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Abstract

The black-box field (BBF) extraction problem is, for a givezldiF, to determine a secret field element
hidden in a black-box which allows to add and multiply valire®" in the box and which reports only
equalities of elements in the box. This problem is of crypapdic interest for two reasons. First, for
F = F, it corresponds to the generic reduction of the discreterltiga problem to the computational
Diffie-Hellman problem in a group of prime ordgr Second, an efficient solution to the BBF problem
proves the inexistence of certain field-homomaorphic entiopschemes whose realization is an interesting
open problems in algebra-based cryptography. BBFs aredadlsalependent interest in computational
algebra.

In the previous literature, BBFs had only been consideredhfe prime field case. In this paper we
consider a generalization of the extraction problem to BBfés$ are extension fields. More precisely we
discuss the representation problem defined as follows: iFen@eneratorg, . . ., g4 algebraically gen-
erating a BBF and an additional elementall hidden in a black-box, expressalgebraically in terms of
g1, - --,94- We give an efficient algorithm for this representation peaband related problems for fields
with small characteristic (e.gf = F»» for somen). We also consider extension fields of large charac-
teristic and show how to reduce the representation probdetinet extraction problem for the underlying
prime field.

These results imply the inexistence of field-homomorphscqaposed to only group-homomaorphic,
like RSA) one-way permutations for fields of small charaster.

Keywords: black-box fields, generic algorithms, homomorphic endoyptone-way permutations, com-
putational algebra.

1 Introduction

1.1 Black-Boxes and Generic Algorithms

Algebraic structures like groups, rings, and fields, andriigms on them, play a crucial role in cryptography.
In order to compute in an algebraic structure one needs ageptation of its elements as bitstrings. One
can consider algorithms that do not exploit any propertyhef tepresentation, i.e., that ageneric This
generic model is of interest for two reasons. First, geregorithms can be used no matter how the structure
is represented, and second, this model allows for significamer bound proofs for certain computational
problems. For instance, Shoup [Sho97] proved a lower boartiecomplexity of any generic algorithm for
computing discrete logarithms in a finite cyclic group.

Representation-independent algorithms on a given algestraictureS are best modeled by a black-box
[BS84, BB99, Mau05] which initially contains some elemeatsS, describing the instance of a computa-
tional problem in consideration. The black-box accepttrirnsions to perform the operation(s) 6fon the



values stored in it. The (internal) values are stored in esklble registers and the result of an operation is
stored in a new register. The values stored in the black-betiaden and the only information about these
values provided to the outside (an hence to the algorithmgagualities of stored elements. This models that
there is no (need for a) representation of values but thartieless one can compute on given values. The
equality check provided by the black-box models the tripadperty, of any (deterministic) representation,
that equality is easily checkéd.

A basic problem in this setting is thextraction problem The black-box contains a secret valuéand
possibly also some constants), and the task of the algorghoncomputer (explicitly).

For example, a cyclic group of prime ordelis modeled by a black-box wher® is the additive group
Z,, (and which can be assumed to contain the constaatgi1 corresponding to the neutral element and the
generator, respectively). The discrete logarithm prolikethe extraction problem for this black-box. Shoup’s
result implies that no algorithm can extractif uniformly chosen) with fewer tha®(,/p) operations. Ac-
tually, this many operations are required to provoke a simgllision in the black-box, which is necessary
for the algorithm to obtain any information about the cohtafrthe black-box. Both the baby-step giant-step
algorithm and the Pohlig-Hellman algorithm are generioatgm which can be described and analyzed in
this model.

1.2 Black-Box Fields and Known Results

If one assumes in the above setting that the black-box ngt @idws addition but alsomultiplication of
values modul®, then this corresponds todack-box field BBF).

An efficient (non-uniform) algorithm for the extraction falem inF, was proposed in [Mau94] (see
also [MW99]), where non-uniform means that the algorithrpatels orp or, equivalently, obtains a help-
string that depends agm Moreover, the existence of the help-string, which is dbtuae description of an
elliptic curve of smooth order ové,, depends on a plausible but unproven number-theoretiectumg.

Boneh and Lipton [BL96] proposed a similar buiform algorithm for the extraction problem if,,
but its running time is subexponential and the analysis efies on a related unproven number-theoretic
conjecture.

1.3 Black-Box Extention Fields

Prime fields differ significantly from extension fields, whiis relevant in the context of this paper:

Since a prime field, is, in contrast to an extension field, (for £ > 1), generated by any non-zero
element (for instance), there is a unique isomorphism between any two instaatiatofF, that is given
by mapping thel of the first instance to thé of the second. In particular there is a unique isomorphism
between a BBF ovelf,, and any explicit representation &f,. Therefore there is a unique element in an
explicit representation corresponding to a secret valirsside the black-box and the extraction problem as
stated above is well defined.

As an extension fiel&,. (for & > 1) contains non-zero elements that ot algebraically generate the
entire field, it is not sufficient to give a secret valuénside the black box in order to describe an arbitrary
extension field. Rather the field must be given by a set of aiési{generators) in the black-box (algebraically)
generating the field. A (vector space) basi&pf overF,, would be a natural choice, but our goal is to make
no assumption whatsoever about how the given elementsajertae field.

Furthermore, extension field§,» (for £ > 1) have non-trivial automorphisms, so therenis unique
isomorphism between a black-box extension field and an @xpipresentation. Therefore the extraction

INote that this model is simpler than Shoup’s model which mesua random representation.



problem as originally posed is not well defined for extendieids. We hence formulate a more general
problem for extension fields, thiepresentation problemrite a secret: inside the black-box as an algebraic
expression in the other elements (generators) given inlduilbox.

When an explicit representation of the field is given outsifithe black-box (say in terms of an irre-
ducible polynomial of degrek over[,), then one can also consider the problem of efficiently camguan
isomorphism (and its inverse) between this explicitly givield and the BBF.

1.4 Contributions of this Paper

We present an efficient reduction of the representationl@nolior a finite black-box extension field to the
extraction problem for the underlying prime fieRy). If the characteristip of the field in question is small,
or if p is large but an efficient algorithm for the extraction praobléor I, exists, then this yields an efficient
algorithm for the representation problem for the extendield. Under their respective number-theoretic
assumptions one can also use the results of [Mau94, BL96, 8JW9

Theorem 1(informal). The representation problem for the (finite) black-box (esien) fieldFg of character-
istic p is efficiently reducible to the representation problempr If the characteristig is small (e.gp = 2)
then the representation problem f@g is effciently solvable.

Furthermore, our algorithms provide an efficiently complgasomorphism between the black-box field
and an explicitly represented (outside the black-box) mquhic copy. If preimages of the generators inside
the black-box under some isomorphism from an explicitlyespnted field into the black-box are known or if
the black-box allows inserting elements from an explicithpresented field, we may even efficiently extract
any element from the black-box field, i.e., find the elemenmtesponding to ar: in the black-box in the
explicit representation.

In particular, these results imply that any problem posedafblack-box field (of small characteristic)
can efficiently be transformed into a problem for an explfigtd and be solved there using unrestricted
(representation-dependent) methods. For example, thaly fmat computing discrete logarithms in the mul-
tiplicative group over a finite field (of small characteiistis not harder in the black-box setting than if the
field is given by an irreducible polynomial.

1.5 Cryptographic Significance of Black-Box Fields

A BBF [, can be viewed as a black-box group of prime orgewhere the multiplication operation of the
field corresponds to a Diffie-Hellman oracle; therefore dicieht algorithm for the extraction problem f&j,
corresponds to an efficient generic reduction of the disdaarithm problem to the computational Diffie-
Hellman problem in any group of prime order(see [Mau94]). So an efficient algorithm for the extraction
problem forlF, provides a security proof for the Diffie-Hellman key agreet@rotocol [DH76] in any group
of orderp for which the discrete logarithm problem is hard.

Boneh and Lipton [BL96] gave a second reason why the extmagtioblem is of interest in cryptography,
namely to prove the inexistence of certain field-homomarghicryption schemes.

The RSA trap-door oneway permutation definedeby z¢ (mod n) is group-homomaorphic; the product
of two ciphertextsz® andz'® is the ciphertext for their product:® - '¢ = (z - 2')¢. This algebraic property
has proven enormously useful in many cryptographic prdsoddowever, this homomorphic property is only
for one operation (i.e., for a group), and an open problenryptography is to devise a trap-door oneway

2|n this context it is not a problem that Maurer’s efficientaighm [Mau94] for the extraction problem fd#, is non-uniform,
because one can construct a Diffie-Hellman group of gpdegether with the help-string and hence the equivalenddy tealds.



permutation that is field-homomorphic, i.e., for additiamd for multiplication. Such a scheme would have
applications in multi-party computation, computationwéncrypted data (e.g. server-assisted computation),
etc. [SYY99, ALN87, DF02].

A solution to the extraction problem fd, implies an equally efficient attack on afiyy-homomorphic
encryption scheme that permits checking the equality oféncrypted elements (which is for example true
for any deterministic scheme). Indeed, a black-box field lmamegarded as an idealized formulation of a
field-homomorphic encryption scheme which allows for eifyalhecks. Any algorithm that succeeds in
recovering an “encrypted” element hidden inside the blaak-will also break an encryption scheme that
allows the same operations. In particular, an efficientratlgm for the extraction problem fdf, implies the
inexistence of a secuf§,-homomorphic one-way permutation.

This generalizes naturally to the extension field case iyiglthe following corollary to Theorem 1.:

Corollary 1. For fields of small characteristig (in particular for I, ) there are no secure field-homomorphic
encryption scheméghat permit equality checks. In particular, there are noditlbmomorphic one-way
permutations over such fields.

The same holds even for large characterigtitwe admit non-uniform adversaries under the assumption
of [Mau94, MW99].

Beyond its cryptographic significance, the representatiablem for black-box extension fields is of
independent mathematical interest. The representatiailggn for groups, in particular black-box groups,
has been extensively studied [BB99, BS84], inciting irdene the representation problem for other algebraic
black-box structures.

2 The Representation Problem for Finite Black-Box Fields

2.1 Preliminaries on Finite Fields

We assume the reader to be familiar with the basic algeb@iceapts of groups, rings, fields, and vector
spaces and we summarize a few basic facts about finite fields.

The cardinality of every finite field is a prime powef, wherep is called thecharacteristicand k the
extension degreeThere exists a finite field for every primeand everyk. Finite fields of equal cardinality
are isomorphic, i.e., for each cardinaljt} there is up to isomorphism only one finite field, which allowgo
to refer to it just as,: .

Prime fieldsF, (i.e.,k = 1) are defined a&, = {0, ...,p—1} with addition and multiplication modulp.

An extension fieldF,. can be defined as the polynomial rifig[z] modulo an irreducible polynomiah (z)
of degreek overEF,. It hence consists of all polynomials of degree at ntost1 with coefficients inF, .
For everyz € F, thep-fold sum ofz (i.e.,z + = + - -- + z with p terms), denotegz, is zero:pz = 0.

Moreover,z?* ! = 1 for all z # 0, asp® — 1 is the cardinality of the multiplicative group T, which is
actually cyclic.

An extension fieldF,. is a vector space ovéf, of dimensionk. For appropriatgy € F,: there ex-
ist bases of the forngl, g,¢%,...,g* ). The only automorphisms of a finite field,. are the Frobenius

automorphisms: — 2P for i = 0,...,k— 1. In particular, a prime field has no non-trivial automorjpss

3In the public-key case we can efficiently recover the enegield element, in the private-key case this is only possiipl to
isomorphism, as we may have no knowledge of the plaintext.fiel



For every? dividing k, there is a subfield,, of .. Thetrace functiontrg , /r , : F,» — [y, defined
p P
as

il
tr]Fpk/Fpg (a) = Z al?™),

is a surjective and,. -linear function [LN97].

2.2 The Black-box Model

We make use of the abstract model of computation from [Mau®@5black-box fieldFg is characterized
by a black-boxB which can store an (unbounded number of) values from sonte fieid ¥, of known
characteristi® but not necessarily known extension degree in internastegVy, Vi, Vo, . ... The firstd + 1
of these registers hold the initial state= [go, g1, . . , g4] Of the black-box. We require the sidet 1 of the
initial state to be at most polynomial Ing(|Fg|).

The black-boxB provides the following operations: It takes as input a gaiyj) of indices and a bit
indicating whether addition or multiplication should bedked. Then it performs the required operation on
V; andVj;, stores the result in the next free register, 8ayand reports all pairs of indicgsn, n) such that
Vip =V, 2

Since we only allow performing the field operatiohsand- on the values of the black box, the black-box
field Fg is by definition the field®s = F,[go, g1, - -, g4] generated by the elementgy, g1, ..., g4 € Fyk
contained in the initial staté = [go, g1, - - . , g4] Of the black-box.

A black-box fieldFg is thus completely characterized by the

e public values: characteristi® p, sized + 1 of the initial state,
e secret values: initial statel = [go, g1, . - ., g4] (hidden inside the black-box)

This is probably the most basic yet complete way of desagilifiinite field. The field,., the elements
of which the black-box can store, does not and need not appgar Since no algorithm can compute any
value not expressible as an expressiontin and the elements initially given inside the black-box, wa ca
without loss of generality assume thats such thaff,» = Fg, wherek is unknown, but can be efficiently
computed as we shall see later.

Also, the operations “additive inverse” and “multiplicagiinverse” and the constants 0 and 1 need not
be provided explicitly, since they can be computed effitjegiven the characteristip and the field size
IFg| = p*: We can compute the additive inverse for an element Fy as—a = (p — 1)a, and the
multiplicative inverse isi ! = o?" 2. Furthermore]l = o”"~! for any non-zera: and0 = pa for any a.
These expressions can be evaluated efficiently using squnarenultiply techniques.

When discussing the complexity of algorithms on black-belds, we count each invocation of the black-
box (field operation or equality check) as one step. Additilynwe will take into account the runtime of
computations not directly involving the black-box.

We consider an algorithm to befficientif it runs in time at most polynomial in the bit-size of a field
elementjog |Fg|.”

“4Alternatively, equality checks could also be modeled asxtiait operation which must be called with two indices.

°By F,[g0, 91, - - - , ga] We denote the field consisting of all polynomial expressioves I, in the generatorgo, g1, - - - , gd.

8If the characteristig is small it need not be given but can be recovered in ing/p) using Baby-Step-Giant-Step [Mau05].
"The requirement that the sizie+ 1 of the initial state be at most polynomiallieg(|Fg |) is necessary for this to make sense.



2.3 The Representation Problem and Related Problems

We now turn to the problems we intend to solve. Let a charatiep be given and leB be a black-
box with initial statel = [z,g¢1,...gq] consisting of generatorg,, ... g; and a challenge;, whereFg =
Fylz, g1, ... g4].We then consider the following problems:

Definition 1 (Representability Problem, Representation Probléig call x representabldin the generators
g1s---9a) if © € Fylg1,...g4]. The problem of deciding whether € F,[gi,...g4] is called therepre-
sentability problem If z is representable, then finding a multi-variate polynomia F, [ X, ..., X,] such
thatx = q(g1, ..., gq) is called therepresentation problem O

We proceed to discuss two problems that are closely relatddtiae representation problem. First, we
state a generalization of the extraction problem, defindaw05], that is applicable to all finite black-box
fields. To do so, we need to specify an isomorphisifinom the black-box to some explicitly given field.
This is necessary for the extraction problem to be well-aéefinecause, in contrast to prime fields, there are
many isomorphisms between two isomorphic extension fields.

Definition 2 (Extraction Problem) Let K be an explicitly given field (e.g. by an irreducible polynati
such thatK = Fg. Let the image®)(g1), ..., ¢(gq) Of the generatorg;, ..., g, under some isomorphism
¢ :F,lg1,--.g4] — K be given. Theextraction problenis to computep(z). O

Remarkl. Note that an efficient solution to the representation probieplies an efficient solution to the
extraction problem. The expressiafqg,,...,gq) returned as solution to the representation problem can
simply be evaluated ovdx’, substitutingp(g;) for g; (i = 1,...,d), which yields¢(z):

q(d(g1) .-, (g9a)) = Plalg1,---,94) = ¢().

Solving the extraction problem can equivalently be descrias finding an algorithm for computing the
isomorphism¢ defined by giving the images of the generators. This najuledds to the question whether
the inversep—! of ¢ can also be efficiently computed.

Definition 3 (Isomorphism Problem)Let K be an explicitly given field (e.g. by an irreducible polynai
such thatK = Fg. Theisomorphism problentonsists of efficiently computing an (arbitrary but fixed)
isomorphismy : F, [g1,...g4] — K and its inverses ! for arbitrary elements ok andFg. O

In the following we will exhibit an efficient reduction fronmé representation problem for any finite field
to the representation problem for the underlying prime fidlitbreover, our solution to the representation
problem will also yield an explicitly given field (by an irradible polynomial)F,» = [Fg with a solution to
the isomorphism problem fdf,» andFg . This allows to solve any problem posed on the black-box figjd
in the explicitly given fieldF,. using the corresponding algorithms.

2.4 The Representation Problem folf,

First, we shall see that the representation, extractionisordorphism problems are one and the same when
the black-box fieldfg is isomorphic to some prime field,:

Lemma 1. LetFg be a BBF of characteristip with initial state/ = [z, g1,...,g4]. If FB = F,, then the
representation, extraction and isomorphism problems #reiently reducible to one another.

8The extraction problem also makes sense if the isomorphissngiven in another fashion. For example, the black-box migh
offer an operation that allows inserting elements from agalieitly given field K. This would for instance correspond to a public-key
field-homomorphic encryption scheme.



Proof. Note that there is a unique isomorphisim Fg — [F,. Furthermore, a§g = F,, there must be a
gi # 0@ € {1,...,d}). Thisg; can efficiently be found by checking the inequality+ ¢g; # ¢; and the
constantl can efficiently be computed inside the black-bo>g%’s1 using square-and-multiply.

Reduction extraction to representation: Remark 1.

Reduction isomorphism to extraction: A solution to the agtion problem yields an efficient algorithm
computing the isomorphism. The inversep—! of ¢ can efficiently be computed using the square-and-
multiply technique, constructing(a) for a € [F, as a sum ofls inside the black-box. This solves the
isomorphism problem.

Reduction representation to isomorphism: A solution to ifenorphism problem yields an efficient
algorithm computing the isomorphisg Thenqs(:v)gf’*1 is a solution to the representation problem. [

Note that solving the extraction problem for a black-boxdiBs = F, with initial stateV'! = [z]
amounts to solving the discrete logarithm problem for a grofiorderp (given as a black-box) for which a
Diffie-Hellman oracle is given. The following results areokm:

Lemma 2 (Maurer) There exists a non-uniform algorithm that, under a (plal®imumber-theoretic con-
jecture, solves the extraction (representation, isomwipfh problem for a black-box fielflig = I, in time
polynomial inlog(p) with polynomial (inlog(p)) amount of advice depending on the characterigtic

Lemma 3 (Boneh, Lipton) There exists a (uniform) algorithm that, under a (plausjith@mber-theoretic
conjecture [BL96], solves the extraction (representatisomorphism) problem for a black-box fiélg = [,
in time subexponential itbg(p).

For the remainder of this work we will only concern ourselwath reducing other problems to the rep-
resentation problem fdF,. The reader may generally assume thas small such that the representation
problem forlF,, is easy to solve.

2.5 The Representation Problem foif,. for given F,-Basis

Before we proceed to the general case, we first investigatsitipler case where the initial state of the black-
boxBisI = [z,b1,...,b;], andby, ..., b, form a basis of'g asF, vector space. We efficiently reduce this
problem to the representation problem rdescribed in Section 2.4.

Lemma 4. The representation problem for a black-box fiélg of characteristicp with initial state I =
[z,b1,...,b;], whereby, ..., b, form ankF,-basis off'g, is efficiently reducible to the representation problem
for If,.

Proof. The proof relies on the well-known dual basis theorem [LN9r anyF,-basis{bi, ..., b} of
[, there exists a dual basis;,...,c;} with the propertyterk JF, (cibj) = d;j whered;; designates the
Kronecker-Delta. We calculate the dual bais, ..., c;} for the basis{by, ..., b;} inside the black-box.
This can be done efficiently as follows:

We write the elements of the dual basiscas— Zle aiib;. Let A = (wi)ii=1,..x be the coefficient
matrix, B = (tr(b;b)); j=1,..r the trace matrix, and, the identity matrix. Then the definition of the dual
basis yields a matrix equatioAB = I;,. Traces can be computed efficiently inside the black-borgusi
square-and-multiply techniques. So the trace maftixan efficiently be computed inside the black-box.
SinceB always has full rank [LN97], the matrix equatiohB = I, can be solved for the;; using Gaussian
elimination (inside the boB).

As the characteristip and the exponerit are known, we can efficiently compute additive and multaslic
tive inverses (see subsection 2.2). Solving forkh@nknowns in the matrixd using Gaussian elimination is

7



efficient and only requires field operations and equalityckbe Hence it can be performed in the black-box
and we can efficiently compute the dual basis elementsside the black-box.

To represent the challengein the basis{b,, ..., b}, we now calculate; = tr(c;z) € F, inside the
black-box and have = Zle &;b; by the dual basis property. We use an ord@l¢hat solves the represen-
tation problem foi, (possibly instantiated according to subsection 2.4) toaexthe; from the black box,
obtaining the required representatioruah the given generators (basig), . . ., bx }. O

3 The Representation Problem forlF, . for Arbitrary Generating Sets

Now we turn to the general case, where a black-box figJdbf characteristie is not necessarily given by a
basis, but by an arbitrary generating éet, . .., g4}

3.1 Main Theorem
Before we get to our main result, we first discuss the reptabéity problem.

Lemma 5. The representability problem for a black-box fiélg of characteristicp with initial state I =
[z,91,- -, ga4] can be solved efficiently and the extension degreech thaffg = IF,» can be found efficiently.

Proof. We need to efficiently determine whetheis representable in the generatgrs. . ., g4 and then find
such thaffg = T« . To this end we first determine the size:= k(g;) := [IF, [g;] of the subfieldF, [¢;] < Fg
of the black-box fieldfg generated by; fori =1,...,d. We have

ki = k(gl) = min{j € N: g; = gfﬂ} (l)

by the properties of the Frobenius homomorphigrs y? [LN97]. Eq. (1) can be evaluated efficiently using
square-and-multiply.

Now z is representable in the generatafs. .., gq if and only if z € F,[g1,...,gq4] Or, equivalently,
Fplz] <F,lg1,...,94]. Butthe fieldF, g1, ..., gq4] generated by, . .., g4 is isomorphic to the smallest field
B wherek’ = lem!_, (k;) that contains all thé& ;. Hencex is representable in the generatgis. . . , g4

if and only if k() | ¥’. Moreover, independently of the representabilityzafie havek = lem(k(z),k"). O

We can now state our main result, an efficient reduction frioerépresentation problem for an extension
field to the representation problem for the underlying prifake:

Theorem 1. The representation problem for the black-box fiBjgl of characteristicp with initial statel =
[z,91,...,94] (NOt necessarily a basis) such thats representable i, . .., g4 is efficiently reducible to the
representation problem fdf, .

We shall see later that from this theorem we can also obtdiciezft reductions of the extraction and
isomorphism problems to the representation problem foutiukerlying prime field, .

3.2 Proof of Theorem 1

By assumption, the challengeis representable in the generatgrs. . ., g4. We will show how to efficiently
generate &,-power-basis{¢’, g', ... ,g"=11 for Fg inside the black-box. The representation problem can
then be efficiently reduced to the representation problamni,faising Lemma 4.

Algorithm 1 returns arf, -power-basis foi'g by computing an elememnt € g (a generator), such that

Fplg] = Fph .



Algorithm 1 Compute power-basis
1. g:=1
m:=1
:fori=1toddo ,
k; :==k(g;) :==min{j e N: g; = gfj}
if &; + m then
m = lem(m, k;)
g := conbi ne_gen(g, ;)
end if
end for
return power basigg’,¢',...,¢* '}

© 0 NORE®WDN
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Algorithm 1 iterates over the generatars.. . ., g4, checking if the curreng; is already contained iR, [¢]
for the currenty.® If not, Algorithm 1 invokes the algorithrmonbi ne_gen(g, g;) to obtain a new; (which
we callg’ for now) such thaF, [¢'] = F,[g, g;]. ClearlyF, [g] = F,[g1, ..., g4] When the algorithm terminates

and hencdg®,¢', ..., ¢g" '} is aF,-power-basis fof, [g1, . . ., g4] = Fs.

As g is computed inside the black-box from the initially givenngeatorsg;, ..., g4 using only field
operations, the representatigfigi, ..., g4) = g of g (and therefore of all basis elements) in the generators
gis-- ., gqis known. Now Lemma 4 gives a representatidiig’, ¢', ..., ¢* 1) = z of the challenge: in the
basis elements and a representatjos, . .., g;) = x of x in the generatorg, ..., g; can be recovered by
substitution:

a1, 9a) = q"(9% g" ..., 8" ) =" (d (91, -, 90)° d (91, 9a)" s d (g1, 9a)F )

Finally, Algorithm 1 is obviously efficient if the algorithmonbi ne_gen is efficient.
So, to complete the proof of Theorem 1, we only need to proaidalgorithmconbi ne_gen(a, b) that,
given two elements, b € g, efficiently computes a generatgsuch thaff, [¢g] = [, [a, b].

Algorithm 2 conbi ne_gen(a,b)
1: find & , k; such that

o ko | k(a), ky | (D),
o ged(k), k) =1,
o lem(k), k}) = lem(k(a), k(b))

2: finda' € Fy[a] andb’ € T, [b] such that:(a’) = k|, andk(b') = k;
3 return o’ + 0

Claim 1. Given two elements, b € Fg, the algorithmconbi ne_gen(a, b) efficiently computes a generator
g such thatF, [¢g] = F,[a, b].

Proof. We analyze algorithnaonbi ne_gen(a, b) step by step:

°Note that the number of generatarsappearing in the representation of the generattand thereby the representationagf
could be reduced by considering only the generagorresponding to maximal elements in the lattice formedigyt under the
divisibility relation (these suffice to generate the entie¢d Fg ). For ease of exposition we do not do this.



Step 1 can be performed in time polynomial in(wherep® = |Fg|) and hence ifog(|Fg|) by factoring
k(a) andk(b) (which both dividek). 1°
Step 2 relies on the following lemma [Len05]:

Lemma 6. Let M > L > K be a tower of finite fields and Iét,...,b, be a K-basis of M. Then
{trar/n(b1), ..., trar . (by)} contains ak -basis ofL.

Proof. From [LN97, 2.23(iii)] we know thatr,;/;, : M — L is L-linear and surjective. Hence for alle L

there exists an € M such thatry/z,(a) = c. Sinceby, ..., b, form a K-basis ofM, the element. € M
can be expressed as= )", o;b; wherew; € K (i = 1,...,n). Hence using thé-linearity of trys,, we
have

c=tryyp(a) = trayp (Y i) =) aitrag(by).
im1 im1

As we can represent everye L by a K-linear combination in{try,r,(b1), ..., trarr(bs)}, this set must
contain aK -basis ofL. O

Knowing k!, andk(a) from Step 1 and using the fact th@t’ : i = 0,...,k(a) — 1} form aF,-basis of
Fp[a] we can compute the sétry, 4)/r ,, (a*) :i=0,...,k(a) — 1} in time O(k® log(p)) which contains
by the lemma above g, -basis off ., J

The following claim is taken from [BvzGL02, Proof of Theore®2]. For completeness we provide a
short proof sketch.

Claim 2. Any[F,-basis of an extension fielg), contains a basis elemeatsuch that,; = F,[].

Proof (Sketch).The [, -dimension of the span of all proper subfieldsff can be computed by application
of the inclusion-exclusion principle (first adding the dim@ns of all maximal subfields, then subtracting the
dimensions of their intersections, then adding the dinoessof the intersections of the intersections, and so
on). Using the Mdbius functiop we can hence write thg,-dimension of the span of all proper subfields of
Fpr @s— 31 azo 1(£/d)d = £ — $(£) < L. As thelF,-dimension of the span of all proper subfieldsff is
smaller then thé’,-dimension¢ of I, there must be a basis elemenwhich is not contained in any proper
subfield ofFF,, and thereforé,, = T,[c]. O

By Claim 2 there is a basis elemaetit that generateEpk;l , i.e.Fpka =T,[d]:
da’ € {trp,[q/F y () :i=0,...,k(a) =1} :  k(d) =K.
pra

By checking this property for all candidate elementgfift, (o) ,, (%) :i=0,...,k(a) — 1} we find the
pra

generatow’ in time O (k3 log(p)).
Analogously we may determirté such that:(b') = k.

1%Bach and Shallit [BS96, Section 4.8] give a much more effic@gorithm for computing such valuds,, kj of complexity
O((log k(a)k(b))?).
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Step 3. To complete the analysis of the algoritlenbi ne_gen(x, y), it only remains to show that given
a, v from step 2, we havé,[a’ + b'] = F,[a,b]. Sincelem(k(a'), k(b)) = lem(k(a), k(b)) by step 1, we
haveF,[a,b'] = F,[a, b], so it only remains to show tha}, [a’ + b'] = F,[a’, V'].

Obviously we havé, [a’,b'] = F,[a’,a’ + V'] = F,[a’ +V,b'] andged(k(a’), k(V')) = 1, therefore

lem(k(a'), k(b)) = lem(k(a'), k(a’ + b)) = lem(k(a’ + 1), k(b)) = k(a’)k(V').

It is easy to see that théi{a’ + V') = k(a’)k(b') and thereforé, [a’ + b'] = F,[a, b] as required. O

3.3 Implications of Theorem 1

Corollary 2. The extraction problem for any BBFg of characteristicp is efficiently reducible to the repre-
sentation problem foF,, .

Proof. Follows directly from Theorem 1 and Remark 1. O

The extraction problem asks for the computation of an is@inem¢ : Fg — K. Note that the compu-
tation of ¢~! also reduces efficiently to the representation problenifoibecause we can efficiently obtain
a power-basig¢’, ¢',...,¢"*'} inside the black-box as in the proof of Theorem 1. From thEswe can
then compute the basis(¢°), ¢(g'),...,¢(g" 1)} for K. Hence the isomorphism—! can simply and
efficiently be computed by basis representation.

Corollary 3. LetFg be a BBF of characteristip and K some explicitly given field (in the sense of [Len91])
such thatK = Fg. Then the isomorphism problem f8g and K can be efficiently reduced to the represen-
tation problem forl, .

Proof. We show that it is efficiently possible to find a fielel = [Fg that is explicitly given by an irreducible
polynomial, such that the isomorphism problemTfgy and K’ efficiently reduces to the representation prob-
lem for F,. The corollary then follows from [Len91] which states thlaé tisomorphism problem for two
explicitly given finite fields can be solved efficiently.

Hence, let an oracl® for the representation problem ovéy be given. From the proof of Theorem 1 we
know that we can efficiently obtain a power-ba§j8, ¢, . . ., ¢!} inside the black-box. We can use Lemma
4 to obtain a representatiaf(¢®,¢',...,¢*") = ¢* of ¢* in the basis elements. Note that the minimal
polynomial f, € F,[X] of g overF, is exactlyf,(X) = X* —q(X°, X1, ..., Xk 1) LetK' = F,[X]/(f,).
Then the required isomorphismisand$ ' are efficiently given by basis representation. O

4 Conclusions

We showed that, given an efficient algorithm for the repregem problem forl,, we can solve the rep-
resentability, representation, extraction and isomamphproblems for a black-box extension fidlg =
[, in polynomial time. We achieve this by efficiently constingt (in the generators) af,-power-basis
{g%,g",...,¢g*"} for the black-box fieldfg inside the black-box, which is interesting in its own right.
For small characteristip we can immediately solve the above problems efficiently,ohsrgy the repre-
sentation problem faF, (e.g. using Baby-Step-Giant-Step) is easy i small.
As a consequence, field-homomorphic one-way permutatieaisfizlds of small characteristjg in par-

ticular overF,: , do not exist, because such a function would constitute stamtiation of a black-box field

Hinstead of generators we have here the possibility to “thsgements of an explicitly given field into the “black-boxft the
image of the function.
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and could be efficiently inverted using the solution to thramtion problem given above. This implies that
over fields of small characteristic there can be no field-howmphic analogue to the group-homomorphic
RSA encryption scheme, which constitutes a group-homohioitpapdoor one-way permutation.

For the same reason, even probabilistic field-homomorphiygtion schemes (both privaté-and
public-key) over fields of small characteristic in particular overF,., cannot be realized, if they allow
for checking the equality of elements. This is unfortunateause such schemes could have interesting ap-
plications in multi-party computation and computationhwéincrypted data (e.g. server-assisted computation)
[SYY99, ALN87, DF02]. For instance we might be interestedvamding encrypted field elements to a com-
puting facility and having it compute some (known) programtbhem. If the encryption permits equality
checks, the computing facility can recover the field elemeptto isomorphism.

Furthermore, a polynomial-time solution to the isomorphgroblem implies that any problem posed on
a black-box field (i.e., computing discrete logarithms aber multiplicative group) can efficiently be trans-
ferred to an explicitly represented field (e.g. by an irréblkecpolynomial) and be solved there using possibly
representation-dependent algorithms (e.g. the numbdrdieve). The solution can then be efficiently trans-
ferred back to the black-box field. So any representatigreddent algorithm for finite fields is applicable
(in the case of small characteristic) to black-box fieldsr &mample, computing discrete logarithms in the
multiplicative group over a finite field is no harder in theddebox setting than if the field is given explicitly
by an irreducible polynomial.

Of course these conclusions do not only apply to fields of ktharacteristig but to any scenario where
we can efficiently solve the representation problem for thaeulying prime fieldF,,.

Hence we obtain subexponential-time solutions to the alpogblems under a plausible number-theo-
retic conjecture applying the work of Boneh and Lipton [BL86 solving the representation problem for
[F,. Furthermore we can, under a plausible number-theorefifecture, solve the problems above efficiently,
even for large characteristie, if we are willing to admit non-uniform solutions (solutierthat require a
polynomial amount advice depending on the characterjgtiosing an algorithm by Maurer [Mau94] for
solving the representation problem fgy.

Compared to the case of small characteristic, the situdtiofields of large characteristic is then more
complex, because the only known efficient algorithm for B@\the representation problem fB) is non-
uniform [Mau94, MW99], i.e. it requires a help-string thagpdnds ow. When considering homomorphic
encryption and homomaorphic one-way permutations, thisnsdéaat our impossibility results hold for cases
where a malicious party/ may fix the characteristig. In this caseM can generatg along with the required
help-string to break the scheme. On the other hand our iniplitysresults do not apply if the characteristic
p cannot be determined by, for instance because it is generated by a trusted party.

It remains an open problem to resolve this issue by providingefficientuniform algorithm for the
representation problem f&#, or prove the inexistence thereof.
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12This result requires Theorem 1 whereas the results abosadlifollow from Lemma 4. Also, note that in the private-kepe
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