
Generic Certificateless Encryption in the Standard Model

Qiong Huang and Duncan S. Wong

Dept. of Computer Science
City University of Hong Kong

Hong Kong, China
{csqhuang, duncan}@cityu.edu.hk

Abstract. Despite the large number of certificateless encryption schemes recently proposed, many
of them have been found to be insecure under a practical attack called malicious-but-passive KGC
attack, since they all follow the same key generation procedure as that of the one proposed by
Al-Riyami and Paterson in ASIACRYPT 2003. The only provably secure certificateless encryption
scheme against this attack is due to Libert and Quisquater (PKC 2006). However, the security
can only be shown in the random oracle model. In this paper, we first show that a scheme which
has a different key generation procedure from that of Al-Riyami and Paterson also suffers from
the malicious-but-passive KGC attack. Our attacking techniques are different from the previous
attacks and may cause greater extent of damage than the previous ones. We also propose a generic
construction of certificateless encryption which can be proven secure against this attack in the
standard model. This generic scheme is not only the first one proven secure in the standard model,
but is also very efficient to instantiate. We also describe how to use short signature and hybrid
encryption to construct highly efficient instantiations of this generic scheme.

1 Introduction

In traditional public key cryptography, a user selects a public/private key pair (pk, sk) and
publishes pk. A certificate, which essentially is a signature on the user’s identity and pk issued
by a certification authority (CA), will then be employed for indicating the relationship between
the user and pk. This method works under the public key infrastructure (PKI) involves a lot of
additional work for managing the certificates that include revocation, storage and distribution.

In 1984, Shamir [12], introduced the notion of identity-based cryptography, aiming to allevi-
ate the existing problems in PKI by getting rid of certificates. A user can use an email address,
an IP address or any other information related to his identity, that is publicly known and unique
in the whole system, as his public key. There is a trusted party, called Key Generation Center
(KGC), which is in charge of the user private key generation. The advantage of an identity-based
cryptosystem is that anyone can simply use the user’s identity to encrypt messages. This can be
done even before the user gets its private key from the KGC. However, the user must also com-
pletely trust the KGC, which can impersonate the user and decrypt any of the user’s ciphertexts.
This issue is generally referred to as key escrow problem in identity-based cryptography.

In 2003, Al-Riyami and Paterson [1] introduced certificateless cryptography, which is intended
to solve the key escrow problem that is inherent in identity-based cryptography, while at the same
time, eliminate the use of certificates as in the traditional PKI. In a certificateless cryptosystem,
the KGC is involved to issue a user partial key pskID for a user with identity ID. The user
independently generates a user public/private key pair (upkID, uskID), and publishes upkID. A
message will then encrypted under both upkID and the user’s identity ID. To decrypt a ciphertext,



2 Qiong Huang and Duncan S. Wong

the user must have the knowledge of both the user partial key pskID and secret key uskID.
Knowing only one of them does not allow the recovery of the plaintext.

Related Work. Since the introduction of certificateless cryptography [1], there have been
many schemes proposed [17,7,10,6,2,11]. The original definition of certificateless encryption [1]
consists of seven algorithms. It has recently been simplified to five [6] and has shown to be more
versatile than the original one. In this paper, we also adopt the five-algorithm simplified version
for defining a certificateless encryption scheme.

Yum and Lee proposed a generic certificateless encryption scheme in [16] which has later
been shown to be insecure under the model of [1] by Libert and Quisquater [10]. In [10], the
authors also proposed a generic certificateless encryption scheme. However, their scheme is only
proven secure in the random oracle model, which is a heuristic method for showing the security
of cryptographic schemes. The security may not preserve when the random oracle is replaced
by a hash function, even if the scheme is reduced to some complexity (or number-theoretic)
assumption. Recently, Liu et al. [11] proposed another certificateless encryption scheme which, to
the best of our knowledge, is the first one in the standard model. However, as we will show in this
paper, their scheme is insecure against malicious-but-passive KGC attack which is introduced
as follows.

In [2], Au et al. considered another strong security model for certificateless cryptography, in
which the user’s trust on the KGC is further relaxed. By using the term introduced in [2], the
KGC of a certificateless cryptosystem can be malicious-but-passive. This means the KGC can be
malicious so that it may not follow the scheme specification for generating system parameters
and master key, while it does not actively replace a user’s public key or corrupt the user’s
secret key. The purpose of such a malicious-but-passive KGC is to compromise a user’s secret
key without being detected. Since the KGC does not need to replace the user’s public key or
compromise the user’s machine for corrupting the user’s secret key, in practice, it is very difficult
to find out the occurrence of this attack. Consider a user who is the president of a country or
an organization. It may have a great incentive for the KGC to launch the malicious-but-passive
attack as ciphertexts for the president may contain some valuable and profitable information.
The attack is practical, and the new security model would become much stronger and realistic
than the old ones in this aspect if the attack is properly formalized.

Under the malicious-but-passive KGC attacking model, certificateless cryptosystems pro-
posed in [1,7,9] have been shown to be insecure, since they all follow the same key generation
procedure as that of [1]. The only provably secure certificateless encryption scheme against
malicious-but-passive KGC attack currently available is due to Libert and Quisquater [10]. The
proof is given in [2]. They showed that the IND-CPA-secure certificateless encryption scheme in
[10] is also IND-CPA secure under the malicious-but-passive KGC adversarial model. Then, by
applying the transformation technique of [10], any IND-CPA-secure scheme can be converted to
an IND-CCA2-secure one. However, the final scheme is only secure in the random oracle model.
There is no concrete or generic construction of certificateless encryption which is proven secure
against malicious-but-passive KGC attacks in the standard model.

Our Results. We propose the first generic certificateless encryption scheme which is proven
secure against malicious-but-passive KGC attacks in the standard model. The idea of our con-
struction is simple. It is constructed based on three well-formalized primitives and can be con-



Generic Certificateless Encryption in the Standard Model 3

sidered as a sequential encryption as in [17,2], with an additional signature-based mechanism
to defend against attacks discussed in [10], but without relying on the assumption of random
oracles. The construction is also efficient. We will describe how to use short signature [4] and
hybrid encryption to implement highly efficient instantiations of this generic scheme.

We show that a recently proposed certificateless encryption scheme [11] also suffers from the
malicious-but-passive KGC attack. As mentioned above, schemes in [1,7,9] are vulnerable to the
malicious-but-passive KGC attack described in [2] as they all follow the same key generation
procedure as that of [1]. However, the attacking technique of [2] does not apply to the scheme
in [11] as the key generation procedure is different. We propose two malicious-but-passive KGC
attacks against the scheme in [11]. The first attack causes the same extent of damage as the
attack described in [2] against [1,7,9]. The second attack may cause greater impact to the system
as the KGC is able to decrypt ciphertexts which are for any user in the system without pre-
selecting a target user. Note that our attacks do not refute the security claims made in [11],
since the KGC in their security model launches attacks only after honestly generating the master
public/private key pair (and system parameters).

Paper Organization. In Sec. 2, we define the certificateless encryption scheme and its security.
In Sec. 3, we show that the certificateless encryption scheme in [11] is vulnerable to some new
malicious-but-passive KGC attacks. Our generic construction of secure encryption schemes and
its security analysis are provided in Sec. 4. We also describe some instantiations of the generic
scheme based on short signature and hybrid encryption. The paper is concluded in Sec. 5.

2 Definition and Adversarial Model

A certificateless encryption scheme [1,2] consists of five (probabilistic) polynomial-time (PPT)
algorithms:

– MasterKeyGen: On input 1k where k ∈ N is a security parameter, it generates a master
public/private key pair (mpk, msk).

– PartialKeyGen: On input msk and a user identity ID ∈ {0, 1}∗, it generates a user partial key
pskID.

– UserKeyGen: On input mpk and a user identity ID, it generates a user public/private key
pair (upkID, uskID).

– Enc: On input mpk, a user identity ID, a user public key upkID and a message m, it returns
a ciphertext c.

– Dec: On input a user private key uskID, a user partial key pskID, and a ciphertext c, it returns
the plaintext m.

In practice, the KGC (Key Generation Center) performs the first two algorithms: MasterKeyGen
and PartialKeyGen. The master public key mpk is then published and it is assumed that everyone
in the system can get a legitimate copy of mpk. It is also assumed that the partial key is issued
to the corresponding user via a secure channel so that no one except the intended user can get
it. Every user in the system also performs UserKeyGen for generating its own public/private key
pair and publishes the public key. The correctness requirement is defined in the conventional
way. We skip the details and refer readers to [1,2] for details.



4 Qiong Huang and Duncan S. Wong

Adversarial Model. There are two types of security for a certificateless encryption scheme,
Type-I security and Type-II security, along with two types of adversaries, A1 and A2, respec-
tively. Adversary A1 models a malicious adversary which compromises the user private key uskID

or replaces the user public key upkID, however, cannot compromise the master private key msk
nor get access to the user partial key pskID. Adversary A2 models the malicious-but-passive
KGC which controls the generation of the master public/private key pair, and that of any user
partial key pskID. The following are five oracles which can be accessed by the adversaries.

– CreateUser: On input an identity ID ∈ {0, 1}∗, if ID has not been created, the oracle runs
pskID ← PartialKeyGen(msk, ID) and (upkID, uskID) ← UserKeyGen(mpk, ID). It then stores
(ID, pskID, upkID, uskID) into a list List1. In both cases, upkID is returned.

– RevealPartialKey: On input an identity ID, the oracle searches List for an entry corresponding
to ID. If it is not found, ⊥ is returned; otherwise, the corresponding pskID is returned.

– RevealSecretKey: On input an identity ID, the oracle searches List for the entry of ID. If it is
not found, ⊥ is returned; otherwise, the corresponding uskID is returned.

– ReplaceKey: On input an identity ID along with a user public/private key pair (upk′, usk′),
the oracle searches List for the entry of ID. If it is not found, nothing will be carried out.
If usk′ = ⊥, the oracle sets usk′ = uskID. Then, it updates (ID, pskID, upkID, uskID) to
(ID, pskID, upk′, usk′).

– Decryption: On input an identity ID and a ciphertext c, the oracle searches List for the entry
of ID. If it is not found, ⊥ is returned. Otherwise, it runs m ← Dec(pskID, uskID, c) and
returns m. Note that the original upkID (which is returned by CreateUser oracle) may have
been replaced by the adversary.

Remark : In the original adversarial model of certificateless encryption [1,10], it is required that
the Decryption oracle should provide correct decryptions even after the user public key has been
replaced by the adversary while the corresponding user secret key is not known. We believe
that the model is hardly realistic. Hence in this paper, we only require the Decryption oracle to
perform the decryption task by using the current user keys. This also captures the case that
the user public key is replaced by the adversary, but the user secret key remains the same. It is
possible that the message m recovered from the ciphertext by using the current uskID is ⊥.

Game-I : Let C1 be the challenger/simulator and k ∈ N be a security parameter.
1. C1 runs (mpk, msk)← MasterKeyGen(1k), and then invokes A1 on input 1k and mpk.
2. In this game, A1 can issue CreateUser, RevealPartialKey, RevealSecretKey, ReplaceKey and

Decryption queries.
3. A1 submits two equal-length messages (m0,m1) along with a target identity ID∗.
4. C1 selects a random bit b ∈ {0, 1}, computes a challenge ciphertext c∗ by running c∗ ←

Enc(mpk, ID∗, upkID∗ ,mb), and returns c∗ to A1, where upkID∗ is the user public key
currently in List for ID∗.

5. A1 continues to issue queries as in step 2. Finally it outputs a bit b′.

A1 is said to win the game if b′ = b, and (1) A1 did not query RevealPartialKey on ID∗, (2) A1

did not query Decryption on (ID∗, c∗). We denote by Pr[A1 Succ] the probability that A1 wins
the game, and define the advantage of A1 in Game-I to be AdvA1 =

∣∣Pr[A1 Succ]− 1
2

∣∣.
1 Note that the list List is shared among all these five oralces.



Generic Certificateless Encryption in the Standard Model 5

Game-II : Let C2 be the simulator/challenger and k ∈ N be a security parameter.
1. C2 runs A2 on input 1k, which returns a master public key mpk to C2. Note that A2

cannot make any oracle query at this stage2.
2. A2 can start querying oracles CreateUser, RevealSecretKey, ReplaceKey and Decryption.

Note that oracle RevealPartialKey is no longer needed as A2 knows the master private
key msk, and A2 may not follow the specification of MasterKeyGen to generate (msk,
mpk). One thing to notice is that when A2 issues a query to CreateUser oracle, it has to
additionally provide the user partial key pskID.

3. A2 submits two equal-length messages (m0,m1) along with a target identity ID∗. C2
randomly selects a bit b, and computes the challenge ciphertext c∗ by running c∗ ←
Enc(mpk, ID∗, upkID∗ ,mb). It returns c∗ to A2.

4. A2 continues to issue queries as in step 2. Finally, it outputs a bit b′.

A2 is said to win the game if b′ = b, and (1) A2 did not query RevealSecretKey on ID∗, (2) A2

did not query ReplaceKey on (ID∗, ·, ·) to replace upkID∗ , (3) A2 did not query Decryption on
(ID∗, c∗). Similarly, we denote by Pr[A2 Succ] the probability that A2 wins the game, and define
the advantage of A2 in Game-II to be AdvA2 =

∣∣Pr[A2 Succ]− 1
2

∣∣.
Definition 1. A certificateless encryption scheme CLE is said to be Type-I secure (resp. Type-II
secure) if there is no probabilistic polynomial-time adversary A1 (resp. A2) which wins Game-I
(resp. Game-II) with non-negligible advantage. CLE is said to be IND-CCA2 secure if it is both
Type-I secure and Type-II secure.

3 Malicious-but-Passive KGC Attack

We describe two new malicious-but-passive KGC attacking techniques (under Game-II) to
compromise schemes that follow the key generation procedure described in [11]. The techniques
are different from that in [2], which is used to compromise schemes based on another type of
key generation procedures [1,7,9].

We briefly describe the certificateless encryption scheme proposed in [11] to a certain extent
that our attacking technique can be understood without referring to the complete description of
the original scheme. In the MasterKeyGen of [11], the KGC first generates a pairing e : G1×G1 →
G2 such that each group has order p. Then, a generator g of G1 is selected. This is followed
by the selection of a set of random elements in G1. The parameters we are going to use in the
attack below are g2, g

′
1, h1, u

′ ∈R G1 and Û = {ûi} where ûi ∈R G1, for i = 1, · · · , n, and some
n ∈ Z. We skip the description of the remaining steps of MasterKeyGen and also the entire
PartialKeyGen. In UserKeyGen, the user public key upkID∗ for a user with identity ID∗ is denoted
by (pk(1), pk(2)) ∈ G2

1. We do not need to look into how these two elements are generated. Our
first attack is described as follows.

(Attack 1) The malicious-but-passive KGC (that is A2 in Game-II) arbitrarily selects a
target identity ID∗. It computes u = Hu(ID∗), where Hu : {0, 1}∗ → {0, 1}n is a collision-resistant

2 One exception is that if a scheme is analyzed under the random oracle model, A2 can query the random oracle.
In this paper, we do not consider this exception as the security of our scheme proposed in the subsequent
section (Sec. 4) will be shown in the standard model.



6 Qiong Huang and Duncan S. Wong

hash function pre-defined for this scheme. Let u[i] be the i-th bit of u. Define U ⊆ {1, · · · , n}
to be the set of indices such that u[i] = 1. The KGC then randomly selects s ∈R Zp, and sets
g2 = (U∗)s, where U∗ = u′

∏
i∈U ûi. Other parameters in the master public/private key pair

are generated normally by the KGC. In the challenge phase of Game-II, the KGC submits
two distinct equal-length messages, (m0,m1), and ID∗ as the target identity. The challenger C2
randomly selects a bit b, computes the challenge ciphertext C∗ = (Ĉ∗, com∗, tag∗) according to
the encryption algorithm of [11]. Let the challenge ciphertext Ĉ∗ = (C∗

1 , C∗
2 , C∗

3 , C∗
4 ). According

to the specification of the encryption algorithm in [11], we have

C∗
1 = e(pk(2), g2)tM, C∗

2 = gt, C∗
3 = (U∗)t, C∗

4 = ((g′1)
com∗

h1)t

where t ∈R Zp and M = mb‖dec for some binary string dec. The KGC can get the plaintext of
Ĉ∗ by computing the following

C∗
1

e(pk(2), (C∗
3 )s)

=
e(pk(2), gt

2)M
e(pk(2), (U∗)st)

=
e(pk(2), gt

2)M
e(pk(2), (g2)t)

= M = mb‖dec

By comparing mb with m0 and m1, the KGC can easily find out the message corresponding to C∗.
This attack causes the same extent of damage as that described in [2] against [1,7,9]. Both attacks
require the KGC to pre-select a target identity. The KGC is not able to compromise two users
in the system under the Game-II. Specific to this certificateless encryption scheme described
in [11], there is a more powerful malicious-but-passive KGC attacking technique which allows
the KGC to decrypt any ciphertext in the system regardless which user is the corresponding
decryptor. Therefore, the KGC does not need to pre-select a target identity.

(Attack 2) Note that the message M is ‘masked’ in C∗
1 by e(pk(2), g2)t. Instead of selecting

g2 randomly from G1, suppose the malicious-but-passive KGC randomly picks β ∈ Zp and sets
g2 = gβ. We can see that the KGC can remove the mask of any ciphertext by simply computing
the mask value as e(pk(2), C∗

2 )β.
As a further remark, the certificateless signature scheme described in [11] also suffers from a

malicious-but-passive KGC attacking technique which is very similar to the first one described
above. Precisely, the KGC can forge any signature of a pre-selected target identity ID∗, as it
shares the same key generation procedure. We skip the details here and emphasize that the
attacks above do not refute the security claims made in [11] as their security model does not
consider/capture the malicious-but-passive KGC attacks.

A Design Philosophy: To design a certificateless scheme, no matter it is an encryption scheme
or a signature scheme, for security against malicious-but-passive KGC attacks, we have a great
concern on its security if the scheme requires the user to make use of the parameters generated
by the KGC when generating its own user public/private key pair (via UserKeyGen). The attacks
above illustrate how subtle an attack can be if the malicious-but-passive KGC has certain control
on the parameters used for user key pair generation. In the first attack above, the KGC can
simply modify the generation of g2 which is one of the many parameters generated/controlled by
the KGC. The user has no way to tell if g2 is generated accordingly or maliciously. In fact, there



Generic Certificateless Encryption in the Standard Model 7

are many other ways for the KGC to break the scheme in [11], as there are many parameters
generated by or under control of the KGC. One can easily come up with more attacks against
the one in [11] in addition to the two attacks described above. In addition, even if the KGC
only generates a set of group parameters, for example, a bilinear pairing operation and its
associated groups, we cannot guarantee that any malicious-but-passive KGC attack cannot be
launched. The reason is that the groups generated and the bilinear operation chosen by the
malicious KGC may not be ‘generic’ [13]. There may exist some trapdoor such that only the one
who generates the group parameters, in our case, it is the malicious KGC, can perform some
operations efficiently. Therefore, those schemes which require the user to use group parameters
generated by the KGC may either be broken by some newly discovered malicious-but-passive
KGC attacking techniques, or have their security left unproven.

In our generic scheme proposed below, we design our scheme such that the user partial key
and user secret key are generated and used totally independently, while retaining high efficiency.

4 Our Scheme

In this section, we propose a generic certificateless encryption scheme CLE and show that it is
secure under the adversarial model defined in Sec. 2. In particular, this generic scheme is the
first one proven secure against the malicious-but-passive KGC attacks in the standard model.

Let IBE = (KG,Extract,Enc,Dec) be an IND-ID-CCA2 secure identity-based encryption scheme,
PKE = (KG,Enc,Dec) an IND-CCA2 secure public key encryption scheme, and S = (KG,Sign,Vrfy)
a strong one-time signature scheme. For formal definitions of IBE, PKE and S, please refer to
Appendix A. In the following, we propose a generic certificateless encryption scheme CLE, which
is based on these three primitives.

– MasterKeyGen: The KGC runs (mpk, msk) ← IBE.KG(1k), publishes mpk and keeps msk
secret.

– PartialKeyGen: On input an identity ID, the KGC runs pskID ← IBE.Extract(msk, ID) and
returns pskID.

– UserKeyGen: The user (with identity ID) runs (upkID, uskID) ← PKE.KG(1k), publishes
(ID, upkID) and stores uskID.

– Enc: To encrypt a message m for user ID, the encryptor computes the following and returns
c:

(vk, sk)← S.KG(1k)
c1 ← IBE.Enc(mpk, ID,m‖vk)
c2 ← PKE.Enc(upkID, c1)
σ ← S.Sign(sk, c2)
c← (c2, σ, vk)

– Dec: On input an identity ID and a ciphertext c = (c2, σ, vk), if 0 ← S.Vrfy(vk, σ, c2), ⊥ is
returned. Otherwise, the decryptor computes the following:

c1 ← PK.Dec(uskID, c2)



8 Qiong Huang and Duncan S. Wong

m‖vk′ ← IBE.Dec(pskID, ID, c1)

If vk′ 6= vk, the decryptor outputs ⊥; otherwise, it outputs m.

Theorem 1. The certificateless encryption scheme CLE is Type-I secure, provided that the
underlying identity-based encryption scheme IBE is IND-ID-CCA2 secure, and the one-time sig-
nature scheme S is strongly unforgeable.

Proof. Suppose that A1 is a PPT adversary that tries to break the Type-I security of CLE. Let
the challenge ciphertext that A1 receives be c∗ = (c∗2, σ

∗, vk∗). We say a ciphertext c = (c2, σ, vk)
is valid with respect to identity ID if the decryption oracle would not output ⊥ on input (ID, c).
We denote by Forge1 the event that vk∗ appears in a decryption query (ID, c = (c2, σ, vk∗))
issued by A1 such that c is valid with respect to ID and (c2, σ) 6= (c∗2, σ

∗). Then we have:

Lemma 1. Pr[Forge1] is negligible in the security parameter k.

Lemma 2.
∣∣Pr[A1 Succ ∧ Forge1] + 1

2Pr[Forge1]− 1
2

∣∣ is negligible (in k).

Please refer to Appendix B for the proofs. Therefore, by these two lemmas, we have

AdvA1 =

˛̨̨̨
Pr[A1 Succ]− 1

2

˛̨̨̨
=

˛̨̨̨
Pr[A1 Succ ∧ Forge1]−

1

2
Pr[Forge1] +

1

2
Pr[Forge1] + Pr[A1 Succ ∧ Forge1]−

1

2

˛̨̨̨
≤

˛̨̨̨
Pr[A1 Succ ∧ Forge1]−

1

2
Pr[Forge1]

˛̨̨̨
+

˛̨̨̨
Pr[A1 Succ ∧ Forge1] + Pr[Forge1] ·

1

2
− 1

2

˛̨̨̨
≤ 1

2
Pr[Forge1] +

˛̨̨̨
Pr[A1 Succ ∧ Forge1] +

1

2
Pr[Forge1]−

1

2

˛̨̨̨
which is also negligible in k. This completes the proof of Theorem 1. ut

Theorem 2. The certificateless encryption scheme CLE is Type-II secure if the underlying
public key encryption scheme PKE is IND-CCA2 secure and the one-time signature scheme S is
strongly unforgeable.

Proof. Suppose that A2 is a PPT adversary that tries to break the Type-II security of CLE. Let
c∗ = (c∗2, σ

∗, vk∗) be the challenge ciphertext that A2 receives, and let Forge2 be the event that
vk∗ appears in a decryption query (ID, c = (c2, σ, vk)) issued by A2 (i.e., vk∗ = vk) such that c
is valid with respect to ID and (c2, σ) 6= (c∗2, σ

∗). We have the following two lemmas:

Lemma 3. Pr[Forge2] is negligible in k.

This proof is similar to that of Lemma 1 and is omitted here.

Lemma 4.
∣∣Pr[A2 Succ ∧ Forge2] + 1

2Pr[Forge2]− 1
2

∣∣ is negligible in k.

Proof. We construct a PPT algorithm C2 to break the IND-CCA2 security of PKE by using A2

as a subroutine. Given the challenge public key pk and a decryption oracle ŌD, C2 runs A2 on
input 1k, which returns a master public key mpk. Assume that A2 issues at most q distinct
CreateUser queries. Then, C2 randomly selects i ∈ {1, 2, · · · , q}, runs (vk∗, sk∗) ← S.KG(1k),
stores (vk∗, sk∗) which will be used in the generation of the challenge ciphertext of A2, and
simulates all the oracles for A2 as follows:



Generic Certificateless Encryption in the Standard Model 9

– CreateUser: On input an identity ID and the user partial key pskID, we assume that this is
the j-th distinct CreateUser query. If j 6= i, C2 runs (upkID, uskID) ← PKE.KG(1k), stores
(ID, pskID, upkID, uskID, 0) into a list List, and returns upkID. If j = i, C2 simply stores
(ID, pskID, pk,⊥, 0) into List and returns pk.

– RevealSecretKey: On input an identity ID, C2 searches List for the entry of ID. If there is no
such an entry, C2 returns ⊥. If upkID = pk, C2 outputs a random bit and aborts. Otherwise,
it returns the corresponding uskID.

– ReplaceKey: On input (ID, upk′, usk′), C2 searches List for the entry of ID. If there is no such
an entry, C2 does nothing. If upkID = pk, C2 aborts and outputs a random bit. If usk′ = ⊥,
C2 sets usk′ = uskID. Then, it updates (ID, pskID, upkID, uskID) to be (ID, pskID, upk′, usk′).

– Decryption: On input (ID, c = (c2, σ, vk)), C2 searches List for the entry of ID. If it is not found,
C2 returns ⊥. If ID is not the i-th distinct query made by A2 to CreateUser, C2 simulates the
Decryption oracle using its knowledge of pskID and uskID. Otherwise (upkID = pk), after the
validity check of σ on c2 with respect to vk, C2 makes a Decryption query to oracle ŌD which
returns with c1. Then it completes the rest using its knowledge of pskID. Note that if event
Forge2 occurs during the simulation of Decryption oracle, namely, σ is a valid signature on
c2 with respect to vk and vk = vk∗, C2 outputs a random bit and aborts.

At some point A2 submits two equal-length messages (m0,m1) along with a target identity
ID∗. If uskID∗ 6= pk, C2 outputs a random bit and aborts. Otherwise, it computes (c1)0 ←
IBE.Enc(mpk, ID∗,m0‖vk∗) and (c1)1 ← IBE.Enc(mpk, ID∗,m1‖vk∗), submits (c1)0 and (c1)1 to
its challenger, and is returned c∗2 which is a ciphertext of (c1)b, where b ∈ {0, 1}. It then computes
σ∗ ← S.Sign(sk∗, c∗2) and returns c∗ = (c∗2, σ

∗, vk∗) to A2 as the challenge ciphertext. C2 continues
to simulate all the oracles for A2 as above. Finally it outputs the bit b′ output by A2.

Obviously, the probability that C2 doesn’t abort in simulating ReplaceKey and RevealSe-
cretKey oracles is at least 1/q. If C2 doesn’t abort in simulating the two oracles, the probability
that it wins its own game is 1

2Pr[Forge2]+Pr[A2 Succ∧Forge2]. Thus, we get that the advantage
that C2 wins its game is

AdvC2 =

˛̨̨̨
Pr[C2 Succ]− 1

2

˛̨̨̨
≥

˛̨̨̨
1

2
·

„
1− 1

q

«
+

„
Pr[A2 Succ ∧ Forge2] +

1

2
Pr[Forge2]

«
· 1

q
− 1

2

˛̨̨̨
=

˛̨̨̨
Pr[A2 Succ ∧ Forge2] +

1

2
Pr[Forge2]−

1

2

˛̨̨̨
· 1

q

Guaranteed by the IND-CCA2 security of PKE, we have that AdvC2 is negligible in k. Thus,∣∣Pr[A2 Succ ∧ Forge2] + 1
2Pr[Forge2]− 1

2

∣∣ is negligible as well since 1/q is polynomial in k. ut

By the two lemmas above, we have

AdvA2 =

˛̨̨̨
Pr[A2 Succ]− 1

2

˛̨̨̨
≤

˛̨̨̨
Pr[A2 Succ ∧ Forge2]−

1

2
Pr[Forge2]

˛̨̨̨
+

˛̨̨̨
Pr[A2 Succ ∧ Forge2] +

1

2
Pr[Forge2]−

1

2

˛̨̨̨
≤ 1

2
Pr[Forge2] +

˛̨̨̨
Pr[A2 Succ ∧ Forge2] +

1

2
Pr[Forge2]−

1

2

˛̨̨̨
which is negligible as well. This completes the proof of Theorem 2. ut



10 Qiong Huang and Duncan S. Wong

The following corollary is obtained immediately from Theorem 1 and Theorem 2.

Corollary 1. The certificateless encryption scheme CLE described above is IND-CCA2 secure.

4.1 Discussion

In practice, for high performance in the encryption process, we usually use the hybrid encryption
method which combines a public key encryption and a symmetric encryption to encrypt the
message instead of using the public key encryption directly to encrypt bulk data. To apply
this to our generic scheme CLE, we first generate a random symmetric key key for a secure
symmetric encryption scheme SE, then use SE to encrypt m‖vk under key, and finally encrypt
key using CLE. The decryption algorithm is modified accordingly. One of the key advantages of
applying the hybrid encryption onto CLE (besides efficiency) is that the message space will not
be restricted by the size of the verification key vk. We elaborate more on the size of vk below.

The (strong) one-time signature in our generic scheme CLE provides a certain assurance on
that the encryptor did encrypt the message itself (or the ‘well-formedness’ of a ciphertext). Since
most of the one-time signature schemes in the literature follow the ‘one-way function’ paradigm
[5], the verification key and the signature are both of large size. An immediate consequence is
that the message encrypted (i.e., m‖vk) and the resulting ciphertext (i.e., c = (c2, σ, vk)) of our
scheme also suffer from the large size. We describe two methods which can significantly reduce
the size in the actual implementation of CLE.

One simple solution is to replace the strong one-time signature scheme with a conventional
signature scheme which is strongly unforgeable under adaptive chosen message attack. This
does not weaken the security of CLE because any strongly unforgeable signature scheme is also
a strong one-time signature scheme. A good candidate is the short signature proposed by Boneh
and Boyen [4] as the verification key and the signature of the scheme in [4] are both small in
size. The tradeoff is that the resulting scheme requires more computation than that of a strong
one-time signature scheme.

Another solution is to first map the one-time verification key into a much shorter string using
a target collision-resistant hash function H3, and then encrypt m‖H(vk) rather than m‖vk. The
decryption algorithm is changed accordingly. That is, the user checks if the second part of the
plaintext (decrypted from the ciphertext) is the hash of vk. To analyze the security of this
modified scheme, we need to show that it is negligible for the adversary to issue a Decryption
query on input ID and c = (c2, σ, vk) such that vk 6= vk∗ but H(vk) = H(vk∗), where vk∗ is the
verification key in the challenge ciphertext. It is guaranteed by the collision-resistance property
of H. This method reduces the impact on the message size by the size of the verification key
while adding only slightly on the computation cost. However, the ciphertext is not much shorter
than that of the original scheme.

Yet, we observe that the verification key vk could be removed from the ciphertext without
any influence on the security of the resulting encryption scheme. In this way, there is no need
to use the asymmetric version of one-time signature. Instead, we could use a (strong) one-time
message authentication code (MAC) [14,15,3,8]. The new scheme CLE′ enjoys better efficiency
and much shorter ciphertext than CLE. The definition of strong one-time MAC and the new
construction will be described in the next part.
3 Please refer to Appendix A for the definition of target collision-resistant hash functions.



Generic Certificateless Encryption in the Standard Model 11

4.2 A More Efficient Scheme

A message authentication code MAC is a pair of polynomial-time algorithms (Mac,Vrfy) such
that:

– Mac takes as input a key mk ∈ KM (the key space of MAC) and a message m, and outputs a
tag σ, where k is the security parameter and m is in some implicit message space. We denote
this by σ ← Macmk(m). Without loss of generality, we can also simply assume here that the
key space KM of MAC is {0, 1}k.

– Vrfy takes as input a key mk, a message m and a tag σ and outputs a bit b ∈ {0, 1}
where the 1-value of b indicates ’accept’ and 0-value indicates ’reject’. We denote this by
b← Vrfymk(m,σ).

For the security of a message authentication code, we consider the following game:

1. A random key mk ∈ {0, 1}k is chosen;
2. AM (1k) is allowed to submit a message m and is then returned σ ← Macmk(m).
3. Finally, AM outputs (m∗, σ∗).

We say that AM wins if 1← Vrfymk(m∗, σ∗) and (m∗, σ∗) 6= (m,σ) (assuming that AM did issue
a query for a tag on input m in step 2).

Definition 2. A message authentication code MAC is said to be strong one-time secure, if for
any PPT adversary AM , the probability that AM wins the the above game is negligible in k.

Now we begin to describe the more efficient scheme. Let IBE and PKE be as in Sec. 4, and let
MAC = (Mac,Vrfy) be a strong one-time message authentication code and KM be the key space
of MAC. We construct a new certificateless encryption scheme CLE′ from IBE, PKE and MAC,
as below:

– MasterKeyGen: The KGC runs (mpk, msk) ← IBE.KG(1k), publishes mpk and keeps msk
secret.

– PartialKeyGen: On input an identity ID, the KGC runs pskID ← IBE.Extract(msk, ID) and
returns pskID.

– UserKeyGen: The user (with identity ID) runs (upkID, uskID) ← PKE.KG(1k), publishes
(ID, upkID) and stores uskID.

– Enc: To encrypt a message m for user ID, the encryptor computes the following and returns
c:

mk ← KM

c1 ← IBE.Enc(mpk, ID,m‖mk)
c2 ← PKE.Enc(upkID, c1)
σ ← MAC.Macmk(c2)
c← (c2, σ)



12 Qiong Huang and Duncan S. Wong

– Dec: On input an identity ID and a ciphertext c = (c2, σ), the decryptor computes the
following:

c1 ← PK.Dec(uskID, c2)
m‖mk ← IBE.Dec(pskID, ID, c1)

b← MAC.Vrfymk(c2)

If b = 0, the decryptor outputs ⊥; otherwise, it outputs m.

Let (ID∗, c∗) be the challenge identity-ciphertext pair of the adversary, where c∗ = (c∗2, σ
∗),

and let c∗1 be the plaintext of c∗2 under PKE. Consider a query (ID, c = (c2, σ)) submitted by
the adversary to the Decryption oracle, and let c1 be the plaintext of c2 under PKE. Obviously
we have that (ID, c) 6= (ID∗, c∗). We focus on the case in which ID = ID∗. Now the event Forge1

(resp. Forge2) is defined as the event that the key mk extracted from c2 is the same as that
extracted from c∗2 and 1← MAC.Vrfymk(σ) in Game I (resp. Game II). Similar to the proofs
of Lemma 1 and 3, we can show that the probability that the event Forge1 (resp. Forge2) occurs
is negligible in k. This is guaranteed by the strong one-time security of MAC. The other parts
of the security proof remain the same except some minor modifications. One can easily come up
with the security proof of CLE’, for its high similarity with CLE.

Remark : As we can see from the above construction, the verification key is removed from the
ciphertext and now is hidden in c2, and the symmetric signing key is not generated by a (time-
consuming) key generation algorithm any more but randomly selected. Therefore, the scheme
CLE′ enjoys much shorter ciphertext and much higher efficiency than CLE. However, unlike CLE,
the main drawback of this new scheme is that the validity of the ciphertext cannot be verified
before the decryption any longer. One has to decrypt the ciphertext, even if it is invalid.

Remark Again: To make the new scheme be of practical use, we may use CBC-MAC with 128-bit
AES as the underlying block cipher again. Besides, there are many other good candidates for
MAC, such as the strong one-time MACs with information-theoretic security in [14,15].

5 Conclusion

In this paper, we consider the security of certificateless encryption schemes in the presence of
a malicious-but-passive KGC, and propose the first generic certificateless encryption scheme in
the standard model. The scheme is efficient. We also describe how to apply short signature and
hybrid encryption to implement an efficient instantiation of our generic scheme.

On the study of malicious-but-passive KGC attacks, we show that although the scheme in
[11] does not have the same key generation procedure as that of [1], there are two new attacks
which can compromise the Type-II security of their scheme. In particular, our second attack
allows the KGC to decrypt any ciphertext without pre-selecting a target user.

However, it still remains an open problem on how to construct a certificateless encryption
scheme secure with respect to an even stronger security model which combines the strongest
one described in [1,10] and the malicious-but-passive KGC model described in [2] and also in
this paper. The model in [1,10] requires the decryption oracle to provide correct decryption even
after the user public key has been replaced.



Generic Certificateless Encryption in the Standard Model 13

References

1. S. S. Al-Riyami and K. G. Paterson. Certificateless public key cryptography. In Proc. ASIACRYPT 2003,
volume 2894 of Lecture Notes in Computer Science, pages 452–473. Springer-Verlag, 2003.

2. M. H. Au, J. Chen, J. K. Liu, Y. Mu, D. S. Wong, and G. Yang. Malicious KGC attacks in certificateless
cryptography. To appear in ACM ASIACCS 2007, also at http://eprint.iacr.org/2006/255.

3. M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining message authentication code.
Journal of Computer and System Sciences, 61(3):362–399, December 2000. Extended abstract in Proc. of
Advances in Cryptology - Crypto 94, volume 839 of Lecture Notes in Computer Science, pages 341–358, Y.
Desmedt ed, Springer-Verlag, 1994.

4. D. Boneh and X. Boyen. Short signatures without random oracles. In Proc. EUROCRYPT 2004, volume
3027 of Lecture Notes in Computer Science, pages 416–432. Springer-Verlag, 2004.

5. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive chosen-message
attack. SIAM J. Computing, 17(2):281–308, Apr. 1988.

6. B. C. Hu, D. S. Wong, Z. Zhang, and X. Deng. Key replacement attack against a generic construction
of certificateless signature. In Information Security and Privacy: 11th Australian Conference, ACISP 2006,
pages 235–246. Springer-Verlag, 2006. Lecture Notes in Computer Science vol. 4058.

7. X. Huang, W. Susilo, Y. Mu, and F. Zhang. On the security of certificateless signature schemes from Asiacrypt
2003. In Cryptology and Network Security, 4th International Conference, CANS 2005, volume 3810 of Lecture
Notes in Computer Science, pages 13–25. Springer-Verlag, 2005.

8. ISO/IEC 9797. Data cryptographic techniques - data integrity mechanism using a cryptographic check
function employing a block cipher algorithm, 1989.

9. X. Li, K. Chen, and L. Sun. Certificateless signature and proxy signature schemes from bilinear pairings.
Lithuanian Mathematical Journal, 45(1):76–83, 2005.

10. B. Libert and J.-J. Quisquater. On constructing certificateless cryptosystems from identity based encryption.
In 9th International Conference on Theory and Practice in Public Key Cryptography, PKC 2006, volume 3958
of Lecture Notes in Computer Science, pages 474–490. Springer-Verlag, 2006.

11. J. K. Liu, M. H. Au, and W. Susilo. Self-generated-certificate public key cryptography and certificateless
signature/encryption scheme in the standard model. To appear in ACM ASIACCS 2007. Full paper: http:
//eprint.iacr.org/2006/373.

12. A. Shamir. Identity-based cryptosystems and signature schemes. In Proc. CRYPTO 84, volume 196 of Lecture
Notes in Computer Science, pages 47–53. Springer-Verlag, 1984.

13. V. Shoup. Lower bounds for discrete logarithms and related problems. In Proc. EUROCRYPT 97, volume
1233 of Lecture Notes in Computer Science, pages 256–266. Springer-Verlag, 1997.

14. D. R. Stinson. Universal hashing and authentication codes. Designs, Codes, and Cryptography, 4(4):369–380,
1994.

15. M. N. Wegman and J. L. Carter. New hash functions and their user in authentication and set equality.
Journal of Computer and System Sciences, 22(3):265–279, 1981.

16. D. H. Yum and P. J. Lee. Generic construction of certificateless encryption. In ICCSA 2004, volume 3043 of
Lecture Notes in Computer Science, pages 802–811. Springer-Verlag, 2004.

17. D. H. Yum and P. J. Lee. Generic construction of certificateless signature. In Information Security and
Privacy: 9th Australian Conference, ACISP 2004, volume 3108 of Lecture Notes in Computer Science, pages
200–211. Springer-Verlag, 2004.

A Definition Revisions

A.1 Identity-Based Encryption

An identity-based encryption scheme consists of four (probabilistic) polynomial-time algorithms,
KG, Extract, Enc and Dec, which are for master key generation, user private key extraction,
encrypting a message and decrypting a ciphertext, respectively. The standard and strongest
notion of security of an ID-based encryption scheme is IND-ID-CCA2, which is defined by the
following game between a challenger and a PPT adversary A:

http://eprint.iacr.org/2006/255
http://eprint.iacr.org/2006/373
http://eprint.iacr.org/2006/373


14 Qiong Huang and Duncan S. Wong

1. The challenger runs KG(1k) to obtain a master public/private key pair (mpk, msk), and
sends mpk to A.

2. A can issue two types of queries:
– Extraction: A submits an identity ID ∈ {0, 1}∗, and is returned the corresponding private

key skID ← Extract(msk, ID).
– Decryption: A submits an identity ID and a ciphertext c of its choice, and is returned

m← Dec(skID, ID, c).
This process can be repeated for polynomially many times.

3. A submits two equal-length messages, (m0,m1) along with an identity ID∗ to the challenger,
which then selects a bit b ∈ {0, 1} at random, computes c∗ ← Enc(mpk, ID∗,mb), and returns
c∗ to A.

4. A continues to issue queries of its choice as in step 2, for polynomially many times.
5. Finally, A outputs a bit b′.

We say A wins the game if b′ = b, and

1. A didn’t issue an Extraction query on input ID∗;
2. A didn’t issue a Decryption query on input (ID∗, c∗).

We denote by Pr[A Succ] the probability that A wins the game, and define A’s advantage in
the game to be AdvA =

∣∣Pr[A Succ]− 1
2

∣∣.
A.2 Public Key Encryption

A public key encryption scheme consists of three (probabilistic) polynomial-time algorithms, KG,
Enc and Dec, which are for key generation, encrypting a message and decrypting a ciphertext,
respectively. The standard notion of security of a public key encryption scheme is IND-CCA2,
which is defined by the following game between a challenger and a PPT adversary A:

1. The challenger runs KG(1k) to obtain a public/private key pair (pk, sk), and sends pk to A.
2. A requests to decrypt a ciphertext c of its choice, under the public key pk, and is returned

m← Dec(sk, c). This process can be repeated for polynomially many times.
3. A submits two equal-length messages, (m0,m1) to the challenger, which then selects a bit

b ∈ {0, 1} at random, computes c∗ ← Enc(pk, mb), and returns c∗ to A.
4. A continues to request to decrypt ciphertexts of its choice.
5. Finally, A outputs a bit b′.

We say A wins the game if b′ = b, and A didn’t request to decrypt c∗. We denote by Pr[A Succ]
the probability that A wins the game, and define A’s advantage in the game to be AdvA =∣∣Pr[A Succ]− 1

2

∣∣.
A.3 Strong One-Time Signature

A signature scheme consists of three (probabilistic) polynomial-time algorithms, KG, Sign and
Vrfy, which are for key generation, signing a message, and verifying a signature, respectively.
The standard notion of the security of a signature scheme is existential unforgeability under a



Generic Certificateless Encryption in the Standard Model 15

chosen message attack. A strong one-time signature is a signature scheme with strong existential
unforgeability under a chosen one message attack, which is a security notion stronger than the
standard one, and defined by the following game between a challenger and a PPT forger F :

1. The challenger computes a one-time key pair (vk, sk) by running (vk, sk) ← KG(1k), and
then runs F on input vk.

2. F may issue a signing query on a single message chosen by itself, m ∈ {0, 1}∗, under the
verification key vk, and is returned a valid signature σ ← Sign(sk,m).

3. Finally, F outputs a message/signature pair, (m∗, σ∗), and wins the game if (m∗, σ∗) 6= (m,σ)
and 1← Vrfy(vk, σ∗,m∗).

We denote by Pr[F Succ] the probability that F wins the game.

A.4 Target Collision-Resistant Hash Functions

Let Hs : {0, 1}∗ → {0, 1}` be a family of keyed hash functions for each k-bit key s, where
` = `(k) = poly(k) is a polynomial in k. The target collision-resistance is defined by the following
game played by a PPT adversary H:

1. A key s is randomly selected from {0, 1}k, and c∗ is randomly from {0, 1}∗.
2. On input s and c∗, H outputs c.

H wins the game if c 6= c∗ and Hs(c) = Hs(c∗). We denote by H Succ the event that H wins the
game, and define the advantage of H in the game as AdvH = Pr[H Succ].

B Proofs of Lemma 1 and Lemma 2

B.1 Proof of Lemma 1

Proof. We can construct a PPT algorithm F to break the strong unforgeability of the underlying
one-time signature scheme by using A1 as a subroutine. Given the target verification key vk∗

and a one-time signing oracle OS, F works as follows:

1. F randomly generates the master public/private key pair by running (mpk, msk)← IBE.KG(1k),
and runs A1 on input mpk.

2. F simulates oracles RevealSecretKey, RevealPartialKey, ReplaceKey and Decryption for A1, by
its knowledge of msk. When to answer a Decryption query (ID, c = (c2, σ, vk)), F first checks
if the input ciphertext c is valid with regard to ID and vk = vk∗. If so, F outputs (c2, σ) and
halts; otherwise, it then behaves as the real decryptor.

3. At some point, A1 submits two equal-length messages (m0,m1) along with a target iden-
tity ID∗. F randomly chooses a bit b, runs c∗1 ← IBE.Enc(mpk, ID∗,mb‖vk∗) and c∗2 ←
PKE.Enc(upkID∗ , c∗1), and then issues a signing query to OS to get a one-time signature
σ∗ on c∗2. F returns (c∗2, σ

∗, vk∗) to A1.
4. A1 continues to issue queries. Again, if a Decryption query (ID, c = (c2, σ, vk)) is valid with

respect to ID and vk = vk∗, F outputs (c2, σ) as its forgery for S.
5. If event Forge1 doesn’t occur before A1 produces its final output b′, F aborts and fails.



16 Qiong Huang and Duncan S. Wong

It is readily to see that F perfectly simulates all the oracles for A1. So event Forge1 occurs with
the same probability as it would in the real environment. On the other hand, if Forge1 occurs,
F also succeeds in outputting a valid forgery for the one-time signature scheme S. Therefore,
guaranteed by the strong unforgeability of S, we have that Pr[Forge1] is negligible in k. ut

B.2 Proof of Lemma 2

Proof. We now construct a PPT algorithm C1 to break the IND-ID-CCA2 security of IBE, using
A1 as a subroutine. Given the master public key mpk, an Extract oracle OE and a Decryption
oracle OD, C1 runs A1 on input mpk. Since the generation of the verification key (in a ciphertext)
is independent of the message, C1 can randomly generate the one-time key pair, which will be
used in the generation of the challenge ciphertext c∗, at the onset of the simulation. Namely, C1
runs (vk∗, sk∗) ← S.KG(1k), and stores (vk∗, sk∗). To answer A1’s oracle queries, C1 maintains
a list List = {(ID, pskID, upkID, uskID)} and works as follows:

– CreateUser: On input an identity ID, if ID was queried before, C1 returns the previous answer;
otherwise, it runs (upkID, uskID)← PKE.KG(1k). It stores (ID,⊥, upkID, uskID) into List and
returns upkID.

– RevealSecretKey: On input an ID, C1 looks up List for the entry of ID. If there is no such an
entry, ⊥ is returned; otherwise, the corresponding uskID is returned.

– RevealPartialKey: On input an identity ID, C1 searches List for the entry of ID. If there is no
such an entry, ⊥ is returned. If pskID = ⊥, it issues a query to oracle OE on input ID to get
the partial private key pskID and stores it. C1 returns pskID to A1.

– ReplaceKey: On input (ID, upk′, usk′), C1 searches List for the entry of ID. If there is no
such an entry, C1 does nothing else. If usk′ = ⊥, it sets usk′ = uskID. Then, it updates
(ID, pskID, upkID, uskID) to (ID, pskID, upk′, usk′).

– Decryption: On input an identity ID and a ciphertext c = (c2, σ, vk), C1 first searches List for
the entry of ID. If there is no such an entry, ⊥ is returned. Else, C1 works as a real Decryption
oracle with the only exception that if event Forge1 occurs, it simply outputs a random bit
and aborts.

At some point, A1 submits to C1 two equal-length messages (m0,m1) along with a target identity
ID∗. C1 submits (m0‖vk∗, m1‖vk∗) and ID∗ to its own challenger which would then choose a bit
b, encrypt mb with respect to identity ID∗ and return the ciphertext c∗1. C1 then computes
c∗2 ← PKE.Enc(upkID∗ , c∗1) and σ∗ ← S.Sign(sk∗, c∗2). It returns c∗ = (c∗2, σ

∗, vk∗) to A1 as the
challenge ciphertext. A1 then continues to issue queries, and C1 answers as above. Note that, if
A1 issues a Decryption query on input (ID∗, c = (c2, σ, vk)) where c 6= c∗, since C1 doesn’t know
the partial key pskID∗ , it could not decrypt c by itself. Instead, after the decryption of c2, C1
issues a Decryption query to its oracle OD on input c1, and is returned m‖vk′. If vk = vk′, C1
returns m. Finally, C1 outputs the bit b′ output by A1.

It’s readily seen that C1 perfectly simulates all the oracles for A1. If A1 succeeds in guessing
the bit b, then C1 also succeeds in outputting the correct bit. (If c∗2 is a ciphertext of mb′ in
CLE setting, then c∗1 ← PKE.Dec(uskID∗ , c∗2) is a ciphertext of mb′ in IBE setting.) Therefore, the
advantage that C1 breaks the IND-IN-CCA2 security of IBE is

AdvC1 =

˛̨̨̨
Pr[C1 Succ]− 1

2

˛̨̨̨



Generic Certificateless Encryption in the Standard Model 17

=

˛̨̨̨
Pr[A1 Succ ∧ Forge1] + Pr[Forge1] ·

1

2
− 1

2

˛̨̨̨
By the IND-ID-CCA2 security of IBE, we have that AdvC1 is negligible. The lemma is proved. ut


	Generic Certificateless Encryption in the Standard Model
	Qiong Huang cl@@auth, Duncan S. Wong
	Introduction
	Definition and Adversarial Model
	Malicious-but-Passive KGC Attack
	Our Scheme
	Discussion
	A More Efficient Scheme

	Conclusion
	Definition Revisions
	Identity-Based Encryption
	Public Key Encryption
	Strong One-Time Signature
	Target Collision-Resistant Hash Functions

	Proofs of Lemma 1 and Lemma 2
	Proof of Lemma 1
	Proof of Lemma 2




