage, A produes two equal length messagesM

0

;M

1

2 G

2

and a hallenge identity

v

�

. The hallenge identity v

�

= (v

�

1

; : : : ; v

�

u

) should have eah v

j

2 I

�

and hene F (v

�

j

) = 0 for 1 � j � u.

Based on this fat the simulator is able to form a proper enryption of M



where  is hosen uniformly

at random from f0; 1g, if the tuple provided to it is a true h-wDBDHI

�

instane.

Phase 2: The key extration queries in this stage are handled as in Phase 1.

Guess: The adversary outputs a guess 

0

. The simulator outputs 1 if  = 

0

, else it outputs 0.

A's view in the above simulation is idential to that in a real attak if the given instane is a true

`

2

-wDBDHI

�

instane.

The above shows that an adversary's ability to attak (h; n)-G

3

HIBE in model (h; n

0

)-M

1

an be

onverted into an algorithm for solving `

2

-wDBDHI

�

problem. The bound on the advantage follows

from this fat.

Note that, in the ommitment stage we may give the adversary some more exibility by allowing it

to ommit to sets of identities I

�

1

; : : : ;I

�

h

, where I

�

j

orresponds to the ommitment for the jth level of

the onstant size iphertext HIBE. In this ase the restritions inM

2

regarding the private key queries

and hallenge generation apply. This added exibility, however, does not a�et the eÆieny of the

protool.

10 Disussion

The private key orresponding to an identity in a HIBE has two roles. The �rst role is to enable

deryption of a message enrypted using this identity, while the seond role is to enable generation of

22



lower level keys. Not all omponents of the private key are neessarily required for deryption, i.e., the

deryption subkey an have stritly fewer omponents than the whole private key. This has also been

observed in [4℄ and in ase of the BBG-HIBE, the deryption subkey onsists of only two omponents.

In G

1

and G

2

, the deryption subkeys also onsist of two omponents as in the BBG-HIBE. In G

3

the

size of the deryption subkey is redued by a fator of h ompared to the size of the deryption subkeys

in H

1

.

Having a small deryption subkey is important, sine the deryption subkey may need to be loaded

on to smart ards for frequent and online deryptions. This is ahieved in all the HIBE onstrutions

desribed in this work. On the other hand, the entire private key is required for key delegation to lower

level entities. Key delegation is a relatively infrequent ativity whih will typially be done by an entity

from a workstation. Storage in a workstation is less restritive and a larger size private key required

only for key delegation is more tolerable.

The size of the private key in the BBG-HIBE and G

1

is proportional to the number of levels in the

HIBE. For G

2

this size is proportional to n�h, where h is the number of levels of the HIBE and n is the

maximum number of hallenge identities that the adversary an ommit to for any level. The size of the

private key in G

3

varies ylially with the number of omponents j in the identity. Let j = j

1

h + j

2

,

where h is the number of levels in H used in the produt onstrution and j

2

2 f1; : : : ; hg. The size

of the private key then varies as j

1

+ n� j

2

, where n is the number of elements in the set from whih

the adversary an onstrut the hallenge identity. Sine j

2

varies in a yli manner with period h,

the size of the private key also shows a similar behaviour. (A similar behaviour is also shown by the

size of the private key in the produt onstrution in [4℄.) A modi�ation of the protools eliminates

the dependene of the size of the private key on j

2

. Suppose that key delegation is only allowed to

be performed by the PKG and entities at levels h; 2h; 3h; : : :. For example, in a big organisation, the

hierarhy may be divided into sub-hierarhies. The entities at levels h; 2h etetera are the system

administrators for the sub-hierarhy of depth h and the delegation of private key is solely managed by

them. The other entities in the sub-hierarhy are not involved with the business of key-delegation but

they an still aess the seret information enrypted for their subordinates. In this senario, the size

of the private key varies only with j

1

and in fat, the private key and the deryption subkey beome

idential.

11 Conlusion

In this work, we have augmented the seletive-ID seurity model for hierarhial identity-based enryp-

tion by allowing the adversary some exibility in hoosing the target identity tuple during the hallenge

phase of the seurity redution. We have denoted this model by seletive

+

-ID model (s

+

ID model). The

Boneh-Boyen HIBE satis�es this notion of seurity while the onstant size iphertext HIBE of Boneh,

Boyen and Goh needs some modi�ation in the seurity redution to do so. This modi�ation introdues

a multipliative seurity degradation. We have further augmented the BBG-HIBE to onstrut a new

protool seure in s

+

ID model without any degradation whih maintains all the attrative features of

BBG-HIBE. We build on this new onstrution another onstant size iphertext HIBE. The seurity

of our seond onstrution is proved under a generalization of the seletive-ID seurity model. Our

third onstrution of HIBE is a \produt" onstrution that allows a ontrollable trade-o� between the

iphertext size and the private key size.
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A The Case of Boneh-Boyen HIBE

The original redution in [2℄ goes through without almost any modi�ation for the s

+

ID model. The

only hange is in hallenge generation as desribed below.

Initialization: A ommits to a target identity v

�

= (v

�

1

; : : : ; v

�

k

) of height k � h. If k < h, B adds

extra random elements from Z

p

to make v

�

an identity of height h.

Setup: B piks random �

1

; : : : ; �

h

2 Z

p

and de�nes Q

j

= �

j

P � v

�

j

P

1

for 1 � j � h. It gives A the

publi parameters PP = hP; P

1

; P

2

; Q

1

; : : : ; Q

h

i. Here the msk = aP

2

= abP is unknown to B. De�ne

the funtion F

j

(x) = xP

1

+Q

j

= (x� v

�

j

)P

1

+ �

j

P for 1 � j � h.

Phase 1 and Phase 2: As in [2℄.

Challenge: After ompletion of Phase 1, A outputs two messages M

0

;M

1

2 G

2

and an identity

tuple v

+

= (v

�

1

; : : : ; v

�

�

), � � k. B hooses a random bit  and forms the iphertext C = (M



�

Z; P; �

1

P; : : : ; �

�

P ). Note that, F

i

(v

�

i

) = �

i

P , so

C = hM



� Z; P; F

1

(v

�

1

); : : : ; F

�

(v

�

�

)i:

If Z = e(P; P )

ab

= e(P

1

; P

2

)



then C is a valid enryption of M



.
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