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Abstra
t. We present two universally 
omposable and pra
ti
al proto-


ols by whi
h a dealer 
an, veri�ably and non-intera
tively, se
ret-share

an integer among a set of players. Moreover, at small extra 
ost and using

a distributed veri�er proof, it 
an be shown in zero-knowledge that three

shared integers a; b; 
 satisfy ab = 
. This implies by known redu
tions

non-intera
tive zero-knowledge proofs that a shared integer is in a given

interval, or that one se
ret integer is larger than another. Su
h primi-

tives are useful, e.g., for supplying inputs to a multiparty 
omputation

proto
ol, su
h as an au
tion or an ele
tion. The proto
ols use various

set-up assumptions, but do not require the random ora
le model.

1 Introdu
tion

Appli
ations su
h as au
tions, ele
tions or ben
hmarking analysis all involve


omputing on 
on�dential data from several parties who do not trust ea
h other

a priori. This means that solutions involving a single trusted party are typi
ally

unsatisfa
tory. In prin
iple, all su
h problems 
an be solved using general se
ure

multiparty 
omputation [18, 2, 8℄, where all parties take part in 
omputing the

desired results. But in pra
ti
e, this is often not realisti
: in au
tions or ele
tions,

for instan
e, the number of parties holding inputs 
an be very large, they 
annot

be assumed to be expert users nor 
an their ma
hines be assumed to be on-line

at parti
ular times. Hen
e assuming that all su
h parties 
an reliably take part

in a multi-round proto
ol is unrealisti
.

It is therefore often suggested that a smaller number of servers are assigned

to do the 
omputation, a
ting e�e
tively as representatives for the 
lients sup-

plying inputs. Of 
ourse, this makes sense only if the 
omplexity of supplying

inputs is mu
h smaller than the 
omplexity of taking part in the a
tual 
omputa-

tion. In parti
ular, we would want that supplying inputs is non-intera
tive. This

problem 
an be solved using a non-intera
tive veri�able se
ret sharing (VSS)

s
heme. Having done the VSS's, the servers hold shares of all inputs and 
an do

the 
omputation using any of the (numerous) known multiparty 
omputation

te
hniques. Several non-intera
tive VSS proto
ols are known see, e.g., [22℄.

However, many appli
ations require that the inputs supplied satisfy 
ertain


onstraints. These 
onstraints are typi
ally phrased in a natural way as relations

over the integers, be
ause the underlying appli
ation is a 
omputation on inte-

gers. This is the 
ase for au
tions, ele
tions and many statisti
al appli
ations

su
h as ben
hmarking. For instan
e, an au
tion might spe
ify that bids have to



be in a 
ertain interval. In other types of au
tions (so 
alled double au
tions[4℄),

a bid 
onsists of a sequen
e of numbers that must be monotonely in
reasing.

Standard eÆ
ient te
hniques for handling this would have a 
lient 
ommit

to his input and prove in zero-knowledge that his numbers satisfy the required

relations. But this solution requires intera
tion in its basi
 form. The intera
tion


an typi
ally be removed following the Fiat-Shamir heuristi
 if we are willing to

assume the random ora
le model. However, it is well known that the se
urity

guarantee provided by a proof in the random ora
le model leaves something to

be desired: we 
annot instantiate the ora
le with a 
on
rete fun
tion and be sure

that this always works. Hen
e, our goal is to avoid random ora
les and still have

an eÆ
ient solution.

In [5℄, Boudot presents an eÆ
ient te
hnique to prove relations, as outlined

above, given a primitive to prove that a 
ommitted integer is a square. Fur-

thermore, in [1℄, Abe, Cramer and Fehr propose eÆ
ient and non-intera
tive

te
hniques for proving multipli
ative relations on se
ret-shared values, using

distributed-veri�er proofs. Unfortunately, the proto
ols and de�nition from [1℄

are not dire
tly useful in the s
enarios outlined above, for several reasons: First,

the relations that 
an be proved only hold modulo some (publi
) prime number,

and not ne
essarily over the integers. Se
ond, for the 
ase of honest majority, the

proto
ols in [1℄ are only \non-intera
tive with 
omplaints", that is, if a server is

unhappy with the data he re
eived privately from the dealer, he will 
omplain,

and the dealer must intervene in a se
ond round to resolve these 
on
i
ts. It

is 
lear that we have to avoid this in our s
enario. Third, the de�nition of dis-

tributed veri�er proofs used in [1℄ works with only one prover. In our s
enario,

we will have many provers, some of whi
h may be 
orrupted. In 
ontrast to the

single-prover 
ase, a 
orrupt prover may now try to exploit the information sent

by honest provers in order to 
heat.

In this paper, we propose two proto
ols that allow a 
lient to non-intera
tively

VSS integers among the servers, and prove in zero-knowledge, by a distributed

veri�er proof, that shared integers a; b; 
 satisfy ab = 
. Using known redu
tions

[5℄, this implies non-intera
tive proofs that a shared integer is in a given interval,

or that shared numbers a; b satisfy a � b. Both proto
ols require one broad
ast

from the prover and one round of messages between the veri�ers (servers), whi
h

is a minimal amount of intera
tion for a distributed veri�er proof. Details on the


ommuni
ation 
omplexity of the proto
ols follow below. We prove our proto-


ols se
ure in the Universal Composability model (with stati
 adversary), this

automati
ally gives us a de�nition handling the multiple prover 
ase.

For the �rst solution, we take the proto
ol of [1℄ as the point of departure,

introdu
ing new te
hniques to solve the problems mentioned above. We obtain

our solution by repla
ing in the proto
ol from [1℄ Shamir se
ret-sharing by Linear

Integer Se
ret Sharing (LISS) [14℄ { whi
h exists for any a

ess stru
ture [14℄.

LISS s
hemes are basi
ally se
ret sharing s
hemes where the se
ret is re
on-

stru
ted by taking a integral linear 
ombination of the shares. Also, we repla
e

Pedersen 
ommitments [22℄ by the integer 
ommitments from [15℄.



While this is quite straightforward, it is not so trivial to solve the problem

of handling 
omplaints without intera
tion. We �rst observe that the reason

why the dealer must resolve 
on
i
ts in the proto
ol by Abe et al. is that only

point-to-point 
hannels between dealer and ea
h server are assumed, and hen
e

servers are not a priori 
ommitted to what they re
eived. On the other hand, a

typi
al implementation would realize the 
hannels using publi
-key en
ryption,

so we propose to in
lude this en
ryption expli
itly in the proto
ol. One might

now hope that a server 
an prove it re
eived bad data by \opening" the 
ipher-

texts it re
eived. However, while the sender of a 
iphertext 
an always \open"

it 
onvin
ingly (simply by revealing the 
oins used to 
reate it), we need that

the re
eiver 
an do so. Sin
e 
iphertexts 
an be adversarially generated, and un-

opened 
iphertexts must remain se
ure, it is not immediately 
lear how this 
an

be done in a non-intera
tive and eÆ
ient way. We propose an eÆ
ient solution to

the problem based on Identity-Based En
ryption (IBE). To our knowledge, this

is a new appli
ation of IBE, and we believe the idea is of independent interest, as

the possibility of \
omplaining 
onvin
ingly" is often useful in proto
ol design.

For the 
ase of honest majority, the VSS we obtain requires the dealer to

send a total of O(n logn(�+ l + k + n)) bits, where � is the se
urity parameter

for the publi
-key and 
ommitment s
hemes used, n is the number of players, l

is the bit length of the numbers we share and k is an \information theoreti
"

se
urity parameter, 
ontrolling the statisti
al leakage of information.

The proto
ol 
an handle any Q2 adversary stru
ture (honest majority in

the threshold 
ase), whi
h is optimal in terms of the number of 
orruptions

that 
an be handled at all. However, for realisti
 values of the parameters, the

eÆ
ien
y is not what we might hope for. This is be
ause the numbers we will

be 
omputing on will be numbers spe
ifying bids, pri
es, produ
tions 
osts, et
.,

that is, numbers that are typi
ally mu
h smaller than those used for publi
-key


ryptography. Realisti
 parameter values might be n = 7, l = 32, k = 60 and

� = 1024. In su
h a 
ase, ea
h 32 bit number we share is expanded to about

25.000 bits, whi
h hardly seems desirable.

We therefore propose another solution, where we make the stronger as-

sumption that the adversary stru
ture is Q3 (less than n=3 
orruptions in the

threshold 
ase). We build a solution using a generalization of the pseudorandom

se
ret-sharing te
hnique from [10℄ to the 
ase of linear integer se
ret sharing.

In the threshold 
ase, the proto
ol requires the dealer to send, on
e and for all,

O(T (�+nk)) bits to the servers, where T is the number of maximal unquali�ed

sets in the adversary stru
ture. After this, any number of VSS's 
an be done by

sending O(l+k) bits to the servers for ea
h value to be shared. Ea
h multipli
a-

tion proof requires 3 VSS invo
ations and in addition O((l+k+n)n) bits should

be sent.

The initial step is not always eÆ
ient as a fun
tion of n be
ause T may be

exponential in n, depending on the adversary stru
ture. In the typi
al threshold


ase, T would be about

�

n

n=3

�

. But for a small number of servers, T is moderate.

On the other hand, for �xed n and for a large number of VSS invo
ations we


ome very 
lose to sending only l+k bits for every l-bit number we share - where



of 
ourse sending l bits is ne
essary. It is therefore ideally suited for 
ases, where

a large number of 
lients need to supply large amounts of data to a small number

of servers. For the example parameter values above and assuming we share, say

200 numbers, the dealer needs to send about 230 bits per number to share.

Both our proto
ols use a 
ommon referen
e string, and assume that the veri-

�ers have publi
/se
ret key pairs set up in advan
e. Note that if we do not assume

random ora
les, we 
annot get non-intera
tive proto
ols without some sort of set-

up assumption. Of 
ourse, using set-up assumptions, our problem 
ould also be

solved using standard te
hniques for non-intera
tive zero-knowledge. But with


urrent state of the art, this approa
h 
an only prove the type of statements

we are after using generi
 te
hniques. This would give non-intera
tive proofs of

size 
(l�jCj) where jCj is the size of a Boolean 
ir
uit C 
he
king the relation

in question. For realisti
 parameter values, this will be several orders of magni-

tude larger than our 
omplexity. To our knowledge, our solutions are the �rst

non-intera
tive proto
ols for integer relations that do not use random ora
les,

and have 
ommuni
ation 
omplexity independent of the 
ir
uit 
omplexity of

the relation.

2 Preliminaries

In a Linear Integer Se
ret Sharing (LISS) S
heme there are n players, whi
h are

denoted by P

1

; : : : ; P

n

. Let P = fP

1

; : : : ; P

n

g be the set of all the players, and

let the power set of P be denoted by P (P). Let s 2 [�2

l

::2

l

℄ be the se
ret whi
h

a dealer D wants to se
ret share between the players in P over a LISS. Then the

sets in P (P) whi
h are allowed to re
onstru
t the se
ret s are 
alled quali�ed

and the sets whi
h should not be able to obtain any information about the se
ret

s are 
alled forbidden.

De�nition 1. The 
olle
tion of quali�ed sets, � � P (P), is 
alled a monotone

a

ess stru
ture, if for all A 2 � and A � B � P it holds that B 2 � .

We also need the notion of an adversary stru
ture [19℄.

De�nition 2. An adversary stru
ture is a monotone 
olle
tion of sets, � �

P (P), for whi
h the adversary may 
orrupt the players of one set in the adversary

stru
ture. It is monotone in the sense that for every A 2 � it holds that for every

B � A that B 2 �.

De�nition 3. An adversary stru
ture � is Q2 (Q3) if no two (three) sets in

the stru
ture 
over the full player set P.

If � is the 
olle
tion of all quali�ed sets of players in P and � is a monotone

a

ess stru
ture, then the 
orresponding adversary stru
ture, �, is the 
olle
tion

of all the forbidden sets. Note that, � is monotone as required by an adversary

stru
ture, and that � [ � = P (P) and � \ � = ;. That is, an adversary

stru
ture 
an be seen as a 
omplement of a monotone a

ess stru
ture. Sin
e

the stru
tures, � and �, are monotone, they 
an be uniquely represented by



their minimal and maximal sets denoted by �

�

and �

+

, respe
tively. j�

+

j will

denote the number of sets in �

+

. In this paper we use � and � inter
hangeably.

We pro
eed to de�ne what is meant by a 
orre
t and private LISS.

De�nition 4. A LISS s
heme is 
orre
t, if the se
ret 
an be re
onstru
ted from

shares of any quali�ed set in A 2 � , by taking an integer linear 
ombination of

the shares with 
oeÆ
ient that depends only on the index set A.

De�nition 5. A LISS s
heme is private, if for any forbidden set B 2 �, any

two se
ret s; s

0

2 [�2

l

::2

l

℄, and independent random 
oins r and r

0

, the statis-

ti
al distan
e between the distributions of the shares fs

i

(s; r; k) j i 2 Bg and

fs

i

(s

0

; r

0

; k) j i 2 Bg is negligible in the se
urity parameter k.

A labeled matrix 
onsists of a d � e matrix M and a 
orresponding surje
tive

fun
tion  : f1; : : : ; dg ! f1; : : : ; ng. We say that the i-th row is labeled by  (i)

or owned by player P

 (i)

. For any subset A � P , we letM

A

denote the restri
tion

of M to the rows labeled by some P

 (i)

2 A. For any d-ve
tor x, we similarly

denote x

A

to be the restri
tion of entries i with P

 (i)

2 A. For any two ve
tors

a and b, let ha; bi denote the inner produ
t.

De�nition 6. An Integer Span Program (ISP) for a monotone a

ess stru
ture

� 
onsists of a tuple M = (M; ; "), where M 2 Z

d;e

is a labeled matrix with

a surje
tive fun
tion  : f1; : : : ; dg ! f1; : : : ; ng, and the target ve
tor " =

(1; 0; : : : ; 0)

T

2 Z

e

. Furthermore, for every A � P the following holds,

- for every A 2 � there exists a re
onstru
tion ve
tor � 2 Z

d

su
h that

M

T

A

� = ".

- for every A =2 � there exists a sweeping ve
tor � 2 Z

e

su
h that M

A

� = 0

and h�; "i = 1.

The size of M is de�ned to be d.

In [14℄ it was shown how to 
onstru
t a 
orre
t and private LISS s
heme

from any ISP. For a given ISP we de�ne l

0

= l + dlog

2

(�

max

(e � 1))e, where

�

max

= maxfjaj j a is an entry in some sweeping ve
tor g. To share a se
ret

s 2 [�2

l

::2

l

℄, we use a distribution ve
tor � whi
h is a uniformly random ve
tor in

[�2

l

0

+k

::2

l

0

+k

℄

e

with the restri
tion that h�; "i = s. The share ve
tor is 
omputed

byM� = s = (s

1

; : : : ; s

d

)

T

, where the share 
omponent s

i

is given to player P

 (i)

for 1 � i � n. The share of player P

j

is the subset of share 
omponents s

fP

j

g

.

See [14℄ for a proof of 
orre
tness and priva
y. There, it was also shown that

LISSs exist for any adversary stru
ture, and in parti
ular they 
an be 
onstru
ted

for threshold stru
tures where a player's share is O((l+k+n

2

) logn) bits long. It

follows from results and 
onje
tures in [12℄ that this 
an probably be improved

to O((l+ k + n) logn) bits.



3 Veri�able Se
ret Sharing (VSS) and Distributed

Veri�er Proofs

3.1 Model and De�nition

We have a set of dealers fD

1

; : : : ; D

m

g and a set of n players or veri�ers P =

fP

1

; : : : ; P

n

g. We assume an a
tive and stati
 adversary who may 
orrupt any

number of dealers and a set of players in a given adversary stru
ture. All players,

dealers and the adversary are polynomially bounded. We assume (for simpli
ity)

syn
hronous 
ommuni
ation. We use the Universal Composability framework [6℄

and de�ne ideal fun
tionalities as follows:

Fun
tionality F

V SS

{ On input s from D

j

, send (\D

j

, input") to all players and the adversary.

Wait one round (this models the fa
t that our implementation takes one

round to �nish, after the prover has spoken). Then, if s = ? (whi
h may be

the 
ase if D

j

is 
orrupt), send (\D

j

, Fail") to all players, else send (\D

j

,

OK") to all players.

Fun
tionality F

ab=


{ On input a; b; 
 from D

j

, send (\D

j

, input") to all players and the adversary.

Wait one round. Then, if a; b; 
 are integers satisfying ab = 
, send (\D

j

,

OK") to all players, else send (\D

j

, Fail") to all players.

Both fun
tionalities need to model that a su

essfully shared se
ret 
an be re-


onstru
ted. To simulate this we add a 
ommand to the fun
tionalities, where it

will send the requested shared value to everyone if asked by all honest players.

For our proto
ols, we will need a set-up assumption, namely D

1

; : : : ; D

m

and P

1

; : : : ; P

n

get 
ommon input k; pk; pk

1

; : : : ; pk

n

, where k is the se
urity

parameter, pk

i

is the publi
 key of P

i

, and pk is a 
ommon referen
e string. As

private input, P

i

has a se
ret key sk

i


orresponding to pk

i

. For simpli
ity, we

assume here that the publi
 and se
ret keys are generated and given to players

initially by an ideal fun
tionality T . But we stress that T 
an be implemented

by a on
e-and-for-all prepro
essing among the players (it is well known that any

UC fun
tionality 
an be se
urely implemented if we have honest majority, or in

general Q2). In Se
tion 3.4, it is even suÆ
ient that players generate their own

key pairs and broad
ast the publi
 keys. We also assume a fun
tionality F

BC

,

allowing any dealer to broad
ast information to the veri�ers

1

. Communi
ation

between veri�ers uses standard authenti
ated but non-se
ret 
hannels. Note that

the UC framework in
orporates, in addition to the adversary Adv atta
king the

proto
ol, an environment Z that 
hooses inputs for and re
eives outputs from

honest players. We will only 
onsider environments that give integers (and not

?) as input to honest players. This models the assumption that honest players

would only attempt to VSS valid integers.

1

Note, that even if we implement the broad
ast via a subproto
ol, this 
an be done

su
h that we maintain the non-intera
tive nature of our proofs, namely the dealer

sends a single (signed) message to all players, who then internally agree on what he

said.



3.2 An Integer Commitment S
heme

A 
ommitment s
heme for domain S is given by a family of fun
tions 
om

pk

:

S � R

pk

! C

pk

, indexed by a publi
 key pk. One 
ommits by publishing C =


om

pk

(s; r), where s 2 S is the 
ommitted value and r 2 R

pk

is a random value.

A homomorphi
 
ommitment s
heme is a s
heme where we assume that S is an

additive group and that for any two 
ommitments C and C

0

and any number

�, anyone 
an 
ompute 
ommitments S and P su
h that being able to open C

and C

0

to s and s

0

, respe
tively, allows to open S to the sum s+ s

0

and P to the

produ
t �s.

We use a modi�ed version of the Pedersen 
ommitment s
heme [22℄, based

on a multipli
ative group G of order unknown to the players. This 
ommitment

s
heme �rst appeared in [16℄ and later in [15℄. We will need primes p; q where

p = 2p

0

+ 1 and q = 2q

0

+ 1 and p

0

; q

0

are also prime. The 
omputations are

done in Z

�

n

, where n = pq, and the publi
 key is pk = (n; g; h) where g; h are


hosen at random in Q

n

, the set of squares modulo n. Then we use 
om

pk

:

(s; r) 7! g

s

h

r

mod n: The s
heme is homomorphi
, sin
e given 
ommitments

C = 
om

pk

(s; r) and C

0

= 
om

pk

(s

0

; r

0

) then CC

0

= 
om

pk

(s+s

0

; r+r

0

) and C

�

=


om

pk

(�s; �r). Note that if we 
hoose r uniformly random from [0::n2

k

℄, then

r mod ord(h) is statisti
ally 
lose to being uniformly random in [0::ord(h)� 1℄.

An important advantage of this s
heme is that it allows 
ommitment to in-

tegers. This follows sin
e the 
ommitment is done in a group G of unknown

order. More spe
i�
ally, the following proposition holds for the above 
ommit-

ment s
heme.

Proposition 1 ([16℄). 
om

pk

(s; r) is a statisti
ally hiding and 
omputationally

binding 
ommitment s
heme, i.e.:

{ If fa
toring is infeasible, then given pk = (n; g; h) it is infeasible to 
ompute

s; s

0

; r; r

0

2 Z where s 6= s

0

su
h that 
om

pk

(s; r) = 
om

pk

(s

0

; r

0

).

{ For any two values s; s

0

, the distributions (pk; 
om

pk

(s; r)); (pk; 
om

pk

(s

0

; r

0

))

are statisti
ally indistinguishable.

3.3 Publi
-key En
ryption with Veri�able Opening

We introdu
e here a tool that we will need later. Suppose a player P has a pub-

li
/se
ret key pair (pk; sk), and re
eives 
iphertext from various senders, some

of whom may be 
orrupt. We want that the 
ryptosystem is 
hosen 
iphertext

(CCA) se
ure and has the additional property that for any re
eived 
iphertext 
,

P 
an reveal the de
ryption result x = D

sk

(
) and prove non-intera
tively and

eÆ
iently that x is 
orre
t. We want, of 
ourse, that \unopened" 
iphertexts

remain se
ure, whi
h ex
ludes the trivial solution of revealing the se
ret key.

Note that if 
 is a valid 
iphertext, the random 
oins used to generate 
 
an

serve as proof of what the plaintext was. But even if the re
eiver 
ould 
ompute

these 
oins eÆ
iently, there is still a problem if the sender is 
orrupt. Then 


may be invalid, and \the 
oins used to generate 
" is not even a well-de�ned

notion.



A formal de�nition of the notion we are after 
an be phrased as a variant of

the standard 
hosen 
iphertext se
urity game, where the ora
le answers de
ryp-

tion queries with the result as well as the proof of 
orre
tness. We do not give it

here for la
k of spa
e. Instead, we give our solution in a form tailored for dire
t

use in our proto
ol below. The proof that it works is then in
orporated in the

proof for the overall proto
ol

2

.

The key pair (pk; sk) for P will be the master se
ret and publi
 key for an

identity-based 
ryptosystem (IBE)[3℄. Note that, under reasonable assumptions,

eÆ
ient IBE's exist that do not use random ora
les[24℄. For the IBE we use, we

need that given identity t and pk, one 
an easily verify if a se
ret key sk

t

is the

se
ret key for identity t. This 
an indeed be done for all known eÆ
ient IBE's,

we 
all this IBE with veri�able se
ret keys (IBE-VSK). We assume that the

system is used in a proto
ol that assigns a unique tag to ea
h 
iphertext to be

sent to P . To en
rypt message m, the sender treats the tag t for this 
iphertext

as an identity and en
rypts the message to this id, i.e., he sends 
 = E

t

(m).

The re
eiver de
rypts by 
omputing the se
ret key sk

t

and then m = D

sk

t

(
).

To reveal the result of de
rypting 
, P reveals sk

t

. Everyone 
an now 
ompute

D

sk

t

(
). One must also verify that sk

t

is indeed the se
ret key 
orresponding

to t. From the assumption that tags are not reused and standard properties of

IBE, it follows that unopened 
iphertexts remain se
ure. A somewhat similar

idea was used for a di�erent purpose in [7℄.

3.4 VSS using Integer Commitments

In this se
tion we 
onstru
t a non-intera
tive veri�able se
ret sharing [9℄ (VSS)

s
heme based on LISS. We use the model des
ribed in the previous se
tions.

Spe
i�
ally, the 
ommon referen
e string will be a publi
 key pk = (g; h; n) for

the integer 
ommitment s
heme des
ribed above. Moreover, ea
h player P

j

has

a key pair (pk

j

; sk

j

) for an IBE-VSK as des
ribed above.

Proto
ol VSS

pk

(s)

On input s 2 [�2

l

::2

l

℄, the dealer D makes a 
ommitment C = 
om

pk

(s; r)

to s, and then exe
utes the following proto
ol to prove that he knows how

to open C to value s, and to se
ret share s:

Proto
ol Proof

g;h

(C)

1. Given an ISP M = (M; ; "), the dealer D 
hooses a random ve
tor

� 2 [�2

l

0

+k

::2

l

0

+k

℄

e

with h�; "i = s, and 
ommits to this sharing

ve
tor � = (�

1

; : : : ; �

e

)

T

by 
ommitments R

1

; : : : ; R

e

to �

1

; : : : ; �

e

,

respe
tively, where R

1

= C and all 
ommitments use (g; h) as pub-

li
 parameter. The 
ommitments R

2

; ::; R

e

to the additional ran-

domness are in
luded in the proof �. D 
omputes the shares of s:

2

The problem 
ould also be solved using non-intera
tive zero-knowledge, but this will

be mu
h too ineÆ
ient for our purposes. Using OAEP might work as well, but only

assuming random ora
les whi
h we want to avoid



s = (s

1

; : : : ; s

d

)

T

= M�, and 
omputes the opening information o

i

for the 
orresponding 
ommitment

C

i

=

e

Y

j=1

R

m

ij

j

using the homomorphi
 property, wherem

ij

is de�ned byM = [m

ij

℄.

Finally, he in
ludes 


i

= E

pk

 (i)

(o

i

) in his proof �, where all these


iphertexts are assigned a tag 
onsisting of C 
on
atenated with the

name of D (see Se
tion 3.3). Finally, D broad
asts C; �.

2. For ea
h i, P

 (i)

de
rypts 


i

. If he �nds that the resulting opening

information o

i

is in
orre
t w.r.t. C

i

, then he sends o

i

to all other

players, along with a proof that o

i

is indeed the result of de
rypt-

ing 


i

, this 
ounts as an a

usation against D. Otherwise he sends

\a

ept".

3. For any a

usation from P

 (i)

, ea
h player veri�es that any o

i

re-


eived is indeed the value that 


i

de
rypts to. If this is not the 
ase

this o

i

is dis
arded.

4. Ea
h player looks at all (non-dis
arded) o

i

-values he knows. If any

su
h o

i

is in
onsistent with C

i

, then he reje
ts. Otherwise he a

epts.

A su

essfully shared value s 
an be re
onstru
ted by simply having every

player P

i

open every 
ommitment C

j

where  (j) = i. For some quali�ed set

of su

essfully opened shares the players 
an then use the 
orresponding re
on-

stru
tion ve
tor � to re
onstru
t the se
ret. We have

Theorem 1. Given a se
ure IBE-VSK, the proto
ol VSS

pk

(s) se
urely imple-

ments F

V SS

, assuming any Q2 adversary stru
ture � .

Proof. To show that VSS

pk

(s) se
urely implements F

V SS

, we are given an ad-

versary Adv and an environment Z, and we need to 
onstru
t a simulator S. The

simulator intera
ts with Adv to simulate its view of atta
king the proto
ol, and

on the other hand intera
ts with F

V SS

on behalf of 
orrupt players. This game

is 
alled the ideal pro
ess. This is 
ompared to the real pro
ess, where Z;Adv

are intera
ting with a real instan
e of the proto
ol. In both pro
esses, Z and

Adv may 
ommuni
ate at any time. The goal is now to show that Z 
annot

distinguish the real from the ideal pro
ess. Our simulator works as follows:

1. The simulator generates the keys pk; f(pk

j

; sk

j

)g following T 's algorithm,

and sends all publi
 keys to Adv, along with se
ret keys for 
orrupted players.

2. The simulator S now a
ts whenever required, as follows:

{ If Adv sends C and a proof � to the broad
ast fun
tionality on behalf of


orrupt dealer D

j

, the simulator does the following: using its se
ret keys,

it 
an de
rypt 
iphertext in � intended for honest players and follow their

algorithm to 
ompute what they would send in the se
ond round. This

also lets it de
ide if the proof would be a

epted. If not, the simulator

sends ? to F

V SS

. If the proof is a

eptable, observe �rst that sin
e �



is Q2, the set of honest players, A, is quali�ed, and that every honest

player 
an open his 
ommitment to s

i

. Let � be a re
onstru
tion ve
tor

for A, that is, hs;�i = s and �

A

C = 0, i.e., if � = (�

1

; : : : ; �

d

)

T

then

d

X

i=1

s

i

�

i

=

d

X

i=1

�

i

e

X

j=1

m

ij

�

j

= �

1

= s;

where �

j

= 0 for  (j) =2 A. Hen
e, the above equation implies that

P

d

i=1

�

i

m

ij

= Æ

1j

, where Æ

ij

= 1 if i = j and 0 otherwise. Therefore, by

the homomorphi
 property, the simulator 
an open 
ommitment C

0

=

Q

d

i=1

C

�

i

i

to s

0

=

P

d

i=1

�

i

s

i

. Now, sin
e

C

0

=

d

Y

i=1

C

�

i

i

=

d

Y

i=1

0

�

e

Y

j=1

R

m

ij

j

1

A

�

i

=

e

Y

j=1

R

P

i

�

i

m

ij

j

= R

1

= C;

we see that the simulator 
an extra
t from the proof a way to open


ommitment C to a value s. The simulator sends s to F

V SS

.

{ On input (\D

j

, input") from F

V SS

, where D

j

is honest, the simulator

simulates what D

j

would send in the proto
ol, as follows: First, 
reate

a 
ommitment C to an arbitrary value. By the statisti
al hiding prop-

erty, there exists a way to open C to the 
orre
t value s used by D

j

,

ex
ept with negligible probability { although s is unknown to S. We

therefore pro
eed, assuming impli
itly that C \
ontains" s. Now, let A

be the set of 
orrupted players. Then there exists a sweeping ve
tor �

su
h that M

A

� = 0 and h�; "i = 1. Let �

0

= (r

1

; : : : ; r

e

)

T

be a random

distribution ve
tor su
h that h�

0

; "i = 0, i.e., a distribution ve
tor to

a random sharing of 0. Constru
t R

0

1

; : : : ; R

0

e

as random 
ommitments

of r

1

; : : : ; r

e

, respe
tively, with the ex
eption that R

0

1

= 1 (or the 
om-

mitment of r

1

= 0 using randomness 0). Then, by the homomorphi


property of the 
ommitment s
heme, 
ompute 
ommitments

C

0

i

=

e

Y

j=1

R

0

j

m

ij

;

to shares s

i

whi
h determines the se
ret 0. Now, given the 
ommitment

C for the se
ret s, we modify the 
ommitments so they be
ome 
on-

sistent with s: Compute the publi
 
ommitments R

i

= R

0

i

C

�

i

where

� = (�

1

; : : : ; �

e

)

T

is the sweeping ve
tor for A. Note that R

1

= R

0

1

C

�

1

=

1C

1

= C as required, sin
e h�; "i = 1 (i.e., �

1

= 1). The 
ommitments

to the shares in s will be as follows:

C

i

=

e

Y

j=1

R

m

ij

j

=

e

Y

j=1

(R

0

j

C

�

j

)

m

ij

=

e

Y

j=1

R

0

j

m

ij

C

�

j

m

ij

:

For the players in A we have that,

e

Y

j=1

C

�

j

m

ij

= C

P

j

�

j

m

ij

= C

0

= 1;



sin
e the inner produ
t of � and a row in M whi
h is owned by a player

in A is 0. So for a 
orrupt P

 (i)

we have C

0

i

= C

i

, and we know how to

open these 
ommitments. The simulated proof therefore 
onsists of the


ommitments R

1

; : : : ; R

e

, en
ryptions of 
orre
t opening information for

C

i

when P

 (i)

is 
orrupt, and en
ryptions of random values for honest

players.

To see that this simulation works, note the following: First, the simulation of

the initial set-up stage and of the 
ase where a 
orrupt dealer gives a proof is

perfe
t. In parti
ular, when a 
orrupt dealer does a VSS that would be a

epted

in the real proto
ol, the simulator 
an always extra
t the 
orre
t se
ret, and

honest players will therefore output a

ept also in the ideal pro
ess.

In the 
ase where an honest dealer does a VSS, this will in the ideal pro
ess

simply mean that it sends integer s to F

V SS

. The fun
tionality will send a

ept

to everyone, so all honest players output a

ept. This is also the 
ase in the

real proto
ol: 
orre
t opening information for ea
h C

i

is uniquely determined

from the 
iphertext 


i

, hen
e no honest player will a

use D and every other

a

usation will be reje
ted by the honest players.

Hen
e the only possible di�eren
e between the ideal and real pro
ess is in the

simulated 
ommitment C and proof � that is shown to Adv. By the statisti
al

hiding property of the 
ommitment s
heme and priva
y of the LISS s
heme,

it follows that the opening information sent to 
orrupt players, as well as the


ommitments R

1

; : : : ; R

e

have distribution statisti
ally 
lose the one seen in the

real proto
ol. So the only di�eren
e is the fa
t that the 
iphertexts intended

for honest players are random in the simulation, and 
ontain valid openings of


ommitments in the real proto
ol.

We 
annot argue that the two sets of en
ryptions are indistinguishable based

dire
tly on the ideal pro
ess be
ause S knows all se
ret keys. Instead, we 
on-

stru
t a ma
hine S

0

that a
ts as an adversary breaking the underlying IBE-VSK.

S

0

will run the algorithms of Z;Adv and S, with the following modi�
ations to

S: S

0

re
eives publi
 keys for the honest players from an ora
le. Whenever S

needs to de
rypt a 
iphertext sent to an honest player with tag t (see Se
tion

3.3), S

0

will ask the ora
le for the se
ret key for that tag, and 
an then de
rypt.

When S wants to 
reate 
iphertext for honest players in a simulated proof, S

0

will ask the ora
le to en
rypt either 1) random data or 2) genuine opening in-

formation for the relevant 
ommitments. The latter is possible be
ause S

0

also

runs Z and therefore knows ea
h se
ret that is shared, this allows it to 
reate

the 
ommitment C as a genuine 
ommitment 
ontaining the right value, and

from this it 
an 
ompute how to open all the other 
ommitments in that VSS. In

the 
ase 1), we produ
e exa
tly what we get in the ideal pro
ess, in 
ase 2) we

produ
e something statisti
ally 
lose to what we get in the real pro
ess. Hen
e,

if Z 
ould distinguish the two pro
esses, S

0


an use the output from Z to break

the underlying IBE-VSK. ut

For la
k of spa
e, we do not prove formally here that the proto
ol for re
on-

stru
tion of the 
ommitted se
ret works. It is quite straightforward based on the

binding property of the 
ommitment s
heme.



3.5 Veri�able Commitment Multipli
ation Proof

We now show a (distributed veri�er) proof that VSS'ed integers s; s

0

; s

00

satisfy

that s

00

= ss

0

:

Proto
ol MultProof

pk

(s; s

0

; s

00

)

1. The prover makes 
ommitments C;C

0

; C

00

to s; s

0

; s

00

and then exe
utes

Proof

g;h

(C), Proof

g;h

(C

0

), and Proof

g;h

(C

00

).

2. The prover exe
utes Proof

C

0

;h

(C

00

) using the same distribution ve
tor

�

s

as in step 1 (but with new independent randomness for the 
ommit-

ments).

3. Every player veri�es whether his shares obtained from Proof

g;h

(C) (from

step 1.) and Proof

C

0

;h

(C

00

) (from step 2.) 
oin
ide. If this does not

hold, he a

uses the dealer by opening the 
iphertexts he re
eived in

Proof

g;h

(C) and Proof

C

0

;h

(C

00

). Ea
h player veri�es any a

usation made.

4. The proof is a

epted if all subproofs were a

epted, and no valid a

u-

sations were made.

Note that the four exe
utions of the Proof proto
ol 
an be run in parallel. A

similar proto
ol appeared in [1℄, but we have here added Proof

g;h

(C

0

)

3

.

Theorem 2. Assuming the integer 
ommitment s
heme is binding and given a

se
ure IBE-VSK, MultProof

pk

(s; s

0

; s

00

) se
urely implements F

ab=


assuming any

Q2 adversary stru
ture � .

Proof. Note that making 
ommitments C;C

0

; C

00

and then exe
uting the �rst

3 instan
es of Proof is equivalent to exe
uting 3 instan
es of VSS

pk

. Therefore,

to simulate this, we run the simulator from the previous theorem 3 times (in

parallel). To simulate the exe
ution of Proof

C

0

;h

(C

00

), we run the same simulator

again, with the following 
hanges: when simulating the a
tions of an honest

dealer, the simulator will not 
reate its own 
ommitment to play the role of

the 
ommitment to the se
ret, instead it will use C

00

. Also, it will use the same

distribution ve
tor that was used in the simulation of Proof

g;h

(C).

To show that this simulation works, we only need to 
he
k that when we

extra
t opening information from an a

eptable proof given by a 
orrupt prover,

we will get values s; s

0

; s

00

su
h that ss

0

= s

00

. Note, that if the proof is a

epted,

it follows from the proof of Theorem 1 that we 
an extra
t from step 1. pairs

(s; r); (s

0

; r

0

) and (s

00

; r

00

) su
h that C = 
om

g;h

(s; r), C

0

= 
om

g;h

(s

0

; r

0

) and

C

00

= 
om

g;h

(s

00

; r

00

). Furthermore, steps 2. and 3. ensure that we 
an extra
t

(s; r

�

) su
h that C

00

= 
om

C

0

;h

(s; r

�

) = C

0

s

h

r

�

4

. Combining this with the

expression for C

0

= 
om

g;h

(s

0

; r

0

) = g

s

0

h

r

0

we get C

00

= C

0

s

h

r

�

= (g

s

0

h

r

0

)

s

h

r

�

=

g

ss

0

h

r

0

s+r

�

In other words, we 
an now open C

00

to both s

00

and ss

0

, whi
h


ontradi
ts the binding property unless s

00

= ss

0

. ut

3

This is ne
essary sin
e the order of the group of the 
ommitments is unknown and

we 
an therefore not prove soundness the same way as in [1℄ (Lemma 1).

4

Note that the proof in step 2. uses C

0

, whi
h might have been adversarially generated,

in pla
e of g whi
h 
omes from the 
ommon referen
e string. However, this is not a

problem sin
e the extra
tion will work for any set of values.



4 Veri�able Multipli
ation Proof Based on

Pseudo-Random Sharing

4.1 Repli
ated Integer Se
ret-Sharing and Share Conversion

In this se
tion we �rst introdu
e RISS, an integer version of Repli
ated Se
ret-

Sharing [20℄, where we share an integer over a monotone a

ess stru
ture. Then

we de�ne share 
onversion, and show that shares generated by a RISS s
heme


an be lo
ally 
onverted to shares in the same se
ret generated by LISS s
hemes.

S
heme Repli
ated Integer Se
ret-Sharing (RISS)

Let � be an adversary stru
ture. For ea
h set B 2 �

+


hoose a uniformly

random r

B

integer from the interval [�2

l+k

::2

l+k

℄ and send privately r

B

to

ea
h player P

i

=2 B. Furthermore, publish r = s+

P

B2�

+

r

B

, where s is the

se
ret from the interval [�2

l

::2

l

℄.

Lemma 1. The RISS s
heme is 
orre
t and (statisti
ally) private.

De�nition 7. Let S and S

0

be two se
ret-sharing s
hemes. We say that S is

lo
ally 
onvertible to S

0

if there exist lo
al 
onversion fun
tions g

1

; : : : ; g

n

su
h

that the following holds. If (s

1

; : : : ; s

n

) are valid shares of a se
ret s in S, then

(g

1

(s

1

); : : : ; g

n

(s

n

)) are valid shares of the same se
ret s in S

0

. We denote by

g the 
on
atenation of all g

i

, namely g(s

1

; : : : ; s

n

) = (g

1

(s

1

); : : : ; g

n

(s

n

)), and

refer to g as a share 
onversion fun
tion.

Note by the lo
ality feature of the 
onversion, that 
onverted shares 
annot

reveal more information about s than the original shares.

The following theorem is proved in the appendix, using ideas similar to what

was used in [10℄

Theorem 3. The RISS s
heme R

�

, realizing � , is lo
ally 
onvertible to any

LISS realizing an a

ess stru
ture �

0

� � .

Clearly, for any prime p, a RISS sharing of integer s 
an be thought of

as a repli
ated sharing over Z

p

of s mod p, by redu
ing all shares modulo p.

Furthermore, in [10℄ it was shown how to lo
ally 
onvert a repli
ated sharing

over Z

p

to any linear se
ret sharing (LSS) s
heme over Z

p

(su
h as Shamir's

s
heme). From these two observations, we immediately get

Proposition 2. The RISS s
heme R

�

, realizing � , is lo
ally 
onvertible to any

LSS over Z

p

realizing an a

ess stru
ture �

0

� � , where the original se
ret s

after 
onversion will be s mod p.

4.2 Appli
ation to VSS

We now show how the results from the previous subse
tion 
an be used to

generate a series of veri�ably shared se
rets by broad
asting only two values per

se
ret, at the initial 
ost of distributing a set of random seeds to the players. We



use the model de�ned earlier, where ea
h player P

i

has a publi
 and a se
ret key.

In this 
ase, we assume that there is a publi
 key pk

B

de�ned for ea
h B 2 �

+

,

and P

i

's publi
 key 
onsists of all pk

B

for those B in whi
h P

i

is not a member.

The se
ret key 
onsists of all se
ret keys 
orresponding to relevant pk

B

's. As

before, we assume these are keys for an IBE-VSK.

The following proto
ol does the intial distribution of seeds.

Proto
ol Random

fr

B

g

(�

+

)

1. For ea
h B 2 �

+

the dealer D 
hoose an uniformly random r

B

from

[0::2

k

[.

2. For ea
h B 2 �

+

D broad
asts r

B

en
rypted under pk

B

. The dealer's

name is used as tag for this 
iphertext. Ea
h player de
rypts all the


iphertexts for whi
h he has the se
ret key.

The proto
ol 
learly ensures that players have mutually 
onsistent shares, i.e.,

all honest players not in B agree on the value of r

B

, for any B 2 �

+

.

Given a pseudorandom fun
tion (PRF) '

�

(�) with k-bit keys and inputs, and

outputs in [�2

l+k

::2

l+k

℄, the following proto
ol is realizable.

Proto
ol VSS

fr

B

g

(s)

It is assumed that the dealer D has run Random

fr

B

g

(�

+

) on some adversary

stru
ture, �.

1. D broad
asts a value a, to serve as a \label" for this instan
e of the

proto
ol. The only demand is that a 
an be used as input to ', and that

D never reuses an a-value. D 
omputes, with his knowledge of fr

B

g,

r = s+

P

B

'

r

B

(a) and broad
asts r.

2. Ea
h player P

i


he
ks that r 2 [�(j�

+

j + 1)2

l+k

::(j�

+

j + 1)2

l+k

℄, and

reje
ts if this is not the 
ase. Otherwise, he 
omputes '

r

B

(a), for every

B where P

i

62 B.

This lemma follows easily by inspe
tion of the proto
ol:

Lemma 2. If D is honest, no honest player will reje
t in VSS

fr

B

g

(s). No matter

what the dealer does, if honest players a

ept, the set of values r; f'

r

B

(a)j B 2

�

+

g form a RISS sharing of some value s

0

. If D is honest, s

0

= s, otherwise

s

0

2 [�(2j�

+

j+ 2)2

l+k

::(2j�

+

j+ 2)2

l+k

℄.

It is also quite straightforward to see that if D is honest, and the PRF is se
ure,

a polynomially bounded adversary does not learn anything about the se
ret

involved. A proof of this is impli
it in the proof of Theorem 4 below. In the

appendix we dis
uss how a se
ret 
an be re
onstru
ted, on
e it has been VSS'ed

as above.

4.3 Multipli
ation Proof

In this se
tion we des
ribe a proto
ol whi
h non-intera
tively proves that a

shared value is the produ
t of two other shared values. For simpli
ity, we will



only 
onsider the 
ase of a threshold adversary who 
orrupts t < n=3 of the

players, so the adversary stru
ture � will in this se
tion 
onsist of all set of


ardinality at most t. In the appendix we des
ribe a generalization to all Q3

adversary stru
tures.

We will need a tool from [10℄, 
alled Pseudorandom Zero Sharing (PRZS).

This proto
ol assumes that for all B 2 �

+

, players not in B have been given t

random seeds r

1

B

; : : : ; r

t

B

and a prime p > n is agreed in advan
e. Based on this,

the proto
ol generates (by lo
al 
omputation only) a pseudorandom polynomial

f over Z

p

of degree at most 2t su
h that f(0) = 0 and ea
h player P

i

knows

f(i). The proto
ol is a simple generalization of the share 
onversion te
hnique.

In the following Random

fr

B

;r

1

B

;:::;r

t

B

g

(�

+

) will denote the proto
ol where the

dealer distributes the seeds r

B

; r

1

B

; : : : ; r

t

B

to all players not in B using en
ryption

under pk

B

. We will 
hoose a �xed prime p, su
h p > 2(4j�

+

j+ 2)

2

2

2(l+k)

.

Proto
ol MultProof

fr

B

;r

1

B

;:::;r

t

B

g

(a; b; 
)

1. The dealer D exe
utes Random

fr

B

;r

1

B

;:::;r

t

B

g

(�

+

).

2. D exe
utes VSS

fr

B

g

(a), VSS

fr

B

g

(b) and VSS

fr

B

g

(
).

3. The players use Proposition 2 to lo
ally 
onvert the RISS sharings we

now have of a; b; 
 to Shamir sharings of a mod p,b mod p and 
 mod p,


onsistent with polynomials f

a

; f

b

and f




of degree at most t; t and 2t

respe
tively. The players use PRZS to generate shares in a polynomial

f of degree at most 2t with f(0) = 0.

4. D uses his knowledge of all seeds to 
ompute the polynomial h = f +

f

a

f

b

� f




and broad
asts h.

5. Ea
h player P

i

veri�es that h(i) = f(i) + f

a

(i)f

b

(i) � f




(i). If the ver-

i�
ation fails then P

i

broad
ast \A

usation" and opens all en
rypted

values r

B

; r

1

B

; ::; r

t

B

known by him.

6. The proof is reje
ted if one of the following situations happen: one of

the VSS proto
ols in Step 2 was reje
ted, the broad
asted polynomial

h is not of degree at most 2t, h(0) 6= 0, or broad
asted values by a

player are 
onsistent with the en
rypted values but in
onsistent with

the broad
asted values by D.

Theorem 4. When based on a se
ure IBE-VSK and PRF, then the proto
ol

MultProof

fr

B

;r

1

B

;:::;r

t

B

g

(a; b; 
) se
urely implements F

ab=


, for any threshold-t ad-

versary stru
ture where t < n=3.

Proof. We 
onstru
t a simulator S that works as follows:

1. S generates the keys pk; f(pk

B

; sk

B

)g following T 's algorithm, and sends all

publi
 keys to Adv, along with se
ret keys for 
orrupted players.

2. S now a
ts whenever required, as follows:

{ When Adv does a proof on behalf of a 
orrupt dealer, S 
an simply

de
rypt everything sent by the adversary, and de
ide if the proof would

be a

epted in the real pro
ess. If so, it re
onstru
ts values a; b and 


and sends them to the ideal fun
tionality. Otherwise, it sends ? to the

ideal fun
tionality and uses the honest players' algorithm to 
ompute



the messages (
omplaints) they would send to 
orrupt players, and sends

these to Adv.

{ When an honest dealer does a proof, S will generate a simulated proof

by simply following the prover's algorithm, using a = b = 
 = 0.

To see that this simulation works as required, note �rst that the simulation

of the set-up phase and proofs by 
orrupt dealers is perfe
t. This is be
ause

the simulator follows the honest players algorithm to 
ompute their rea
tion

to the proof, so we just need to 
he
k that when the proof is a

epted, the

simulator 
an send a 
orre
t witness to the fun
tionality. By Lemma 2, the

values a; b; 
 that the simulator re
onstru
ts from the proof will be in the interval

[�(2j�

+

j + 2)2

l+k

: : : (2j�

+

j + 2)2

l+k

℄, so we know that jabj; j
j are less than

p=2. Now, from Step 5, we know that h agrees with f + f

a

f

b

� f




in all points

owned by honest players, of whi
h there are at least 2t + 1. This implies that

h = f + f

a

f

b

� f




, and therefore that ab = 
 mod p. But if ab 6= 
, it would have

to be the 
ase that jab � 
j � p, while on the other hand we already know that

jab� 
j � jabj+ j
j < p. So indeed ab = 
.

It remains to show that the simulation of an honest dealer's proof shown to

the adversary is indistinguishable from a real proof. For this, 
onsider the real

pro
ess Real, and assume the worst 
ase where the adversary has 
orrupted a

maximal set B of players. This means that when an honest dealer does a proof,

the key sk

B

is the only se
ret key the adversary does not know. We then de�ne

a new \hybrid" pro
ess Hyb

1

, where we repla
e the broad
asted en
ryptions of

r

B

; r

1

B

; : : : ; r

t

B

(under pk

B

) by en
ryptions of independent random values. By an

argument similar to the proof of Theorem 1, Real is indistinguishable from Hyb

1

if the underlying IBE-VSK is se
ure. Note that in Hyb

1

, we 
an repla
e evalu-

ations of the PRF using seeds r

B

; r

1

B

; : : : ; r

t

B

by ora
le a

ess to the PRF with

the same seeds, and all messages sent will remain un
hanged. We de�ne Hyb

2

by repla
ing the PRF ora
les by ora
les for truly random fun
tions. By se
urity

of the PRF, Hyb

2

is indistinguishable from Hyb

1

. Finally, we de�ne Hyb

3

as fol-

lows: we �rst repla
e the dealer's inputs (a; b; 
) to the VSS

fr

B

g

(�)-proto
ols by

random values in the legal interval, and se
ond, we 
hoose the polynomial h to

broad
ast as a uniformly random polynomial, subje
t to h(0) = 0, deg(h) � 2t,

and that h(i) agrees with the adversary's information for all 
orrupt players P

i

.

Now, Hyb

3

is statisti
ally indistinguishable from Hyb

2

: 
onsider, for instan
e,

the exe
ution of VSS

fr

B

g

(a) in Hyb

2

. If we subtra
t the randomness that the

adversary already knows, we see that he 
an 
ompute R+ a, where R is a truly

random value in I

r

= [�2

l+k

::2

l+k

℄. This is statisti
ally indistinguishable from

R + r where r is a random value in I

s

= [�2

l

::2

l

℄, whi
h is what the adversary

would see in Hyb

3

. The polynomial h is easily seen to have exa
tly the same

distribution in Hyb

2

and Hyb

3

. It follows that Real is indistinguishable from

Hyb

3

.

To �nish the proof, note that in the argument we just gave, we did not use

anything spe
ial about the inputs a; b; 
, other than ab = 
. Therefore, essentially

the same argument shows that the ideal pro
ess is also indistinguishable from



Hyb

3

sin
e the simulator uses a = b = 
 = 0 and otherwise follows the proto
ol.

The theorem now follows from transitivity of indistinguishability. ut

5 Interval Proofs and Appli
ation to Se
ure Computing

Boudot [5℄ observes that to prove that a number x lies in an interval [a; b℄ it

is suÆ
ient to prove that x � a � 0 and b � x � 0. By using a homomorphi



ommitments s
heme and a primitive to prove that a 
ommitted integer is a

square, he 
onstru
ts an eÆ
ient proof that a 
ommitted number is non-negative.

Only a small 
onstant number of 
alls to the primitive is required.

Boudot's proto
ols 
an be run in our settings by using one of the VSS pro-

to
ols we have presented to play the role of 
ommitments in Boudot's proto
ols.

Note that both types of VSS's we 
onstru
t are linear and so we have the ho-

momorphi
 properties needed. In this way, we get a non-intera
tive proof that a

shared number is in a given interval, using a 
onstant number of invo
ations of

our VSS proto
ol.

Furthermore, ea
h number x we prove something about is veri�ably shared

among the players, using a LISS s
heme (a RISS s
heme in 
ase of the se
ond

proto
ol). If we 
onsider the shares as numbers mod q for any prime q, we obtain

a linear sharing over Z

q

of x mod q. We 
an now, possibly after lo
al 
onversion

using [10℄, do se
ure 
omputing on su
h numbers using, e.g., the proto
ols from

[17, 4, 13℄. If what we really want is se
ure addition and multipli
ation over the

integers, we 
an use the initial interval proofs to make sure the numbers are

small enough to avoid modular redu
tions.
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A Re
onstru
tion for VSS based on RISS

Clearly, if an adversary stru
ture � is Q2, every 
omplement of a set B 2 �

+


ontains an honest player, so the VSS we 
onstru
ted via proto
ol VSS 
an

always be opened by having players open the en
ryptions of seeds they re
eived

in the initial phase. This is somewhat unsatisfa
tory, sin
e this will open any

se
ret that was shared using the relevant instan
e of Random

fr

B

g

(�

+

).

But if the adversary stru
ture is Q3, in parti
ular threshold-t with t < n=3, we


an do better: namely, we 
an use the tri
k from theMultProof

fr

B

;r

1

B

;:::;r

t

B

g

(a; b; 
)

proto
ol of 
hoosing a prime p that is guaranteed to be larger than the se
ret

s. Players then lo
ally 
onvert their shares to a Shamir-sharing of s, reveal the

shares and use standard error 
orre
tion to �nd s.

B RISS-based proto
ols for General Adversary

Stru
tures

To generalize all our proto
ols based on RISS to general Q3 a

ess stru
tures,

one simply repla
es the polynomials over Z

p

of degree at most t by sharings using

a monotone span program (MSP) M over Z

p

(same as ISP's, but de�ned over

Z

p

and not Z). These being linear, we 
an still 
onvert RISS shares to this type

using Proposition 2.Mmust be strongly multipli
ative and realize the adversary

stru
ture � su
h an MSP always exists (see [11℄). The polynomials of degree at

most 2t are repla
ed by sharings using M

�

, whi
h is an MSP 
onstru
ted from

M by 
omputing the tensor produ
t of ea
h row in M by itself and letting

the results be the rows in M

�

. Finally, the results on PRZS generalize in a

straightforward way to any linear se
ret sharing s
heme.

C Proof of Theorem3

In [21℄ Kra
hmer and Wigderson introdu
ed the notion of 
anoni
 span program,

we use the following modi�
ation for ISP.

De�nition 8 (Canoni
 ISP). Let M = (M; ; ") be an ISP for �

M

. We

de�ne a 
anoni
 ISP

^

M = (

^

M; ;1) as follows.

^

M has the same size and row

labeling as M, but possibly a di�erent number of 
olumns. Let �

+

= �

+

M

be the


olle
tion of maximal forbidden sets of �

M

. For every B 2 �

+

, let �

B

be the

ve
tor satisfying M

B

�

B

= 0 and h";�

B

i = 1. For ea
h maximal forbidden set

B 2 �

+

, the matrix

^

M will in
lude a 
orresponding 
olumn 


B

= M � �

B

(so

that altogether

^

M has as many 
olumns as sets in �

+

M

).



Observe the following properties of a 
anoni
 ISP. For every B 2 �

+

it holds

that 


B

B

= (0; : : : ; 0)

T

, i.e., the restri
tion of 


B

to the entries jointly owned by

the players in B is the zero-ve
tore. For ea
h A 2 � it holds that

^

M

T

A

�

A

= 1,

where �

A

is the re
onstru
tion ve
tor for M

A

. This holds be
ause, let 


B

be an

arbitrary 
olumn in

^

M

A

, then

(


B

)

T

A

�

A

= (M

A

�

B

)

T

�

A

= (�

B

)

T

(M

T

A

�

A

) = (�

B

)

T

" = 1;

where �

B

is 
orresponding sweeping ve
tor to the 
olumn 


B

. Sin
e this holds

for any 
olumn in

^

M , this implies that we use an additive sharing to share in

the 
anoni
 ISP, i.e., the target ve
tor is 1.

Lemma 3. Using the above notation, the s
heme S

^

M

is lo
ally 
onvertible to

S

M

via the identity fun
tion g(s) = s.

Proof. Let

^

� be some integer additive sharing, that is h1;

^

�i = s, whi
h is indu
ed

by the dealer's randomness in S

^

M

. Let � =W

^

� where W is a 
on
atenation of

all 
olumn ve
tors �

B

in the order used for 
onstru
ting

^

M . By the 
onstru
tion

of

^

M we have

^

M = MW and so

^

M

^

� = MW

^

� = M�. Thus, � produ
es the

same shares in S

M

as

^

� produ
es in S

^

M

. Finally, sin
e every �

B

must satisfy

h";�

B

i = 1, we have h";�i = "

T

W

^

� = h1;

^

�i, and thus � is 
onsistent with the

same se
ret s. ut

Lemma 3 states, that ea
h legal sharing of s under a 
anoni
 ISP, is also a sharing

of s under the 
orresponding ISP.

Lemma 4. Let R

�

be a RISS s
heme realizing � over the integers, M

0

=

(M

0

;  

0

; ") an ISP for �

0

su
h that �

0

� � , and

^

M

0

a 
anoni
 ISP of M

0

.

Then R

�

is lo
ally 
onvertible to S

^

M

0

.

Proof. Suppose �rst that �

0

= � . Denote the 
olle
tion maximal forbidden sets

by �

+

. The R

�

-share viewed by player P

i

is (r

B

)

B2�

+

:P

i

=2B

and the publi
 value

r = s +

P

B2�

+

r

B

. Fix some B

0

2 �

+

and let 


B

i

denote the i-th entry in 


B

.

De�ne

g

i

(s

i

) = (r

B

0

� r)


B

0

i

+

X

B2�

+

;B 6=B

0

r

B




B

i

;

sin
e ea
h 
olumn 


B

only has zeros in the entries 
orresponding to the players

in B, the g

i

is a lo
al 
onversion fun
tion. Furthermore, it the sharing of s as

required.

In the general 
ase, where �

0

� � , is only slightly more involved. For ea
h

B 2 �

0+

assign some set B

0

2 �

+


ontaining it. For ea
h B

0

2 �, de�ne r

B

0

to

be the sum of all r

B

su
h that B is assigned to B

0

, or 0 ir there is no B assigned

to B

0

. Then the same lo
al 
onversion fun
tion 
an be used. ut

The following theorem follows immediately from the above two lemmas.

Theorem 5. The RISS s
heme R

�

, realizing � , is lo
ally 
onvertible to any

LISS realizing an a

ess stru
ture �

0

� � .


