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Abstrat. We present two universally omposable and pratial proto-

ols by whih a dealer an, veri�ably and non-interatively, seret-share

an integer among a set of players. Moreover, at small extra ost and using

a distributed veri�er proof, it an be shown in zero-knowledge that three

shared integers a; b;  satisfy ab = . This implies by known redutions

non-interative zero-knowledge proofs that a shared integer is in a given

interval, or that one seret integer is larger than another. Suh primi-

tives are useful, e.g., for supplying inputs to a multiparty omputation

protool, suh as an aution or an eletion. The protools use various

set-up assumptions, but do not require the random orale model.

1 Introdution

Appliations suh as autions, eletions or benhmarking analysis all involve

omputing on on�dential data from several parties who do not trust eah other

a priori. This means that solutions involving a single trusted party are typially

unsatisfatory. In priniple, all suh problems an be solved using general seure

multiparty omputation [18, 2, 8℄, where all parties take part in omputing the

desired results. But in pratie, this is often not realisti: in autions or eletions,

for instane, the number of parties holding inputs an be very large, they annot

be assumed to be expert users nor an their mahines be assumed to be on-line

at partiular times. Hene assuming that all suh parties an reliably take part

in a multi-round protool is unrealisti.

It is therefore often suggested that a smaller number of servers are assigned

to do the omputation, ating e�etively as representatives for the lients sup-

plying inputs. Of ourse, this makes sense only if the omplexity of supplying

inputs is muh smaller than the omplexity of taking part in the atual omputa-

tion. In partiular, we would want that supplying inputs is non-interative. This

problem an be solved using a non-interative veri�able seret sharing (VSS)

sheme. Having done the VSS's, the servers hold shares of all inputs and an do

the omputation using any of the (numerous) known multiparty omputation

tehniques. Several non-interative VSS protools are known see, e.g., [22℄.

However, many appliations require that the inputs supplied satisfy ertain

onstraints. These onstraints are typially phrased in a natural way as relations

over the integers, beause the underlying appliation is a omputation on inte-

gers. This is the ase for autions, eletions and many statistial appliations

suh as benhmarking. For instane, an aution might speify that bids have to



be in a ertain interval. In other types of autions (so alled double autions[4℄),

a bid onsists of a sequene of numbers that must be monotonely inreasing.

Standard eÆient tehniques for handling this would have a lient ommit

to his input and prove in zero-knowledge that his numbers satisfy the required

relations. But this solution requires interation in its basi form. The interation

an typially be removed following the Fiat-Shamir heuristi if we are willing to

assume the random orale model. However, it is well known that the seurity

guarantee provided by a proof in the random orale model leaves something to

be desired: we annot instantiate the orale with a onrete funtion and be sure

that this always works. Hene, our goal is to avoid random orales and still have

an eÆient solution.

In [5℄, Boudot presents an eÆient tehnique to prove relations, as outlined

above, given a primitive to prove that a ommitted integer is a square. Fur-

thermore, in [1℄, Abe, Cramer and Fehr propose eÆient and non-interative

tehniques for proving multipliative relations on seret-shared values, using

distributed-veri�er proofs. Unfortunately, the protools and de�nition from [1℄

are not diretly useful in the senarios outlined above, for several reasons: First,

the relations that an be proved only hold modulo some (publi) prime number,

and not neessarily over the integers. Seond, for the ase of honest majority, the

protools in [1℄ are only \non-interative with omplaints", that is, if a server is

unhappy with the data he reeived privately from the dealer, he will omplain,

and the dealer must intervene in a seond round to resolve these onits. It

is lear that we have to avoid this in our senario. Third, the de�nition of dis-

tributed veri�er proofs used in [1℄ works with only one prover. In our senario,

we will have many provers, some of whih may be orrupted. In ontrast to the

single-prover ase, a orrupt prover may now try to exploit the information sent

by honest provers in order to heat.

In this paper, we propose two protools that allow a lient to non-interatively

VSS integers among the servers, and prove in zero-knowledge, by a distributed

veri�er proof, that shared integers a; b;  satisfy ab = . Using known redutions

[5℄, this implies non-interative proofs that a shared integer is in a given interval,

or that shared numbers a; b satisfy a � b. Both protools require one broadast

from the prover and one round of messages between the veri�ers (servers), whih

is a minimal amount of interation for a distributed veri�er proof. Details on the

ommuniation omplexity of the protools follow below. We prove our proto-

ols seure in the Universal Composability model (with stati adversary), this

automatially gives us a de�nition handling the multiple prover ase.

For the �rst solution, we take the protool of [1℄ as the point of departure,

introduing new tehniques to solve the problems mentioned above. We obtain

our solution by replaing in the protool from [1℄ Shamir seret-sharing by Linear

Integer Seret Sharing (LISS) [14℄ { whih exists for any aess struture [14℄.

LISS shemes are basially seret sharing shemes where the seret is reon-

struted by taking a integral linear ombination of the shares. Also, we replae

Pedersen ommitments [22℄ by the integer ommitments from [15℄.



While this is quite straightforward, it is not so trivial to solve the problem

of handling omplaints without interation. We �rst observe that the reason

why the dealer must resolve onits in the protool by Abe et al. is that only

point-to-point hannels between dealer and eah server are assumed, and hene

servers are not a priori ommitted to what they reeived. On the other hand, a

typial implementation would realize the hannels using publi-key enryption,

so we propose to inlude this enryption expliitly in the protool. One might

now hope that a server an prove it reeived bad data by \opening" the ipher-

texts it reeived. However, while the sender of a iphertext an always \open"

it onviningly (simply by revealing the oins used to reate it), we need that

the reeiver an do so. Sine iphertexts an be adversarially generated, and un-

opened iphertexts must remain seure, it is not immediately lear how this an

be done in a non-interative and eÆient way. We propose an eÆient solution to

the problem based on Identity-Based Enryption (IBE). To our knowledge, this

is a new appliation of IBE, and we believe the idea is of independent interest, as

the possibility of \omplaining onviningly" is often useful in protool design.

For the ase of honest majority, the VSS we obtain requires the dealer to

send a total of O(n logn(�+ l + k + n)) bits, where � is the seurity parameter

for the publi-key and ommitment shemes used, n is the number of players, l

is the bit length of the numbers we share and k is an \information theoreti"

seurity parameter, ontrolling the statistial leakage of information.

The protool an handle any Q2 adversary struture (honest majority in

the threshold ase), whih is optimal in terms of the number of orruptions

that an be handled at all. However, for realisti values of the parameters, the

eÆieny is not what we might hope for. This is beause the numbers we will

be omputing on will be numbers speifying bids, pries, produtions osts, et.,

that is, numbers that are typially muh smaller than those used for publi-key

ryptography. Realisti parameter values might be n = 7, l = 32, k = 60 and

� = 1024. In suh a ase, eah 32 bit number we share is expanded to about

25.000 bits, whih hardly seems desirable.

We therefore propose another solution, where we make the stronger as-

sumption that the adversary struture is Q3 (less than n=3 orruptions in the

threshold ase). We build a solution using a generalization of the pseudorandom

seret-sharing tehnique from [10℄ to the ase of linear integer seret sharing.

In the threshold ase, the protool requires the dealer to send, one and for all,

O(T (�+nk)) bits to the servers, where T is the number of maximal unquali�ed

sets in the adversary struture. After this, any number of VSS's an be done by

sending O(l+k) bits to the servers for eah value to be shared. Eah multiplia-

tion proof requires 3 VSS invoations and in addition O((l+k+n)n) bits should

be sent.

The initial step is not always eÆient as a funtion of n beause T may be

exponential in n, depending on the adversary struture. In the typial threshold

ase, T would be about

�

n

n=3

�

. But for a small number of servers, T is moderate.

On the other hand, for �xed n and for a large number of VSS invoations we

ome very lose to sending only l+k bits for every l-bit number we share - where



of ourse sending l bits is neessary. It is therefore ideally suited for ases, where

a large number of lients need to supply large amounts of data to a small number

of servers. For the example parameter values above and assuming we share, say

200 numbers, the dealer needs to send about 230 bits per number to share.

Both our protools use a ommon referene string, and assume that the veri-

�ers have publi/seret key pairs set up in advane. Note that if we do not assume

random orales, we annot get non-interative protools without some sort of set-

up assumption. Of ourse, using set-up assumptions, our problem ould also be

solved using standard tehniques for non-interative zero-knowledge. But with

urrent state of the art, this approah an only prove the type of statements

we are after using generi tehniques. This would give non-interative proofs of

size 
(l�jCj) where jCj is the size of a Boolean iruit C heking the relation

in question. For realisti parameter values, this will be several orders of magni-

tude larger than our omplexity. To our knowledge, our solutions are the �rst

non-interative protools for integer relations that do not use random orales,

and have ommuniation omplexity independent of the iruit omplexity of

the relation.

2 Preliminaries

In a Linear Integer Seret Sharing (LISS) Sheme there are n players, whih are

denoted by P

1

; : : : ; P

n

. Let P = fP

1

; : : : ; P

n

g be the set of all the players, and

let the power set of P be denoted by P (P). Let s 2 [�2

l

::2

l

℄ be the seret whih

a dealer D wants to seret share between the players in P over a LISS. Then the

sets in P (P) whih are allowed to reonstrut the seret s are alled quali�ed

and the sets whih should not be able to obtain any information about the seret

s are alled forbidden.

De�nition 1. The olletion of quali�ed sets, � � P (P), is alled a monotone

aess struture, if for all A 2 � and A � B � P it holds that B 2 � .

We also need the notion of an adversary struture [19℄.

De�nition 2. An adversary struture is a monotone olletion of sets, � �

P (P), for whih the adversary may orrupt the players of one set in the adversary

struture. It is monotone in the sense that for every A 2 � it holds that for every

B � A that B 2 �.

De�nition 3. An adversary struture � is Q2 (Q3) if no two (three) sets in

the struture over the full player set P.

If � is the olletion of all quali�ed sets of players in P and � is a monotone

aess struture, then the orresponding adversary struture, �, is the olletion

of all the forbidden sets. Note that, � is monotone as required by an adversary

struture, and that � [ � = P (P) and � \ � = ;. That is, an adversary

struture an be seen as a omplement of a monotone aess struture. Sine

the strutures, � and �, are monotone, they an be uniquely represented by



their minimal and maximal sets denoted by �

�

and �

+

, respetively. j�

+

j will

denote the number of sets in �

+

. In this paper we use � and � interhangeably.

We proeed to de�ne what is meant by a orret and private LISS.

De�nition 4. A LISS sheme is orret, if the seret an be reonstruted from

shares of any quali�ed set in A 2 � , by taking an integer linear ombination of

the shares with oeÆient that depends only on the index set A.

De�nition 5. A LISS sheme is private, if for any forbidden set B 2 �, any

two seret s; s

0

2 [�2

l

::2

l

℄, and independent random oins r and r

0

, the statis-

tial distane between the distributions of the shares fs

i

(s; r; k) j i 2 Bg and

fs

i

(s

0

; r

0

; k) j i 2 Bg is negligible in the seurity parameter k.

A labeled matrix onsists of a d � e matrix M and a orresponding surjetive

funtion  : f1; : : : ; dg ! f1; : : : ; ng. We say that the i-th row is labeled by  (i)

or owned by player P

 (i)

. For any subset A � P , we letM

A

denote the restrition

of M to the rows labeled by some P

 (i)

2 A. For any d-vetor x, we similarly

denote x

A

to be the restrition of entries i with P

 (i)

2 A. For any two vetors

a and b, let ha; bi denote the inner produt.

De�nition 6. An Integer Span Program (ISP) for a monotone aess struture

� onsists of a tuple M = (M; ; "), where M 2 Z

d;e

is a labeled matrix with

a surjetive funtion  : f1; : : : ; dg ! f1; : : : ; ng, and the target vetor " =

(1; 0; : : : ; 0)

T

2 Z

e

. Furthermore, for every A � P the following holds,

- for every A 2 � there exists a reonstrution vetor � 2 Z

d

suh that

M

T

A

� = ".

- for every A =2 � there exists a sweeping vetor � 2 Z

e

suh that M

A

� = 0

and h�; "i = 1.

The size of M is de�ned to be d.

In [14℄ it was shown how to onstrut a orret and private LISS sheme

from any ISP. For a given ISP we de�ne l

0

= l + dlog

2

(�

max

(e � 1))e, where

�

max

= maxfjaj j a is an entry in some sweeping vetor g. To share a seret

s 2 [�2

l

::2

l

℄, we use a distribution vetor � whih is a uniformly random vetor in

[�2

l

0

+k

::2

l

0

+k

℄

e

with the restrition that h�; "i = s. The share vetor is omputed

byM� = s = (s

1

; : : : ; s

d

)

T

, where the share omponent s

i

is given to player P

 (i)

for 1 � i � n. The share of player P

j

is the subset of share omponents s

fP

j

g

.

See [14℄ for a proof of orretness and privay. There, it was also shown that

LISSs exist for any adversary struture, and in partiular they an be onstruted

for threshold strutures where a player's share is O((l+k+n

2

) logn) bits long. It

follows from results and onjetures in [12℄ that this an probably be improved

to O((l+ k + n) logn) bits.



3 Veri�able Seret Sharing (VSS) and Distributed

Veri�er Proofs

3.1 Model and De�nition

We have a set of dealers fD

1

; : : : ; D

m

g and a set of n players or veri�ers P =

fP

1

; : : : ; P

n

g. We assume an ative and stati adversary who may orrupt any

number of dealers and a set of players in a given adversary struture. All players,

dealers and the adversary are polynomially bounded. We assume (for simpliity)

synhronous ommuniation. We use the Universal Composability framework [6℄

and de�ne ideal funtionalities as follows:

Funtionality F

V SS

{ On input s from D

j

, send (\D

j

, input") to all players and the adversary.

Wait one round (this models the fat that our implementation takes one

round to �nish, after the prover has spoken). Then, if s = ? (whih may be

the ase if D

j

is orrupt), send (\D

j

, Fail") to all players, else send (\D

j

,

OK") to all players.

Funtionality F

ab=

{ On input a; b;  from D

j

, send (\D

j

, input") to all players and the adversary.

Wait one round. Then, if a; b;  are integers satisfying ab = , send (\D

j

,

OK") to all players, else send (\D

j

, Fail") to all players.

Both funtionalities need to model that a suessfully shared seret an be re-

onstruted. To simulate this we add a ommand to the funtionalities, where it

will send the requested shared value to everyone if asked by all honest players.

For our protools, we will need a set-up assumption, namely D

1

; : : : ; D

m

and P

1

; : : : ; P

n

get ommon input k; pk; pk

1

; : : : ; pk

n

, where k is the seurity

parameter, pk

i

is the publi key of P

i

, and pk is a ommon referene string. As

private input, P

i

has a seret key sk

i

orresponding to pk

i

. For simpliity, we

assume here that the publi and seret keys are generated and given to players

initially by an ideal funtionality T . But we stress that T an be implemented

by a one-and-for-all preproessing among the players (it is well known that any

UC funtionality an be seurely implemented if we have honest majority, or in

general Q2). In Setion 3.4, it is even suÆient that players generate their own

key pairs and broadast the publi keys. We also assume a funtionality F

BC

,

allowing any dealer to broadast information to the veri�ers

1

. Communiation

between veri�ers uses standard authentiated but non-seret hannels. Note that

the UC framework inorporates, in addition to the adversary Adv attaking the

protool, an environment Z that hooses inputs for and reeives outputs from

honest players. We will only onsider environments that give integers (and not

?) as input to honest players. This models the assumption that honest players

would only attempt to VSS valid integers.

1

Note, that even if we implement the broadast via a subprotool, this an be done

suh that we maintain the non-interative nature of our proofs, namely the dealer

sends a single (signed) message to all players, who then internally agree on what he

said.



3.2 An Integer Commitment Sheme

A ommitment sheme for domain S is given by a family of funtions om

pk

:

S � R

pk

! C

pk

, indexed by a publi key pk. One ommits by publishing C =

om

pk

(s; r), where s 2 S is the ommitted value and r 2 R

pk

is a random value.

A homomorphi ommitment sheme is a sheme where we assume that S is an

additive group and that for any two ommitments C and C

0

and any number

�, anyone an ompute ommitments S and P suh that being able to open C

and C

0

to s and s

0

, respetively, allows to open S to the sum s+ s

0

and P to the

produt �s.

We use a modi�ed version of the Pedersen ommitment sheme [22℄, based

on a multipliative group G of order unknown to the players. This ommitment

sheme �rst appeared in [16℄ and later in [15℄. We will need primes p; q where

p = 2p

0

+ 1 and q = 2q

0

+ 1 and p

0

; q

0

are also prime. The omputations are

done in Z

�

n

, where n = pq, and the publi key is pk = (n; g; h) where g; h are

hosen at random in Q

n

, the set of squares modulo n. Then we use om

pk

:

(s; r) 7! g

s

h

r

mod n: The sheme is homomorphi, sine given ommitments

C = om

pk

(s; r) and C

0

= om

pk

(s

0

; r

0

) then CC

0

= om

pk

(s+s

0

; r+r

0

) and C

�

=

om

pk

(�s; �r). Note that if we hoose r uniformly random from [0::n2

k

℄, then

r mod ord(h) is statistially lose to being uniformly random in [0::ord(h)� 1℄.

An important advantage of this sheme is that it allows ommitment to in-

tegers. This follows sine the ommitment is done in a group G of unknown

order. More spei�ally, the following proposition holds for the above ommit-

ment sheme.

Proposition 1 ([16℄). om

pk

(s; r) is a statistially hiding and omputationally

binding ommitment sheme, i.e.:

{ If fatoring is infeasible, then given pk = (n; g; h) it is infeasible to ompute

s; s

0

; r; r

0

2 Z where s 6= s

0

suh that om

pk

(s; r) = om

pk

(s

0

; r

0

).

{ For any two values s; s

0

, the distributions (pk; om

pk

(s; r)); (pk; om

pk

(s

0

; r

0

))

are statistially indistinguishable.

3.3 Publi-key Enryption with Veri�able Opening

We introdue here a tool that we will need later. Suppose a player P has a pub-

li/seret key pair (pk; sk), and reeives iphertext from various senders, some

of whom may be orrupt. We want that the ryptosystem is hosen iphertext

(CCA) seure and has the additional property that for any reeived iphertext ,

P an reveal the deryption result x = D

sk

() and prove non-interatively and

eÆiently that x is orret. We want, of ourse, that \unopened" iphertexts

remain seure, whih exludes the trivial solution of revealing the seret key.

Note that if  is a valid iphertext, the random oins used to generate  an

serve as proof of what the plaintext was. But even if the reeiver ould ompute

these oins eÆiently, there is still a problem if the sender is orrupt. Then 

may be invalid, and \the oins used to generate " is not even a well-de�ned

notion.



A formal de�nition of the notion we are after an be phrased as a variant of

the standard hosen iphertext seurity game, where the orale answers deryp-

tion queries with the result as well as the proof of orretness. We do not give it

here for lak of spae. Instead, we give our solution in a form tailored for diret

use in our protool below. The proof that it works is then inorporated in the

proof for the overall protool

2

.

The key pair (pk; sk) for P will be the master seret and publi key for an

identity-based ryptosystem (IBE)[3℄. Note that, under reasonable assumptions,

eÆient IBE's exist that do not use random orales[24℄. For the IBE we use, we

need that given identity t and pk, one an easily verify if a seret key sk

t

is the

seret key for identity t. This an indeed be done for all known eÆient IBE's,

we all this IBE with veri�able seret keys (IBE-VSK). We assume that the

system is used in a protool that assigns a unique tag to eah iphertext to be

sent to P . To enrypt message m, the sender treats the tag t for this iphertext

as an identity and enrypts the message to this id, i.e., he sends  = E

t

(m).

The reeiver derypts by omputing the seret key sk

t

and then m = D

sk

t

().

To reveal the result of derypting , P reveals sk

t

. Everyone an now ompute

D

sk

t

(). One must also verify that sk

t

is indeed the seret key orresponding

to t. From the assumption that tags are not reused and standard properties of

IBE, it follows that unopened iphertexts remain seure. A somewhat similar

idea was used for a di�erent purpose in [7℄.

3.4 VSS using Integer Commitments

In this setion we onstrut a non-interative veri�able seret sharing [9℄ (VSS)

sheme based on LISS. We use the model desribed in the previous setions.

Spei�ally, the ommon referene string will be a publi key pk = (g; h; n) for

the integer ommitment sheme desribed above. Moreover, eah player P

j

has

a key pair (pk

j

; sk

j

) for an IBE-VSK as desribed above.

Protool VSS

pk

(s)

On input s 2 [�2

l

::2

l

℄, the dealer D makes a ommitment C = om

pk

(s; r)

to s, and then exeutes the following protool to prove that he knows how

to open C to value s, and to seret share s:

Protool Proof

g;h

(C)

1. Given an ISP M = (M; ; "), the dealer D hooses a random vetor

� 2 [�2

l

0

+k

::2

l

0

+k

℄

e

with h�; "i = s, and ommits to this sharing

vetor � = (�

1

; : : : ; �

e

)

T

by ommitments R

1

; : : : ; R

e

to �

1

; : : : ; �

e

,

respetively, where R

1

= C and all ommitments use (g; h) as pub-

li parameter. The ommitments R

2

; ::; R

e

to the additional ran-

domness are inluded in the proof �. D omputes the shares of s:

2

The problem ould also be solved using non-interative zero-knowledge, but this will

be muh too ineÆient for our purposes. Using OAEP might work as well, but only

assuming random orales whih we want to avoid



s = (s

1

; : : : ; s

d

)

T

= M�, and omputes the opening information o

i

for the orresponding ommitment

C

i

=

e

Y

j=1

R

m

ij

j

using the homomorphi property, wherem

ij

is de�ned byM = [m

ij

℄.

Finally, he inludes 

i

= E

pk

 (i)

(o

i

) in his proof �, where all these

iphertexts are assigned a tag onsisting of C onatenated with the

name of D (see Setion 3.3). Finally, D broadasts C; �.

2. For eah i, P

 (i)

derypts 

i

. If he �nds that the resulting opening

information o

i

is inorret w.r.t. C

i

, then he sends o

i

to all other

players, along with a proof that o

i

is indeed the result of derypt-

ing 

i

, this ounts as an ausation against D. Otherwise he sends

\aept".

3. For any ausation from P

 (i)

, eah player veri�es that any o

i

re-

eived is indeed the value that 

i

derypts to. If this is not the ase

this o

i

is disarded.

4. Eah player looks at all (non-disarded) o

i

-values he knows. If any

suh o

i

is inonsistent with C

i

, then he rejets. Otherwise he aepts.

A suessfully shared value s an be reonstruted by simply having every

player P

i

open every ommitment C

j

where  (j) = i. For some quali�ed set

of suessfully opened shares the players an then use the orresponding reon-

strution vetor � to reonstrut the seret. We have

Theorem 1. Given a seure IBE-VSK, the protool VSS

pk

(s) seurely imple-

ments F

V SS

, assuming any Q2 adversary struture � .

Proof. To show that VSS

pk

(s) seurely implements F

V SS

, we are given an ad-

versary Adv and an environment Z, and we need to onstrut a simulator S. The

simulator interats with Adv to simulate its view of attaking the protool, and

on the other hand interats with F

V SS

on behalf of orrupt players. This game

is alled the ideal proess. This is ompared to the real proess, where Z;Adv

are interating with a real instane of the protool. In both proesses, Z and

Adv may ommuniate at any time. The goal is now to show that Z annot

distinguish the real from the ideal proess. Our simulator works as follows:

1. The simulator generates the keys pk; f(pk

j

; sk

j

)g following T 's algorithm,

and sends all publi keys to Adv, along with seret keys for orrupted players.

2. The simulator S now ats whenever required, as follows:

{ If Adv sends C and a proof � to the broadast funtionality on behalf of

orrupt dealer D

j

, the simulator does the following: using its seret keys,

it an derypt iphertext in � intended for honest players and follow their

algorithm to ompute what they would send in the seond round. This

also lets it deide if the proof would be aepted. If not, the simulator

sends ? to F

V SS

. If the proof is aeptable, observe �rst that sine �



is Q2, the set of honest players, A, is quali�ed, and that every honest

player an open his ommitment to s

i

. Let � be a reonstrution vetor

for A, that is, hs;�i = s and �

A

C = 0, i.e., if � = (�

1

; : : : ; �

d

)

T

then

d

X

i=1

s

i

�

i

=

d

X

i=1

�

i

e

X

j=1

m

ij

�

j

= �

1

= s;

where �

j

= 0 for  (j) =2 A. Hene, the above equation implies that

P

d

i=1

�

i

m

ij

= Æ

1j

, where Æ

ij

= 1 if i = j and 0 otherwise. Therefore, by

the homomorphi property, the simulator an open ommitment C

0

=

Q

d

i=1

C

�

i

i

to s

0

=

P

d

i=1

�

i

s

i

. Now, sine

C

0

=

d

Y

i=1

C

�

i

i

=

d

Y

i=1

0

�

e

Y

j=1

R

m

ij

j

1

A

�

i

=

e

Y

j=1

R

P

i

�

i

m

ij

j

= R

1

= C;

we see that the simulator an extrat from the proof a way to open

ommitment C to a value s. The simulator sends s to F

V SS

.

{ On input (\D

j

, input") from F

V SS

, where D

j

is honest, the simulator

simulates what D

j

would send in the protool, as follows: First, reate

a ommitment C to an arbitrary value. By the statistial hiding prop-

erty, there exists a way to open C to the orret value s used by D

j

,

exept with negligible probability { although s is unknown to S. We

therefore proeed, assuming impliitly that C \ontains" s. Now, let A

be the set of orrupted players. Then there exists a sweeping vetor �

suh that M

A

� = 0 and h�; "i = 1. Let �

0

= (r

1

; : : : ; r

e

)

T

be a random

distribution vetor suh that h�

0

; "i = 0, i.e., a distribution vetor to

a random sharing of 0. Construt R

0

1

; : : : ; R

0

e

as random ommitments

of r

1

; : : : ; r

e

, respetively, with the exeption that R

0

1

= 1 (or the om-

mitment of r

1

= 0 using randomness 0). Then, by the homomorphi

property of the ommitment sheme, ompute ommitments

C

0

i

=

e

Y

j=1

R

0

j

m

ij

;

to shares s

i

whih determines the seret 0. Now, given the ommitment

C for the seret s, we modify the ommitments so they beome on-

sistent with s: Compute the publi ommitments R

i

= R

0

i

C

�

i

where

� = (�

1

; : : : ; �

e

)

T

is the sweeping vetor for A. Note that R

1

= R

0

1

C

�

1

=

1C

1

= C as required, sine h�; "i = 1 (i.e., �

1

= 1). The ommitments

to the shares in s will be as follows:

C

i

=

e

Y

j=1

R

m

ij

j

=

e

Y

j=1

(R

0

j

C

�

j

)

m

ij

=

e

Y

j=1

R

0

j

m

ij

C

�

j

m

ij

:

For the players in A we have that,

e

Y

j=1

C

�

j

m

ij

= C

P

j

�

j

m

ij

= C

0

= 1;



sine the inner produt of � and a row in M whih is owned by a player

in A is 0. So for a orrupt P

 (i)

we have C

0

i

= C

i

, and we know how to

open these ommitments. The simulated proof therefore onsists of the

ommitments R

1

; : : : ; R

e

, enryptions of orret opening information for

C

i

when P

 (i)

is orrupt, and enryptions of random values for honest

players.

To see that this simulation works, note the following: First, the simulation of

the initial set-up stage and of the ase where a orrupt dealer gives a proof is

perfet. In partiular, when a orrupt dealer does a VSS that would be aepted

in the real protool, the simulator an always extrat the orret seret, and

honest players will therefore output aept also in the ideal proess.

In the ase where an honest dealer does a VSS, this will in the ideal proess

simply mean that it sends integer s to F

V SS

. The funtionality will send aept

to everyone, so all honest players output aept. This is also the ase in the

real protool: orret opening information for eah C

i

is uniquely determined

from the iphertext 

i

, hene no honest player will ause D and every other

ausation will be rejeted by the honest players.

Hene the only possible di�erene between the ideal and real proess is in the

simulated ommitment C and proof � that is shown to Adv. By the statistial

hiding property of the ommitment sheme and privay of the LISS sheme,

it follows that the opening information sent to orrupt players, as well as the

ommitments R

1

; : : : ; R

e

have distribution statistially lose the one seen in the

real protool. So the only di�erene is the fat that the iphertexts intended

for honest players are random in the simulation, and ontain valid openings of

ommitments in the real protool.

We annot argue that the two sets of enryptions are indistinguishable based

diretly on the ideal proess beause S knows all seret keys. Instead, we on-

strut a mahine S

0

that ats as an adversary breaking the underlying IBE-VSK.

S

0

will run the algorithms of Z;Adv and S, with the following modi�ations to

S: S

0

reeives publi keys for the honest players from an orale. Whenever S

needs to derypt a iphertext sent to an honest player with tag t (see Setion

3.3), S

0

will ask the orale for the seret key for that tag, and an then derypt.

When S wants to reate iphertext for honest players in a simulated proof, S

0

will ask the orale to enrypt either 1) random data or 2) genuine opening in-

formation for the relevant ommitments. The latter is possible beause S

0

also

runs Z and therefore knows eah seret that is shared, this allows it to reate

the ommitment C as a genuine ommitment ontaining the right value, and

from this it an ompute how to open all the other ommitments in that VSS. In

the ase 1), we produe exatly what we get in the ideal proess, in ase 2) we

produe something statistially lose to what we get in the real proess. Hene,

if Z ould distinguish the two proesses, S

0

an use the output from Z to break

the underlying IBE-VSK. ut

For lak of spae, we do not prove formally here that the protool for reon-

strution of the ommitted seret works. It is quite straightforward based on the

binding property of the ommitment sheme.



3.5 Veri�able Commitment Multipliation Proof

We now show a (distributed veri�er) proof that VSS'ed integers s; s

0

; s

00

satisfy

that s

00

= ss

0

:

Protool MultProof

pk

(s; s

0

; s

00

)

1. The prover makes ommitments C;C

0

; C

00

to s; s

0

; s

00

and then exeutes

Proof

g;h

(C), Proof

g;h

(C

0

), and Proof

g;h

(C

00

).

2. The prover exeutes Proof

C

0

;h

(C

00

) using the same distribution vetor

�

s

as in step 1 (but with new independent randomness for the ommit-

ments).

3. Every player veri�es whether his shares obtained from Proof

g;h

(C) (from

step 1.) and Proof

C

0

;h

(C

00

) (from step 2.) oinide. If this does not

hold, he auses the dealer by opening the iphertexts he reeived in

Proof

g;h

(C) and Proof

C

0

;h

(C

00

). Eah player veri�es any ausation made.

4. The proof is aepted if all subproofs were aepted, and no valid au-

sations were made.

Note that the four exeutions of the Proof protool an be run in parallel. A

similar protool appeared in [1℄, but we have here added Proof

g;h

(C

0

)

3

.

Theorem 2. Assuming the integer ommitment sheme is binding and given a

seure IBE-VSK, MultProof

pk

(s; s

0

; s

00

) seurely implements F

ab=

assuming any

Q2 adversary struture � .

Proof. Note that making ommitments C;C

0

; C

00

and then exeuting the �rst

3 instanes of Proof is equivalent to exeuting 3 instanes of VSS

pk

. Therefore,

to simulate this, we run the simulator from the previous theorem 3 times (in

parallel). To simulate the exeution of Proof

C

0

;h

(C

00

), we run the same simulator

again, with the following hanges: when simulating the ations of an honest

dealer, the simulator will not reate its own ommitment to play the role of

the ommitment to the seret, instead it will use C

00

. Also, it will use the same

distribution vetor that was used in the simulation of Proof

g;h

(C).

To show that this simulation works, we only need to hek that when we

extrat opening information from an aeptable proof given by a orrupt prover,

we will get values s; s

0

; s

00

suh that ss

0

= s

00

. Note, that if the proof is aepted,

it follows from the proof of Theorem 1 that we an extrat from step 1. pairs

(s; r); (s

0

; r

0

) and (s

00

; r

00

) suh that C = om

g;h

(s; r), C

0

= om

g;h

(s

0

; r

0

) and

C

00

= om

g;h

(s

00

; r

00

). Furthermore, steps 2. and 3. ensure that we an extrat

(s; r

�

) suh that C

00

= om

C

0

;h

(s; r

�

) = C

0

s

h

r

�

4

. Combining this with the

expression for C

0

= om

g;h

(s

0

; r

0

) = g

s

0

h

r

0

we get C

00

= C

0

s

h

r

�

= (g

s

0

h

r

0

)

s

h

r

�

=

g

ss

0

h

r

0

s+r

�

In other words, we an now open C

00

to both s

00

and ss

0

, whih

ontradits the binding property unless s

00

= ss

0

. ut

3

This is neessary sine the order of the group of the ommitments is unknown and

we an therefore not prove soundness the same way as in [1℄ (Lemma 1).

4

Note that the proof in step 2. uses C

0

, whih might have been adversarially generated,

in plae of g whih omes from the ommon referene string. However, this is not a

problem sine the extration will work for any set of values.



4 Veri�able Multipliation Proof Based on

Pseudo-Random Sharing

4.1 Repliated Integer Seret-Sharing and Share Conversion

In this setion we �rst introdue RISS, an integer version of Repliated Seret-

Sharing [20℄, where we share an integer over a monotone aess struture. Then

we de�ne share onversion, and show that shares generated by a RISS sheme

an be loally onverted to shares in the same seret generated by LISS shemes.

Sheme Repliated Integer Seret-Sharing (RISS)

Let � be an adversary struture. For eah set B 2 �

+

hoose a uniformly

random r

B

integer from the interval [�2

l+k

::2

l+k

℄ and send privately r

B

to

eah player P

i

=2 B. Furthermore, publish r = s+

P

B2�

+

r

B

, where s is the

seret from the interval [�2

l

::2

l

℄.

Lemma 1. The RISS sheme is orret and (statistially) private.

De�nition 7. Let S and S

0

be two seret-sharing shemes. We say that S is

loally onvertible to S

0

if there exist loal onversion funtions g

1

; : : : ; g

n

suh

that the following holds. If (s

1

; : : : ; s

n

) are valid shares of a seret s in S, then

(g

1

(s

1

); : : : ; g

n

(s

n

)) are valid shares of the same seret s in S

0

. We denote by

g the onatenation of all g

i

, namely g(s

1

; : : : ; s

n

) = (g

1

(s

1

); : : : ; g

n

(s

n

)), and

refer to g as a share onversion funtion.

Note by the loality feature of the onversion, that onverted shares annot

reveal more information about s than the original shares.

The following theorem is proved in the appendix, using ideas similar to what

was used in [10℄

Theorem 3. The RISS sheme R

�

, realizing � , is loally onvertible to any

LISS realizing an aess struture �

0

� � .

Clearly, for any prime p, a RISS sharing of integer s an be thought of

as a repliated sharing over Z

p

of s mod p, by reduing all shares modulo p.

Furthermore, in [10℄ it was shown how to loally onvert a repliated sharing

over Z

p

to any linear seret sharing (LSS) sheme over Z

p

(suh as Shamir's

sheme). From these two observations, we immediately get

Proposition 2. The RISS sheme R

�

, realizing � , is loally onvertible to any

LSS over Z

p

realizing an aess struture �

0

� � , where the original seret s

after onversion will be s mod p.

4.2 Appliation to VSS

We now show how the results from the previous subsetion an be used to

generate a series of veri�ably shared serets by broadasting only two values per

seret, at the initial ost of distributing a set of random seeds to the players. We



use the model de�ned earlier, where eah player P

i

has a publi and a seret key.

In this ase, we assume that there is a publi key pk

B

de�ned for eah B 2 �

+

,

and P

i

's publi key onsists of all pk

B

for those B in whih P

i

is not a member.

The seret key onsists of all seret keys orresponding to relevant pk

B

's. As

before, we assume these are keys for an IBE-VSK.

The following protool does the intial distribution of seeds.

Protool Random

fr

B

g

(�

+

)

1. For eah B 2 �

+

the dealer D hoose an uniformly random r

B

from

[0::2

k

[.

2. For eah B 2 �

+

D broadasts r

B

enrypted under pk

B

. The dealer's

name is used as tag for this iphertext. Eah player derypts all the

iphertexts for whih he has the seret key.

The protool learly ensures that players have mutually onsistent shares, i.e.,

all honest players not in B agree on the value of r

B

, for any B 2 �

+

.

Given a pseudorandom funtion (PRF) '

�

(�) with k-bit keys and inputs, and

outputs in [�2

l+k

::2

l+k

℄, the following protool is realizable.

Protool VSS

fr

B

g

(s)

It is assumed that the dealer D has run Random

fr

B

g

(�

+

) on some adversary

struture, �.

1. D broadasts a value a, to serve as a \label" for this instane of the

protool. The only demand is that a an be used as input to ', and that

D never reuses an a-value. D omputes, with his knowledge of fr

B

g,

r = s+

P

B

'

r

B

(a) and broadasts r.

2. Eah player P

i

heks that r 2 [�(j�

+

j + 1)2

l+k

::(j�

+

j + 1)2

l+k

℄, and

rejets if this is not the ase. Otherwise, he omputes '

r

B

(a), for every

B where P

i

62 B.

This lemma follows easily by inspetion of the protool:

Lemma 2. If D is honest, no honest player will rejet in VSS

fr

B

g

(s). No matter

what the dealer does, if honest players aept, the set of values r; f'

r

B

(a)j B 2

�

+

g form a RISS sharing of some value s

0

. If D is honest, s

0

= s, otherwise

s

0

2 [�(2j�

+

j+ 2)2

l+k

::(2j�

+

j+ 2)2

l+k

℄.

It is also quite straightforward to see that if D is honest, and the PRF is seure,

a polynomially bounded adversary does not learn anything about the seret

involved. A proof of this is impliit in the proof of Theorem 4 below. In the

appendix we disuss how a seret an be reonstruted, one it has been VSS'ed

as above.

4.3 Multipliation Proof

In this setion we desribe a protool whih non-interatively proves that a

shared value is the produt of two other shared values. For simpliity, we will



only onsider the ase of a threshold adversary who orrupts t < n=3 of the

players, so the adversary struture � will in this setion onsist of all set of

ardinality at most t. In the appendix we desribe a generalization to all Q3

adversary strutures.

We will need a tool from [10℄, alled Pseudorandom Zero Sharing (PRZS).

This protool assumes that for all B 2 �

+

, players not in B have been given t

random seeds r

1

B

; : : : ; r

t

B

and a prime p > n is agreed in advane. Based on this,

the protool generates (by loal omputation only) a pseudorandom polynomial

f over Z

p

of degree at most 2t suh that f(0) = 0 and eah player P

i

knows

f(i). The protool is a simple generalization of the share onversion tehnique.

In the following Random

fr

B

;r

1

B

;:::;r

t

B

g

(�

+

) will denote the protool where the

dealer distributes the seeds r

B

; r

1

B

; : : : ; r

t

B

to all players not in B using enryption

under pk

B

. We will hoose a �xed prime p, suh p > 2(4j�

+

j+ 2)

2

2

2(l+k)

.

Protool MultProof

fr

B

;r

1

B

;:::;r

t

B

g

(a; b; )

1. The dealer D exeutes Random

fr

B

;r

1

B

;:::;r

t

B

g

(�

+

).

2. D exeutes VSS

fr

B

g

(a), VSS

fr

B

g

(b) and VSS

fr

B

g

().

3. The players use Proposition 2 to loally onvert the RISS sharings we

now have of a; b;  to Shamir sharings of a mod p,b mod p and  mod p,

onsistent with polynomials f

a

; f

b

and f



of degree at most t; t and 2t

respetively. The players use PRZS to generate shares in a polynomial

f of degree at most 2t with f(0) = 0.

4. D uses his knowledge of all seeds to ompute the polynomial h = f +

f

a

f

b

� f



and broadasts h.

5. Eah player P

i

veri�es that h(i) = f(i) + f

a

(i)f

b

(i) � f



(i). If the ver-

i�ation fails then P

i

broadast \Ausation" and opens all enrypted

values r

B

; r

1

B

; ::; r

t

B

known by him.

6. The proof is rejeted if one of the following situations happen: one of

the VSS protools in Step 2 was rejeted, the broadasted polynomial

h is not of degree at most 2t, h(0) 6= 0, or broadasted values by a

player are onsistent with the enrypted values but inonsistent with

the broadasted values by D.

Theorem 4. When based on a seure IBE-VSK and PRF, then the protool

MultProof

fr

B

;r

1

B

;:::;r

t

B

g

(a; b; ) seurely implements F

ab=

, for any threshold-t ad-

versary struture where t < n=3.

Proof. We onstrut a simulator S that works as follows:

1. S generates the keys pk; f(pk

B

; sk

B

)g following T 's algorithm, and sends all

publi keys to Adv, along with seret keys for orrupted players.

2. S now ats whenever required, as follows:

{ When Adv does a proof on behalf of a orrupt dealer, S an simply

derypt everything sent by the adversary, and deide if the proof would

be aepted in the real proess. If so, it reonstruts values a; b and 

and sends them to the ideal funtionality. Otherwise, it sends ? to the

ideal funtionality and uses the honest players' algorithm to ompute



the messages (omplaints) they would send to orrupt players, and sends

these to Adv.

{ When an honest dealer does a proof, S will generate a simulated proof

by simply following the prover's algorithm, using a = b =  = 0.

To see that this simulation works as required, note �rst that the simulation

of the set-up phase and proofs by orrupt dealers is perfet. This is beause

the simulator follows the honest players algorithm to ompute their reation

to the proof, so we just need to hek that when the proof is aepted, the

simulator an send a orret witness to the funtionality. By Lemma 2, the

values a; b;  that the simulator reonstruts from the proof will be in the interval

[�(2j�

+

j + 2)2

l+k

: : : (2j�

+

j + 2)2

l+k

℄, so we know that jabj; jj are less than

p=2. Now, from Step 5, we know that h agrees with f + f

a

f

b

� f



in all points

owned by honest players, of whih there are at least 2t + 1. This implies that

h = f + f

a

f

b

� f



, and therefore that ab =  mod p. But if ab 6= , it would have

to be the ase that jab � j � p, while on the other hand we already know that

jab� j � jabj+ jj < p. So indeed ab = .

It remains to show that the simulation of an honest dealer's proof shown to

the adversary is indistinguishable from a real proof. For this, onsider the real

proess Real, and assume the worst ase where the adversary has orrupted a

maximal set B of players. This means that when an honest dealer does a proof,

the key sk

B

is the only seret key the adversary does not know. We then de�ne

a new \hybrid" proess Hyb

1

, where we replae the broadasted enryptions of

r

B

; r

1

B

; : : : ; r

t

B

(under pk

B

) by enryptions of independent random values. By an

argument similar to the proof of Theorem 1, Real is indistinguishable from Hyb

1

if the underlying IBE-VSK is seure. Note that in Hyb

1

, we an replae evalu-

ations of the PRF using seeds r

B

; r

1

B

; : : : ; r

t

B

by orale aess to the PRF with

the same seeds, and all messages sent will remain unhanged. We de�ne Hyb

2

by replaing the PRF orales by orales for truly random funtions. By seurity

of the PRF, Hyb

2

is indistinguishable from Hyb

1

. Finally, we de�ne Hyb

3

as fol-

lows: we �rst replae the dealer's inputs (a; b; ) to the VSS

fr

B

g

(�)-protools by

random values in the legal interval, and seond, we hoose the polynomial h to

broadast as a uniformly random polynomial, subjet to h(0) = 0, deg(h) � 2t,

and that h(i) agrees with the adversary's information for all orrupt players P

i

.

Now, Hyb

3

is statistially indistinguishable from Hyb

2

: onsider, for instane,

the exeution of VSS

fr

B

g

(a) in Hyb

2

. If we subtrat the randomness that the

adversary already knows, we see that he an ompute R+ a, where R is a truly

random value in I

r

= [�2

l+k

::2

l+k

℄. This is statistially indistinguishable from

R + r where r is a random value in I

s

= [�2

l

::2

l

℄, whih is what the adversary

would see in Hyb

3

. The polynomial h is easily seen to have exatly the same

distribution in Hyb

2

and Hyb

3

. It follows that Real is indistinguishable from

Hyb

3

.

To �nish the proof, note that in the argument we just gave, we did not use

anything speial about the inputs a; b; , other than ab = . Therefore, essentially

the same argument shows that the ideal proess is also indistinguishable from



Hyb

3

sine the simulator uses a = b =  = 0 and otherwise follows the protool.

The theorem now follows from transitivity of indistinguishability. ut

5 Interval Proofs and Appliation to Seure Computing

Boudot [5℄ observes that to prove that a number x lies in an interval [a; b℄ it

is suÆient to prove that x � a � 0 and b � x � 0. By using a homomorphi

ommitments sheme and a primitive to prove that a ommitted integer is a

square, he onstruts an eÆient proof that a ommitted number is non-negative.

Only a small onstant number of alls to the primitive is required.

Boudot's protools an be run in our settings by using one of the VSS pro-

tools we have presented to play the role of ommitments in Boudot's protools.

Note that both types of VSS's we onstrut are linear and so we have the ho-

momorphi properties needed. In this way, we get a non-interative proof that a

shared number is in a given interval, using a onstant number of invoations of

our VSS protool.

Furthermore, eah number x we prove something about is veri�ably shared

among the players, using a LISS sheme (a RISS sheme in ase of the seond

protool). If we onsider the shares as numbers mod q for any prime q, we obtain

a linear sharing over Z

q

of x mod q. We an now, possibly after loal onversion

using [10℄, do seure omputing on suh numbers using, e.g., the protools from

[17, 4, 13℄. If what we really want is seure addition and multipliation over the

integers, we an use the initial interval proofs to make sure the numbers are

small enough to avoid modular redutions.
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A Reonstrution for VSS based on RISS

Clearly, if an adversary struture � is Q2, every omplement of a set B 2 �

+

ontains an honest player, so the VSS we onstruted via protool VSS an

always be opened by having players open the enryptions of seeds they reeived

in the initial phase. This is somewhat unsatisfatory, sine this will open any

seret that was shared using the relevant instane of Random

fr

B

g

(�

+

).

But if the adversary struture is Q3, in partiular threshold-t with t < n=3, we

an do better: namely, we an use the trik from theMultProof

fr

B

;r

1

B

;:::;r

t

B

g

(a; b; )

protool of hoosing a prime p that is guaranteed to be larger than the seret

s. Players then loally onvert their shares to a Shamir-sharing of s, reveal the

shares and use standard error orretion to �nd s.

B RISS-based protools for General Adversary

Strutures

To generalize all our protools based on RISS to general Q3 aess strutures,

one simply replaes the polynomials over Z

p

of degree at most t by sharings using

a monotone span program (MSP) M over Z

p

(same as ISP's, but de�ned over

Z

p

and not Z). These being linear, we an still onvert RISS shares to this type

using Proposition 2.Mmust be strongly multipliative and realize the adversary

struture � suh an MSP always exists (see [11℄). The polynomials of degree at

most 2t are replaed by sharings using M

�

, whih is an MSP onstruted from

M by omputing the tensor produt of eah row in M by itself and letting

the results be the rows in M

�

. Finally, the results on PRZS generalize in a

straightforward way to any linear seret sharing sheme.

C Proof of Theorem3

In [21℄ Krahmer and Wigderson introdued the notion of anoni span program,

we use the following modi�ation for ISP.

De�nition 8 (Canoni ISP). Let M = (M; ; ") be an ISP for �

M

. We

de�ne a anoni ISP

^

M = (

^

M; ;1) as follows.

^

M has the same size and row

labeling as M, but possibly a di�erent number of olumns. Let �

+

= �

+

M

be the

olletion of maximal forbidden sets of �

M

. For every B 2 �

+

, let �

B

be the

vetor satisfying M

B

�

B

= 0 and h";�

B

i = 1. For eah maximal forbidden set

B 2 �

+

, the matrix

^

M will inlude a orresponding olumn 

B

= M � �

B

(so

that altogether

^

M has as many olumns as sets in �

+

M

).



Observe the following properties of a anoni ISP. For every B 2 �

+

it holds

that 

B

B

= (0; : : : ; 0)

T

, i.e., the restrition of 

B

to the entries jointly owned by

the players in B is the zero-vetore. For eah A 2 � it holds that

^

M

T

A

�

A

= 1,

where �

A

is the reonstrution vetor for M

A

. This holds beause, let 

B

be an

arbitrary olumn in

^

M

A

, then

(

B

)

T

A

�

A

= (M

A

�

B

)

T

�

A

= (�

B

)

T

(M

T

A

�

A

) = (�

B

)

T

" = 1;

where �

B

is orresponding sweeping vetor to the olumn 

B

. Sine this holds

for any olumn in

^

M , this implies that we use an additive sharing to share in

the anoni ISP, i.e., the target vetor is 1.

Lemma 3. Using the above notation, the sheme S

^

M

is loally onvertible to

S

M

via the identity funtion g(s) = s.

Proof. Let

^

� be some integer additive sharing, that is h1;

^

�i = s, whih is indued

by the dealer's randomness in S

^

M

. Let � =W

^

� where W is a onatenation of

all olumn vetors �

B

in the order used for onstruting

^

M . By the onstrution

of

^

M we have

^

M = MW and so

^

M

^

� = MW

^

� = M�. Thus, � produes the

same shares in S

M

as

^

� produes in S

^

M

. Finally, sine every �

B

must satisfy

h";�

B

i = 1, we have h";�i = "

T

W

^

� = h1;

^

�i, and thus � is onsistent with the

same seret s. ut

Lemma 3 states, that eah legal sharing of s under a anoni ISP, is also a sharing

of s under the orresponding ISP.

Lemma 4. Let R

�

be a RISS sheme realizing � over the integers, M

0

=

(M

0

;  

0

; ") an ISP for �

0

suh that �

0

� � , and

^

M

0

a anoni ISP of M

0

.

Then R

�

is loally onvertible to S

^

M

0

.

Proof. Suppose �rst that �

0

= � . Denote the olletion maximal forbidden sets

by �

+

. The R

�

-share viewed by player P

i

is (r

B

)

B2�

+

:P

i

=2B

and the publi value

r = s +

P

B2�

+

r

B

. Fix some B

0

2 �

+

and let 

B

i

denote the i-th entry in 

B

.

De�ne

g

i

(s

i

) = (r

B

0

� r)

B

0

i

+

X

B2�

+

;B 6=B

0

r

B



B

i

;

sine eah olumn 

B

only has zeros in the entries orresponding to the players

in B, the g

i

is a loal onversion funtion. Furthermore, it the sharing of s as

required.

In the general ase, where �

0

� � , is only slightly more involved. For eah

B 2 �

0+

assign some set B

0

2 �

+

ontaining it. For eah B

0

2 �, de�ne r

B

0

to

be the sum of all r

B

suh that B is assigned to B

0

, or 0 ir there is no B assigned

to B

0

. Then the same loal onversion funtion an be used. ut

The following theorem follows immediately from the above two lemmas.

Theorem 5. The RISS sheme R

�

, realizing � , is loally onvertible to any

LISS realizing an aess struture �

0

� � .


