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Abstract
The black-box field (BBF) extraction problem is, for a given fieldF, to determine a secret field element

hidden in a black-box which allows to add and multiply valuesin F in the box and which reports only
equalities of elements in the box. This problem is of cryptographic interest for two reasons. First, for
F = F

p

it corresponds to the generic reduction of the discrete logarithm problem to the computational
Diffie-Hellman problem in a group of prime orderp. Second, an efficient solution to the BBF problem
proves the inexistence of certain field-homomorphicencryption schemes whose realization is an interesting
open problems in algebra-based cryptography. BBFs are alsoof independent interest in computational
algebra.

In the previous literature, BBFs had only been considered for the prime field case. In this paper we
consider a generalization of the extraction problem to BBFsthat are extension fields. More precisely we
discuss the representation problem defined as follows: For given generatorsg

1

; : : : ; g

d

algebraically gen-
erating a BBF and an additional elementx, all hidden in a black-box, expressx algebraically in terms of
g

1

; : : : ; g

d

. We give an efficient algorithm for this representation problem and related problems for fields
with small characteristic (e.g.F = F

2

n for somen). We also consider extension fields of large charac-
teristic and show how to reduce the representation problem to the extraction problem for the underlying
prime field.

These results imply the inexistence of field-homomorphic (as opposed to only group-homomorphic,
like RSA) one-way permutations for fields of small characteristic.

Keywords: black-box fields, generic algorithms, homomorphic encryption, one-way permutations, com-
putational algebra.

1 Introduction

1.1 Black-Boxes and Generic Algorithms

Algebraic structures like groups, rings, and fields, and algorithms on them, play a crucial role in cryptography.
In order to compute in an algebraic structure one needs a representation of its elements as bitstrings. One
can consider algorithms that do not exploit any property of the representation, i.e., that aregeneric. This
generic model is of interest for two reasons. First, genericalgorithms can be used no matter how the structure
is represented, and second, this model allows for significant lower bound proofs for certain computational
problems. For instance, Shoup [Sho97] proved a lower bound on the complexity of any generic algorithm for
computing discrete logarithms in a finite cyclic group.

Representation-independent algorithms on a given algebraic structureS are best modeled by a black-box
[BS84, BB99, Mau05] which initially contains some elementsof S, describing the instance of a computa-
tional problem in consideration. The black-box accepts instructions to perform the operation(s) ofS on the
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values stored in it. The (internal) values are stored in addressable registers and the result of an operation is
stored in a new register. The values stored in the black-box are hidden and the only information about these
values provided to the outside (an hence to the algorithm) are equalities of stored elements. This models that
there is no (need for a) representation of values but that nevertheless one can compute on given values. The
equality check provided by the black-box models the trivialproperty, of any (deterministic) representation,
that equality is easily checked.1

A basic problem in this setting is theextraction problem: The black-box contains a secret valuex (and
possibly also some constants), and the task of the algorithmis to computex (explicitly).

For example, a cyclic group of prime orderp is modeled by a black-box whereS is the additive group
Z

p

(and which can be assumed to contain the constants0 and1 corresponding to the neutral element and the
generator, respectively). The discrete logarithm problemis the extraction problem for this black-box. Shoup’s
result implies that no algorithm can extractx (if uniformly chosen) with fewer thanO(

p

p) operations. Ac-
tually, this many operations are required to provoke a single collision in the black-box, which is necessary
for the algorithm to obtain any information about the content of the black-box. Both the baby-step giant-step
algorithm and the Pohlig-Hellman algorithm are generic algorithm which can be described and analyzed in
this model.

1.2 Black-Box Fields and Known Results

If one assumes in the above setting that the black-box not only allows addition but alsomultiplication of
values modulop, then this corresponds to ablack-box field(BBF).

An efficient (non-uniform) algorithm for the extraction problem in F

p

was proposed in [Mau94] (see
also [MW99]), where non-uniform means that the algorithm depends onp or, equivalently, obtains a help-
string that depends onp. Moreover, the existence of the help-string, which is actually the description of an
elliptic curve of smooth order overF

p

, depends on a plausible but unproven number-theoretic conjecture.
Boneh and Lipton [BL96] proposed a similar butuniform algorithm for the extraction problem inF

p

,
but its running time is subexponential and the analysis alsorelies on a related unproven number-theoretic
conjecture.

1.3 Black-Box Extention Fields

Prime fields differ significantly from extension fields, which is relevant in the context of this paper:
Since a prime fieldF

p

is, in contrast to an extension fieldF
p

k

(for k > 1), generated by any non-zero
element (for instance1), there is a unique isomorphism between any two instantiations ofF

p

that is given
by mapping the1 of the first instance to the1 of the second. In particular there is a unique isomorphism
between a BBF overF

p

and any explicit representation ofF
p

. Therefore there is a unique element in an
explicit representation corresponding to a secret valuex inside the black-box and the extraction problem as
stated above is well defined.

As an extension fieldF
p

k

(for k > 1) contains non-zero elements that donot algebraically generate the
entire field, it is not sufficient to give a secret valuex inside the black box in order to describe an arbitrary
extension field. Rather the field must be given by a set of elements (generators) in the black-box (algebraically)
generating the field. A (vector space) basis ofF

p

k

overF
p

would be a natural choice, but our goal is to make
no assumption whatsoever about how the given elements generate the field.

Furthermore, extension fieldsF
p

k

(for k > 1) have non-trivial automorphisms, so there isno unique
isomorphism between a black-box extension field and an explicit representation. Therefore the extraction

1Note that this model is simpler than Shoup’s model which assumes a random representation.
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problem as originally posed is not well defined for extensionfields. We hence formulate a more general
problem for extension fields, therepresentation problem: Write a secretx inside the black-box as an algebraic
expression in the other elements (generators) given in the black-box.

When an explicit representation of the field is given outsideof the black-box (say in terms of an irre-
ducible polynomial of degreek overF

p

), then one can also consider the problem of efficiently computing an
isomorphism (and its inverse) between this explicitly given field and the BBF.

1.4 Contributions of this Paper

We present an efficient reduction of the representation problem for a finite black-box extension field to the
extraction problem for the underlying prime fieldF

p

. If the characteristicp of the field in question is small,
or if p is large but an efficient algorithm for the extraction problem for F

p

exists, then this yields an efficient
algorithm for the representation problem for the extensionfield. Under their respective number-theoretic
assumptions one can also use the results of [Mau94, BL96, MW99].

Theorem 1(informal). The representation problem for the (finite) black-box (extension) fieldF
B

of character-
istic p is efficiently reducible to the representation problem forF

p

. If the characteristicp is small (e.g.p = 2)
then the representation problem forF

B

is effciently solvable.

Furthermore, our algorithms provide an efficiently computable isomorphism between the black-box field
and an explicitly represented (outside the black-box) isomorphic copy. If preimages of the generators inside
the black-box under some isomorphism from an explicitly represented field into the black-box are known or if
the black-box allows inserting elements from an explicitlyrepresented field, we may even efficiently extract
any element from the black-box field, i.e., find the element corresponding to anx in the black-box in the
explicit representation.

In particular, these results imply that any problem posed for a black-box field (of small characteristic)
can efficiently be transformed into a problem for an explicitfield and be solved there using unrestricted
(representation-dependent) methods. For example, they imply that computing discrete logarithms in the mul-
tiplicative group over a finite field (of small characteristic) is not harder in the black-box setting than if the
field is given by an irreducible polynomial.

1.5 Cryptographic Significance of Black-Box Fields

A BBF F

p

can be viewed as a black-box group of prime orderp, where the multiplication operation of the
field corresponds to a Diffie-Hellman oracle; therefore an efficient algorithm for the extraction problem forF

p

corresponds to an efficient generic reduction of the discrete logarithm problem to the computational Diffie-
Hellman problem in any group of prime orderp (see [Mau94]). So an efficient algorithm for the extraction
problem forF

p

provides a security proof for the Diffie-Hellman key agreement protocol [DH76] in any group
of orderp for which the discrete logarithm problem is hard.2

Boneh and Lipton [BL96] gave a second reason why the extraction problem is of interest in cryptography,
namely to prove the inexistence of certain field-homomorphic encryption schemes.

The RSA trap-door oneway permutation defined byx 7! x

e

(mod n) is group-homomorphic; the product
of two ciphertextsxe andx0e is the ciphertext for their product:xe � x0e = (x � x

0

)

e. This algebraic property
has proven enormously useful in many cryptographic protocols. However, this homomorphic property is only
for one operation (i.e., for a group), and an open problem in cryptography is to devise a trap-door oneway

2In this context it is not a problem that Maurer’s efficient algorithm [Mau94] for the extraction problem forF
p

is non-uniform,
because one can construct a Diffie-Hellman group of orderp together with the help-string and hence the equivalence really holds.
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permutation that is field-homomorphic, i.e., for additionand for multiplication. Such a scheme would have
applications in multi-party computation, computation with encrypted data (e.g. server-assisted computation),
etc. [SYY99, ALN87, DF02].

A solution to the extraction problem forF
p

implies an equally efficient attack on anyF
p

-homomorphic
encryption scheme that permits checking the equality of twoencrypted elements (which is for example true
for any deterministic scheme). Indeed, a black-box field canbe regarded as an idealized formulation of a
field-homomorphic encryption scheme which allows for equality checks. Any algorithm that succeeds in
recovering an “encrypted” element hidden inside the black-box will also break an encryption scheme that
allows the same operations. In particular, an efficient algorithm for the extraction problem forF

p

implies the
inexistence of a secureF

p

-homomorphic one-way permutation.
This generalizes naturally to the extension field case yielding the following corollary to Theorem 1:

Corollary 1. For fields of small characteristicp (in particular for F
2

k

) there are no secure field-homomorphic
encryption schemes3 that permit equality checks. In particular, there are no field-homomorphic one-way
permutations over such fields.

The same holds even for large characteristicp if we admit non-uniform adversaries under the assumption
of [Mau94, MW99].

Beyond its cryptographic significance, the representationproblem for black-box extension fields is of
independent mathematical interest. The representation problem for groups, in particular black-box groups,
has been extensively studied [BB99, BS84], inciting interest in the representation problem for other algebraic
black-box structures.

2 The Representation Problem for Finite Black-Box Fields

2.1 Preliminaries on Finite Fields

We assume the reader to be familiar with the basic algebraic concepts of groups, rings, fields, and vector
spaces and we summarize a few basic facts about finite fields.

The cardinality of every finite field is a prime power,pk, wherep is called thecharacteristicandk the
extension degree. There exists a finite field for every primep and everyk. Finite fields of equal cardinality
are isomorphic, i.e., for each cardinalitypk there is up to isomorphism only one finite field, which allows one
to refer to it just asF

p

k

.
Prime fieldsF

p

(i.e.,k = 1) are defined asZ
p

= f0; : : : ; p�1gwith addition and multiplication modulop.
An extension fieldF

p

k

can be defined as the polynomial ringF
p

[x℄ modulo an irreducible polynomialm(x)

of degreek overF
p

. It hence consists of all polynomials of degree at mostk � 1 with coefficients inF
p

.
For everyx 2 F

p

k

, thep-fold sum ofx (i.e.,x+ x+ � � �+ x with p terms), denotedpx, is zero:px = 0.

Moreover,xp
k

�1

= 1 for all x 6= 0, aspk � 1 is the cardinality of the multiplicative group ofF
p

k

, which is
actually cyclic.

An extension fieldF
p

k

is a vector space overF
p

of dimensionk. For appropriateg 2 F

p

k

there ex-
ist bases of the form(1; g; g2 ; : : : ; gk�1

). The only automorphisms of a finite fieldF
p

k

are the Frobenius

automorphismsx 7! x

(p

i

) for i = 0; : : : ; k� 1. In particular, a prime field has no non-trivial automorphisms.

3In the public-key case we can efficiently recover the encrypted field element, in the private-key case this is only possible up to
isomorphism, as we may have no knowledge of the plaintext field.
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For every` dividing k, there is a subfieldF
p

`

of F
p

k

. The trace functiontr
F

p

k

=F

p

`

: F

p

k

! F

p

`

, defined
as

tr

F

p

k

=F

p

`

(a) =

(k=`)�1

X

i=0

a

(p

i`

)

;

is a surjective andF
p

`

-linear function [LN97].

2.2 The Black-box Model

We make use of the abstract model of computation from [Mau05]: A black-box fieldF
B

is characterized
by a black-boxB which can store an (unbounded number of) values from some finite field F

p

k

of known
characteristicp but not necessarily known extension degree in internal registersV

0

; V

1

; V

2

; : : :. The firstd+1

of these registers hold the initial stateI = [g

0

; g

1

; : : : ; g

d

℄ of the black-box. We require the sized + 1 of the
initial state to be at most polynomial inlog(jF

B

j).
The black-boxB provides the following operations: It takes as input a pair(i; j) of indices and a bit

indicating whether addition or multiplication should be invoked. Then it performs the required operation on
V

i

andV
j

, stores the result in the next free register, sayV

`

, and reports all pairs of indices(m;n) such that
V

m

= V

n

.4

Since we only allow performing the field operations+ and� on the values of the black box, the black-box
field F

B

is by definition the fieldF
B

= F

p

[g

0

; g

1

; : : : ; g

d

℄ generated5 by the elementsg
0

; g

1

; : : : ; g

d

2 F

p

k

contained in the initial stateI = [g

0

; g

1

; : : : ; g

d

℄ of the black-box.
A black-box fieldF

B

is thus completely characterized by the

� public values: characteristic6 p, sized+ 1 of the initial state,

� secret values: initial stateI = [g

0

; g

1

; : : : ; g

d

℄ (hidden inside the black-box)

This is probably the most basic yet complete way of describing a finite field. The fieldF
p

k

, the elements
of which the black-box can store, does not and need not appearhere. Since no algorithm can compute any
value not expressible as an expression in+; � and the elements initially given inside the black-box, we can
without loss of generality assume thatk is such thatF

p

k

�

=

F

B

, wherek is unknown, but can be efficiently
computed as we shall see later.

Also, the operations “additive inverse” and “multiplicative inverse” and the constants 0 and 1 need not
be provided explicitly, since they can be computed efficiently given the characteristicp and the field size
jF

B

j = p

k: We can compute the additive inverse for an elementa 2 F

�

B

as�a = (p � 1)a, and the

multiplicative inverse isa�1

= a

p

k

�2. Furthermore,1 = a

p

k

�1 for any non-zeroa and0 = pa for anya.
These expressions can be evaluated efficiently using square-and-multiply techniques.

When discussing the complexity of algorithms on black-box fields, we count each invocation of the black-
box (field operation or equality check) as one step. Additionally we will take into account the runtime of
computations not directly involving the black-box.

We consider an algorithm to beefficient if it runs in time at most polynomial in the bit-size of a field
element,log jF

B

j.7

4Alternatively, equality checks could also be modeled as an explicit operation which must be called with two indices.
5By F

p

[g

0

; g

1

; : : : ; g

d

℄ we denote the field consisting of all polynomial expressionsoverF
p

in the generatorsg
0

; g

1

; : : : ; g

d

.
6If the characteristicp is small it need not be given but can be recovered in timeO(

p

p) using Baby-Step-Giant-Step [Mau05].
7The requirement that the sized+ 1 of the initial state be at most polynomial inlog(jF

B

j) is necessary for this to make sense.
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2.3 The Representation Problem and Related Problems

We now turn to the problems we intend to solve. Let a characteristic p be given and letB be a black-
box with initial stateI = [x; g

1

; : : : g

d

℄ consisting of generatorsg
1

; : : : g

d

and a challengex, whereF
B

=

F

p

[x; g

1

; : : : g

d

℄.We then consider the following problems:

Definition 1 (Representability Problem, Representation Problem). We callx representable(in the generators
g

1

; : : : g

d

) if x 2 F

p

[g

1

; : : : g

d

℄. The problem of deciding whetherx 2 F

p

[g

1

; : : : g

d

℄ is called therepre-
sentability problem. If x is representable, then finding a multi-variate polynomialq 2 F

p

[X

1

; : : : ;X

d

℄ such
thatx = q(g

1

; : : : ; g

d

) is called therepresentation problem. �

We proceed to discuss two problems that are closely related with the representation problem. First, we
state a generalization of the extraction problem, defined in[Mau05], that is applicable to all finite black-box
fields. To do so, we need to specify an isomorphism� from the black-box to some explicitly given fieldK.
This is necessary for the extraction problem to be well-defined because, in contrast to prime fields, there are
many isomorphisms between two isomorphic extension fields.

Definition 2 (Extraction Problem). Let K be an explicitly given field (e.g. by an irreducible polynomial)
such thatK �

=

F

B

. Let the images�(g
1

); : : : ; �(g

d

) of the generatorsg
1

; : : : ; g

d

under some isomorphism
� : F

p

[g

1

; : : : g

d

℄! K be given. Theextraction problemis to compute�(x).8 �

Remark1. Note that an efficient solution to the representation problem implies an efficient solution to the
extraction problem. The expressionq(g

1

; : : : ; g

d

) returned as solution to the representation problem can
simply be evaluated overK, substituting�(g

i

) for g
i

(i = 1; : : : ; d), which yields�(x):

q(�(g

1

); : : : ; �(g

d

)) = �(q(g

1

; : : : ; g

d

)) = �(x):

Solving the extraction problem can equivalently be described as finding an algorithm for computing the
isomorphism� defined by giving the images of the generators. This naturally leads to the question whether
the inverse��1 of � can also be efficiently computed.

Definition 3 (Isomorphism Problem). Let K be an explicitly given field (e.g. by an irreducible polynomial)
such thatK �

=

F

B

. The isomorphism problemconsists of efficiently computing an (arbitrary but fixed)
isomorphism� : F

p

[g

1

; : : : g

d

℄ ! K and its inverse��1 for arbitrary elements ofK andF
B

. �

In the following we will exhibit an efficient reduction from the representation problem for any finite field
to the representation problem for the underlying prime field. Moreover, our solution to the representation
problem will also yield an explicitly given field (by an irreducible polynomial)F

p

k

�

=

F

B

with a solution to
the isomorphism problem forF

p

k

andF
B

. This allows to solve any problem posed on the black-box fieldF

B

in the explicitly given fieldF
p

k

using the corresponding algorithms.

2.4 The Representation Problem forF
p

First, we shall see that the representation, extraction andisomorphism problems are one and the same when
the black-box fieldF

B

is isomorphic to some prime fieldF
p

:

Lemma 1. Let F
B

be a BBF of characteristicp with initial stateI = [x; g

1

; : : : ; g

d

℄. If F
B

�

=

F

p

, then the
representation, extraction and isomorphism problems are efficiently reducible to one another.

8The extraction problem also makes sense if the isomorphism� is given in another fashion. For example, the black-box might
offer an operation that allows inserting elements from an explicitly given fieldK. This would for instance correspond to a public-key
field-homomorphic encryption scheme.
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Proof. Note that there is a unique isomorphism� : F

B

! F

p

. Furthermore, asF
B

�

=

F

p

, there must be a
g

i

6= 0 (i 2 f1; : : : ; dg). This g
i

can efficiently be found by checking the inequalityg
i

+ g

i

6= g

i

and the
constant1 can efficiently be computed inside the black-box asg

p�1

i

using square-and-multiply.
Reduction extraction to representation: Remark 1.
Reduction isomorphism to extraction: A solution to the extraction problem yields an efficient algorithm

computing the isomorphism�. The inverse��1 of � can efficiently be computed using the square-and-
multiply technique, constructing�(a) for a 2 F

p

as a sum of1s inside the black-box. This solves the
isomorphism problem.

Reduction representation to isomorphism: A solution to theisomorphism problem yields an efficient
algorithm computing the isomorphism�. Then�(x)gp�1

i

is a solution to the representation problem.

Note that solving the extraction problem for a black-box field F

B

�

=

F

p

with initial stateV 1

= [x℄

amounts to solving the discrete logarithm problem for a group of orderp (given as a black-box) for which a
Diffie-Hellman oracle is given. The following results are known:

Lemma 2 (Maurer). There exists a non-uniform algorithm that, under a (plausible) number-theoretic con-
jecture, solves the extraction (representation, isomorphism) problem for a black-box fieldF

B

�

=

F

p

in time
polynomial inlog(p) with polynomial (inlog(p)) amount of advice depending on the characteristicp.

Lemma 3 (Boneh, Lipton). There exists a (uniform) algorithm that, under a (plausible) number-theoretic
conjecture [BL96], solves the extraction (representation, isomorphism) problem for a black-box fieldF

B

�

=

F

p

in time subexponential inlog(p).

For the remainder of this work we will only concern ourselveswith reducing other problems to the rep-
resentation problem forF

p

. The reader may generally assume thatp is small such that the representation
problem forF

p

is easy to solve.

2.5 The Representation Problem forF
p

k for given F

p

-Basis

Before we proceed to the general case, we first investigate the simpler case where the initial state of the black-
boxB is I = [x; b

1

; : : : ; b

k

℄, andb
1

; : : : ; b

k

form a basis ofF
B

asF
p

vector space. We efficiently reduce this
problem to the representation problem forF

p

described in Section 2.4.

Lemma 4. The representation problem for a black-box fieldF
B

of characteristicp with initial state I =

[x; b

1

; : : : ; b

k

℄, whereb
1

; : : : ; b

k

form anF
p

-basis ofF
B

, is efficiently reducible to the representation problem
for F

p

.

Proof. The proof relies on the well-known dual basis theorem [LN97]: For anyF
p

-basisfb
1

; : : : ; b

k

g of
F

p

k

there exists a dual basisf
1

; : : : ; 

k

g with the propertytr
F

p

k

=F

p

(

i

b

j

) = Æ

ij

whereÆ
ij

designates the

Kronecker-Delta. We calculate the dual basisf
1

; : : : ; 

k

g for the basisfb
1

; : : : ; b

k

g inside the black-box.
This can be done efficiently as follows:

We write the elements of the dual basis as

i

=

P

k

l=1

�

il

b

l

. Let A = (�

il

)

i;l=1;:::;k

be the coefficient
matrix,B = (tr(b

l

b

j

))

l;j=1;:::;k

the trace matrix, andI
k

the identity matrix. Then the definition of the dual
basis yields a matrix equationAB = I

k

. Traces can be computed efficiently inside the black-box using
square-and-multiply techniques. So the trace matrixB can efficiently be computed inside the black-box.
SinceB always has full rank [LN97], the matrix equationAB = I

k

can be solved for the�
il

using Gaussian
elimination (inside the boxB).

As the characteristicp and the exponentk are known, we can efficiently compute additive and multiplica-
tive inverses (see subsection 2.2). Solving for thek

2 unknowns in the matrixA using Gaussian elimination is
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efficient and only requires field operations and equality checks. Hence it can be performed in the black-box
and we can efficiently compute the dual basis elements

i

inside the black-box.
To represent the challengex in the basisfb

1

; : : : ; b

k

g, we now calculate�
i

= tr(

i

x) 2 F

p

inside the
black-box and havex =

P

k

i=1

�

i

b

i

by the dual basis property. We use an oracleO that solves the represen-
tation problem forF

p

(possibly instantiated according to subsection 2.4) to extract the�
i

from the black box,
obtaining the required representation ofx in the given generators (basis)fb

1

; : : : ; b

k

g.

3 The Representation Problem forF
p

k for Arbitrary Generating Sets

Now we turn to the general case, where a black-box fieldF

B

of characteristicp is not necessarily given by a
basis, but by an arbitrary generating setfg

1

; : : : ; g

d

g.

3.1 Main Theorem

Before we get to our main result, we first discuss the representability problem.

Lemma 5. The representability problem for a black-box fieldF
B

of characteristicp with initial stateI =

[x; g

1

; : : : ; g

d

℄ can be solved efficiently and the extension degreek such thatF
B

�

=

F

p

k

can be found efficiently.

Proof. We need to efficiently determine whetherx is representable in the generatorsg

1

; : : : ; g

d

and then findk
such thatF

B

�

=

F

p

k

. To this end we first determine the sizek
i

:= k(g

i

) := jF

p

[g

i

℄j of the subfieldF
p

[g

i

℄ � F

B

of the black-box fieldF
B

generated byg
i

for i = 1; : : : ; d. We have

k

i

= k(g

i

) = minfj 2 N : g

i

= g

p

j

i

g (1)

by the properties of the Frobenius homomorphismy 7! y

p [LN97]. Eq. (1) can be evaluated efficiently using
square-and-multiply.

Now x is representable in the generatorsg
1

; : : : ; g

d

if and only if x 2 F

p

[g

1

; : : : ; g

d

℄ or, equivalently,
F

p

[x℄ � F

p

[g

1

; : : : ; g

d

℄. But the fieldF
p

[g

1

; : : : ; g

d

℄ generated byg
1

; : : : ; g

d

is isomorphic to the smallest field
F

p

k

0 wherek0 = lm

l

i=1

(k

i

) that contains all theF
p

k

i

. Hencex is representable in the generatorsg

1

; : : : ; g

d

if and only if k(x) j k0. Moreover, independently of the representability ofx we havek = lm(k(x); k

0

).

We can now state our main result, an efficient reduction from the representation problem for an extension
field to the representation problem for the underlying primefield:

Theorem 1. The representation problem for the black-box fieldF

B

of characteristicp with initial stateI =

[x; g

1

; : : : ; g

d

℄ (not necessarily a basis) such thatx is representable ing
1

; : : : ; g

d

is efficiently reducible to the
representation problem forF

p

.

We shall see later that from this theorem we can also obtain efficient reductions of the extraction and
isomorphism problems to the representation problem for theunderlying prime fieldF

p

.

3.2 Proof of Theorem 1

By assumption, the challengex is representable in the generatorsg

1

; : : : ; g

d

. We will show how to efficiently
generate aF

p

-power-basisfg0; g1; : : : ; gk�1

g for F
B

inside the black-box. The representation problem can
then be efficiently reduced to the representation problem for F

p

using Lemma 4.
Algorithm 1 returns anF

p

-power-basis forF
B

by computing an elementg 2 F

B

(a generator), such that
F

p

[g℄ = F

p

k

.

8



Algorithm 1 Compute power-basis
1: g := 1

2: m := 1

3: for i = 1 to d do
4: k

i

:= k(g

i

) := minfj 2 N : g

i

= g

p

j

i

g

5: if k
i

- m then
6: m := lm(m; k

i

)

7: g := combine gen(g; g
i

)

8: end if
9: end for

10: return power basisfg0; g1; : : : ; gk�1

g

Algorithm 1 iterates over the generatorsg
1

; : : : ; g

d

, checking if the currentg
i

is already contained inF
p

[g℄

for the currentg.9 If not, Algorithm 1 invokes the algorithmcombine gen(g; g
i

) to obtain a newg (which
we callg0 for now) such thatF

p

[g

0

℄ = F

p

[g; g

i

℄. ClearlyF
p

[g℄ = F

p

[g

1

; : : : ; g

d

℄ when the algorithm terminates
and hencefg0; g1; : : : ; gk�1

g is aF
p

-power-basis forF
p

[g

1

; : : : ; g

d

℄ = F

B

.
As g is computed inside the black-box from the initially given generatorsg

1

; : : : ; g

d

using only field
operations, the representationq0(g

1

; : : : ; g

d

) = g of g (and therefore of all basis elements) in the generators
g

1

; : : : ; g

d

is known. Now Lemma 4 gives a representationq

00

(g

0

; g

1

; : : : ; g

k�1

) = x of the challengex in the
basis elements and a representationq(g

1

; : : : ; g

d

) = x of x in the generatorsg
1

; : : : ; g

d

can be recovered by
substitution:

q(g

1

; : : : ; g

d

) = q

00

(g

0

; g

1

; : : : ; g

k�1

) = q

00

(q

0

(g

1

; : : : ; g

d

)

0

; q

0

(g

1

; : : : ; g

d

)

1

; : : : ; q

0

(g

1

; : : : ; g

d

)

k�1

)

Finally, Algorithm 1 is obviously efficient if the algorithmcombine gen is efficient.
So, to complete the proof of Theorem 1, we only need to providean algorithmcombine gen(a; b) that,

given two elementsa; b 2 F

B

, efficiently computes a generatorg such thatF
p

[g℄ = F

p

[a; b℄.

Algorithm 2 combine gen(a; b)

1: find k0
a

, k0
b

such that

� k

0

a

j k(a), k0
b

j k(b),

� gd(k

0

a

; k

0

b

) = 1,

� lm(k

0

a

; k

0

b

) = lm(k(a); k(b))

2: find a0 2 F

p

[a℄ andb0 2 F

p

[b℄ such thatk(a0) = k

0

a

andk(b0) = k

0

b

3: return a

0

+ b

0

Claim 1. Given two elementsa; b 2 F

B

, the algorithmcombine gen(a; b) efficiently computes a generator
g such thatF

p

[g℄ = F

p

[a; b℄.

Proof. We analyze algorithmcombine gen(a; b) step by step:

9Note that the number of generatorsg
i

appearing in the representation of the generatorg (and thereby the representation ofx)
could be reduced by considering only the generatorsg

i

corresponding to maximal elements in the lattice formed by thek
i

under the
divisibility relation (these suffice to generate the entirefield F

B

). For ease of exposition we do not do this.

9



Step 1 can be performed in time polynomial ink (wherepk = jF

B

j) and hence inlog(jF
B

j) by factoring
k(a) andk(b) (which both dividek). 10

Step 2 relies on the following lemma [Len05]:

Lemma 6. Let M � L � K be a tower of finite fields and letb
1

; : : : ; b

n

be aK-basis ofM . Then
ftr

M=L

(b

1

); : : : ; tr

M=L

(b

n

)g contains aK-basis ofL.

Proof. From [LN97, 2.23(iii)] we know thattr
M=L

: M ! L is L-linear and surjective. Hence for all 2 L

there exists ana 2 M such thattr
M=L

(a) = . Sinceb
1

; : : : ; b

n

form aK-basis ofM , the elementa 2 M

can be expressed asa =

P

n

i=1

�

i

b

i

where�
i

2 K (i = 1; : : : ; n). Hence using theL-linearity of tr
M=L

we
have

 = tr

M=L

(a) = tr

M=L

(

n

X

i=1

�

i

b

i

) =

n

X

i=1

�

i

tr

M=L

(b

i

):

As we can represent every 2 L by aK-linear combination inftr
M=L

(b

1

); : : : ; tr

M=L

(b

n

)g, this set must
contain aK-basis ofL.

Knowing k0
a

andk(a) from Step 1 and using the fact thatfai : i = 0; : : : ; k(a) � 1g form aF
p

-basis of
F

p

[a℄ we can compute the setftr
F

p

[a℄=F

p

k

0

a

(a

i

) : i = 0; : : : ; k(a) � 1g in timeO(k

3

log(p)) which contains

by the lemma above aF
p

-basis ofF
p

k

0

a

.
The following claim is taken from [BvzGL02, Proof of Theorem3.2]. For completeness we provide a

short proof sketch.

Claim 2. AnyF
p

-basis of an extension fieldF
p

`

contains a basis element such thatF
p

`

= F

p

[℄.

Proof (Sketch).TheF
p

-dimension of the span of all proper subfields ofF

p

`

can be computed by application
of the inclusion-exclusion principle (first adding the dimensions of all maximal subfields, then subtracting the
dimensions of their intersections, then adding the dimensions of the intersections of the intersections, and so
on). Using the Möbius function� we can hence write theF

p

-dimension of the span of all proper subfields of
F

p

`

as�
P

dj`;d6=`

�(`=d)d = `� �(`) < `: As theF
p

-dimension of the span of all proper subfields ofF

p

`

is
smaller then theF

p

-dimensioǹ of F
p

`

, there must be a basis element which is not contained in any proper
subfield ofF

p

`

and thereforeF
p

`

= F

p

[℄.

By Claim 2 there is a basis elementa

0, that generatesF
p

k

0

a

, i.e.F
p

k

0

a

= F

p

[a

0

℄:

9a

0

2 ftr

F

p

[a℄=F

p

k

0

a

(x

i

) : i = 0; : : : ; k(a)� 1g : k(a

0

) = k

0

a

:

By checking this property for all candidate elements inftr

F

p

[a℄=F

p

k

0

a

(x

i

) : i = 0; : : : ; k(a) � 1g we find the

generatora0 in timeO(k

3

log(p)).
Analogously we may determineb0 such thatk(b0) = k

0

b

.

10Bach and Shallit [BS96, Section 4.8] give a much more efficient algorithm for computing such valuesk0

a

, k0

b

of complexity
O((log k(a)k(b))

2

).
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Step 3. To complete the analysis of the algorithmcombine gen(x; y), it only remains to show that given
a

0, b0 from step 2, we haveF
p

[a

0

+ b

0

℄ = F

p

[a; b℄. Sincelm(k(a

0

); k(b

0

)) = lm(k(a); k(b)) by step 1, we
haveF

p

[a

0

; b

0

℄ = F

p

[a; b℄, so it only remains to show thatF
p

[a

0

+ b

0

℄ = F

p

[a

0

; b

0

℄.
Obviously we haveF

p

[a

0

; b

0

℄ = F

p

[a

0

; a

0

+ b

0

℄ = F

p

[a

0

+ b

0

; b

0

℄ andgd(k(a0); k(b0)) = 1, therefore

lm(k(a

0

); k(b

0

)) = lm(k(a

0

); k(a

0

+ b

0

)) = lm(k(a

0

+ b

0

); k(b

0

)) = k(a

0

)k(b

0

):

It is easy to see that thenk(a0 + b

0

) = k(a

0

)k(b

0

) and thereforeF
p

[a

0

+ b

0

℄ = F

p

[a; b℄ as required.

3.3 Implications of Theorem 1

Corollary 2. The extraction problem for any BBFF
B

of characteristicp is efficiently reducible to the repre-
sentation problem forF

p

.

Proof. Follows directly from Theorem 1 and Remark 1.

The extraction problem asks for the computation of an isomorphism� : F

B

! K. Note that the compu-
tation of��1 also reduces efficiently to the representation problem forF

p

, because we can efficiently obtain
a power-basisfg0; g1; : : : ; gk�1

g inside the black-box as in the proof of Theorem 1. From this basis we can
then compute the basisf�(g0); �(g1); : : : ; �(gk�1

)g for K. Hence the isomorphism��1 can simply and
efficiently be computed by basis representation.

Corollary 3. LetF
B

be a BBF of characteristicp andK some explicitly given field (in the sense of [Len91])
such thatK �

=

F

B

. Then the isomorphism problem forF
B

andK can be efficiently reduced to the represen-
tation problem forF

p

.

Proof. We show that it is efficiently possible to find a fieldK 0

�

=

F

B

that is explicitly given by an irreducible
polynomial, such that the isomorphism problem forF

B

andK 0 efficiently reduces to the representation prob-
lem for F

p

. The corollary then follows from [Len91] which states that the isomorphism problem for two
explicitly given finite fields can be solved efficiently.

Hence, let an oracleO for the representation problem overF

p

be given. From the proof of Theorem 1 we
know that we can efficiently obtain a power-basisfg

0

; g

1

; : : : ; g

k�1

g inside the black-box. We can use Lemma
4 to obtain a representationq(g0; g1; : : : ; gk�1

) = g

k of gk in the basis elements. Note that the minimal
polynomialf

g

2 F

p

[X℄ of g overF
p

is exactlyf
g

(X) = X

k

�q(X

0

;X

1

; : : : ;X

k�1

): LetK 0

= F

p

[X℄=(f

g

).
Then the required isomorphisms� and��1 are efficiently given by basis representation.

4 Conclusions

We showed that, given an efficient algorithm for the representation problem forF
p

, we can solve the rep-
resentability, representation, extraction and isomorphism problems for a black-box extension fieldF

B

�

=

F

p

k

in polynomial time. We achieve this by efficiently constructing (in the generators) anF
p

-power-basis
fg

0

; g

1

; : : : ; g

k�1

g for the black-box fieldF
B

inside the black-box, which is interesting in its own right.
For small characteristicp we can immediately solve the above problems efficiently, as solving the repre-

sentation problem forF
p

(e.g. using Baby-Step-Giant-Step) is easy ifp is small.
As a consequence, field-homomorphic one-way permutations over fields of small characteristicp, in par-

ticular overF
2

k

, do not exist, because such a function would constitute an instantiation of a black-box field11

11Instead of generators we have here the possibility to “insert” elements of an explicitly given field into the “black-box”of the
image of the function.
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and could be efficiently inverted using the solution to the extraction problem given above. This implies that
over fields of small characteristic there can be no field-homomorphic analogue to the group-homomorphic
RSA encryption scheme, which constitutes a group-homomorphic trapdoor one-way permutation.

For the same reason, even probabilistic field-homomorphic encryption schemes (both private-12 and
public-key) over fields of small characteristicp, in particular overF

2

k

, cannot be realized, if they allow
for checking the equality of elements. This is unfortunate because such schemes could have interesting ap-
plications in multi-party computation and computation with encrypted data (e.g. server-assisted computation)
[SYY99, ALN87, DF02]. For instance we might be interested inhanding encrypted field elements to a com-
puting facility and having it compute some (known) program on them. If the encryption permits equality
checks, the computing facility can recover the field elements up to isomorphism.

Furthermore, a polynomial-time solution to the isomorphism problem implies that any problem posed on
a black-box field (i.e., computing discrete logarithms overthe multiplicative group) can efficiently be trans-
ferred to an explicitly represented field (e.g. by an irreducible polynomial) and be solved there using possibly
representation-dependent algorithms (e.g. the number field sieve). The solution can then be efficiently trans-
ferred back to the black-box field. So any representation-dependent algorithm for finite fields is applicable
(in the case of small characteristic) to black-box fields. For example, computing discrete logarithms in the
multiplicative group over a finite field is no harder in the black-box setting than if the field is given explicitly
by an irreducible polynomial.

Of course these conclusions do not only apply to fields of small characteristicp but to any scenario where
we can efficiently solve the representation problem for the underlying prime fieldF

p

.
Hence we obtain subexponential-time solutions to the aboveproblems under a plausible number-theo-

retic conjecture applying the work of Boneh and Lipton [BL96] for solving the representation problem for
F

p

. Furthermore we can, under a plausible number-theoretic conjecture, solve the problems above efficiently,
even for large characteristicp, if we are willing to admit non-uniform solutions (solutions that require a
polynomial amount advice depending on the characteristicp) using an algorithm by Maurer [Mau94] for
solving the representation problem forF

p

.
Compared to the case of small characteristic, the situationfor fields of large characteristic is then more

complex, because the only known efficient algorithm for solving the representation problem forF
p

is non-
uniform [Mau94, MW99], i.e. it requires a help-string that depends onp. When considering homomorphic
encryption and homomorphic one-way permutations, this means that our impossibility results hold for cases
where a malicious partyM may fix the characteristicp. In this caseM can generatep along with the required
help-string to break the scheme. On the other hand our impossibility results do not apply if the characteristic
p cannot be determined byM , for instance because it is generated by a trusted party.

It remains an open problem to resolve this issue by providingan efficientuniform algorithm for the
representation problem forF

p

or prove the inexistence thereof.
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