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Abstract

A method for constructing differentially 4-uniform quadratic hexanomials has
been recently introduced by J. Dillon. We give various generalizations of this method
and we deduce the constructions of new infinite classes of almost perfect nonlinear
quadratic trinomials and hexanomials from F22m to F22m . We check for m = 3 that
some of these functions are CCZ-inequivalent to power functions.
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1 Introduction

A function F : F
n
2 → F

n
2 is called differentially δ-uniform [33] if for every a 6= 0 and every b

in F
n
2 , the equation F (x)+F (x+a) = b admits at most δ solutions. Vectorial Boolean func-

tions used as S-boxes in block ciphers must have low differential uniformity to allow high
resistance to the differential cryptanalysis (see [3]). In this sense differentially 2-uniform
functions, called almost perfect nonlinear (APN), are optimal (since for any function, we
have δ ≥ 2). The notion of APN function is closely connected to the notion of almost
bent (AB) function [18]. A function F : F

n
2 → F

n
2 is called AB if the minimum Hamming

distance between all the Boolean functions v · F , v ∈ F
n
2 \{0} (called the component func-

tions of F ), and all affine Boolean functions on F
n
2 is maximal. AB functions exist for n

odd only and oppose an optimum resistance to the linear cryptanalysis (see [31]). Besides,
every AB function is APN [18], and in the n odd case, any quadratic function is APN if
and only if it is AB [17].

The APN and AB properties are preserved by some transformations of functions [17, 33].
If F is an APN function, A1, A2 are affine permutations and A is affine then the function
F ′ = A1 ◦ F ◦ A2 + A is also APN (the functions F and F ′ are then called extended
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affine equivalent (EA-equivalent) and simply affine equivalent if A = 0). Besides, the
inverse of any APN permutation is APN too. Until recently, the only known constructions
of APN and AB functions were EA-equivalent to power functions F (x) = xd over finite
fields (F2n being identified with F

n
2 ). Table 1 gives all known values of exponents d (up to

multiplication by a power of 2 modulo 2n−1, and up to taking the inverse when a function
is a permutation) such that the power function xd over F2n is APN. For n odd, the Gold,
Kasami, Welch and Niho APN functions from Table 1 are also AB (for the proofs of AB
property see [14, 15, 26, 27, 29, 33]).

Table 1

Known APN power functions xd on F2n .
Functions Exponents d Conditions References

Gold 2i + 1 gcd(i, n) = 1 [26, 33]

Kasami 22i − 2i + 1 gcd(i, n) = 1 [28, 29]

Welch 2t + 3 n = 2t + 1 [23]

Niho 2t + 2
t

2 − 1, t even n = 2t + 1 [22]

2t + 2
3t+1

2 − 1, t odd

Inverse 22t − 1 n = 2t + 1 [2, 33]

Dobbertin 24t + 23t + 22t + 2t − 1 n = 5t [24]

In [17], Carlet, Charpin and Zinoviev introduced an equivalence relation of functions,
more recently called CCZ-equivalence, which corresponds to the affine equivalence of the
graphs of functions and preserves APN and AB properties. EA-equivalence is a particular
case of CCZ-equivalence and any permutation is CCZ-equivalent to its inverse [17]. In
[11, 12], it is proven that CCZ-equivalence is more general than EA-equivalence, and classes
of APN and AB functions being EA-inequivalent to power functions are constructed in
[5, 11, 12] by applying CCZ-equivalence to the Gold mappings.

These new results on CCZ-equivalence have raised several interesting questions and the
problem of classification (under CCZ-equivalence) of APN functions is wide open. This
problem includes three open subproblems: the existence of APN power functions being
CCZ-inequivalent to the mappings from Table 1, the existence of APN polynomials being
CCZ-inequivalent to power mappings and to quadratic functions and the classification of
quadratic APN functions. Regarding the first subproblem, it has been conjectured by
Dobbertin that the classification is complete, that is, any APN power function belongs
to some of the six classes from Table 1. Some results on CCZ-inequivalence among the
classes of APN power functions can be found in [8]. The second of the above mentioned
subproblems is an entirely open question. The third question (classifying quadratic APN
functions) is wide open too; nevertheless, there are several recent results on quadratic APN
functions (see [1, 6, 7, 8, 9, 20, 25, 32]). The present paper is also focused on this problem.

Different approaches for constructing quadratic APN functions being CCZ-inequivalent
to power functions are proposed in [6, 20, 25, 32]. Also it is proven in [1] that any function
of the type

∑n−1
i=0 cix

2i+1, ci ∈ F2n , is not APN, unless only one coefficient is nonzero.
Infinite classes of quadratic APN functions being CCZ-inequivalent to power functions are
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Table 2
Known APN functions CCZ-inequivalent to power functions on F2n .

No Functions Conditions References

n = 3k, gcd(k, 3) = gcd(s, 3k) = 1

1 x2s+1 + wx2ik+2mk+s

k ≥ 4, i = sk mod 3, m = 3 − i [8, 9]

w has the order 22k + 2k + 1

n = 4k, gcd(k, 2) = gcd(s, 2k) = 1

2 x2s+1 + wx2ik+2mk+s

k ≥ 3, i = sk mod 4, m = 4 − i [7]

w has the order 23k + 22k + 2k + 1

n ≥ 7

3 x3 + tr(x9) n > 2p for the smallest possible p > 1 [6]

such that p 6= 3, gcd(p, n) = 1

n = 2m, m ≥ 3, q = 2m Corollary 1

4 x22i+2i

+ bxq+1 + cxq(22i+2i) cq+1 = 1, c 6∈ {λ(2i+1)(q−1), λ ∈ F2n} of the present

gcd(i, m) = 1, cbq + b 6= 0 paper

n = 2m, m ≥ 3, q = 2m Corollary 2

5 x(x2i

+ xq + cx2iq) gcd(i, m) = 1, s /∈ Fq of the present

+x2i

(cqxq + sx2iq) + x(2i+1)q x2i+1 + cx2i

+ cqx + 1 is irreducible over F2n paper

constructed in [6, 7, 8, 9]. They are presented in Table 2. It is proven in [4] that there exists
no APN function being CCZ-inequivalent to power mappings on F2n for n ≤ 5. However,
the classification of quadratic APN functions is far away from being complete. Already
for n = 6 there are at least 9 mutually CCZ-inequivalent quadratic APN polynomials
which are CCZ-inequivalent to power functions [20]. In the present paper, we develop the
method of constructing differentially 4-uniform quadratic polynomials introduced by Dillon
[20]. We construct a new infinite class of quadratic APN trinomials and a new potentially
infinite class of quadratic APN hexanomials (presented in Table 2 by cases 4 and 5) which
we conjecture to be CCZ-inequivalent to power functions for n ≥ 6 and we confirm this
conjecture for n = 6.

2 Preliminaries

Let F
n
2 be the n-dimensional vector space over the field F2. Any function F from F

n
2 to

itself can be uniquely represented as a polynomial on n variables with coefficients in F
n
2 ,

whose degree with respect to each coordinate is at most one:

F (x1, ..., xn) =
∑

u∈F
n
2

c(u)
(

n
∏

i=1

xui

i

)

, c(u) ∈ F
n
2 .

This representation is called the algebraic normal form of F and its degree d◦(F ) the
algebraic degree of the function F .
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Besides, the field F2n can be identified with F
n
2 as a vector space. Then, viewed as a

function from this field to itself, F has a unique representation as a univariate polynomial
over F2n of degree smaller than 2n:

F (x) =
2n−1
∑

i=0

cix
i, ci ∈ F2n .

For any k, 0 ≤ k ≤ 2n − 1, the number w2(k) of the nonzero coefficients ks ∈ {0, 1} in
the binary expansion

∑n−1
s=0 2sks of k is called the 2-weight of k. The algebraic degree of

F is equal to the maximum 2-weight of the exponents i of the polynomial F (x) such that
ci 6= 0, that is, d◦(F ) = max0≤i≤n−1,ci 6=0 w2(i) (see [17]).

A function F : F
n
2 → F

n
2 is linear if and only if F (x) is a linearized polynomial over

F2n , that is,
n−1
∑

i=0

cix
2i

, ci ∈ F2n .

The sum of a linear function and of a constant is called an affine function.
Let F be a function from F2n to itself and A1, A2 : F2n → F2n be affine permutations.

The functions F and A1◦F ◦A2 are then called affine equivalent. Affine equivalent functions
have the same algebraic degree (i.e. the algebraic degree is affine invariant).

As recalled in the Introduction, we say that the functions F and F ′ are extended affine

equivalent if F ′ = A1◦F ◦A2+A for some affine permutations A1, A2 and an affine function
A. If F is not affine, then F and F ′ have again the same algebraic degree.

Two mappings F and F ′ from F2n to itself are called Carlet-Charpin-Zinoviev equivalent
(CCZ-equivalent) if the graphs of F and F ′, that is, the subsets GF = {(x, F (x)) | x ∈ F2n}
and GF ′ = {(x, F ′(x)) | x ∈ F2n} of F2n × F2n , are affine equivalent. Hence, F and F ′ are
CCZ-equivalent if and only if there exists an affine automorphism L = (L1, L2) of F2n ×F2n

such that
y = F (x) ⇔ L2(x, y) = F ′(L1(x, y)).

Note that since L is a permutation then the function L1(x, F (x)) has to be a permutation
too (see [8]). As shown in [17], EA-equivalence is a particular case of CCZ-equivalence and
any permutation is CCZ-equivalent to its inverse.

For a function F : F2n → F2n and any elements a, b ∈ F2n we denote

δF (a, b) = |{x ∈ F
n
2 : F (x + a) + F (x) = b}|.

F is called a differentially δ-uniform function if maxa∈F
∗

2n ,b∈F2n δF (a, b) ≤ δ. Note that
δ ≥ 2 for any function over F2n . Differentially 2-uniform mappings are called almost

perfect nonlinear.
For any function F : F2n → F2n we denote

λF (a, b) =
∑

x∈F2n

(−1)tr(bF (x)+ax), a, b ∈ F2n ,
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where tr(x) = x + x2 + x4 + ... + x2n−1

is the trace function from F2n into F2. The set
ΛF = {λF (a, b) : a, b ∈ F2n , b 6= 0} is called the Walsh spectrum of the function F and the
multiset {|λF (a, b)| : a, b ∈ F2n , b 6= 0} is called the extended Walsh spectrum of F . The
value

NL(F ) = 2n−1 −
1

2
max

a∈F2n ,b∈F
∗

2n

|λF (a, b)|

equals the nonlinearity of the function F . The nonlinearity of any function F satisfies the
inequality

NL(F ) ≤ 2n−1 − 2
n−1

2

([18, 35]) and in case of equality F is called almost bent or maximum nonlinear.
Obviously, AB functions exist only for n odd. It is proven in [18] that every AB function

is APN and its Walsh spectrum equals {0,±2
n+1

2 }. If n is odd, every APN mapping which
is quadratic (that is, whose algebraic degree equals 2) is AB [17], but this is not true for
nonquadratic cases: the Dobbertin and the inverse APN functions are not AB (see [15, 17]).
When n is even, the inverse function x2n−2 is a differentially 4-uniform permutation [33]
and has the best known nonlinearity [30], that is 2n−1 − 2

n
2 (see [15, 21]). This function

has been chosen as the basic S-box, with n = 8, in the Advanced Encryption Standard
(AES), see [19]. A comprehensive survey on APN and AB functions can be found in [16].

It is shown in [17] that, if F and G are CCZ-equivalent, then F is APN (resp. AB)
if and only if G is APN (resp. AB). More generally, CCZ-equivalent functions have the
same differential uniformity and the same extended Walsh spectrum (see [11]). Further
invariants for CCZ-equivalence are given in [25] (see also [20]) in terms of group algebras.
Let G = F2[F2n ×F2n ] be the group algebra of F2n ×F2n over F2. It consists of the formal
sums

∑

g∈G

agg

where ag ∈ F2. If S is a subset of F2n ×F2n then it can be identified with the element
∑

s∈S s of G. For any APN mapping F we denote

∆F = {(a, b) : F (x) + F (x + a) = b has 2 solutions} ⊂ F2n ×F2n .

The dimensions of the ideals of G generated by ∆F and by the graph GF of F are called ∆-
and Γ-ranks, respectively. According to [25] (and also [20]), ∆- and Γ-ranks of a function
are CCZ-invariant.

3 Constructions of differentially 4-uniform quadratic

mappings

As recalled in the Introduction, different methods for constructing APN (or differentially
4-uniform) functions are presented in [6, 20, 25, 32]. In [25] it is shown that one of the
ways to construct APN polynomials is to consider linear combinations of two different
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Gold power functions. Using this approach two quadratic APN binomials on F210 and F212 ,
which are CCZ-inequivalent to power maps, are introduced in [25]. The APN binomial of
the field F212 has been proven in [8, 9] for being part of infinite sequences of quadratic APN
binomials (given in Table 2 by the first and the second cases) while the APN function of
the field F210 from [25] is not explained yet by any infinite family.

Another approach for constructing quadratic APN polynomials CCZ-inequivalent to
power functions is introduced in [6]. This approach is based on the fact that for any APN
function F and any function G the function F (x) + tr(G(x)) has differential uniformity at
most 4. The third class of APN polynomials presented in Table 2 is obtained by application
of this method.

A third approach, given in [20], is to consider quadratic hexanomials of the type

F (x) = x(Ax2 + Bxq + Cx2q) + x2(Dxq + Ex2q) + Gx3q (1)

over F22m with q = 2m as good candidates for being differentially 4-uniform. This ap-
proach gives new examples of quadratic APN functions over F26 and F28 which are CCZ-
inequivalent to power functions [20]. Besides, the infinite family of APN functions in-
troduced in the next section and presented by the fourth case in Table 2 is based on
construction (1). It should be noted that similar approach was used to construct new
quadratic APN quadrinomials over F26 in [32].

Below we suggest natural generalizations of the method from [20], but first let us recall
the arguments leading to the construction (1). Let a function F be defined by (1). Since F
is quadratic then in order to determine its differential uniformity it is enough to know the
numbers of solutions of the equations F (x + a) + F (x) + F (a) = 0 for all nonzero elements
a of F22m . We get

f1 = F (x + a) + F (x) + F (a) = a1x + a2x
2 + a3x

q + a4x
2q = 0

f2 = aq
2f1 + a4f

q
1 = b1x + b2x

2 + b3x
q = 0

f3 = b2
3f1 + a3b3f2 + a4f

2
2 = c1x + c2x

2 + c3x
4 = 0.

Hence, if either c1, c2 or c3 is different from 0 then F can have differential uniformity at
most 4. In practice this condition on coefficients is very important. Indeed, the construction
(1) gives all quadratic functions on the field F24 and we have checked by running a computer
that only about 3/4 of them are differentially 4-uniform. For the field F26 only about 18/41
of all functions generated by (1) are differentially 4-uniform.

Let us now consider the construction

F ′(x) = x(Ax2 + Bx4 + Cxq + Dx2q + Ex4q) + x2(Gx4 + Hxq + Ix2q + Jx4q)

+x4(Kxq + Lx2q + Mx4q) + xq(Nx2q + Px4q) + Qx2q+4q.

For the function F ′ and for any nonzero elements a of F22m we get

f ′
1 = F (x + a) + F (x) + F (a) = a′

1x + a′
2x

2 + a′
3x

4 + a′
4x

q + a′
5x

2q + a′
6x

4q = 0

f ′
2 = a′q

3 f ′
1 + a′

6f
′
1
q

= b′1x + b′2x
2 + b′3x

4 + b′4x
q + b′5x

2q = 0

f ′
3 = b′3f

′
1 + a′

3f
′
2 = c′1x + c′2x

2 + c′3x
q + c′4x

2q + c′5x
4q = 0

f ′
4 = c′q5 f ′

2 + b′3f
′
3
q

= d′
1x + d′

2x
2 + d′

3x
q + d′

4x
2q = 0.
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Thus, if some of the coefficients d′
2, d

′
3, d

′
4 are different from 0 then we see that f ′

4 has the
same form as f1. Therefore, applying the Dillon method to f1 = f ′

4, we get that if some
of the coefficients d′

2, d
′
3, d

′
4, and some of the coefficients c1, c2, c3, are different from 0 then

F ′ is differentially 4-uniform. Obviously, the probability that we can prove this way that
the function F ′ is differentially 4-uniform is less than in the case of construction (1) since
we have an additional condition (on coefficients d′

2, d
′
3, d

′
4). And actually, we checked by

computer investigation that only about 1/4 of the quadratic functions on the field F26 are
differentially 4-uniform (while all of them have the same form as F ′).

Obviously, construction (1) can be further generalized. For any i we denote

F (i)(x) =
∑

0≤t<j≤i

atjx
2t+2j

+
∑

0≤t,j≤i

btjx
2t+2jq +

∑

0≤t<j≤i

ctjx
q(2t+2j)

and consider F (i) over F22m with m ≥ i+1. Obviously, the cases i = 1, 2 correspond to the
functions F and F ′. For arbitrary i, using induction, we get that, under a condition on the
coefficients translating that no relation obtained in the process completely vanishes, the
function F (i) is differentially 4-uniform. Note that all quadratic functions have the form
F (i)(x) for i = m − 1. But clearly, with increasing i the probability that we can prove
this way that F (i) is differentially 4-uniform decreases since the number of conditions on
coefficients grows. Nevertheless, we exhibit in the next section two subcases where these
constructions succeed in providing differentially 4-uniform polynomials, and we can even
deduce two new infinite classes of APN quadratic functions.

4 New infinite classes of APN functions

Functions whose nonzero derivatives are all 2k-to-1 mappings (i.e. reach any value either
0 or 2k times) are studied in [10]. The simplest examples of such functions over F2n are
x2i+1 when gcd(i, n) = k. The following theorems give new classes of such functions - of
APN functions when k = 1.

4.1 Trinomials

Theorem 1 Let m and i be any integers, q = 2m, n = 2m, gcd(i, m) = k and c, b ∈ F2n be

such that cq+1 = 1, c 6∈ {λ(2i+1)(q−1), λ ∈ F2n}, cbq +b 6= 0. Then all the nonzero derivatives

of the function

F (x) = x22i+2i

+ bxq+1 + cxq(22i+2i)

are 2k-to-1 mappings of F2n.

Proof. Since F is quadratic, then for any nonzero a in F2n the function F (x + a) + F (x)
is 2k-to-1 if and only if the equation

f1 = F (x + a) + F (x) + F (a) = baqx + a22i

x2i

+ a2i

x22i

+ baxq + ca22iqx2iq + ca2iqx22iq = 0
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has 2k solutions. This equation implies

f1 + cf q
1 = (cbq + b)(axq + aqx) = 0

and, since cbq + b 6= 0, then x = au, u ∈ Fq. The equation f1 = 0 becomes

(a22i+2i

+ caq(22i+2i))(u2i

+ u22i

) = 0.

The condition c 6∈ {λ(2i+1)(q−1), λ ∈ F2n} implies that a22i+2i

+ caq(22i+2i) 6= 0. Hence, if
gcd(i, m) = k then F (x + a) + F (x) is 2k-to-one for any nonzero a. ✷

Clearly, for k equal 1 and 2 Theorem 1 gives differentially 2- and 4-uniform functions
respectively.

Corollary 1 Let m be any integer, q = 2m, n = 2m, i be such that gcd(i, m) = 1, and

c, b ∈ F2n be such that cq+1 = 1, c 6∈ {λ(2i+1)(q−1), λ ∈ F2n}, cbq + b 6= 0. Then the function

F (x) = x22i+2i

+ bxq+1 + cxq(22i+2i)

is APN on F2n.

Note that vectors c, b satisfying the hypotheses of Theorem 1 do exist for every odd
m and i. Indeed, an element c such that cq+1 = 1 and c 6∈ {λ(2i+1)(q−1), λ ∈ F2n} exists
because for i odd 2i + 1 is divisible by 3 and 3(q − 1) divides q2 − 1 and we can take for c
any (q−1)-th power of a primitive element which is not the 3(q−1)-th power of an element
of the field and b clearly exists too (take for instance b = 1). When i = 1 this sufficient
condition on m is also necessary since if m is even then gcd(3(q − 1), q2 − 1) = q − 1, so
there does not exist such c.

4.2 Hexanomials

Theorem 2 Let n be any even integer, q = 2n/2, gcd(i, n/2) = k, and c, s ∈ F2n be such

that s /∈ Fq. If the equation

x2i+1 + cx2i

+ cqx + 1 = 0

has no solution x such that xq+1 = 1, and in particular if the polynomial X2i+1 + cX2i

+
cqX + 1 is irreducible over F2n, then all the nonzero derivatives of the function

F (x) = x(x2i

+ xq + cx2iq) + x2i

(cqxq + sx2iq) + x(2i+1)q

are 2k-to-1 mappings of F2n.

Proof. Since F is quadratic then for any nonzero a the function F (x + a) + F (x) is 2k-to-1
if and only if the equation F (x + a) + F (x) + F (a) = 0 has 2k solutions.

We have
F (x + a) + F (x) + F (a) =
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(a2i

+ aq + ca2iq)x + (a + cqaq + sa2iq)x2i

+ (a + cqa2i

+ a2iq)xq + (ca + sa2i

+ aq)x2iq

and

(F (x + a) + F (x) + F (a))q =

(a2iq + a + cqa2i

)xq + (aq + ca + sqa2i

)x2iq + (aq + ca2iq + a2i

)x + (cqaq + sqa2iq + a)x2i

.

The sum of this two expressions equals (s + sq)(a2iqx2i

+ a2i

x2iq). Hence, since s + sq 6= 0
then F (x + a) + F (x) + F (a) = 0 and x 6= 0 imply xq−1 = aq−1, that is, x = ua where
u ∈ F

∗
q . Replacing x by ua, we get

F (x + a) + F (x) + F (a) =

(u2i

a2i

+ uaq + cu2i

a2iq)a + (ua + cquaq + su2i

a2iq)a2i

+ (ua + cqu2i

a2i

+ u2i

a2iq)aq

+(cua + su2i

a2i

+ uaq)a2iq = (u + u2i

)(a2i+1 + a(2i+1)q + ca2iq+1 + cqa2i+q).

The equation u+u2i

= 0 has 2k solutions. We deduce that F (x+a)+F (x) is 2k-to-1 if the
equation x2i+1 +x(2i+1)q +cx2iq+1 +cqx2i+q = 0 admits no nonzero solution or, equivalently,
the equation x(2i+1)(q−1) + cx2i(q−1) + cqxq−1 + 1 = 0 has no solutions, or in other words, if
the equation

y2i+1 + cy2i

+ cqy + 1 = 0

has no solution y such that yq+1 = 1. This happens (for instance) when the polynomial
X2i+1 + cX2i

+ cqX + 1 is irreducible over F2n . ✷

Obviously, for the special case k = 2, Theorem 2 gives differentially 4-uniform functions
and for k = 1, it gives a class of APN functions.

Corollary 2 Let n be any even integer, q = 2n/2, gcd(i, n/2) = 1, and c, s ∈ F2n be such

that s /∈ Fq. If the equation

x2i+1 + cx2i

+ cqx + 1 = 0

has no solution x such that xq+1 = 1, and in particular if the polynomial X2i+1 + cX2i

+
cqX + 1 is irreducible over F2n, then the function

F (x) = x(x2i

+ xq + cx2iq) + x2i

(cqxq + sx2iq) + x(2i+1)q

is APN on F2n.

The class of APN functions of Corollary 2 depends on existence of elements c ∈ F2n

for which the polynomial x2i+1 + cx2i

+ cqx + 1 is irreducible over F2n . We checked with a
computer that for i = 1 such elements always exist at least for all even n, 6 ≤ n ≤ 1000,
not divisible by 3. In case n divisible by 6, 6 ≤ n ≤ 1000, such elements exist at least for
140 out of 166 checked fields. We also checked that for 6 ≤ n ≤ 26 the number of elements
c for which the polynomial is irreducible is in average 3/10-th of all elements.
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4.3 Their inequivalence with power functions

The Dobbertin APN functions have unique Walsh spectra which are different from the
Walsh spectra of quadratic APN functions (see [14, 34]). Since the extended Walsh spec-
trum of a function is invariant under CCZ-equivalence then we can make the following
conclusion.

Proposition 1 The functions of Corollaries 1 and 2 are CCZ-inequivalent to the Dob-

bertin APN functions.

The APN functions from Corollaries 1 and 2 are CCZ-inequivalent to power functions at
least for n = 6. Indeed, their Γ-ranks equal 1146, while the only APN power function x3

on F26 has the Γ-rank 1104.

Proposition 2 The functions of Corollaries 1 and 2 are CCZ-inequivalent to power func-

tions on F26.
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