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ABSTRACT
The number and diversity of electronic gadgets has been
steadily increasing and they are becoming indispensable to
more and more professionals and non-professionals alike. At
the same time, there has been fairly little progress in se-
cure pairing of such devices. The pairing challenge revolves
around establishing on-the-fly secure communication with-
out any trusted (on- or off-line) third parties between de-
vices that have no prior association. The main security is-
sue is the danger of so-called Man-in-the-Middle (MiTM)
attacks, whereby an adversary impersonates one of the de-
vices by inserting itself into the pairing protocol. One basic
approach to countering these MiTM attacks is to involve the
user in the pairing process. Therein lies the usability chal-
lenge since it is natural to minimize user burden. Previous
research yielded some interesting secure pairing techniques,
some of which ask too much of the human user, while oth-
ers assume availability of specialized equipment (e.g., wires,
photo or video cameras) on devices. Furthermore, all prior
methods assumed the existence of a common digital (human-
imperceptible) communication medium, such as Infrared,
802.11 or Bluetooth.

In this paper we introduce a very simple technique called
HAPADEP (Human-Assisted Pure Audio Device Pairing).
It places very little burden on the human user and requires
no common means of electronic communication. Instead,
HAPADEP uses the audio channel to exchange both data
and verification information among devices. It makes se-
cure pairing possible even if devices are equipped only with
a microphone and a speaker. Despite its simplicity, a num-
ber of interesting issues arise in the design of HAPADEP.
We discuss design and implementation highlights as well as
usability features and limitations.

1. INTRODUCTION AND MOTIVATION
The popularity of sophisticated personal devices, such as
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PDAs, multimedia players, cameras and smartphones, has
prompted the need for security mechanisms specifically tai-
lored for such devices. One of the main challenges is the
problem referred to as Secure First Connect, Secure Initial-
ization or Secure Device Pairing.1 Regardless of the name,
this problem entails the establishment of a secure commu-
nication channel between previously unassociated devices.

Traditional cryptographic means of establishing secure com-
munication channels (e.g., authenticated key exchange pro-
tocols) are generally unsuitable for secure device pairing.
This is because mutually unfamiliar devices have no prior
context and no common point of trust: no on-line Trusted
Third Party (TTP), no off-line Certification Authority (CA),
no Public Key Infrastructure (PKI) and, of course, no com-
mon secrets.

The ideal solution must be seamless and transparent to
the human user(s). In theory, the problem is easily sur-
mountable. It is not hard to imagine a standardized device
pairing approach, supported by a common PKI, adopted
by all device manufacturers. However, this solution is, at
best, years away. Any such standard would, no doubt, re-
quire endless deliberations by industry-wide committees and
countless revisions, not to mention the usual manufacturing
delays (The cell phone industry is a prominent example).

Taking into account the non-existence of a PKI, user as-
sistance in the device pairing process is simply unavoidable.
This is because of the very real threat of so-called Man-
in-the-Middle (MiTM) attacks. A MiTM attack can occur
whenever unauthenticated communication is involved. One
of the best-known examples is the textbook Diffie-Hellman
Key Exchange protocol [16]. In it, an attacker can easily
masquerade as either party such that, at the end of the pro-
tocol, one party (Alice) thinks that she is talking to the
other party (Bob), whereas, she is actually talking to the
adversary.

Since no pre-shared secrets and no other means of authen-
tication exists between two unfamiliar devices and the initial
communication transpires over some human-imperceptible
medium (e.g., infrared or radio), MiTM attacks represent a
danger that is hard to ignore. The security research commu-
nity has recognized, and began responding to, this challenge
starting in the late 1990-s, i.e., the pioneering work of Sta-
jano, et al. [6]. A number of techniques have been proposed
since then, varying greatly in the assumptions about device
features, degree and nature of user involvement as well as
environmental factors.

1In this paper, we use the term ”device pairing” to refer to
the problem at hand.



Despite significant recent progress, the design space of
the device pairing problem has not been fully explored. In
particular, two issues remain un-addressed:

• Denial-of-Service (DoS): unlike MiTM attacks, DoS at-
tacks aim to prevent communication. In the device
pairing setting, the goal of a DoS attack is to preclude
the two devices from establishing a secure channel.
Such an attack is trivial to mount: the adversary only
needs to jam the interface of one or both devices. This
is easy with Bluetooth or 802.11, but a little harder
(since it requires line-of-sight) – yet still doable – with
Infrared. The gist of the problem is the inability of
the human user not only to determine the source of
the attack but even to detect its presence.

• Common Channel: all prior techniques require the
existence (and set-up) of a common means of elec-
tronic communication between two devices. The de-
vices must have at least one interface in common, be
it wired (as in [6]) or wireless (as in [9, 7, 14, 10, 11]).
This can be problematic, for two reasons:

(1) The two devices might not (at least at the time
of pairing) have a common interface, e.g., one only
has a Bluetooth interface, while the other – 802.11.
Why pair such devices? One reason could be because
they would later connect to the Internet via respective
interfaces and need to communicate securely.

(2) Wireless interfaces typically take some time and
effort to set up and may be a true challenge for an or-
dinary user. For example, in case of 802.11-equipped
devices, each must be put into the ad hoc mode and an
ad hoc network must be manually configured. Infrared
(IrDA) requires to be activated manually on both de-
vices; it also requires line-of-sight alignment between
transceivers. In case of Bluetooth, one device needs
to be discoverable and then the other must discover
it. This is tricky if there are many Bluetooth-enabled
devices around, and may turn into a real headache if
multiple devices share the same (e.g., default) name.
Figure 1 shows some screen-shots from connection es-
tablishment using 802.11 and Bluetooth.

The work described in this paper attempts to fill the
gap left by prior techniques. The proposed protocol – HA-
PADEP or Human-Assisted Pure Audio Device Pairing –
obviates the need for a common human-imperceptible com-
munication channel. It uses the audio channel for commu-
nicating both protocol messages and human-perceived au-
thentication/verification information. HAPADEP takes ad-
vantage of the fact that most modern devices are equipped
with audio in/out interfaces, i.e. a speaker and a micro-
phone, and such interfaces are very inexpensive. Also, as
described further in the paper, HAPADEP offers natural
means of protection against both DoS and MiTM attacks.

The rest of this paper is organized as follows: we sur-
vey related work in section 2 and describe the HAPADEP
protocol in section 3, followed by several use case scenar-
ios in section 4. We then describe two HAPADEP variants
in section 5 and discuss their respective usability factors in
section 6. We then give a brief security analysis in section 7
and address certain limitations in section 8. The paper ends
with the discussion in section 9 and summary in section 10.

2. RELATED WORK
There is a fairly large body of relevant prior work on the

general topic of secure device pairing.
The earliest work by Stajano, et al. [6] made a seminal

contribution by bringing the problem into the spotlight. The
proposed techniques, however, required the use of standard-
ized physical interfaces and cables. The follow-on work by
Balfanz, et al. [4] and Feeney, et al. [5] made progress by
suggesting the use of infrared communication as the human-
verifiable side-channel. Though timely in its day, this ap-
proach is no longer viable since: (1) few modern devices
are equipped with IrDA interfaces (they are too slow, short-
distance and require line-of-sight) and (2) the infrared chan-
nel itself is not fully immune to DoS and MiTM attacks.

Another early result by Perrig and Song [3] defines a vi-
sual hash as the output of a Hash Visualization Algorithm
(HVA) – an algorithm capable of mapping random strings to
fixed-sized images with properties similar to that of a hash
function. This work showed how visual hashes can be used
to authenticate the root key of a Certification Authority
(CA) with human assistance: CA publishes the visual hash
of its key in a newspaper and each user can easily verify
whether the output of their local HVA with the CA key as
input, received through a secondary channel (e.g., the Inter-
net) matches the one in the newspaper. The visual hashes
technique avoids the cumbersome and error-prone process of
comparing two hashes byte-by-byte and relies on the user’s
ability to recognize pictures. Since relatively high-resolution
displays are required, this approach is suitable only for cer-
tain types of devices, such as laptops or digital cameras.

The Seeing-is-Believing technique by McCune, et al. [9]
uses the visual channel to perform secure device pairing.
One device sends its public key to the other through a
human-imperceptible channel (such as 802.11) and, at the
same time, displays a visual encoding of the public key in
the form of a bar code. (If there is no display, the use of
barcode stickers is suggested). The receiver device, with the
help of the user, takes a picture of the bar code and compares
it with the one computed locally, using the received public
key as input. The protocol does not rely on human visual
ability, i.e., the user is not required to recognize pictures,
but it requires at least one device to have a photo camera,
and the quality of the picture, either printed or displayed,
to be quite good. If both devices must send their crypto-
graphic material, then each requires a photo camera and the
above sequence must be repeated twice, thus increasing user
burden.

Recently, Saxena, et al. [14] considered a variation of
Seeing-is-Believing [9] method by showing how to achieve
secure pairing if one device is equipped with a light detector,
while the other has at least a single LED. As before, the two
devices exchange public keys via some wireless channel, such
as 802.11. Then, the device equipped with an LED uses its
“blinking” capability to transmit the hash. The device with
a light detector records the blinking pattern, extracts the
hash and compares with the hash computed as a result of
the protocol. If they match, it asks the user to accept on the
other device; otherwise it asks user to abort. The resulting
protocol offers less user burden than SiB and requires less
in terms of device features. (However, since few devices
have light detectors, the concept was demonstrated using
one device equipped with a video camera taking a video clip
of the other device which repeatedly turned its display on



Figure 1: Connection setup in 802.11 and Bluetooth

and off.)
Another pairing approach uses a different human-perceptible

channel – audio – in the Loud-and-Clear system [7]. As
usual, the proposed protocols involve two devices exchanging
their keys and computing the hash of the exchanged crypto-
graphic material. The hash is later translated in a syntac-
tically correct English-like “Madlib” (non-sensical) sentence
that can be played by one of the devices and showed on a
text display on the other: the user compares the sequences
and verifies the key exchange. The authors consider many
other scenarios and variations of the protocol, but the main
contribution is the ability to perform secure device pair-
ing between a device equipped with a speaker and another
equipped with a simple (line) display. Moreover, the gen-
eration of syntactically correct text helps the user in the
verification process. Loud-and-Clear also supports the sce-
nario where both devices have speakers but neither has a
display.

There have been other proposals suggesting the use of
technologies that are more expensive and less common. Kin-
berg, et al. suggested an approach requiring RF and ultra-
sound receiver/transmitters on both devices in their earlier
work [11] and laser technology (requires each device to be
equipped with a laser transreceiver) in their more recent
proposal [10]. Holmquist,, et al. Smart-Its Friends system
[8], proposed the use of a common movement pattern as
the security initiator when the two devices are shaken to-
gether. This requires both devices to be equipped with two-

axis accelerometers; it is also unsuitable for physically large
devices.

All aforementioned techniques adhere to one common de-
sign element: they use two channels to perform the pair-
ing process. The primary human-imperceptible channel is
used to exchange the cryptographic material, and, then, a
secondary human-perceptible channel is used to verify the
integrity of the process. The main drawback of this ap-
proach is the requirement that devices must have a common
communication channel, such as 802.11a/b/g/n, Bluetooth,
IrDA, and WiBro. In some scenarios, a common communi-
cation channel might not be available at the time of pairing
and, even if available, establishing communication over it
might be time-consuming and cumbersome.

3. HAPADEP PROTOCOL: GENERAL OP-
ERATION

The HAPADEP protocol relies only on the audio channel.
A speaker and a microphone are the only required device fea-
tures. (In fact, in its simplest, unilateral flavor, HAPADEP
eliminates the need for a microphone in one of the devices.)
We consider both unilateral and bilateral key exchange pro-
tocol flavors. When talking about the former, we use the
term personal to denote the device receiving the public key
and target to denote the device sending (delivering) its pub-
lic key. In the bilateral protocol, we use a more generic term
peer.



A unilateral protocol is said to be verifiable if the user,
at the end of the protocol execution, is sure that one de-
vice has correctly received the public key sent by the other
device. (The same property trivially extends to bilateral
key exchange). The notion of verifiable key exchange is
somewhat different from the notion of authenticated key
exchange (which is well-known in the cryptographic litera-
ture): the latter guarantees the owner of the received cryp-
tographic material, while the former guarantees its sender.
However, since pairing scenarios involve direct exchange of
information – rather than delivery via intermediaries – ver-
ified key exchange is sufficient to ensure security.

The protocol consists of two phases, as shown in Figure
2. During the first transfer phase the target device sends
its public key (and any other cryptographic material) to the
personal device; during this phase, the user is only respon-
sible for triggering the execution of the protocol, i.e., push-
ing a button on each device. To transfer the key over the
audio channel, the target encodes its key using the codec
and plays the resulting audio sequence. The personal de-
vice records the audio sequence and decodes it, using the
corresponding decoder, to retrieve the key. In a bilateral
key exchange protocol, the transfer phase is repeated with
the devices that automatically switch roles. Since encoded
public keys are fairly large (several hundred bits), encoding
is done using a fast codec that provides faster data trans-
mission rate. Although the faster transmission rate has a
side-effect of producing rather unpleasant-sounding audio,
the transfer only takes about 3 seconds (6 seconds for the
bilateral case). Moreover, the human user is not expected
to pay close attention or be actively involved at this stage.

During the second verification phase the user is directly
involved in verifying that the key exchange is secure and
successful. A relatively slow codec is used to encode the di-
gest of the cryptographic material exchanged in the transfer
phase. The bit rate of this codec can be much lower than the
faster codec used in the first phase2, however, the output
needs to be pleasant to the human ear and easily recogniz-
able. In the verification phase, each device plays the audio
sequence created using the slow codec and waits for the
user to decide whether the two sequences match. The user
is expected to listen to both sequences carefully and indicate
(e.g., by pressing a key) a match or lack thereof.

It might seem like the verification phase is unnecessary.
Indeed, we could imagine a simpler protocol which would
avoid the verification phase relying instead on the human
user to detect exactly which device is playing during the
transfer phase: if the target is actually playing the audio
sequence, any audible MiTM will be noticed. However, two
issues would arise: First, the output of the fast codec is
not pleasant to the human ear which might discourage users
from paying attention and identifying the audio source. Sec-
ond, it is important to verify the successful termination of
the protocol and give a satisfying proof to the user. Note
that the user can be sure that the target device is playing
but s/he cannot tell whether or what the personal device is
recording.

Another näıve approach might be to use the slow (more
pleasant-sounding) codec for the cryptographic exchange and
play the recorded audio on the receiver. Then, the user
would be expected to determine whether the sequentially

2Since verification data is small, the low bit rate is not a
concern here

played sequences by the devices are the same. However,
the amount of data encoded as audio would be much larger
which would result in long audio sequences, making it tire-
some for the user.

Since both devices are capable of playing, recording and
comparing audio sequences, it might also seem possible to
have the devices themselves (without any user involvement)
check whether the two audio sequences played during the
verification phase are identical. This approach would re-
move all burden from the user. However, it would be easy
for a malicious device to participate to both transfer and
verification phases, pretending to be the target device. In
other words, the presence of the user telling which device
(among several) is playing is an essential feature termed by
Balfanz, et al. as Demonstrative Identification [4].

If verification is fully automated, the user is expected to be
present and terminate the protocol whenever s/he hears any
audio interference (she has to do that even if the devices are
indicating successful completion). This assumption would
actually harm the usability and the security of protocol since
the user reaction would be unpredictable if there are other
sounds in the environment. For example, a user pairing two
devices in an open cafe’ might not be able to detect whether
the source of interference is due to the engine noise of the
passing cars, the coffee grinder behind the counter, or an
actual attacker (many devices can produce sounds somewhat
similar to the fast codec output). In this case, the pairing
might not complete if the user chooses to carefully follow
instructions. Or, if the user does not follow instructions,
s/he might end up pairing with the attacker’s device.

Since the protocol must be fast, secure and usable, we
claim that the need for two phases and two different codecs
is well-justified.

4. COMMON USE SCENARIOS
We consider several common HAPADEP use scenarios.

• Type 1: The simplest is the unidirectional (one-way)
protocol whereby the target device (often multi-user
in nature, e.g., a printer) delivers its public key to a
personal device (e.g., a cellphone).

• Type 2: The bi-directional version involves both de-
vices exchanging respective public keys, yet not com-
puting any shared secret or confirming ownership (of
public keys).

• Type 3: The next scenario also entails bidirectional
public key exchange but with devices confirming own-
ership of public keys, by signing with the correspond-
ing private key, e.g., via a variation of the well-known
Station-to-Station protocol (STS) [15]. The establish-
ment of a shared secret is optional in this scenario.

To run the protocol in Type 1 scenario, only the personal
device is required to have a speaker and a microphone. The
user triggers the execution of the protocol by putting the
personal device in recording mode and the target device in
playing mode. The latter plays the audio sequence that
represents the encoded version of its public key, while the
former records it. After recording, the receiver decodes the
audio sequence and obtains the key. To verify, the user
prompts (e.g., by pressing a button on each) the devices
to play out the audio sequence. (The target device does



Figure 2: HAPADEP Operation

not record anything and thus does not need an audio-in
interface). As mentioned above, we use a slow codec to
produce an audio sequence that is easily recognizable by
human ear. Barring any ambient interference, the user can
tell whether both devices are playing the same sequence.

It is easy to see that Type 2 and 3 scenarios are a poor
match for a multi-user target device, such as a public printer,
fax or wireless access point. This is because such devices
provide a common service (printing, faxing, net access) and
may not care about authenticating the user’s personal de-
vice, at least not at the point of initial contact. Whereas,
scenarios 2 and 3 are very appropriate for pairing single-user
(or personal) devices like Laptops, PDAs, mobile phones,
Bluetooth headsets, etc. Unlike Type 1, Types 2 and 3 sce-
narios require both devices to have audio-in and audio-out
interfaces.

Two key differences between Type 2 and 3 scenarios are:
(1) the delay, and (2) the cost incurred by cryptographic
operations. In Type 2, the protocol involves two fast-codec
noisy messages (to exchange the two public keys) between
devices and a final slow-codec human-verifiable audio se-
quence which corresponds to the hash of both keys. In Type
3, on the other hand, the two devices must exchange at least
three fast-codec (noisy) messages before the final human-
verifiable sequence. Also, each device incurs the cost of (at
least) one signature generation and one signature verifica-
tion.

5. IMPLEMENTATION
In the implementation of HAPADEP, choosing the right

codecs is crucial. In the case of fast codec, the two main
requirements are reliability (low error rate) and high bit-
rate. In this respect, any reliable and fast codec that can
cope with reasonable amount of background noise can be
used in the implementation. The slow codec, on the other
hand, has to be chosen very carefully since it directly affects
the usability and the security of the protocol. In HAPADEP,
user’s ability to tell whether the verification sequences are

the same one or they are different is crucial for the security
of the protocol. The bit rate of the slow codec is not a
concern, but the output has to be easily recognizable by the
user.

In our implementation, the fast codec is based on the
results of the Digital Voices project at PARC [13]. 240 bits
are encoded in a 3.4-second midi audio sequence where the
first 160 bits represent the actual public key (in the EC-
DSA cryptosystem) and the last 80 bits is a folded hash of
the public key for error checking. The Bouncy Castle [1]
crypto package is used for hash computation. The length of
the audio sequence is a reasonable trade-off between speed
and robustness for this codec: raising the tempo (bit rate)
of the encoder would result in a shorter sequence, but the
recording would be less robust against background noise.

For the human-verifiable audio generation (slow codec),
we implemented (and experimented with) two different ap-
proaches:

• Using pleasant-sounding short melodies

• Using grammatically correct MadLib sentences

The implementations details for each approach are as fol-
lows:

Generating a Melody: The codec uses the hash of the
exchanged cryptographic protocol data to produce a MIDI
score played by a piano. Using this codec, playing time
for the resulting MIDI sequence (generated from a 80 bit
input) takes about 5.6-seconds. For each byte of the input,
the first four bits are used to select a specific symbol to
add to the score from among the seven major chords, the
seven minor chords, pause and sustain; the second four bits
together with the previous ones and the present octave, are
used to select the octave at which the note is played. The
result is an easily recognizable audio sequence, very similar
to sounds produced by a child playing a toy piano. Each
device can replay the sequence multiple times so that the
user (if desired) can make sure that the two devices play the
same (or different) sequences.



Table 1: Participant Profile
Gender Male 75%

Female 25%
18-24 30%
25-29 40%

Age 30-34 20%
35-40 5%
40+ 5%
High School 5%
Bachelor 20%

Education Masters 60%
PhD 15%

Playing any YES (Amateur 100%) 35%
instrument NO 65%
Professional YES 5%
music activity NO 95%

Generating a Sentence: Another way to convert cryp-
tographic data to human-verifiable audio is by producing
grammatically correct sentences. The logic is similar to the
MadLib game which was also used in the Loud-and-Clear [7]
device pairing technique. We employed the same MadLib
generation method (in fact, we used the same code) to cre-
ate grammatically correct but non-sensical English sentences
consisting of 8 S/KEY-generated words. Each word is cho-
sen from a dictionary of size 210; the input length is 80 bits
(same as with the melody generation).

6. USABILITY ANALYSIS
Armed with two versions of HAPADEP software, we were

interested to investigate their respective usability factors.
To this end, we performed usability experiments discussed
in this section.

We recruited 20 subjects for the experiments. Subjects
were chosen on a first-come first-serve basis from the respon-
dents to recruiting posters. Subjects were mainly university
students which resulted in a fairly young, well-educated and
technology-savvy participant group. The demographics and
related background information of the participants are sum-
marized in Table 1.

Test Procedure: Our usability tests were conducted in
a variety of campus venues (depending mainly on the sub-
jects’ preferences), including, but not limited to: cafés, stu-
dent dorms and apartments, classrooms, office spaces and
outdoor terraces. After giving a brief overview of our study
goals, participants were asked to fill out the background
questionnaire (see Figure A-1 in the Appendix) to collect
demographic information and learn about their music- and
computer-related skills and background. Next, users were
given a brief introduction to the mobile phones used in the
tests to demonstrate some basic operations needed during
the test.

Each user was then given the two devices and asked to
follow on-screen instructions to complete the given tasks.
A user was asked to pair the devices four times in total;
twice using the melody variant and twice using the MadLib
(sentence) variant. Each variant was tested once with no at-
tack assumption (where verification sequences matched) and
once under attack simulation (verification sequences were
forced to be different) in order to analyze users’ ability to
distinguish matching and different sequences. To reduce the

Table 2: Summary of the logged data
Method Completion Fatal Error Safe Error

Time (sec.) Rate Rate
Melody 62.15 N/A 10%

(No Attack)
Melody 74.5 15% N/A

(Under Attack)
Sentences 56.95 N/A 0%

(No Attack)
Sentences 80.5 5%∗ N/A

(Under Attack)

learning effect on test results, the four tasks were presented
to the user in random order. The transition between tasks
were automated (four executions are started automatically
one after the other) and the user actions were logged auto-
matically by the testing framework [12]. After completing
the tasks, each participant filled out a post-test question-
naire (see Figure B-1 in the Appendix) form and was given
5 minutes of free discussion time followed by a short inter-
view.

Results: We collected data in two ways: (1) by timing
and logging user interaction, and (2) via questionnaires and
structured interviewing.

Completion time was automatically logged by the soft-
ware. The sentence-based variant was faster then the melody-
based variant when the two values matched. Whereas, the
melody-based variant was ahead when the two values dif-
fered. Albeit, average completion time hovered around 68
seconds for both methods, as shown in table 2. Although
playing a melody takes less time than vocalizing a sentence,
the users replayed melodies more to be able to decide whether
they were same. When the sentences matched, participants
re-played them 1.3 times on average, and 1.75 times when
they didn’t match. The average play count for melodies was
1.5 for matching and 1.8 for non-matching sequences.

In HAPADEP, if the user indicates (forces) a match in
case of two different audio sequences, the protocol clearly
cannot be assumed secure. Such an carelessness can al-
low the attacker to succeed in an impersonation or MiTM
attack. Due to its grave effect on security, we call such
errors as fatal errors. On the other hand, indicating no
match for matching values does not introduce any security
vulnerabilities but simply voids the current pairing session.
We call such errors as safe errors due to their benign na-
ture. As shown in Table 2, using melodies for verification
caused higher fatal and safe error rates. Many participants
stated that they would recognize different melodies better
if they had a chance to execute the protocol few times and
get their hearing “adjusted” before the tests. Subjects who
tested the melody variant with non-matching sequences (be-
fore matching ones) complained about their initial tendency
to tolerate the difference between melodies, since they did
not know how much difference they should have expected.
Those who tried matching melodies first also complained
about the same issue but claimed that they tended to be
alerted by slight differences in sequences, due to different
quality speakers in the devices. We believe that this is a
fundamental problem with the current melody variant since
the security software cannot tolerate any insecure trial-and-
error learning period.



On the other hand, comparing sentences resulted in ac-
ceptable error rates. There was only one subject who ac-
cidentally pressed the same button for different sentences
causing a fatal error to be logged. However, the subject re-
alized his mistake immediately and asked if there was a way
to cancel. So, even in this case, the cause of the error was
not the user’s inability to recognize non-matching sentences
but our poor GUI design which facilitated this kind of inter-
action. Security risks of this type of errors can be classified
as being lower than those due to unnoticed errors, since the
user is aware of the mistake and can thus take an immedi-
ate recovery action. However, security software should be
free of such errors, since it is hard to accurately foresee the
damage an attacker can cause even in few seconds.

In the post-test questionnaire, we solicited user opinions
and preference about the tested methods. Participants found
comparing sentences easier and more usable in general and
preferred to play the sentences one after the other between
devices. Comparing melodies got lower usability rankings
from the majority of the participants, and we observed that
it was usable only if both devices started to play the melody
at the same time (more-or-less in stereo). Participants were
more sensitive to background noise or distractive elements
when they were comparing melodies and expressed this con-
cern to us. As their personal choice, 80% preferred compar-
ing sentences over melodies. Data gathered from post-test
questionnaires is summarized in Figure 3.

Figure 3: Participant Opinion

After they filled the post-test questionnaire, we interviewed
the participants about their experience with current pairing
technologies and HAPADEP. We found out that 70% of the
participants tried to setup a secure wireless 802.11x home
network and 45% of subjects tried bluetooth pairing before.
When we told them HAPADEP (in melody or sentence fla-
vor depending on their choice) can be used as a replacement
for those procedures, all people that had previous Wi-Fi
pairing experience told they would prefer to use HAPADEP
instead. 56% of the people with previous bluetooth pairing
experience also said they would prefer HAPEDEP and 22%
said they may prefer HAPADEP in certain secenarios but
not always. Only four participants had tried infra-red com-
munication; two of them said they could not get it to work
and would prefer HAPADEP instead.

From our usability analysis, we conclude that the HA-
PADEP melody variant is not mature enough to provide

both usability and security. In the rest of the paper, we
assume a MadLib (sentence-based) variant.

7. SECURITY ANALYSIS
In HAPADEP, two devices establish either a unidirec-

tional or bidirectional secure channel by exchanging their
public keys over the audio channel. Assuming that the de-
vices are not compromised, the cryptographic primitives and
the public key schemes are assumed secure; an attacker can
only perform Denial-of-Service (DoS) or Man-in-the-Middle
(MiTM) or impersonation attacks.

To perform a DoS attack, the attacker can play loud au-
dio and prevent the personal device from recording what the
target device is playing. While the HAPADEP codec is quite
robust against background noises, the attacker volume level
might be so high that the sound played by the target device
cannot be heard by the personal device. After recording,
the integrity check at the personal device would fail and the
transfer phase has to be repeated numerous times. However,
such DoS attacks can be recognized (actually, heard) by the
user. Other DoS attacks might involve the adversary using
very low or very high (not audible to the human ear) fre-
quencies. However, decoders can be easily tuned to filter out
such frequencies. Given a robust and appropriately tuned
decoder, the communication channel can be forced to always
be human-perceptible, not allowing any such DoS attack to
be unnoticed.

In an impersonation attack, the attacker’s goal is to con-
vey its public key to the personal device by impersonating
the target. In the verification phase, however, both devices
vocalize sentences that represent their respective views of
the exchanged cryptographic material. Note that the target
device would compute the sentence based on what it has
sent and the personal device computes it based on what it
has received. Assuming that the underlying hash function
is second pre-image resistant (i.e., the probability of finding
another input string that hashes into the same value is neg-
ligible), any impersonation attack would result in different
sentences computed on, and vocalized by, the devices. In our
usability tests, we observed that the users are quite capable
of recognizing matches and mismatches in device-vocalized
MadLib sentences, even in reasonably noisy and crowded
environments. We also note that an active impersonation
attack would involve a third (adversarial) device attempt-
ing to super-impose its sound over one or both legitimate
devices. This can be easily heard by the user; thus we ob-
serve that HAPADEP provides a certain degree of real-time
DoS and MiTM attack detection.

8. HAPADEP LIMITATIONS
The proposed HAPADEP technique clearly has some no-

table limitations which we now summarize.

• First and foremost, similar to Loud-and-Clear, HA-
PADEP is a poor choice for users who are hearing-
impaired. Also, again like Loud-and-Clear, HAPADEP
is unsuitable for noisy environments, such as factories,
convention floors or stadiums.

• On a related note, HAPADEP needs sufficient proxim-
ity between devices. Our experiments were conducted
with devices separated by 1-2 feet (30-60 cm). In noise-
free settings, larger distances are possible; however,



we do not expect to exceed 5-6 feet with commodity
devices, such as PDAs or cellphones. We also note
that many prior methods [6, 7, 9, 5, 8, 4, 11] have the
same proximity limitation. In contrast, we expect that
the Blinking-Lights [14] and the laser-based [10] tech-
niques are somewhat better in this regard, allowing
distances upwards of 20 feet.

• HAPADEP requires both devices to have audio in and
out interfaces. Nonetheless, it is possible to trivially
modify the protocol so that only one device would need
audio-in (microphone) but both would need audio-out
(speaker). We do not consider this to be a limitation
per se, since speakers and microphones are routinely
present on most modern devices, with very few excep-
tions (e.g., wireless access points).

9. DISCUSSION
While the only requirement for both devices are a speaker

and a microphone, the user must be able to perform two
(usually) simple tasks:

• Recognize which device is playing the MadLib sen-
tence, among possibly several nearby devices

• Recognize whether two devices are indeed vocalizing
the same sentence. (User can replay the sentences as
much as she wants and can choose to play them simul-
taneously or sequentially).

Our usability tests indicated that most non-hearing-impaired
adults are capable of performing both activities and so HA-
PADEP is an easy to use alternative to prior techniques.

In addition to security against impersonation and MiTM
attacks, and unlike other proposals, HAPADEP offers users
the ability to detect some on-going DoS attacks. Other tech-
niques can do little against DoS attacks that aim to jam
device interfaces used for the human-imperceptible commu-
nication. In HAPADEP, a user can detect the presence of ex-
traneous noise and might even be able to identify its source.

The implementation of HAPADEP is straightforward and
the source code is available online [2]. We implemented,
and experimented with, two variants, based on melodies and
sentences (MadLibs). Although the former performed some-
what poorer than the latter in our experiments, our original
motivation for using melodies was two-fold:

• Melodies can be generated on-the-fly without storing
any lookup dictionaries.

• Many devices, including those on the low end of the
spectrum, are capable of playing chords, but not text-
to-speech (TTS).

Storing lookup dictionaries for sentence generation would
take up additional storage space of about 50 KB of ROM.
TTS engines usually need better computation capabilities
and more memory as well. (There are several embedded
TTS engines with small footprints that work on almost any
cell phone or PDA, but they still do not run on more con-
strained devices, e.g., bluetooth headsets). However, our
usability study clearly indicates that the melody variant is
not the best approach. However, we are currently evaluat-
ing possible improvements, such as using mixed instruments,
different algorithms, forcing simultaneous play of the verifi-
cation melodies, etc.

10. SUMMARY
This paper introduced HAPADEP – a new approach to se-

cure device pairing. HAPADEP can be viewed as an exten-
sion of the previously proposed Loud-and-Clear technique
[7] where all communication is conducted over the user-
perceptible audio channel. HAPADEP is easy to implement
and deploy, as our experience indicates. It also offers some
built-in protection against DoS and MiTM attacks. The for-
mer, in particular, distinguishes it from prior solutions. In
addition, HAPADEP doesn’t require any common digital in-
terface or initial communication setup thus representing the
most usable and lowest-cost device pairing solution to-date.
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APPENDIX

A. BACKGROUND QUESTIONNAIRE

 
 

Background Questionnaire 

Demographics 
Age 

 18-24  25-29  30-34  35-39  40+ 
 
Sex 

 Male  Female 
 
Highest Grade Competed 

 High School  Bachelor  Masters  Doctorate 
 
Computer experience 
For how long you have been using computers? 
 
 
On a typical day, how many hours do you work with computers? 
 
 
Professional/Amateur music related experience 
 
In a normal day, for how many hours you listen to the music?  

 <1  1-3  3-5  >5 
 
Do you play any musical instrument? 

 YES  
For how many years?          
 
Do you consider yourself an amateur or a professional? 

 Amateur   Professional  
 

 NO 
 
 
Have you participated in any professional music related activity?   

  YES (your title/position was  …………………………….) 
  NO 

 
 

Figure A-1: The background questionnaire



B. POST-TEST QUESTIONNAIRE

 
 

Posttest questionnaire 

Please answer the following questions based on your experience using the method. Where appropriate, we 
would appreciate if you would explain your answers and reasoning in the spaces provided or orally to us. 
 
1. I found the method that requires comparison of melodies 
  very easy to use 
  easy to use 
  hard to use 
  not usable at all 
 
2. I found the method that requires comparison of sentences 
  very easy to use 
  easy to use 
  hard to use 
  not usable at all 
 
3. It easier to identify whether the verification melodies are same/different; when I play the melodies on the 

devices  
 At the same time 

  One after the other 
 
4. It easier to identify whether the verification sentences are same/different; when I play the sentences on the 

devices 
 At the same time 

  One after the other 
  
5. Please choose the method that you would prefer to use  

Comparing Melodies Comparing Sentences 
 
6. I would prefer to hear something else (such as mix of instruments, animal sounds, etc.)  instead of a 
melody/sentence to compare. 

 YES (I would prefer ……………….) 
 NO 

 
  
7. Please add any comments in the space provided that you feel will help us to evaluate the method or come 
up with a better one. (You can answer this question orally if you would like to). 
 
 

Figure B-1: The post-test questionnaire


