
An Algorithm for Finding Small Roots of
Multivariate Polynomials over the Integers

Domingo Gómez, Jaime Gutierrez, Álvar Ibeas

Faculty of Sciences,
University of Cantabria,

Santander E–39071, Spain

Abstract. In this paper we present a new algorithm for finding small
roots of multivariate polynomials over the integers based on lattice re-
duction techniques. Our simpler heuristic method is inspired in algo-
rithms for predicting pseudorandom numbers, and it can be considered
as another variant of Coppersmith’s method for finding small solutions of
integer bivariate polynomials. We also apply the method to the problem
of factoring an integer when we know the high-order bits of one of the
factors.

1 Introduction

In 1996, Coppersmith [9–11] introduced two rigorous lattice-based methods for
finding small roots of polynomials: one for univariate modular and another one
for bivariate integer polynomial equations. One of the main results is:

Theorem 1 (Theorem 2-[9]). Let p(ε1, ε2) be an irreducible polynomial in two
variables over ZZ, of maximum degree δ in each variable separately. Let ∆1,∆2

be bounds on the desired solutions x0, y0. Define p∗(ε1, ε2) = p(ε1∆1, ε2∆2) and
let W be the absolute value of the largest coefficient of p∗(ε1, ε2). If

∆1∆2 ≤ W 2/(3δ)−ε2−14δ/3,

then in polynomial time in (log W, δ, 1/ε) we can find all integer pairs (x0, y0)
with p(x0, y0) = 0 bounded by |x0| ≤ ∆1, |y0| ≤ ∆2.

The complicated proof of this important result is based on lattice basis re-
duction, with the so called LLL-technique (see [22]).

Lattice reduction techniques seem inherently linear. The general idea of this
technique is to translate our non linear problem to finding a short vector in a
lattice built from the nonlinear equation. Then, the so-called Shortest Vector
Problem and Closest Vector Problem in lattices play a major role (see Section
2).

In recent years, these techniques have been used repeatedly for the cryptan-
alytic attack of various cryptosystems. Coppersmith’s algorithm has many ap-
plications in cryptology: cryptanalysis of RSA with small public exponent when

some part of the message is known, polynomial time factorization of N = PQ
with high bits known and polynomial time factorization of N = P rQ for large
r; several papers have been published on different applications of those results
in cryptology, see for instance [20, 7, 12, 17, 14, 21]. The paper [9] also proposed
heuristic multivariate extensions for both approaches. The goal in this kind of
method is to maximize the bounds up to which roots of the polynomials can be
computed in polynomial time. The recent paper [18] also presents a new strategy
to solve this problem.

In this paper we present a method to compute small roots of a system of
multivariate polynomial equations with integer coefficients simpler than other
known algorithms for bivariate polynomials. Our heuristic algorithm is based
on the same idea used for predicting non-linear pseudorandom numbers, see [4–
6, 13]. Despite we are not able to provide bounds to which common roots of
the polynomials can be computed, we have implemented in C++ our approach
showing that it works relatively well in practice.

We also apply the method to the problem of factoring an integer when we
know the high-order bits of one of the factors. In contrast to other known solu-
tions of this problem, our approach:

– it is asymptotically less efficient,
– it does not require to compute any resultant of integer bivariate polynomials,

but it requires to exclude a very small set of primes Q,
– it requires lower size lattice coefficients and smaller lattice dimension,
– it is easy to implement.

The remainder of the paper is structured as follows. We start with a short
outline of some basic facts about lattices in Section 2. In Section 3 we give
an overview of our heuristic algorithm, we also include some complexity and
effectiveness of the proposed strategy. In Section 4 we present the results of
numerical tests produced in the C++ implementation using the NTL (Number
Theory Library) [25] . Section 5 discusses the problem of factoring an integer
when we know the high-order bits of one of the factors.

Acknowledgment. This work is partially supported by Spanish Ministry
of Science grant MTM2004-07086.

2 Background on Lattices

Here we collect several well-known facts about lattices which form the back-
ground to our algorithms.

We review several related results and definitions on lattices which can be
found in [8, 15]. For more details and more recent references, we also recommend
consulting [1, 16, 23, 24].

Let {b1, . . . , bs} be a set of linearly independent vectors in IRr. The set

L = {c1b1 + . . . + csbs, c1, . . . , cs ∈ ZZ}

is called an s-dimensional lattice with basis {b1, . . . , bs}. If s = r, the lattice L
is of full rank.

To each lattice L one can naturally associate its volume

vol(L) =
(
det (〈bi, bj〉)s

i,j=1

)1/2

,

where 〈a, b〉 denotes the inner product. This definition does not depend on the
choice of the basis {b1, . . . , bs}.

For a vector u, let ‖u‖ denote its Euclidean norm. The famous Minkowski
theorem gives the upper bound:

min {‖z‖ : z ∈ L \ {0}} ≤ s1/2vol(L)1/s (1)

on the shortest nonzero vector in any s-dimensional lattice L in terms of its
volume.

The Minkowski bound (1) motivates a natural question, named Shortest Vec-
tor Problem (SVP): how to find the shortest nonzero vector in a lattice. Unfor-
tunately, there are several indications that this problem is NP-hard when the
dimension grows. This study has suggested several definitions of a reduced basis
{b1, . . . , bs} for a lattice, trying to obtain a shortest vector by the first basis
element b1. The celebrated LLL algorithm of Lenstra, Lenstra and Lovász [22]
provides a concept of reduced basis and a desirable solution in practice.

Another related problem is the Closest Vector Problem (CVP): Given a lat-
tice L ⊆ IRr and a shift vector t ∈ IRr, the goal consists on finding a vector in the
set t +L with minimum norm. It is well-known that the CVP is NP-hard when
the dimension grows. An approximate polynomial time solution is presented in
[2].

However, both computational problems SVP and CVP are known to be solv-
able in deterministic polynomial time (polynomial in the bit-size of a basis of L)
provided that the dimension of L is fixed (see [19], for example).

3 The algorithm

In this section we present an sketch of an algorithm for computing small zeroes
of a system of integer polynomial equations.

Let f1, . . . , fm be polynomials in the variables x1, . . . , xn with integer co-
efficients. Also all the linear monomials and one monomial of degree 2 appear
in the first polynomial (this is possible thanks to Theorem 1). Suppose that
the associated polynomial system of equations has an unknown common zero
(ε1, . . . , εn) ∈ ZZn such that each component εi is bounded by some known
integer bound ∆i ∈ ZZ, that is, |εi| ≤ ∆i, i = 1, . . . n and

f1(ε1, . . . , εn) = 0,
f2(ε1, . . . , εn) = 0,

...
fm(ε1, . . . , εn) = 0.

(2)

3.1 On changes of variables

In order to apply our method is necessary that all the linear monomials appear
in the input polynomials. This can be done using a change of variables:

A : ZZ[x1, . . . , xn] → ZZ[x1, . . . , xn]
xi → xi + γi.

The coefficient of the monomial term xi of A(f) is:

∂f

∂xi
(γ1, . . . , γn).

The roots of a polynomial and its image are related by this function:

A′ : ZZn → ZZn

(ε1, . . . , εn) → (ε1 − γ1, . . . , εn − γn).

If the components of a root are bounded, i. e. |εi| ≤ ∆i then |εi−γi| ≤ ∆i + |γi|.
Briefly, we need that

∂f

∂xi
(γ1, . . . , γn) 6= 0

and that all |γi| are small. In the next theorem we will show how to find this point
and give an upperbound on its component. We do not include the straightforward
proof of the following result.

Proposition 1. Given f1, . . . , fm ∈ ZZ[x1, . . . , xn], non-zero polynomials of to-
tal degree less than h. It is possible to find in polynomial time a point (γ1, . . . , γn)
such as

|γi| ≤ hm

and
fi(γ1, . . . , γn) 6= 0

for all i = 1, . . . ,m.

Our main task is to design an efficient algorithm for computing the common
zero (ε1, . . . , εn) ∈ ZZn.

3.2 Plan of the algorithm

Basically, the algorithm is divided into several linearization steps.

First iteration: We construct a certain lattice L, see (5) below. It depends
on the Equation (2). We also show that a certain vector E directly related to
missing information about (ε1, . . . , εn) is a very short vector in the set t + L,
where t depends on the bounds ∆i and the coefficients of the polynomials fi. A
short vector F in t+L is found; see [19, 2] for appropriate algorithms. If F = E
then the unknowns are discovered in this linearization step.

Second and more iterations: If E 6= F , then we express E − F as a linear
combination of a reduced basis of the lattice L with small unknown coefficients
(see (6) and (7) below). Then, we apply the previous technique to the lattice
associated to equations (8) with bounds given in equation (7).

3.3 Sketch of the algorithm

First iteration. We construct the lattice L which depends on the above poly-
nomial system of equations. Let

M = {Mi(x1, . . . , xn), i = 1, . . . , t}

be the set of all non-unit monomials of the polynomials fi(x1, . . . , xn). So, we
have that

fi(x1, . . . , xn) = ai1M1(x1, . . . , xn) + · · ·+ aitMt(x1, . . . , xn) + fi(0, . . . , 0),

where aij ∈ ZZ, i = 1, . . . ,m and j = 1, . . . , t. We write Mi(x1, . . . , xn) = yi and
consider the following linear system of equations with m equations in t variables
yi:

a11y1 + · · ·+ a1tyt = −f1(0, . . . , 0),
a21y1 + · · ·+ a2tyt = −f2(0, . . . , 0),

...
am1y1 + · · ·+ amtyt = −fm(0, . . . , 0).

(3)

We transform these equations in the following way, so that they are satisfied by
a vector with balanced components and whose knowledge leads to a problem
solution: let

µi := Mi(∆1, . . . ,∆n), ∆ = lcm(µi, i = 1, . . . , t).

From Equation (3) we see that the vector

E =
(

∆M1(ε1, . . . , εn)
µ1

, · · · ,
∆Mt(ε1, . . . , εn)

µt

)
is a solution of the following linear system of congruences:

a11µ1Y1 + · · ·+ a1tµtYt = −f1(0, . . . , 0)∆,
a21µ1Y1 + · · ·+ a2tµtYt = −f2(0, . . . , 0)∆,

...
am1M1(∆1, . . . ,∆n)Y1 + · · ·+ amtµtYt = −fm(0, . . . , 0)∆,

Y1 ≡ 0 mod ∆/µ1,
...

Yt ≡ 0 mod ∆/µt.

(4)

Moreover, E is a relatively short vector. It is not difficult to prove that the
Euclidean norm ‖E‖ of E satisfies (note that the number of monomials t is
already fixed)

‖E‖ = O(∆).

Let L be the lattice consisting of integer solutions y = (y1, . . . , yt) ∈ ZZt of
the system of congruences:

a11µ1Y1 + · · ·+ a1tµtYt = 0,
a21µ1Y1 + · · ·+ a2tµtYt = 0,

...
am1µ1Y1 + · · ·+ amtµtYt = 0,

Y1 ≡ 0 mod ∆/µ1,
...

Yt ≡ 0 mod ∆/µt.

(5)

We compute any particular solution t of the linear system of congruences (4)
using classical linear algebra. Now, we apply an algorithm solving the CVP for
the shift vector t and the lattice L to obtain a vector

F =
(

∆F1

µ1
, · · · ,

∆Ft

µt

)
satisfying equations (4) and

‖F ‖ = O(∆).

Note that we can compute F in polynomial time from the information we
are given. We might hope that E and F are the same. We can assume without
loss of generality that x1, x2, . . . , xn ∈M, otherwise we can apply a linear trans-
formation to reach that requirement. Then, by assuming E = F we compute εi

and check if (ε1, . . . , εn) is a solution of equations (2).
Second iteration. We compute in polynomial time a reduced basis {U1, . . . ,Ur}

of the lattice L as explained in [22]. In fact, this computation is usually performed
to solve the CVP in the previous step.

U i =
(

∆U i
1

µ1
, · · · ,

∆U i
t

µt

)
.

Since E − F ∈ L there exist integers αi, i = 1, . . . , r such that

E = F +
r∑

i=1

αiU
i, (6)

and satisfying

|αi| = O

(
∆

‖U i‖

)
. (7)

So, the missing information now is αi. From Equation (6) and comparing coeffi-
cients we obtain a polynomial system of equations I in ZZ[ε1, . . . , εn, α1, . . . , αr]

M1(ε1, . . . , εn) = F1 +
∑r

i=1 αiU
i
1,

M2(ε1, . . . , εn) = F2 +
∑r

i=1 αiU
i
2,

. . .
Mt(ε1, . . . , εn) = Ft +

∑r
i=1 αiU

i
t .

Eliminating εi from the above ideal I we can derive some new equations

Hk(αi, Fj , U
i
j) (8)

depending only on αi, Fj and U i
j , i = 1, . . . , r and j = 1, . . . , t. This process

is called in the C++ program find relations; assuming that we have a non
linear system of equations, we know that always such that relations do exist
and we can compute some of them by substituting the linear monomials into
the non linear ones. Of course, we can use Groebner Basis theory or any other
elimination method to compute the whole elimination ideal I

⋂
ZZ[α1, . . . , αr],

but it is quite expensive from the complexity point, see [3]. From Equations (8),
we construct a new lattice and apply the same technique as in the first iteration.

This process can be repeated as many times as desired in order to obtain
better results.

3.4 Complexity and effectiveness of the algorithm

Let δ be the maximum total degree of the polynomials f1, . . . , fm ∈ ZZ[x1, . . . , xn]
and let W be the absolute value of the largest coefficient of fi(∆1x1, . . . ,∆nxn), i =
1, . . . ,m. We are finding algorithms to compute the common zero (ε1, . . . , εn) ∈
ZZn satisfying the system of polynomial equations (2) in polynomial time in
(log W, δ), whenever the integers ∆i are small enough. It is supposed that the
given bounds ∆i depend on (log W, δ) and may depend on other parameters.
So, the goal in this kind of method is to maximize the bounds up to which
roots of the polynomials can be computed in polynomial time. Unfortunately,
we are not able to provide an answer of this important aspect. Obviously, if
max(∆i, i = 1, . . . , n) is small, then the problem become uninteresting.

The Gaussian heuristic suggests that an r−dimensional lattice with volume
vol(L) is unlikely to have a nonzero vector which is substantially shorter than
vol(L)1/r. We analyze the Gaussian heuristic in the first iteration, that is, we
want control when E = F and

‖E − F ‖ = O(∆) ≤ vol(L)1/r.

In order to give a bound for the dimension r of the lattice L, we note that
a bound for the cardinality of the set M is

(
n+δ

δ

)
. Fixed δ and m then the

dimension of the lattice is O(nδ) and we have:

∆ ≤ vol(L)1/r.

According with the implementation (see Subsection ??) it is supposed that in
the second iteration we obtain a better result, but it seems difficult to study the
situation. However, in some concrete polynomials we can provide a deterministic
algorithm. We illustrate this fact with the problem of integer factoring, see below
Subsection 5.

3.5 The heuristic results in the case of one polynomial

In this section we give an heuristic result for the first and the second iteration
when we have a single multivariate polynomial. Suppose that m = 1, in that
case, we apply our method and we find a vector F with small norm:

‖F ‖ = O(∆).

If E and F were different, we would have that a lattice analogous to (5) has a
relatively small vector:

a11µ1Y1 + · · ·+ a1tµ1Yt = 0,
Y1 ≡ 0 mod ∆

µ1
,

...
Yt ≡ 0 mod ∆

µt
.

(9)

We will denote D = E−F . This vector is obviously in the lattice (9). The norm
of this vector is:

‖D‖ = O(‖E‖+ ‖F ‖) = O(∆).

Now, we are going to bound the volume of the lattice.

Lemma 1. Let L be the integer lattice defined by the equations:

c1Y1 + · · ·+ ctYt = 0,
Y1 ≡ 0 mod ν1

...
Yt ≡ 0 mod νt,

where ci ∈ Z, νi ∈ N, gcd(c1, . . . , ct) = 1. Then, we can lowerly bound the
volumen of the lattice by:

vol(L) ≥ 2−t2 |ci|
∏
j 6=i

νj , ∀i = 1, . . . , t.

Proof. If ci = 0, the result is trivial. Otherwise, we define the integer lattice Li

as the solutions of the system:

c1Y1 + · · ·+ ci−1Yi−1 + ci+1Yi+1 + · · ·+ ctYt ≡ 0 mod ci,
Yj ≡ 0 mod νj , ∀j 6= i.

Let {u1, . . . ,ut−1} be a basis of L. We build the vectors Uj ∈ ZZt−1, j =
1, . . . , t − 1 by just removing the i-th component of uj . It follows easily that
{U1, . . . ,U t−1} generate the lattice Li. And as ci does not vanish, it is actually
a basis.

Now,

‖u1‖ · · · ‖ut−1‖ ≥ ‖U1‖ · · · ‖Ut−1‖ ≥ vol(Li) = |ci|
∏
j 6=i

νj .

If {u1, . . . ,ut−1} is an LLL-reduced basis, then it is known that ‖u1‖ · · · ‖ut−1‖ ≤
2t2volL. Using this inequality we get:

2t2volL ≥ ‖u1‖ · · · ‖ut−1‖ ≥ ‖U1‖ · · · ‖Ut−1‖ ≥ vol(Li) = |ci|
∏
j 6=i

νj .

This finish the proof

Now, another result involving lattice and LLL-reduced basis.

Lemma 2. Let L be the integer lattice defined by the equations:

c1Y1 + · · ·+ ctYt = 0,
Y1 ≡ 0 mod ν1

...
Yt ≡ 0 mod νt.

Then, under the Gaussian heuristic, the components of any reduced lattice basis
vector is non-zero except the coefficients (c1, . . . , ct−1) ∈ V ⊂ ZZt−1

νtct
of cardinal-

ity:

#V = O

(
|ν1νtct|

ν1 . . . νtct)1/(t−1)

)
.

Proof. Let be u1, . . . ,ut−1 a LLL reduced basis. We have seen that if we remove
the last component of each vector we have a basis of the following lattice:

c1Y1 + · · ·+ ct−1Yt−1 modctνt
0,

Y1 ≡ 0 mod ν1

...
Yt−1 ≡ 0 mod νt−1.

Suppose that there is a vector ui

ui = (ν1e1, . . . , νt−1et−1)

which has one of its components equal to zero. Without loosing generality, we
will suppose that the second component is zero and the first one is non zero.
Thanks to the Gaussian heuristics, we know that:

‖ui‖ = O(ν1 . . . νtct)1/(t−1)).

It is easy to bound the components of the vector:

|ei| = O

(
‖ui‖
νi

)
.

If we fix all the ei, c2, . . . , ct−1 there are only O(ν1). So the total number possi-
bilities is:

#V = O

(
|ν1νtct|

ν1 . . . νtct)1/(t−1)

)
.

This finish the proof.

It is time we applied this theorem to our case. By the Gaussian heuristic and
without taking care of constants, we have that if:

‖E‖t = ∆t ≤ W∆t∏
j 6=i µj

≤ V(L1),

then the vector E has many possibilities of being the only one. This inequality
can be transform in this one: ∏

j 6=i

µj < W.

Each µj ≤ (∆1 . . .∆n)δ where δ is the total degree of the polynomial. The
number of µj is t, which is less than δn, so:

(∆1 . . .∆n) ≤ W 1/δn+1
. (10)

or
(∆1 . . .∆n) ≤ W 1/tδ. (11)

For the second iteration we are going to suppose that the polynomial, at least,
one monomial of degree two. Let be that monomial xrxs. After the first step we
have:

εr = Fa +
∑t

i=1 αiU
i
a,

εs = Fb +
∑t

i=1 αiU
i
b ,

εrεs = Fc +
∑t

i=1 αiU
i
c .

(12)

From this equations it is very clear how to eliminate εr, εs, the bounds on
the solutions are clear as well, and if we look at the coefficient of the monomial
α2

t is:

1 < U t
aU t

b = O

(
(‖U t‖µt)2

∆2

)
.

We are going to apply now again the result of 11 and 7:

∆t

vol(L)
= |α1| . . . |αt| ≤

(
‖U t‖µt

∆

)2/t(t−1)

(∆Ut∆Ut)1/t(t−1) ≈ µ
2/t(t−1)
t .

Note that this result is better than the previous one because when ∆t < vol(L)
the result trivally holds. In the other case, we are going to use that this approx-
imation µt ≈ (∆1 . . .∆n)d/n:

(∆1 . . .∆n)dt−2δn/(t(t−1)) ≤ W.

or

(∆1 . . .∆n) ≤ W
(t(t−1))n

(nδt2(t−1)−2d) .

This is the result for the second iteration.

4 Numerical tests

In this section we summarize some tests on the explained algorithm. We have
used ramdomly chosen polynomials whose coefficients (but possibly the inde-
pendent term) are 100-bits numbers. Once a polynomial and a tolerance ∆ are
selected, we have performed several test changing the independent term in such
a way that the polynomial has a root whose components are bounded by ∆.

As expected, the algorithm finds the corresponding root when the maximum
absolute value of the root components ∆ is smaller than a certain threshold,
which should depend on the number of variables n, the number of appearing
monomials t + 1, and the polynomial degree δ.

According to the algorithm, a maximum number of rounds must be fixed, in
such a way that an experiment fails whenever the last round does not output
the expected root. In these tests, we only perform two rounds.

We collect in the following tables the empirically obtained threshold ex-
pressed as a power of 2100.

δ = 2

H
HHHHt− n

n
2 3 4

1 0.63 0.36 0.25
2 0.37 0.24 0.18
3 0.28 0.17 0.12
4 −− 0.15 0.1
5 −− 0.11 0.08

δ = 3

HHH
HHt− n

n
2 3 4

1
2 0.23 0.26
3 0.22 0.17
4 0.15 0.14 0.07
5 0.14 0.11 0.03

δ = 4

HH
HHHt− n

n
2 3 4

1
2
3
4 0.16
5 0.1 0.08

5 Integer factoring with extra information

This section is devoted to apply the previous technique to the problem of fac-
toring an integer when we know the high-order bits of one of the factors. We
consider a number N which is product of two primes: P and Q and we analyze
the assumption that factoring is computationally difficult when the cryptanalyst
has access to extra information.

In cryptographic applications, the cryptanalyst may have available additional
information above and beyond the number N itself. In practice, Alice or Bob
(one of them) typically knows P and Q already, and uses these factors implic-
itly and/or explicitly during her/his cryptographic computations. The results of
these computations may become known to the cryptanalyst, who thereby may
find himself at an advantage compared to a pure factoring situation. The neces-
sary information and timing measurements may be obtained by passively eaves-
dropping on an interactive protocol. The Chinese Remainder Theorem (CRT)
is also often used to optimize RSA private key operations. With CRT, y mod P
and y mod Q are computed first (being y is the message to send). These initial
modular reduction steps can be vulnerable to timing attacks. The simplest such
attack is to choose values of y that are close to P or to Q, and then use timing
measurements to determine whether the guessed value is larger or smaller that
the actual value of P and Q.

Suppose that an attacker is able to find the high-order h bits of the smallest
prime P , t can we recover P and Q in polynomial time in log N?

A directed application of this problem comes from paper [27]. Here, an
identity-based variant of RSA in which the user’s modulus N is related to his
identity is proposed. For example, the high-order bits of N may be the user’s
name encoded in ASCII. If N is generated in such a way, somewhat more than
the high order 1

4 log2 N bits of P are revealed to the public.
From now, given an integer number A, log A means log2 A and polynomial

time means polynomial in log N .
Regarding positive answers for this problem, we can mention the work of

Rivest and Shamir [26] using a special case of integer programming, which needs
about h = 1

3 log N bits of P . The paper [11] by Coppersmith used a lattice-based
method to factor N using h = 3

10 log N bits of P .
The king result is also due to Coppersmith [9, 10] which requires only h =

1
4 log N bits of P and also uses lattice reduction techniques. In fact, his result is

a consequence of Theorem . We do not know any efficient implementation of the
algorithm, (see [20] for particular cases), which is quite involved.

5.1 Notation and preliminaries

Given a number N which is product of two primes P and Q, we suppose that
P < Q. Our results involve a parameter ∆ which measures how many high-
order bits of P are known. This parameter is assumed to vary independently of
P subject to satisfy the inequality ∆ < P . More precisely, we say that an integer
w is a ∆-approximation to integer u if |w − u| ≤ ∆.

So, in the case where the high-order h bits of the prime P are given, we
can build a ∆-approximation P0 to P , by taking the h high-order bits of P and
blog P c+ 1− h zeroes. In this case, ∆ = 2blog Pc+1−h − 1, that is,

P − P0 ≤ ∆,

∆ ∼=
P

2h
.

By dividing N into P0, we obtain a ∆1-approximation Q0 to Q:

|Q−Q0| ≤ ∆1,

∆1
∼=

Q∆

P
.

Let ε0 = P − P0 and ε1 = Q−Q0. From N = PQ we obtain:

f(ε0, ε1) = 0,

where
f(ε0, ε1) = (P0 + ε0)(Q0 + ε1)−N.

And with
|ε0| ≤ ∆, |ε1| ≤ ∆1. (13)

The main objective is to find roots of this innocent polynomial f(ε1, ε2).
Following the strategy in previous section, we obtain the following result:

In order to apply the Theorem 2, we suppose that we know N = PQ and the
high-order h = 1

4 log2 N bits of P . We apply Theorem 2 to polynomial f(ε0, ε1)
given by Equation (5.1) and take:

|x0| < P0N
−1/4 = ∆,

|y0| < Q0N
−1/4 = ∆1,

δ = 1, W = N3/4.

As corollary it follows:

Theorem 2 (Theorem 4-[9]). In polynomial time we can find the factoriza-
tion of N = PQ if we know the high-order (1

4 log2 N) bits of P

The proof of this result is quite involved and uses lattice reduction techniques.
In one hand, the proof requires the calculation of the associated lattice volume.
The corresponding matrix has (k + δ)2 rows and (k + δ)2 + k2 columns, where
k is an integer satisfying

k >
2
3ε

.

Fixed the degree δ a bound for the dimension of the lattice is O(k2).

Remark 1. Given h = (1
3 log2 N) bits of P we want to find the appropriate

integer k.
We know that ∆∆1 < W 2/(3δ)−ε2−14δ/3 and since W 3/4, we obtain

(
1
4

+
3
8
ε) log2 N < h =

1
3

log2 N.

Then ε < 2
9 . On the other hand, k > 2

3ε implies k > 3. So the lattice dimension
is bigger than 41.

In practice, if the number of bits from P is near the threshold 1
4 log N , the size

of intermediate steps grow. This is, less bits known imply more computations.
The used lattice dimension is big, as well as the size of lattice coefficients. Finally,
his method requires the resultant of two bivariate integer polynomials.

In next subsection we present a new approach where for 1
3 log2 N bits of P

we need a lattice of dimension only 4.

5.2 One round lattice reduction

First of all, we remark that if P0 and Q0 are given as in Subsection 5.1, they are
unique, that is, if we know the high-order h bits of P and N is fixed, then P0 and
Q0 are uniquely determined. Now we present the main result in this subsection:

Theorem 3. For a prime P and natural numbers g and h, there is a set
V(P, g, h) ⊆ ZZP of cardinality #(V(P, g, h)) = O(22 log P+g−3h) with the fol-
lowing property. Given N = PQ and the high-order h bits of P , whenever
Q 6∈ V(P, g, h), there exists an algorithm recovering P and Q on determinis-
tic polynomial time, where g = blog Qc.

Proof. First, we will suppose the number of bits of the prime P is given, then we
know g. Let P0, Q0,∆1,∆ as in Subsection 5.1, where P0 is a ∆-approximation
to P and Q0 is a ∆1-approximation to Q. We can reformulate the theorem as
follows: there is a set V(∆, ∆1) ⊂ ZZP of cardinality #(V(∆, ∆1)) = O(∆2∆1)
with the following property. Whenever Q 6∈ V(∆, ∆1), there exists an algorithm
recovering P and Q on deterministic polynomial time.

The result is trivial when 4∆2∆1 ≥ P , and so we assume 4∆2∆1 < P .

The set V(∆, ∆1) of primes Q that we are going to exclude consists of values
Q satisfying the following congruence:

d1Q + E ≡ 0 mod P, (14)

where |d1| ≤ 4∆ and |E| ≤ 8∆∆1. Note that there are at most O(∆2∆1) choices
for d1 and E. Once these parameters are chosen, there can be at most one choice
for Q such that d1Q + E ≡ 0 mod P . Hence, #(V(∆, ∆1)) = O(∆2∆1).

Suppose that Q 6∈ V(∆, ∆1). An outline of our proof goes as follows. We aim
to show that the integers εj occur as certain components of a short vector in an
appropriate lattice; this lattice can be constructed from the information that we
are given. We find ε0 and ε1 by using well-known techniques for finding short
vectors in lattices, and then we use the equalities P = ε0 + P0 and Q = ε1 + Q0

to recover P and Q. We obtain

f(ε0, ε1) = 0.

More explicitly, the method is derived from the following construction.

A = P0Q0 −N, B = Q0∆,

C = P0∆1, D = ∆∆1,

then
A∆∆1 + B∆1ε0 + C∆ε1 + Dε0ε1 = 0. (15)

Therefore, the lattice L consisting of integer solutions x = (x0, x1, x2, x3) ∈ ZZ4

of the system of congruence equations:

Ax0 + Bx1 + Cx2 + Dx3 = 0,
x0 ≡ 0 mod ∆∆1,

x1 ≡ 0 mod ∆1,

x2 ≡ 0 mod ∆,

(16)

contains the vector

e = (∆∆1e0,∆1e1,∆e2, e3) = (∆∆1,∆1ε0,∆ε1, ε0ε1). (17)

We aim to show that e is a small vector in the lattice L. We have:

e0 = 1, |e1| ≤ ∆ |e2| ≤ ∆1, |e3| ≤ ∆∆1.

Using the bounds given in Equation (13), the Euclidean norm of e satisfies the
inequality

‖e‖ ≤
√

∆2∆2
1 + ∆2∆2

1 + ∆2∆2
1 + ∆2∆2

1 = 2∆∆1. (18)

Assume there is another vector f = (∆∆1f0,∆1f1,∆f2, f3) ∈ L with

‖f‖ ≤ ‖e‖ ≤ 2∆∆1.

which is not parallel to e, in particular:

|f0| ≤ 2, |f1| ≤ 2∆ |f2| ≤ 2∆1, |f3| ≤ 2∆∆1. (19)

We define the vector d = f0e − e0f . The first component of the vector d
is zero, and d lies in the lattice L. Then, the first congruence in Equation (16)
implies that

B∆1d1 + C∆d2 + Dd3 = 0.

Simplifying the above equation:

Q0d1 + P0d2 + d3 = 0, (20)

where di = eif0−fi. Note that |di| ≤ 2|ei|+ |fi| for i = 1, 2, 3 and so our bounds
on ei and fi imply

|d1| < 4∆, |d2| < 4∆1, |d3| < 4∆∆1. (21)

From Equation (20), if d1 = d2 = 0 then d3 = 0. But this implies d = 0 and
so f0e = e0f . This contradicts the fact that f and e are not parallel.

The case d1 = 0 6= d2 is easily avoided because the assumption 4∆2∆1 < p
implies p−∆ > 4∆∆1, and so, the resulting equation P0d2 + d3 = 0 cannot be
satisfied.

Making the substitutions P0 = P −ε0 and Q0 = Q−ε1 in Equation (20) and
reducing modulo P , we find that

Qd1 + d3 − ε0d2 − ε1d1 ≡ 0 mod P. (22)

Writing:
E = d3 − ε0d2 − ε1d1,

we obtain:

Qd1 + E ≡ 0 mod P. (23)

The bounds (21) imply |d1| ≤ 4∆ and |E| ≤ 8∆∆1. But then (23) implies
that Q ∈ V(∆, ∆1), and so we have a contradiction. This contradiction shows
that there exists no small vector f in L other than vectors parallel to e.

We remark that L is defined using information we are given, and recall that
the shortest vector problem can be solved in deterministic polynomial (in the
bit size of a given basis of the lattice) time in any fixed dimension, see [19]. This
certainly applies to the lattice L. Once we have found a short vector f in L, we
know that e = f/f0 since f is parallel to e and since e0 = 1. Obviously, given
the second component ∆1ε0 of e we can find P .

To finish the proof, remember that we have assumed to know the number
blog P c. If we do not have this information we can apply the above algorithm
from 1 to blog Nc. Obviously the time complexity keep polynomial on log N .
This completes the proof. ut

For practical application of this bound, we note that in most of the cases the
values P and Q are taken randomly, then the probability that Q lies in V(∆, ∆1)
is:

∆2∆1

P
=

∆3Q

P 2
. (24)

And this is less than one if:

∆3 <
P 2

Q
. (25)

In other words:
log N

3
=

log P + log Q

3
≤ h. (26)

If this inequality holds, then we can probably find the complete factorization by
this method. In fact this was the first bound obtained by Rivest and Shamir [26].
However, the present algorithm compare favorably computationally speaking
with Coppersmith method, because we are working in a lattice of dimension 4
instead of 41, see Remark 1.

5.3 Two rounds lattice reduction

The previous theorem can be generalized to two rounds lattice reductions ob-
taining a better result following the Algorithm in Subsection 3.2, that is, use
the Closest Vector Problem CVP (see Section 2) instead of SVP used in the
Theorem 3.

Theorem 4. For a prime P and natural numbers g and h, there is a set V(P, g, h) ⊂
ZZP of cardinality #(V(P, g, h)) = O

(
24 log P−12h+4g

)
with the following prop-

erty. Given N = PQ and the high-order h bits of P , whenever Q 6∈ V(P, g, h),
there exists an algorithm recovering P and Q on deterministic polynomial time,
where g = blog Qc.

We remark that the size of the “possibly failing” values, when express in

terms of ∆, ∆1 translates into: #(V(P, g, h)) = O

((
∆2∆1

P

)4
)

.

Now, lets talk about the practical applications of this result, as Theorem 3,
we want to know when it probably we can recover this two factors in polynomial
time. The result is non trivial if

(∆2∆1)4 ≤ P 5

or

(∆12) ≤ P 9

Q4
.

In terms of bits, since ∆ ∼= P
2h , we have

log(P)
4

+
log(Q)

3
≤ h.

Or, in terms of the number of bits of N :

log(N)
4

+
log(Q)

12
≤ h.

If the primes P and Q are balanced, that is, P = O(N1/2) = Q (for instance
due to security reasons this is the case for RSA cryptosystem) we have

7
log(N)

24
≤ h.

This compares favorably with the first result of Coppersmith [11] which re-
quires to know 3 log(N)

10 bits of P . Lets make an example suppose that P and Q
has 500 bits, from [11] result we need to know 300 bits, in our case we need 292
bits. However, our result is worst if the primes are unbalanced.

Remark 2. On the other hand, the dimension of the lattice in [9, 10] for this
particular number of bits 7 log(N)

24 = h is higher than our 6 lattice dimension on
Theorem 4. Applying the same argument as Remark 1 we have that

(
1
4

+
3
8
ε) log2 N < h =

7
24

log2 N.

Then ε < 2
27 . Since k > 2

3ε , it implies k > 9. So the lattice dimension in [9, 10] is
bigger than 199.

We are working in the generalization of our method, we have some problems
to compute the volume of the corresponding lattices in order to obtain similar
results like previous one. The following subssection will show that when the num-
bers of rounds grows we obtain a better result, but never we get Coppersmith’s
bound [9].

5.4 Experimental results

We want to provide some experimental results. We have implemented the al-
gorithm introduced in the previous section on a Debian-PC computer with two
processors of 1Ghz and 1Gb (respectively) of memory ram. Our implementation
use the free library NTL (=Number Theory Library)[25] together with the
library GMP (=Gnu Multi Precision Library).

In the implementation we have asked ourselves what is the time of finding
the factorization of these numbers, we liked to see how our algorithm does in
a general case, that is, using the same idea in a general way, and to see if it is
practical in its use.
We measure the time the number of bits of P and the number of bits of Q and
in number of known P ’s bits.

Bits of P Bits of Q Bits known Time
100 100 66 3.675 sec
100 100 60 10.271 sec
512 512 306 11.392 sec
512 512 300 14.025 sec
512 512 292 15.339 sec
1024 1024 624 7.240 sec
1024 1024 600 29. 357 sec
1024 1024 580 1 m. 35 sec

All the cases that we have choosen, the algorithm has returned the factor-
ization, the first two cases where case for toying, the next three cases are not
trivial, that means that a number of 1024 bits is a big number, and finding its
factorization is not easy at all. On the negative side, the results are quite distant
from Coppersmith result, the reason of this is that we need to apply more times,
however in that case, the constast takes places so, like in Coppersmith method,
it become necessary to guess more bits in order to make the algorithm works.

References

1. M. Ajtai, R. Kumar and D. Sivakumar, “A sieve algorithm for the shortest lattice
vector problem”, Proc. 33rd ACM Symp. on Theory of Comput. (STOC 2001),
Association for Computing Machinery, 2001, 601–610.

2. L. Babai, “On Lovasz Lattice Reduction and the Nearest Lattice Point Problem”,
Combinatorica, 6, 1986, 1–6.

3. T. Becker, V. Weispfenning, “Groebner bases. A computational approach to com-
mutative algebra”. In cooperation with Heinz Kredel. Graduate Texts in Mathe-
matics, 141. Springer-Verlag, New York, 1993.

4. S. R. Blackburn, D. Gomez-Perez, J. Gutierrez and I. E. Shparlinski, “Predict-
ing nonlinear pseudorandom number generators”, Math. Computation, 74 (2005),
1471–1494.

5. S. R. Blackburn, D. Gomez-Perez, J. Gutierrez and I. E. Shparlinski, “Predicting
the inversive generator”, Proc. Coding and Cryptography, IMA-03, LNCS 2898,
Springer-Verlag, Berlin 2003, 264–275.

6. S. R. Blackburn, D. Gomez-Perez, J. Gutierrez and I. E. Shparlinski, “Reconstruct-
ing noisy polynomial evaluation in residue rings”, Journal of Algorithms. In press,
S0196-6774(04)- 00115-4/FLA AID:1388. Available online.

7. J. Bloemer, A. May, “A tool kit for Finding small roots of Bivariate Polynomial
over the Integers”, Advances in Cryptology-Crypto 2003, LNCS 2729, Springer
Verlag, 2003, 27–43.

8. J.W.S. Cassels, “An Introduction to the Geometry of Numbers”. Springer-Verlag,
New York, 1971.

9. D. Coppersmith: “Small solutions to polynomial equations and low exponent RSA
vulnerabilities”. J. Cryptology 10 (4), 1997, 233–260.

10. D. Coppersmith: “Finding a Small Root of a Bivariate Integer Equations; Factoring
with High Bits Known”. U. Maurer (Ed), Proc. EUROCRYPT-96, LNCS 1070,
Springer-Verlag, Berlin 1996, 155–156.

11. D. Coppersmith: “Factoring with a hint”. IBM Research Report RC. 1995, January
16, 1995.

12. J-S Coron, “Finding small roots of Bivariate Integer Polynomial Equations Re-
visted”, Proc. Advances in Cryptology- Eurocrypt’04, LNCS 3027, Springer Verlag,
2004, 492–505.

13. D. Gomez-Perez, J. Gutierrez and A. Ibeas, “Cryptanalysis of the Quadratic gener-
ator”, Proceedings in Cryptology-INDOCRYPT 2005, LNCS 3797, Springer Verlag,
Berlin 2005, 118–129.

14. D. Gomez-Perez, J. Gutierrez and A. Ibeas, “Efficient Factoring Based on Extra
Information”, Preprint, University of Cantabria, Spain 2006. A preliminary version
in Proc. Spanish Conference on Cryptography, RECSI-2006, Barcelona, September
2006.

15. J.W.S. Gruber and C.G. Lekkerkerker, “Geometry of Numbers”. North-Holland,
1987.

16. A. Joux and J. Stern, “Lattice reduction: A toolbox for the cryptanalyst”, J.
Cryptology , 11 (1998), 161–185.

17. N.A. Howgrave-Grahm, “Finding small roots of univariate revisted”, Proc. Cryp-
tography and Coding, LNCS 1355, Springer Verlag, 1997, 131–142.

18. E. Jochemz and A. May, ”A Strategy for Finding Roots of Multivariate Polynomials
with New Applications in Attacking RSA Variants” n Advances in Cryptology
(Asiacrypt 2006), Lecture Notes in Computer Science, Springer-Verlag, 2006.

19. R. Kannan, “Minkowski’s convex body theorem and integer programming”, Math.
Oper. Res., 12 (1987), 415–440.

20. A. May, “Computing the RSA Secret Key is Deterministic Polynomial Time
Equivalent to Factoring”, In Advances in Cryptology (Crypto 2004), LNCS 3152,
Springer Verlag, 2004, 213–219.

21. Paul C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems”. Proc. CRYPTO-96, LNCS 1109, Springer-Verlag,
Berlin 1996, 104–113.

22. A. K. Lenstra, H. W. Lenstra and L. Lovász, “Factoring polynomials with rational
coefficients”, Mathematische Annalen, 261 (1982), 515–534.

23. D. Micciancio and S. Goldwasser, “Complexity of lattice problems”, Kluwer Acad.
Publ., 2002.

24. P.Q. Nguyen and J. Stern, “Lattice reduction in cryptology: An update”, in: W.
Bosma (Ed), Proc. ANTS-IV, LNCS 1838, Springer-Verlag, Berlin 2000, 85–112.

25. V. Shoup, “Number theory C++ library (NTL)”, version 5.3.1, available at
http://www.shoup.net/ntl/.

26. R. L. Rivest and A. Shamir: “Efficient factoring based on partial information”. Ad-
vances in Cryptology, Proc. EUROCRYPT-85, LNCS 219, Springer-Verlag, Berlin
1986, 31–34.

27. S.A. Vanstone and R. J. Zuccherato: “Short RSA Keys and their Generation”. J.
Cryptology 8 (2), 1995, 101–114.

